
University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and
Engineering

Bachelor Thesis

Memory Management For
Interactive Bitmap Image

Manipulation

Pilsen 2011 Lukáš Jirkovský

Declaration

I hereby declare that this bachelor thesis is completely my own work and
that I used only the cited sources.

Pilsen, May 9, 2011

Lukáš Jirkovský

Abstract

Bitmap image manipulation is known to require a lot of memory. With the
advance in lossless image manipulation, this weakness is becoming even more
apparent. To keep memory requirements low, processing on demand is often
used. Although this approach reduces memory use, it also requires more
time for a chain of operations to be applied. To solve this problem, many
applications add cache to specific positions in a pipeline, so it is not necessary
to recalculate all operations with every change.
This thesis presents a library for lossless image manipulation, using a new
concept of memory management. The algorithm implemented tries to achieve
a good balance between a memory usage and interactivity by assigning time
limits for a chain of succeeding operations. This allows sharing of cache
between multiple operations, if the sum of their run time does not exceed
the time limit. The time limits are dynamically updated to reflect changes
to operations which are applied on the image.

Contents

1 Introduction 1

2 Bitmap Image Manipulation 2
2.1 On-Demand Processing . 2
2.2 Mipmapping . 2
2.3 Chaining of Operations . 3
2.4 Cache Management . 3

3 Existing Image Manipulation Libraries 5
3.1 VIGRA . 5
3.2 VIPS . 6
3.3 GEGL . 7
3.4 ImageMagick . 8

4 Implementation 10
4.1 Pixel Formats . 10

4.1.1 PixelData . 12
4.2 Iterators . 12
4.3 Image Tiles . 14
4.4 Image Buffers . 15
4.5 Graph . 17

4.5.1 Nodes . 19
4.5.2 On-Demand Processing 20
4.5.3 Inserting Operations 23

4.6 Node Removal . 24
4.6.1 Automatic Cache Removal 25

4.7 Image Operations . 26
4.7.1 TransformImage Function and Functors 28
4.7.2 Convert Operations . 28

4.8 Input/Output support . 29

CONTENTS CONTENTS

5 Testing 30
5.1 Functionality . 30
5.2 Speed . 30

6 Future Improvements 32
6.1 Masks . 32
6.2 MipMapping . 32
6.3 Swapping Of Unused Tiles . 33
6.4 User Interface . 33

6.4.1 Previews . 33
6.5 Color Management And Multiple Color Space Support 33
6.6 New Image Operations . 34
6.7 Support For More Image Formats 34

7 Usage 35
7.1 Building . 35

7.1.1 Requirements . 35
7.1.2 How to Compile . 35

7.2 Writing Operations . 35
7.2.1 Operation Using The transformImage() Function . . . 36
7.2.2 Operation Using a Direct Access 37

7.3 Using the Graph . 40

8 Conclusion 42

4

1 Introduction

The goal of this work was to implement a new library for lossless processing
of bitmap images, with a good balance between memory requirements and
interactivity. The library is designed to be the core of a new image editing
application. Because of the progress in the field of digital photography it is
necessary that the library supports higher bit depths (more than 8 bits per
channel). To make the library more accessible, it strives for a simple and
powerful API (application programming interface).

In this work, I will first describe some of the techniques commonly used in
image processing. I will continue with a brief description of some of the
existing libraries for lossless image manipulation, followed by a description
of the library codenamed FotoSHOCK, implemented during the thesis work.
Finally, I will compare the speed of FotoSHOCK to VIGRA, one of the
existing image manipulation libraries, and few usage examples will be given.

1

2 Bitmap Image Manipulation

Bitmap is probably the most common representation of images in computer
graphics. Bitmaps are very simple to display, especially when compared to
vector images. The downside of using bitmaps are high memory require-
ments. With advances in the digital imaging, where most recent DSLR cam-
eras have sensors with 18 MPix and more, memory limitations may pose a
problem.

To maintain the quality throughout the process and to allow making changes
to images later, lossless manipulation is often sought after.

2.1 On-Demand Processing

In the simplest implementation a whole image is recalculated when an opera-
tion is applied. However, recalculating the whole image after every change is
very time-consuming. In cases when only a part of the image has to contain
valid data (eg. when only a part of the image is visible), recalculating the
whole image is not necessary. To address this issue it is possible to intro-
duce the on-demand processing. When an operation is applied on the image,
nothing is recalculated unless something requests a redraw of a specific part
of the image. The part which should be recalculated is often called region of
interest or “ROI”.

2.2 Mipmapping

Although the previous method of the on-demand processing can improve pro-
cessing times, it would fail in the case when a whole image should be redrawn,
but only a small resolution result is required. Fortunately it is possible to im-
prove the on-demand processing with a case for different resolutions. Speed
of many operations can improved a lot by using a smaller resolution image.
When joined together with the previously described method, it is possible
to request a redraw of some area at a specific magnification. However, this
introduces a new problem–rescaling the image every time magnification is
changed introduces more computations. Nevertheless, it is possible to pre-

2

Bitmap Image Manipulation Chaining of Operations

pare the image in several resolutions and choose the nearest higher resolution
than requested. The technique of storing the image in multiple resolutions
to improve the speed is known as mipmapping.

2.3 Chaining of Operations

Often it is necessary to do more than one change to an image. The easiest
way to do this is to allow the user to apply one operation at a time without
keeping information about already applied operations. The user can apply a
new operation only after the previous operation was applied. Even though
this approach serves well in many cases, it has its limitations. Probably the
most prominent problem is that it is not possible to change parameters of al-
ready applied operations. Another notable weakness is that some operations
requiring multiple inputs are difficult to do in such environment. Despite
being inflexible, it is still used in many applications.

To address the problem of changing parameters of already applied operations,
operations can be seen as a linear chain where operations are applied when
necessary. However, usage of operations requiring more inputs may still pose
a problem.

The problem with the use of multiple inputs can be solved by using a graph
instead of a linear chain of operations. It is necessary to put some extra
limitations though. The graph has to be directed. This is necessary to
determine what is the input of an operation and what is the output. Because
cycles in the graph would cause infinite loop when processing an image, the
graph has to be acyclic.

2.4 Cache Management

Although it is necessary to recalculate every operation in a chain when the
chain of operations is first applied on the image, it is not necessary in many
other cases. When a new operation is appended to the chain, the results from
the last operation can be reused without need to recalculate every preceding
operation.

This becomes more difficult when an operation is inserted in the middle of

3

Bitmap Image Manipulation Cache Management

a chain. If only the last operation was cached, it would be necessary to
recalculate all operations. The solution is to insert multiple caches storing
the intermediate results. The question is: “how the caches should be dis-
tributed?” In this thesis I will present a deadline-based cache manager to
resolve this problem.

4

3 Existing Image Manipulation
Libraries

Currently there are many libraries used for manipulating bitmap images.
These libraries implement storage for bitmap images with a defined interface
to modify pixels within an image. Some of these libraries allow chaining of
operations in either linear chains or in graphs.

During my thesis work I evaluated several image manipulation libraries. I
will describe the most prominent ones in the next few sections.

3.1 VIGRA

VIGRA[8] [14] is a library whose main emphasis is the adaptability of algo-
rithms and data structures. VIGRA is written entirely in C++. A clean
C++ interface, which is very simple to use, is provided. In addition, the
Python bindings are available. VIGRA implements a bitmap storage, a fa-
cility to run different operations on the image and IO operations for multiple
image formats. Chaining of operations is not part of VIGRA. VIGRA is a
free software licensed under MIT X11 license.

Templates are used extensively within VIGRA [13]. That means that a lot of
code is recompiled with every change. On the other hand, use of templates
allows writing more generic code [12], which can be further optimized.

VIGRA can use many different types for storing pixel values, such as float,
unsigned 8 bit integer and unsigned 16 bit integer. This is achieved by instan-
tiating the BasicImage class with a desired type as a template parameter.
Thanks to this approach type checking during compile time is possible.

The access to pixels is done using iterators and accessor classes. Accessor
classes are used to interpret the values returned by an iterator. For example,
it is possible to write the accessor which allows using a luminance value for
an RGB image in places where an RGB triplet would be used otherwise.

