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Abstract 
 

It has been proven that triangulation can be a good tool for vector representation of image 
data. To visualize the image represented by triangulation, one needs to fit a continuous 
surface of colour intensity in the triangulation, i.e. to interpolate data stored in its vertices. 
The commonly used piecewise linear interpolation lacks means to adapt to behaviour of 
intensity in the surroundings of currently interpolated triangle. This leads to disturbance of 
continuity of the mentioned intensity surface. This thesis presents and describes five other 
interpolation methods, each representing a possibility to remove the flaws of the bilinear 
interpolation. Zienkiewicz’s interpolation is presented as a method to use information from 
surrounding triangles in the form of gradient vectors; interpolations on Bézier triangle 
patch and on Coons patch are presented as methods of interpolation on larger surfaces; 
Natural Neighbour interpolation and piecewise linear interpolation on Voronoi diagram use 
the Voronoi diagram instead of the triangulation. Each method is described and tested and 
the methods are compared to each other in terms of time complexity and quality of the 
resulting image. 
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1. Introduction 
A digital image is nowadays usually represented by a rectangular grid of pixels, where  
each pixel contains a colour value or a greyscale luminance. Though this (a matrix of 
pixels) is the form in which we visualize the image, scaling or other transformations of 
such bitmap are rather problematic as they introduce various artifacts, distortions and other 
unwanted changes to the resulting image. 

We can avoid such problems if we convert the raster into vector representation, i.e. if we 
represent the image as a set of geometrical simplices. The transformation is then simplified 
to a change of coordinates of the points, which define individual simplices (triangles in our 
case). We interpolate among those points to get the remaining points, which create the 
image. The basic strategy is to create some triangulation from the input image and, when 
visualizing it, reconstruct the image with a bilinear interpolation of each triangle. This 
simple approach obviously does not generate satisfactory results. Main problems are that 
large, almost mono-coloured, areas are not “smooth” enough and colour edges are not 
“sharp” enough. Lack of smoothness means discontinuity in colour intensity among 
individual triangles and lack of sharpness means that the colour edges, which make an 
individual object in the picture recognizable, are blurred. There are basically two directions 
in which this model has to be modified in order to achieve better results. 

First of them is an improvement of the process of triangulation construction. The set of 
vertices, which forms the triangulation, resembles pixels of the original image (their x and 
y coordinates and colour intensity). This means that there are many different ways of how 
to choose which pixel should become a vertex. There are also many different types of 
triangulations that can be used. The construction can have various impacts on the quality of 
the reconstructed image, thus the choice of the type of triangulation is very important. 
Interpolation methods presented further in this thesis were tested on Delaunay 
triangulations. 

The second thing to improve is the interpolation method itself, which is the topic of this 
thesis. Flaws of the commonly used bilinear interpolation are mainly caused by an 
ignorance of intensity behaviour in areas surrounding the interpolated triangle. This thesis 
describes some interpolation methods, which would enable us to incorporate those areas 
into calculations of the resulting intensity. 

Chapter two briefly describes the Delaunay triangulation, the Voronoi diagram and co-
triangulations, which are the geometric structures used for the representation of the image. 
The interpolation methods themselves are presented in chapter three. Chapter four focus on 
some details concerning to their implementation and singular cases. Chapter five is 
dedicated to image quality measurement methods, used colour systems and also the 
hardware and subjects configurations used for the tests are mentioned. Then the quality 
comparisons follow in chapter six, as well as comparisons of time consumed by individual 
methods. The methods are compared to each other and their overall quality is evaluated. 
Chapter seven summarize all the conclusions the research brought. 

This main goal of this thesis is to compare interpolation approaches, which has not been 
examined too much so far. Though it would be great, this thesis does not present a perfect 
solution to the problem presented above. It is rather opening new possibilities for further 
development.
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2. Used geometrical structures 

2.1. Triangulation 

Triangulations are a common tool of computational geometry not only in computer 
graphics, but also in various other fields, like terrain modelling, computer vision and other. 
We can define a common triangulation in two-dimensional space as follows [3]: 
 
Given a point set S in two-dimensional space, the triangulation T(S) of this set of points is 

a set of triangles such that: 

• The point p from the space is a vertex of a triangle from T(S) if and only if p 

belongs to S; i.e., the vertices of the triangles are some points from the input set. 

• The intersection of two triangles is either empty or it is a shared face or a shared 

vertex. 

• The set T(S) is maximal: there is no triangle that can be added into T(S) without 

violating previous rules. 

However, there can be numerous different triangulations of the same point set, which 
match this definition. To ensure that the triangulation is unique for a given point set, 
additional constrains have to be set. Numerous specific triangulations, with different 
qualities and requirements, are known and used. For example, some research of 
triangulation-represented digital image using data dependent triangulations (DDT) was 
done by other researchers ([2], [7]).  However, since this thesis is not focused on 
triangulations, only Delaunay triangulation (see part 2.2) will be used further, because it is 
suitable for our needs. 

2