Even though it is possible to access pixels directly, the primary way to apply
the operation on the image is to create the functor (function object) whose

5

Existing Image Manipulation Libraries VIPS

operator() function computes a new value for a pixel. The functor is then
passed to one of the functions doing transforms, such as the transformIm-

age() function.

VIGRA, however, has a few weaknesses too. VIGRA is slow compared to
the other libraries which will be mentioned later. A second weakness is that
VIGRA does not support dividing images into the smaller regions, which can
be processed separately. This requires the image to fit into RAM completely.

I considered VIGRA as a basis for my thesis. The reason was a clean interface
and the fact that I know VIGRA very well. Due to the aforementioned
problems I decided not to use it. Still it is a very good library, suitable
especially for quick prototyping of image processing algorithms.

3.2 VIPS

VIPS is a LGPL-licensed demand driven (operations are run only when re-
quested) image processing system. VIPS is very memory-efficient and it is
able to work with images larger than RAM (up to dozens of gigabytes). An-
other notable strength is its speed. VIPS is highly scalable, so the speed can
by improved further by running VIPS on multiprocessor systems [15]. VIPS
provides C, C++ and Python interface.

VIPS supports a wide selection of formats used to store pixel values. Even
the less common ones, like the 128-bit complex format, are supported. The
number of bands (each band usually represents one color channel) does not
have any artificial limits. Many different color spaces are supported, for
example, RGB, XYZ and CIE Lab are supported.

VIPS has a very good image segmentation system. The memory segmenta-
tion reduces memory usage and it allows running operations only on a small
part of the image. Because VIPS was designed for use with images larger
than RAM, it is not possible to access pixels in the image directly. Instead,
a region has to be requested first. VIPS ensures that the pixels in the re-
gion are read into memory, because the region could have been stored on
a disc. Then it is possible to access the pixels within the requested region.
For reading images mmap is used on Unix-based systems and its equivalent
on Windows [15].

6

Existing Image Manipulation Libraries GEGL

VIPS can use so-called partial images [9] [16]. A partial image is an image
which stores a function to compute pixels in a region on demand, instead of
storing a value for each pixel. Partial images allows easy parallelism, where
a function runs in several threads with each thread computing values for a
different area of an image. This is achieved by separating the operation into
three stages represented by a start function, generate function and a stop
function. The start function prepares data for processing, which includes
resource allocation and setting of a state. The generate function does the
calculation itself and the stop function frees resources. Both start and stop
functions are mutually exclusive, with most of the synchronization being done
in these functions. The generate function uses a state created in the start
function. This approach allows to omit the communication between generate
functions which are run in parallel.

To reduce memory usage and to allow even better scalability operations are
pipelined whenever possible. If several functions are applied on a region the
successive stop and start functions are eliminated and the results from one
generate function are passed directly to the other function.

The reason why I did not choose to use VIPS was that VIPS allows only
linear chain of operations. What can be considered a problem too is the fact,
that VIPS depends on Glib for its use of GObject [6]. Glib is a part of the
GTK+ library, that can be thought of as a competing library to Qt (which
is going to be used for the implementation of the user interface).

3.3 GEGL

GEGL [5] is an image processing framework which is notable for its use
of a directed acyclic graph for the operation chaining. GEGL supports a
wide variety of pixel formats and color spaces through the BABL [1] library.
Similarly to VIPS, it is possible to process images larger than RAM using
GEGL. It is written in C using GObject. GEGL provides well designed
interfaces for C, vala, C#, Python and Ruby. The library itself is licensed
under the LGPL 3 license while the examples are licensed under the GPL 3
license.

GEGL is built around the idea of using the graph for representing chains of
operations. Each node in a graph contains one operation or it can act as a
parent for other nodes. The node communicate with other nodes using input

7

Existing Image Manipulation Libraries ImageMagick

and output pads, where input pads are used as a source for operation and
output pads are the place where results can be requested.

GEGL tries to cache intermediate results. A cache is always present in nodes
which request painting on the screen. Cache is also created after a call to the
gegl_node_get_cache() function.

The image is stored in a GeglBuffer. The GeglBuffer can store any of
the pixel formats and color spaces supported by BABL. The GeglBuffer is
designed to make use of several different back-ends possible. Currently there
is a tiled back-end with support for mipmapping and a linear back-end. The
tiled back-end can store images that are larger than RAM. With this back-
end, unused tiles can be stored on the disc. Linear buffers allow simple access
to all image pixels, but at the expense of loading the whole buffer into the
memory.

Operations in GEGL implement a wide range of functionality, varying from
operations used to load image into a GeglBuffer to a more common oper-
ations, such as the change of brightness of an image. Implementing a new
operation is relatively simple.

To summarize, GEGL is a very good library, but because it uses GObject it
is not very suitable for use within Qt application. Use of GObject also means
that there is a lot of boilerplate code.

3.4 ImageMagick

ImageMagick [7] is well known for its batch processing capabilities, but it
is possible to use it as a library too. Several dozens of image formats are
supported. There are a number of operations available. ImageMagick in-
cludes interfaces to 18 programming languages at the time of writing. It is
distributed under the Apache 2.0 license.

Despite being usable from many programming languages, ImageMagick is
not very useful for image processing itself for several reasons. Some of the
image processing functionality is said to be unpredictable or inconsistent with
the documentation [11]. The other significant problem is that most of its
features depend on compile time switches. This poses a problem especially
in case of pixel formats, because the format of pixels (8-bit integer, float

8

Existing Image Manipulation Libraries ImageMagick

etc.) is hard coded during a compilation. Due to this, it is difficult to
use ImageMagick as a base for applications supporting dynamical switching
between pixel formats.

Image in ImageMagick is represented as a “Canvas”, which is stored as a
contiguous array of pixels. As a result, it is not possible to process images
larger than RAM.

In ImageMagick, it is possible to request a temporary image called the “pixel
cache.” The pixel cache stores pixels in a contiguous array of pixels, identi-
cally to the canvas. The main advantage of the pixel cache is that it allows
efficient access to image pixels. It is useful when multiple operations should
be performed to avoid updates of the underlying canvas after every opera-
tion. Yet, support for storing chained operations similar to VIPS or GEGL
does not seem to be present.

Even though it has its weaknesses, ImageMagick is used in many applications
and libraries for input/output operations thanks to the support of a great
variety of image formats. For example, VIPS optionally uses ImageMagick
to support more formats.

9

4 Implementation

The library implemented during my thesis work (codenamed FotoSHOCK)
is implemented using the C++ programming language according to the stan-
dard ISO/IEC 14882:2003 [10]. The main reason for choosing the C++ is
that C++ can be highly optimized. Thanks to function and class templates
it is possible to write generic code, which is evaluated at a compile time.
Another reason was that C++ is object oriented language which allows de-
signing a very clean interface.

FotoSHOCK uses a graph (similar to GEGL) to define chains of operations.
The interface is inspired by the interface of VIGRA.

In the following sections I will describe the architecture of FotoSHOCK. I
will start with how different pixel formats are described. I will continue with
a way to store images and how the pixels are accessed. Then I will discuss
the implementation of the graph and finally I will describe the interface used
to define operations.

4.1 Pixel Formats

FotoSHOCK was designed with support for many pixel formats in mind.
Currently supported formats are: binary, 8-bit, 16-bit, 32-bit and 64-bit
unsigned integer and float and double formats. FotoSHOCK can be easily
extended to support new formats.

All code related to a format of pixels is in the PixelType.hxx and Pixel-

Type.cpp files in the PixelType namespace.

The pixel format itself is defined by an entry in the PixelType::PixelFormat
enumeration. Values from the PixelFormat enumeration are later used to
determine the format of pixels in image. The reason to use enumeration,
instead of the format which is used to store pixel values, is that it is possible
to write conditional jumps depending on a pixel format without overusing
templates.

For the sake of consistence there should be a typedef for each PixelFormat

entry defining the type (any of the primitive types C++ offers or possibly a

10

Implementation Pixel Formats

POD type) used to store pixel values.

For each PixelFormat entry there has to be a corresponding case in the
switch_format() macro. This macro is used throughout the code to allow
the use of template classes and functions depending on the PixelFormat

within a non-template code.

Before using the switch_format() macro, the macro FORMAT_DO_STH(T,U)

has to be defined. The parameter T corresponds to the PixelFormat and
U is the underlying type. FORMAT_DO_STH defines the code which should be
run in each case of the switch_format() macro. For example consider the
following code snippet:

#define FORMAT_DO_STH(T,U) foo=new ImageBuffer <T >(...);

switch_format(format)

#undef FORMAT_DO_STH

First, the macro FORMAT_DO_STH is defined. The FORMAT_DO_STH definition
is a code which creates a new ImageBuffer (template class requiring Pix-
elFormat as parameter, for details see the section 4.4) and assigns it to the
variable foo. Then the switch_format(format) is called. As a result, new
ImageBuffer is created with a correct PixelFormat.

Even though it is possible to write a switch instead of using the macro
switch_format() where needed, it should never be done. The reason is
that such code would break immediately after any change to the PixelFor-

mat definition.

For each PixelFormat there has to be a template specialization of the Type-

FromPixelFormat class and static constants for the given PixelFormat in
the SizeFromPixelFormat class has to initialized properly.

Addition of a new format is a matter of updating all aforementioned defi-
nitions in the PixelType namespace and recompiling FotoSHOCK and all
operations.

The support for multiple color spaces is very similar. To define a new color
space, add a new entry into the PixelType::ColorSpace enumeration. In
addition the macro switch_colorspace() similar to the switch_format()

macro is also provided.

11

Implementation Iterators

4.1.1 PixelData

The format of a pixel is described using the PixelType::PixelData struc-
ture. This structure is contained in every ImageBufferBase object, which is
used to pass an image between different functions. The PixelData structure
contains the following information:

• pixel format, as defined in the PixelType::PixelFormat

• used bits
• number of bands
• color space, as defined in the PixelType::ColorSpace

The structure is used whenever it is necessary to obtain information about the
format of pixels in the image. It is often used to determine the PixelFormat

without the need to use templates. It is also frequently used when it is nec-
essary to type-cast a pointer to ImageBufferBase to a correct ImageBuffer
instantiation. Other members are useful especially when implementing new
image operations.

Most of the PixelData properties are self-describing. The only exception is
probably the “used bits” member. It is used to specify the real bit depth
of an image using integral pixel format. This can be very useful when the
operation use lookup tables (LUT). Consider the following use case.

Many recent DSLR cameras provide so-called RAW output. The RAW out-
put, as the name suggests, contains the raw data from the camera sensor.
These data commonly use 12-bit or 14-bit integer precision. Because there is
no format supporting such bit depths in FotoSHOCK, 16-bit integer would
be used. If we would want to construct a LUT for such image, 16-bit LUT
would have to be used. However, 16-bit LUT may be too big to fit in a cache.
With the knowledge that the image uses only 12 bits, it is possible to create
the 12-bit LUT, which is much smaller and fits in the cache of most modern
CPUs.

4.2 Iterators

FotoSHOCK uses the concept of accessing image data using iterators, which
is similar to VIGRA. All iterators present have the same interface and thus

12

Implementation Iterators

they can be exchanged without much work. An iterator can be obtained by
a call to one of a specified member functions provided by the class providing
iterator access (for details see Image Tiles (section 4.3) and Image Buffers
(section 4.4) description.

All iterators are implemented as template classes. Thanks to the fact iterators
are templates, it is possible to use the type checking facilities provided by
the language itself. Iterators always return the correct type used to store the
associated PixelType::PixelFormat values. Also arguments which depend
on the PixelFormat use the correct type. Compare this to the approach of
C applications, such as VIPS, which use pointers to void.

Iterators provide an easy to use interface for accessing pixel data. The pixel
data are traversed using the increment (++) and decrement (-) operators,
which move one pixel at a time. It is possible to move the iterator to a
specified position by calling the moveTo() function. The current iterator
position can be obtained by calling the getX() function to get a horizontal
coordinate of an iterator and by calling the getY() function to get a vertical
coordinate.

To access value stored in a pixel, several functions are provided. There is
an overloaded array subscript operator (operator[]). The call to the oper-

ator[] provides access to bands of the pixel at a current iterator position.
The functions getValue() and setValue() work in a similar way. The get-

Value() function returns a value of the given band at a current iterator
position, the setValue() sets a specified band to a specified value. The
last way to access the current pixel is the overloaded dereference operator
(operator*). When the iterator is dereferenced, it returns a pointer to the
current pixel in the image. The returned pointer can be used as an array
to access the pixel bands. This is possible because the pixels are stored as
a one-dimensional array, where each pixel is represented by a set of succes-
sive values representing bands (ie. two RGB pixels are stored in memory as
RGBRGB).

A bit different is the behavior of the function call operator (operator()). It
is also used to access pixels. In contrast to the previous functions it is used
to access a pixel at any position without moving the iterator. Identical to
the dereference operator, pointer to a pixel is returned.

13

Implementation Image Tiles

4.3 Image Tiles

Image tiles represented by the Tile class are the most essential part of the
image storage. A tile acts as a storage for pixels. Currently, tiles are always
stored in RAM, but in the future on-disc storage, or GPU memory storage,
may be implemented.

The Tile class is a template class. The template parameter is a Pixel-

Type::PixelFormat value. To construct a tile, the extent (size of a side)
and the number of bands (which usually represent color channels) has to be
passed to the constructor. The tiles are always square-shaped.

Each Tile object holds one-dimensional array. The array holds extent ×
extent × number of bands values. The pixel values are stored in the array
as a continuous block. For instance, RGB values are stored in the array as
. . . RGBRGB. . .

Additionally, tile also contains a “stamp”. The purpose of each tile having
a stamp is to allow the operation to determine whether it has been already
applied on the tile. This is especially useful when the operation has to be
applied to multiple overlapping regions. The Tile class provides access to
the stamp using the setStamp() and getStamp() functions.

In case multiple operations share a buffer, it is necessary to be sure that
the operations does not use the same stamp. To get a unique stamp, the
ImageBufferBase class provides the newStamp() function. The returned
value is unique and it can be used as a stamp.

The data are accessed using the Tile::Iterator which is a typedef for the
TileIterator class (for more information about iterators, see the section
4.2). To obtain the iterator three functions are provided. The function up-

perLeft() returns the iterator to the “first” pixel in the upper left corner.
This is similar to the begin() function used in STL container classes. Func-
tion lowerRight() returns the iterator one position after the last pixel. This
function corresponds to the end() function in STL containers. Using these
functions, it is possible to iterate through a tile in the same way as in STL.
Finally, the getIterator() function can be used to get the iterator to any
position within a tile.

14

Implementation Image Buffers

To traverse through all pixels using the iterator, following code can be used:

typename Tile <format >:: Iterator ul = tile.upperLeft ();

typename Tile <format >:: Iterator lr = tile.lowerRight ();

while (ul != lr) {

...

// do something

...

++ul;

}

4.4 Image Buffers

Images in FotoSHOCK are represented by the ImageBuffer template class.
The ImageBuffer class is inherited from the ImageBufferBase class.

The ImageBufferBase class is not a template class, in contrary to the Im-

ageBuffer class. ImageBufferBase purpose is to simplify the management
of buffers in a graph (see the section 4.5), because it simplifies passing the
buffers between functions (ie. it is not required to create a function template
instantiation for every supported pixel format).

The ImageBufferBase class contains all information necessary to describe
the image in FotoSHOCK. This includes PixelType::PixelData structure
specifying the format of pixels in the image and the image dimensions. How-
ever, it is not possible to access the image data using the ImageBufferBase

directly. ImageBufferBase is always used as a pointer to the ImageBuffer

class. Constructing an ImageBufferBase object is prohibited by making
the constructor protected. To access data, a pointer to an ImageBuffer-

Base object has to be type-casted to a pointer to an ImageBuffer object.
To type-cast ImageBufferBase class the switch_format() macro should be
used. The format used in a switch can be obtained using the getPixel-

Data() function which returns a PixelData structure. The following code
snippet does such conversion to create a copy of an existing ImageBuffer:

ImageBufferBase pbase;

#define FORMAT_DO_STH(T,U) pbase = \

new ImageBuffer <T>(((ImageBuffer <T>*) psrc));

switch_format(psrc ->getPixelData (). format)

#undef FORMAT_DO_STH

15

Implementation Image Buffers

Assume the psrc is the pointer to ImageBufferBase which is used to store
an existing ImageBuffer object. Then the macro FORMAT_DO_STH is defined
such that psrc is type-casted to the ImageBuffer and then assigned to the
pbase. The format in switch_format is acquired from the psrc by calling
the psrc->getPixelData().format.

When access to image data is demanded, ImageBuffer class has to be used.
ImageBuffer contains a two-dimensional array storing the pointers to Tile

objects holding the image data. The ImageBuffer constructor requires width
and height of the image, the PixelData structure describing the format of
pixels and a tile extent. It also takes an optional boolean parameter allo-

cateTiles.

The first three parameters mentioned are used to initialize the member vari-
ables of the ImageBufferBase class. Tile extent is used together with the
image dimensions to determine the number of tiles and to create Tile objects.
Finally the allocateTiles parameter specifies whether the tiles should be
created upon ImageBuffer creation. If allocateTiles is set to false, the
creation of each Tile is postponed until the tile is requested by a call to the
getTile() or to the getTileFromPos() function. By default allocateTiles
is set to true. That means the tiles are allocated when the ImageBuffer is
created.

There are two possibilities to access pixels in ImageBuffer. A first possibility
is to get a pointer to a Tile for the desired part of an image and use options
to access pixels provided by the TileIterator class. The other possibility
is to use ImageBuffer::Iterator class, which is a typedef for the Image-

BufferIterator class. The ImageBufferIterator provides a linear access
to image pixels (otherwise stated, the image is accessed line by line).

The ImageBufferIterator class has the same interface as the TileIterator
class (for details see the sections 4.2 and 4.3). Thus I will not describe its
interface but I will rather focus on the implementation details.

The ImageBufferIterator internally stores two-dimensional array of TileIt-
erators to all tiles in the image. To make it possible, it is necessary that all
the tiles are allocated. This is guaranteed by the fact that it is necessary to
get a pointer to a Tile before the TileIterator can be obtained. Therefore
getTile(), which ensures that Tile is allocated, is called for all image tiles.

Actually, ImageBufferIterator encapsulates TileIterator access, hiding
the fact that the image is stored as a set of tiles. The ImageBufferItera-

16

Implementation Graph

tor class ensures that the correct TileIterator is used to access the given
position in an image.

Increment and decrement operators in the ImageBuferIterator class are
much more complicated than in the TileIterator class. Instead of simply
moving the pointer to a current position as it is done in the TileIterator,
it is necessary to solve switching between the tiles when the end of the part
of line stored in a tile is reached. When the TileIterator reaches the end
of line in a tile, it is necessary to switch to the next tile which can be either
the next tile on right (or left for decrement operator) or the first tile (or last,
respectively) in a row in case the end of line in image was reached. It is
necessary to pay special attention to the last tile in a row because the last
tile is not guaranteed be used in its entirety (this happens when the image
width cannot be divided by the tile extent without a remainder).

The moveTo() function is much simpler than increment/decrement operators.
However, to acquire the corresponding TileIterator, division is used. Since
division is one of the slowest operations on current CPUs, it is very inefficient.

In summary, the ImageBuferIterator provides easy access to image pix-
els but due to the complicated conditions (and in case of moveTo() divi-
sion) used, it is inherently slower than the TileIterator. Consequently, the
TileIterator should be preferred whenever possible.

4.5 Graph

FotoSHOCK uses a graph to represent operation chains. Working with a
graph is the most common action when working with FotoSHOCK.

A graph in FotoSHOCK is implemented using the GraphManager class and
the GraphNode class, where the GraphManager class handles creation of the
graph and the GraphNode class represents a node in the graph. As discussed
earlier, the graph has to be directed and acyclic. However, GraphManager
does not check whether the graph is acyclic. It is up to user to make sure
the graph is acyclic. Connections in the graph are stored inside its nodes.
Every GraphNode holds the vector of pointers to its parents (or “predeces-
sors”) m_parents and the vector of pointers to children (or “successors”)
m_children.

17

Implementation Graph

Image processing starts from the so-called root nodes. Root nodes are nodes
with no parents (ie. their indegree is 0) and they are used as an entry point
to a graph. A root node can contain either a loaded image or an empty image
depending on how the node was created. The GraphManager provides two
functions to create new root nodes. To create a new root node containing an
image, the GraphManager.addRootImage() is used. The other function is
the addRootFill() function, which creates a root node containing an empty
image with given dimensions and which is filled by a given color. The image
is filled using the FillFunctor (for the description how the functors work in
FotoSHOCK, see the section 4.7.1).

Because the image can use any PixelFormat, it is necessary that the Fill-

Functor is aware of the color spaces and the fact that the pixel formats differ
in the range of values. When created, the constructor creates a value which
represents a given color in a specified color space. This value is then as-
signed to every pixel in the image. To handle the different ranges of the pixel
formats, the SizeFromPixelFormat::min and SizeFromPixelFormat::max

are used. However, only black and white color (which is equivalent to the
minimum/maximum value) is supported.

It is possible to get all roots using the getRoots() function which returns
reference to a vector containing pointers to roots.

In FotoSHOCK, multiple pixel formats can be used in a graph. When a
root node is created, its format can be specified. If no format is specified,
the default format is used. The default format can be specified when the
GraphManager object is created (with RGBA float being the default). It
can be changed later using the setFormat() function. The current default
format can be obtained using the getFormat() function.

It is possible to change the format by inserting a convert operation. Convert
operation takes its input and outputs it in a buffer with the different pixel
format. Using convert operations requires special attention from the user to
ensure that succeeding operations has their input with a correct PixelFor-

mat. For more details about convert operations, see the description of convert
operations in the section 4.7.2.

18

Implementation Graph

4.5.1 Nodes

Nodes in a graph are represented by the GraphNode class. Each GraphNode

object represents a single operation applied on the image with the exception
being root nodes, which have no operation associated.

Every GraphNode object is bound to the GraphManager which created it.
When a GraphNode is created, a pointer to the GraphManager has to be
passed. Its constructor also needs a format of pixels which will be stored in
a buffer of a node. That is because the node is initially created without any
buffer. A buffer can be created in the node by calling the createBuffer()

function. The pixel format is necessary when the buffer is freed too. The last
parameter required by the constructor is a pointer to an ImageOperation.

The operation itself is stored as a pointer to the ImageOperation class (see
the section 4.7). Because the behavior for different types of operations may
differ, a node stores a type of operation in the m_type member. The pos-
sible values are defined in the ImageOperation::ImageOperationType enu-
meration. The type is initialized by calling the getImageOperationType()

function of the associated operation. In case of root nodes, which have no
operation associated, the type is set to TypeNone.

Every node has a pointer to a buffer where the output data are stored. The
buffer can be shared between several nodes. This introduces a problem of
determining to which node the buffer belongs. For that reason node also
contains the boolean value m_cache. If the m_cache is true, the node owns
the buffer. If multiple nodes share a same buffer, a node which owns the
buffer is always the first.

Because in some cases it is useful to have access to the buffer stored in a
node from outside, the getBuffer() function returning pointer to the buffer
is provided.

Cache management used in FotoSHOCK requires knowledge about the pro-
cessing time of each operation. Hence the time consumed for running an
operation has to be stored. This time can be obtained using the getE-

lapsedTime(), which returns time in seconds as a float value.

To apply an operation with respect to all node properties, such as a region
of interest, runOperation() is used. In order to reduce the processing time,
the operation is run only on specified parts of an image. GraphNode stores

19

Implementation Graph

all regions which apply. To add a new region, a demand has to be made.

When an operation is recalculated, for example because of a change in its
parameters, it is necessary that all operations depending on the operation
output are recalculated too. This is done using the recalculate() func-
tion. To determine the order in which the operations must be applied, the
topological sorting is used.

The GraphNode class contains three functions for working with the demands
– the addROI() function, the updateROI() function and the deleteROI()

function. Because the handling of demands is rather complicated, I will give
a more in-depth explanation in the section 4.5.2.

4.5.2 On-Demand Processing

In FotoSHOCK, an operation is run only on demand. Currently the demand
contains only a region which should be redrawn (represented by the Rect-

angle class), but when mipmapping is implemented, a mipmap level will be
utilized too. The demand is enclosed in the UpdateInfo class. From now
on, I will refer to the information about a demand in a node as the “update
information.” On-demand processing is handled by administering a separate
tree of the UpdateInfo objects which is tightly connected to a graph. The
demand always goes from a child to a parent, because the parent’s operation
has to be run before the child’s operation.

Figure 4.5.2 shows how a tree of update information is connected to a graph.

It can be seen that connections can get very complicated. I am using the
boost::shared_ptr [2] class to handle connections between individual up-
date information and between nodes in a graph and the UpdateInfo objects
to make it more robust and easier to handle.

To explain why the use of shared_ptr makes handling of the connections
much easier, it is necessary to know what a shared_ptr is. The shared_ptr

class holds a pointer to a dynamically allocated object with reference count-
ing. When the last shared_ptr pointing to the object is destroyed, the
memory is freed. That means it is not necessary to manually free memory
when it is no longer used.

However, circular references are problematic when the shared_ptr class is

20

Implementation Graph

Figure 4.1: Connections between the tree of update information and the graph. Every GraphNode holds
a vector of boost::shared ptr<UpdateInfo>, which apply to the operation in a node. Every UpdateInfo
holds the pointer to the GraphNode which“owns” it. UpdateInfo objects are connected in form of a reverse
tree.

used. When there is a circular dependency between two shared_ptr objects,
there is always at least one shared_ptr pointing to each object. Since the
UpdateInfo implementation needs both reference to its parents and to the
child, it is not possible to avoid circular references. To address this problem
I am using the boost::weak_ptr to reference the child and the shared_ptr

to reference parents. It is possible to get a shared_ptr from a weak_ptr

using the member function lock().

Because a node needs to know which part of an image the associated oper-
ation should recalculate, it holds the vector of shared_ptr objects to Up-

dateInfo objects determining regions to redraw. To make changes to the
existing update information possible, it is necessary that each UpdateInfo

object knows which UpdateInfo objects in the children of a node (or parents)
represent the same demand.

21

Implementation Graph

This is achieved by storing a pointer to the UpdateInfo object which is
making a demand on the current UpdateInfo object and a vector of pointers
to the UpdateInfo objects on which the current object depends. Because
a demand goes from a child to parents, the demanding UpdateInfo object
is the object associated with a child GraphNode. Thus I will refer to such
UpdateInfo object as the “child.” Because it is necessary that areas for
the current demand are processed first, every UpdateInfo object depends on
UpdateInfo objects in parent nodes. I will refer to these objects as“parents.”

To explain why it is enough to store only one pointer to the child, but it is
necessary to store pointers to all parents, we have to take a look at how the
demand is passed through the graph.

Before any demand is made, the buffer content in a GraphNode object is
undefined. When the user wants some specific part of an image to be recal-
culated, a new update information (in form of an UpdateInfo object) storing
the requested region is added to the node. However, before the operation can
be run on the region, it is necessary that the buffer contains valid data in
this region. Therefore the node makes a demand on its parents to recalculate
the given part of the image. This is done by passing the UpdateInfo object
to the parents. Each parent adds a new UpdateInfo with the region they
should recalculate to their list of associated update information. This is done
until a buffer with a valid data in this region is found.

To make it even more complicated, a parent may change the demand a bit
before adding a new UpdateInfo into its list. This usually happens when
the parent needs a larger region to produce the region which was demanded.
The way how a parent handles a demand can be changed by overloading
the createUpdateInfo() and updateROI() functions in image operation
implementation. Changes of a demand are distributed through a tree in a
way similar to how a new demand is added.

From the figure 4.5.2 it can be seen that all demands are duplicated in the
“root” node. This is caused by the fact that there are two paths which a
demand must take before it gets to this node. This is not a problem though,
because each path may have changed the demand, so in time these“duplicate”
demands reach the root the demands might be different. Also, an operation
should be able to avoid recalculating the same region multiple times.

The interface used for demands comprises three functions. To make a new
demand (which is in the current implementation equal to requesting a region

22

Implementation Graph

to be redrawn) use the addROI() function, provided by the GraphNode class.

If an update information changes, it is necessary that all update information
on which the update information depends are changed too. This is done in
the updateROI() function available from the GraphNode interface. Because
many operations would just pass a region to its parents, the requested regions
are shared between the UpdateInfo objects. Thanks to this approach when a
region is changed, the change is immediately visible in all UpdateInfo objects
sharing this region.

If such behavior is unsuitable for an operation, it is necessary to implement
the createUpdateInfo() function and the updateROI() function in the op-
eration (see the section 4.7).

If the demand is no longer valid, it should be removed by a call to the
deleteROI() function from the node which issued the demand. When the
node is removed, all demands made by the node are removed too.

4.5.3 Inserting Operations

An operation can be inserted into a graph by calling the GraphManager mem-
ber function insertOperation(), specifying the operation, parent nodes and
optionally child nodes. This function creates a new GraphNode object con-
taining the specified operation. A pointer to this node is then returned.

Before a node can be created and inserted into a graph, several checks are
done. The number of parents has to be the same as the number of inputs
required by the operation. Also all parents have to use buffers of the same
PixelFormat. The only exception from this rule are convert operations.

Insertion of a new node into a graph is quite straightforward. Existing con-
nections between the parents and the children have to be broken and a new
connections to the new node have to be made.

Handling connections between demands is however much more complicated.
It is implemented in the separate function called insertROIForNodes().

First, every child node is visited. Then the algorithm iterates through all
UpdateInfo objects in the child. If a connection between some of the parents
and the current UpdateInfo object is found, a new UpdateInfo is inserted

23

Implementation Node Removal

into the new node and the connection is changed to accommodate this object.
If no connection is found between a parent and the currently visited child
node, it is necessary to make a new demand on the parent. This demand is
then connected to the UpdateInfo object in the inserted node.

Finally, when a node is properly inserted into a graph, several ImageBuffer
objects, which act as a cache, are created to store intermediate results. The
code reflects the high probability that the inserted operation will change in
the near future.

Cache is inserted into every parent, if there is not a cache already. This is
to remove the need of recalculating previous operations when the operation
changes. If the operation shared the buffer with its parents, it would overwrite
the buffer with its output whenever it is run. Consequently if the operation
changed and was recalculated, it would be necessary to recalculate parents
so the buffer could be used as an input again.

Action which ensues depends on how many children were specified. If there
is one child or the node has no children at all, nothing is done. However,
when the node has multiple children, a cache is created in each child. The
ground for this lies again in saving computation time. If a buffer from the
current operation was shared with some children, every child would change
the content of the buffer when redrawn. As the outcome of the buffer being
changed, the operation would have to be recalculated for each child.

Finally a new buffer is created in the inserted node to hold the output of an
operation.

4.6 Node Removal

When a node is removed, connections between adjacent nodes have to be
changed. The tree of update information has to be updated to reflect re-
moval of a node too. In case the deleted node was the initiator of any
demands, the corresponding tree of update information is removed. Whether
the node was the initiator of a demand can be determined by checking
whether theUpdateInfo object representing a demand has a child. If an
UpdateInfo object does not have a child, associated node made the first
request.

24

Implementation Node Removal

4.6.1 Automatic Cache Removal

When an operation is considered final, it should be “confirmed.” To con-
firm an operation, simply call the confirmOperation() function from the
associated GraphNode object.

When an operation is confirmed, all buffers used as a cache in the previous
operations are restructured to achieve better balance between memory usage
and latency. The cleanup is done in two steps.

First, the graph is recursively traversed back (ie. traversal is done from a
node to its parents). When a node is visited, average distance from all its
children is stored in the node.

The second step does the actual cleanup. The cleanup starts from root nodes
and is done recursively by the cleanupCache_impl() function. The function
is called with a node, which should be processed and a total time necessary
to recalculate all operations from the last cache.

For every node the function looks at the children of a node. For each child a
time limit is computed based on a distance using the following function:

f(d) = a
d
b

where a and b are parameters and d is a distance. Currently both a and b are
set to 1.5. If the time necessary to apply all operations from the last cache
exceeds the time limit computed, a cache is created in the current node. If
the time is lower than the limit, it might be possible to remove the cache
from the node.

Before a cache can be removed, several other requirements have to be met.
The cache cannot be removed from the nodes which come immediately after
the root node, because otherwise the operation in such node would change
the input image. Other prerequisite is that the cache can be removed if and
only if the node has one parent. The node which has several parents needs
a cache to store its results. Finally, the cache can be removed only from
nodes containing a normal operation (TypeNorm). For example, buffer in a
node containing a convert operation is the first buffer with a new format and
therefore a cache is necessary.

25

Implementation Image Operations

4.7 Image Operations

Image operation is an operation which will be applied on an image buffer.
Every image operation is inherited from the ImageOperation class. The
ImageOperation class provides the interface required to apply an operation
on an image.

First, a number of required inputs has to be specified. This can be done
by overloading the getNumInputs() function to return the desired number
of inputs. For example, when implementing an operation which takes an
input pixel value and outputs a different pixel value, getNumInputs() would
return one. On the other hand, when implementing an operation which
blends two inputs together, a call to the getNumInputs() would return two.
The number of inputs is necessary when an operation is inserted to a graph to
check whether the operation is not missing any inputs. The ImageOperation
class provides the default implementation which returns one.

The most important task is to implement the runOperation() function,
which applies the operation on its inputs. It takes three parameters: a vector
of input buffers, a buffer which will contain output of an operation and finally
a vector of regions to recalculate.

The vector of input buffers always contains the required number of input
buffers as returned by the getNumInputs() function. The destination buffer
is used to store the results. From user perspective input buffers and the
destination buffer have always the same PixelFormat. There is one special
kind of operations where this is not true though. It is the conversion operation
which is used to convert buffers between different PixelFormats (convert
operations are described more in-depth in the section 4.7.2).

If the getNumInputs() returns one, it is possible that the destination buffer
will be the same as input buffer. For the reason why, see the section 4.6.1.
Consequently an operation must be able to handle this kind of situation.

Overriding other functions is usually not necessary and depends on char-
acteristics of the operation. The function getImageOperationType() de-
termines the type of an operation. The possible values are defined in the
ImageOperation::ImageOperationType enumeration. Usually the default
value (TypeNorm) should be used. However when the operation is used for
output on the screen TypePreview should be returned (see the section 6.4.1).

26

Implementation Image Operations

In some cases, such as operations working with a neighborhood of a pixel,
it might be necessary to change the update information before the opera-
tion is applied. For example, blur operations need input larger than the
demanded region. To change a demand automatically with respect to such
limitations, it is necessary to implement the updateROI() function and the
createUpdateInfo() function.

The createUpdateInfo() function creates a new UpdateInfo object which
will be used with a current operation. It takes one parameter, which is a
child UpdateInfo which made the demand.

When implementing the createUpdateInfo() function, it is necessary to
take care of connecting the created UpdateInfo object with its child and
creating a new region with adjusted dimensions based on the region in the
child node. The following implementation creates a new UpdateInfo object
with a region enlarged by one pixel:

virtual shared_ptr <UpdateInfo > newROI(

shared_ptr <UpdateInfo > childROI)

{

shared_ptr <UpdateInfo > tmpInfo = new UpdateInfo;

tmpInfo ->m_child = childROI;

tmpInfo ->ROI(new Rectangle);

// enlarge ROI by 1px in all dimensions if possible

tmpInfo ->ROI.x = (childROI ->ROI.x > 0) ?

(childROI ->ROI.x - 1) : 0;

tmpInfo ->ROI.y = (childROI ->ROI.y > 0) ?

(childROI ->ROI.y - 1) : 0;

tmpInfo ->ROI.sizeX = childROI ->ROI.sizeX + 1;

tmpInfo ->ROI.sizeY = childROI ->ROI.sizeY + 1;

return tmpInfo;

}

The updateROI() function changes a destination region accordingly to a
source region. It is called with two parameters. The first parameter is a
region in the child UpdateInfo object. The second parameter is a region used
for the current operation. The following example shows the updateROI()

implementation for use with the implementation of the createUpdateInfo()
in the previous example:

virtual updateROI(shared_ptr <UpdateInfo > childROI ,

shared_ptr <UpdateInfo > currentROI)

{

currentROI ->ROI.x = (childROI ->ROI.x > 0) ?

(childROI ->ROI.x - 1) : 0;

currentROI ->ROI.y = (childROI ->ROI.y > 0) ?

27

Implementation Image Operations

(childROI ->ROI.y - 1) : 0;

currentROI ->ROI.sizeX = childROI ->ROI.sizeX + 1;

currentROI ->ROI.sizeY = childROI ->ROI.sizeY + 1;

}

4.7.1 TransformImage Function and Functors

To simplify the implementation of operations transforming one input pixel to
one output pixel, the transformImage() function is provided. This function
effectively processes all pixels in given regions.

The transformImage() function traverses pixels tile by tile. Tiles are always
processed as a whole. Therefore the area processed can be larger than a
requested region. For every pixel processed, a functor is called.

A functor, or a function object, is an object overriding a function call operator
and therefore it can be called as an ordinary function. Functors used in the
transformImage function has to implement the function call operator with
two parameters. The first parameter is an array storing the input pixel value.
The second parameter is an array storing the output value.

The transformImage() function ensures that a functor is not applied several
times on a region if requested regions overlap.

Even though writing functor is more complicated than writing a function, it
has several advantages over using a function pointer. Functor allows passing
additional parameters while keeping the same interface. Additional parame-
ters are usually passed using a constructor. Other notable strength is inlining.
Modern compilers are able to inline functors, because a functor is known at
a compile time. Pointer to a function, however, cannot be inlined.

4.7.2 Convert Operations

When the user wants to change a PixelFormat in a chain of operations, a
special kind of operation is inserted for doing the conversion. A conversion
operation takes an input buffer and stores its contents in another buffer with
a different PixelFormat. A convert operation has the TypeConvertFormat

type.

28

Implementation Input/Output support

However, the user has to pay attention to the fact that if there are any
successors, they will not use a new PixelFormat. When a convert operation
is added in a middle of an operation chain, the corresponding operation
converting the PixelFormat back has to be added, so the succeeding nodes
get their input in the same PixelFormat as before. When an operation is
added at the end of a chain of operations and the next inserted operation
requires multiple inputs, it is necessary that all its inputs are of the same
pixel format. Thus inserting convert operation for each input may be needed.

The convert operation itself is a very simple operation. It loops over all pixels
in the input buffer, type-casts value from each band, and stores the result in
the destination buffer. In the future, there might be more operations using
the TypeConvertFormat type, such as the operation to convert between color
spaces.

4.8 Input/Output support

Currently only PNG is supported. The support is implemented using libpng.
The preferred way to load images is to use the addRootImage() function
provided by the GraphManager class.

If the addRootImage() cannot be used for some reason, it is possible to use
the loadImage() function defined in the LoadImage.hxx file. This function
requires a buffer where to store the image and a reference to the ImageInfo

object.

The ImageInfo structure is used to store details necessary to load and save
images. The ImageInfo object for an image can be obtained using a call to
the loadImageInfo() function declared in the IO/ImageInfo.hxx.

A buffer can be saved into a file using the saveImage() function defined in
the SaveImage.hxx file. The ImageInfo used as a parameter to this function
has to be, in contrast to the loadImage(), created manually.

29

5 Testing

5.1 Functionality

Fotoshock comes with a set of unit tests. The test suite completely covers
the functionality for working with individual images and partially covers the
functionality of the graph implementation.

For testing I chose the Boost::test [3] framework for several reasons. The
Boost::test is a well known testing framework providing a wide set of func-
tionality. The other reason was the fact that I use Boost libraries in Foto-
SHOCK for different purposes too, so it does not add another dependency.

Tests can be found under the src/tests directory. The directory structure
of tests is similar to the directory structure of sources.

The tests can be run either manually (by executing executable files found
in all subdirectories) or they can be run all at once using the CTest [4].
CTest is a testing tool distributed as a part of CMake. It is able to run tests
automatically and generate reports in several formats. To run tests using
CTest, change the working directory to the src/test and run ctest.

5.2 Speed

In this section I will compare the speed of FotoSHOCK to the speed of
VIGRA. The reason why I chose VIGRA is that VIGRA has a very similar
interface.

The system used for testing was OpenSuSE 11.4 (Boost 1.44, GCC 4.5.1,
libpng 1.4.4) running on the Asus UL30A machine (1.3GHz Intel Core 2 Duo
processor, 4GB of RAM).

For testing the speed, I implemented a simple operation which copies the
first channel of the source image to all channels of the destination image in
both VIGRA and FotoSHOCK. The sources, along with a test image, can be
found in the speed-test directory.

30

Testing Speed

The reason to use such simple operation, rather than a more complicated
operation, was the fact that the speed of a simple operation is less affected
by the algorithm it implements. Therefore it demonstrates the performance
of a pixel storage better.

The following table shows the time necessary to apply this operation (ex-
cluding load and save times) on the image 9908 pixels wide and 2338 pixels
high (approximately 23Mpx). The numbers in the table are the average of
ten successive runs of each test.

FotoSHOCK VIGRA
time [s] 0.102 0.076

It can be seen that there is still room for improvement regarding the speed
of FotoSHOCK. However, the fact that FotoSHOCK has not been optimized
yet must be taken into account.

However, in the preliminary test, which was run on a machine with Intel
Core i7 920 CPU and 8GB RAM, FotoSHOCK was faster than VIGRA by
approximately 25%. The reason for such behavior is unknown and should be
researched further.

31

6 Future Improvements

Even though FotoSHOCK works very well, several features should be imple-
mented before it can be considered production-ready, In the following sections
I will discuss some of these features.

6.1 Masks

There is no native support for masks. Mask can be thought of as a grayscale
image, which defines the opacity of the image. Masks are very useful when
an operation needs to be applied on specific parts of the image, possibly with
a different intensities.

In spite of the fact there is no native support for masks, their effect is still
viable. To achieve similar results, it is possible to write the operation which
takes two input images and does the alpha blending with one of the inputs
being used as a mask.

6.2 MipMapping

At the moment, all operations are applied on a full scale image. Mipmapping
can improve the speed with smaller zoom ratios.

Implementation of the mipmapping would need to touch a big part of the
code. Fortunately, only a minor changes to the program logic would be
necessary. To properly support mipmapping following changes will have to
be made.

The ROI will have to accompanied by the information specifying a level of
mipmap to use. A new member specifying the level of mipmap will have to
be introduced into the UpdateInfo class.

All code in the GrapNode and the GraphManager that now use pointers to a
buffer will have to be changed to use mipmaps instead. The mipmap itself
will be most likely stored as an array of pointers to ImageBuffers.

32

Future Improvements Swapping Of Unused Tiles

6.3 Swapping Of Unused Tiles

When an image is larger than the available RAM, the speed is reduced sig-
nificantly due to swapping. While operating systems provide facilities for
the case when the system goes out of memory, the operating system has no
knowledge about the image processed.

To improve the speed when an image larger than RAM is being processed,
the swapping of tiles which will not be processed in the near future might be
implemented.

6.4 User Interface

Any application meant for general use is unusable without proper graphical
user interface (GUI). So is FotoSHOCK. Thus GUI leveraging features im-
plemented in this thesis needs to be implemented in the future. The current
plan is to use Qt framework for the implementation of such interface.

6.4.1 Previews

Previews in FotoSHOCK are handled by image operations of the ImageOper-
ationType::TypePreview type. At the time of writing there are no preview
operations available. The main reason is that previews are useful only with
a graphical user interface, which is not currently present.

The design intended is to make a preview operation copy the buffer content
into a GPU memory tile by tile and to leverage OpenGL to draw the image
on screen.

6.5 Color Management And Multiple Color

Space Support

Even though the current implementation stores the information about color
space in the PixelData structure, it is mostly unused. Also, the colorSpace

33

Future Improvements New Image Operations

member of the structure mentioned cannot hold detailed information about
the color space.

For a proper color space support, a new convert operation will have to be
implemented. Also an option to store details about the color space (eg. ICC
profile) must be introduced.

6.6 New Image Operations

Right now only a very simple operation which converts image to grayscale is
provided (see the code in the src/examples/BWconversion directory for the
reference). To make FotoSHOCK useful for image editing, more operations
will have to implemented.

6.7 Support For More Image Formats

Currently only the PNG format is supported. The PNG format offer only
lossless compression. This is useful in many cases, but it results in larger files.
For this reason other formats, like the JPEG, which offer lossy compression,
are often preferred. Therefore a support for other common formats, such as
the aforementioned JPEG, should be implemented.

34

7 Usage

7.1 Building

7.1.1 Requirements

• C++ compiler (tested with GCC 4.6.0 and Clang 2.9)
• CMake
• libpng
• Boost C++ libraries, specifically Boost Filesystem, Boost Smart Point-

ers and optionally Boost Test for unit tests are required.

7.1.2 How to Compile

To compile FotoSHOCK, the usual set of steps used for compiling software
utilizing CMake build system is used. Both in-source builds and out-of-source
builds are supported.

The next example shows how to build FotoSHOCK on GNU/Linux using
GNU make. Assume that the FotoSHOCK sources are in the FotoSHOCK
directory. To build FotoSHOCK in the build subdirectory, the following
commands needs to be executed:

cd FotoSHOCK

mkdir build

cmake ../

make

7.2 Writing Operations

The user has a lot of freedom, apart from the implementing specified inter-
face, when implementing new image operations. In the following sections I
will describe how to implement a simple operation. In the first section I will
describe how to implement an operation which converts an RGB image to

35

Usage Writing Operations

grayscale using the transformImage() function. In the next section I will
describe how to implement the same operation using the direct access to
pixels.

7.2.1 Operation Using The transformImage() Function

When implementing a new image operation, it is necessary to implement all
pure virtual functions from the ImageOperation class. First, we define a
new class inherited from the ImageOperation:

class BWconversion : public ImageOperation

{

public:

virtual void runOperation (

vector <ImageBufferBase *>& sources ,

ImageBufferBase* dest ,

vector <Rectangle >& ROI);

virtual const unsigned int getNumInputs () const;

};

The operation has only one input. Even though in this case it is not neces-
sary to implement the getNumInputs() function, we will implement it for a
demonstration purposes:

const unsigned int BWconversion :: getNumInputs () const

{

return 1;

}

Because we decided to use the transformImage() function to do the trans-
form, it is necessary that we implement the functor which converts a colored
pixel into a pixel storing gray value.

For simplification, we will implement the functor which takes the first channel
of the input and stores its value into all channels of the output. The functor
takes the number of bands in the image so it is possible to process all channels:

template <typename PixelFormat >

class BWFunctor

{

public:

BWFunctor(unsigned int bands) : m_bands(bands) {};

void operator ()(PixelFormat* in, PixelFormat* out)

36

Usage Writing Operations

{

for (unsigned int i = 0; i < m_bands; i++)

{

out[i] = in[0];

}

}

private:

unsigned int m_bands;

};

Now it is necessary to implement the runOperation() function. The function
will call the transformImage() function with the functor we implemented
earlier. Because the functor needs a type used for storing pixels, we have to
use the switch_format() macro.

void BWconversion :: runOperation(

vector <ImageBufferBase *>& sources ,

ImageBufferBase* dest ,

vector <Rectangle >& ROI)

{

#define FORMAT_DO_STH(T,U) \

transformImage(*((ImageBuffer <T>*) sources [0]), \

((ImageBuffer <T>) dest), \

BWFunctor <U>(sources[0]-> getPixelData (). numOfBands),\

ROI);

switch_format(sources [0]-> getPixelData (). format)

#undef FORMAT_DO_STH

}

Now we have implemented our first image operation.

The sources for a more sophisticated grayscale conversion are available in the
files src/examples/BWconversion/BWconversion.hxx and
src/examples/BWconversion/BWconversion.cpp.
In addition to the features implemented in the previous example, there is a
specialization for the RGB color space and a specialization for 8-bit RGB
images.

7.2.2 Operation Using a Direct Access

In this section I will describe how to implement a similar image operation
using a direct access via Tile interface. To keep the example simple, we will

37

Usage Writing Operations

assume that the input buffer and the output buffer have the same size of a
tile.

The class definition will be almost the same as in the previous example.
The only difference is that we will add an additional template function called
convert(). This function will be used to access the pixels in an ImageBuffer

and to apply the operation. The convert function will require three param-
eters. The first parameter will be a source buffer, the second parameter will
be a destination buffer and the third parameter will be a vector of regions
where the operation has to be applied.

class BWconversion : public ImageOperation

{

public:

virtual void runOperation (

vector <ImageBufferBase *>& sources ,

ImageBufferBase* dest ,

vector <Rectangle >& ROI);

private:

template <PixelType :: PixelFormat PixelFormat >

void convert (

ImageBuffer <PixelFormat >& src ,

ImageBuffer <PixelFormat >& dest ,

vector <Rectangle >& ROIlist);

};

We will continue with implementing the convert() function. First, we need
to get a new stamp to identify the current operation within a tile:

long stamp = dest.newStamp ();

We will also need the number of tiles used to store the buffer:

unsigned int tilesH = src.getNumOfTilesHoriz ();

unsigned int tilesV = src.getNumOfTilesVert ();

We will loop through the vector ROI to process all requested regions. The
operation itself will be implemented inside the loop:

for (typename std::vector <Rectangle >:: iterator ROI =

ROIlist.begin (); ROI != ROIlist.end(); ++ROI)

{

// apply the operation on a specified region

}

It is necessary to determine the boundary tiles for the desired region:

38

Usage Writing Operations

unsigned int startTileVert = ROI ->y /

src.getTileExtent ();

unsigned int endTileVert = startTileVert +

(ROI ->sizeY - 1) / src.getTileExtent ();

unsigned int startTileHoriz = ROI ->x /

src.getTileExtent ();

unsigned int endTileHoriz = startTileHoriz +

(ROI ->sizeX - 1) / src.getTileExtent ();

Now we can loop over these tiles:

for (unsigned int tileVert = startTileVert;

tileVert <= endTileVert; tileVert ++)

{

for (unsigned int tileHoriz = startTileHoriz;

tileHoriz <= endTileHoriz; tileHoriz ++)

{

// access the tiles

}

}

To make sure the operation was not applied on the tile before, we need to
check the stamp in the destination tile.

Tile <PixelFormat >* destTile =

dest.getTile(tileHoriz , tileVert);

if (destTile ->getStamp () != stamp)

{

// apply the operation

...

// set the stamp

destTile ->setStamp(stamp);

} // else do nothing

Now we can implement the operation itself. To do this, we will loop over the
tile using the TileIterator and process the pixels.

typename Tile <PixelFormat >:: Iterator srcIt =

src.getTile(tileHoriz , tileVert)->upperLeft ();

typename Tile <PixelFormat >:: Iterator srcLr =

src.getTile(tileHoriz , tileVert)->lowerRight ();

typename Tile <PixelFormat >:: Iterator destIt =

destTile ->upperLeft ();

unsigned int bands = dest.getPixelData (). numOfBands;

for (; srcIt != srcLr; ++srcIt , ++ destIt)

{

for (unsigned int i = 0; i < bands; i++)

39

Usage Using the Graph

{

destIt[i] = srcIt [0];

}

}

Finally, it is necessary to call our convert() function from the runOperation()
function:

void BWconversion :: runOperation(

vector <ImageBufferBase *>& sources ,

ImageBufferBase* dest ,

vector <Rectangle >& ROI)

{

#define FORMAT_DO_STH(T,U) convert(\

((ImageBuffer <T>) sources [0]), \

((ImageBuffer <T>) dest), ROI);

switch_format(sources [0]-> getPixelData (). format)

#undef FORMAT_DO_STH

}

The full source for this example can be found in the files
src/examples/BWconversion/BWconversion_direct.hxx and
src/examples/BWconversion/BWconversion_direct.cpp.

7.3 Using the Graph

The graph in FotoSHOCK is a very powerful tool. The example below shows
the basics of using the graph with one operation. For example showing the
use of a more complicated graph, see the code in the src/examples/graph

directory.

First we need to create the new GraphManager object, which will handle the
graph:

GraphManager graph;

Next we will create the a root with an image stored in the file fileName:

GraphNode* root = graph.addRootImage(fileName);

Now we will insert the operation which implements the grayscale conversion.
The input will be the root node and the operation will not have any children.

40

Usage Using the Graph

GraphNode* op = graph.insertOperation(new BWconversion , root ,

NULL , NULL);

To run the operation, we have to request a region to be recalculated. Suppose
we want to recalculated the whole image. To do this, we need to know the
dimensions of the image.

The dimensions can be obtained either from the buffer itself:

unsigned int width = op->getBuffer()->getWidth ();

unsigned int height = op->getBuffer()->getHeight ();

or using the ImageInfo object for the loaded image. To obtain this object,
we will call:

ImageInfo loadInfo = loadImageInfo(fileName);

Now when we know the dimensions of the image, we can request the region
to be redrawn:

op->addROI(Rectangle(0, 0, loadInfo.width , loadInfo.height));

We will store the image with the same parameters as the loaded image, but
under a different file name. Therefore we can reuse the loadInfo object. To
store the image, the saveImage() function is called.

ImageInfo saveInfo = loadInfo;

saveInfo.fileName = outFilename;

saveImage (*(op ->getBuffer ()), saveInfo);

The full source code for this example can be found in the
src/examples/BWconversion/RGB2Gray.cpp file.

41

8 Conclusion

In conclusion, I evaluated several image manipulation libraries. However
none of them suit the needs completely so I implemented a new library.

I was able to implement an image manipulation library, which has a very
simple, yet powerful interface and implements caching of intermediate results
based on time limits. However, compared to other libraries it does not yet
support mipmapping, images larger than RAM and a few other features.

Despite the missing functionality, FotoSHOCK is a very promising library.
If the missing functionality is implemented, it may become a tool of choice
for many image processing tasks.

42

Bibliography

[1] BABL. http://gegl.org/babl/. [Online; retrieved April 17, 2011].

[2] Boost Smart Pointers. http://www.boost.org/doc/libs/1_46_1/

libs/smart_ptr/smart_ptr.htm. [Online; retrieved April 17, 2011].

[3] Boost Test Library. http://www.boost.org/doc/libs/1_46_1/libs/

test/doc/html/index.html. [Online; retrieved May 3, 2011].

[4] CTest 2.8 Documentation. http://www.cmake.org/cmake/help/

ctest-2-8-docs.html. [Online; retrieved April 17, 2011].

[5] GEGL. http://www.gegl.org/. [Online; retrieved April 17, 2011].

[6] GObject Reference Manual. http://developer.gnome.org/gobject/

stable/. [Online; retrieved April 17, 2011].

[7] ImageMagick. http://www.imagemagick.org/. [Online; retrieved April
17, 2011].

[8] VIGRA. http://hci.iwr.uni-heidelberg.de/vigra/. [Online; re-
trieved April 17, 2011].

[9] How it works – VipsWiki. http://www.vips.ecs.soton.ac.uk/index.
php?title=How_it_works. [Online; retrieved April 17, 2011].

[10] ISO/IEC 14882:2003: Programming languages – C++. Geneva,
Switzerland : ISO, 2003.

[11] AVASILCUTEI, A. et al. Gentle Introduction to Magick++. http://

www.imagemagick.org/Magick++/tutorial/Magick++_tutorial.pdf

[Online; Rev 1.0.5].

[12] KÖTHE, U. STL-Style Generic Programming with Images. C++ Report
Magazine. January 2000, Vol. 12, pp. 24–30.

43

BIBLIOGRAPHY BIBLIOGRAPHY

[13] KÖTHE, U. Handbook of Computer Vision and Applications, Vol. 3:
Systems and Applications, Reusable Software in Computer Vision, pp.
103–132. Academic Press, San Diego, 1999. ISBN 0123797705.

[14] KÖTHE, U. Generische Programmierung für die Bildverarbeitung. PhD
thesis, Universität Hamburg, Hamburg, 2000.

[15] MARTINEZ, K. – CUPITT, J. VIPS – a highly tuned image process-
ing software architecture. In Proceedings of IEEE International Con-
ference on Image Processing, Vol. 2, pp. 574–577, Genova, 2005. DOI
10.1109/ICIP.2005.1530120.

[16] MARTINEZ, K. – CUPITT, J. VIPS: An image processing system for
large images. In Proceedings of SPIE, Vol. 2663, pp. 19–28, 1996. DOI
10.1117/12.233043.

44

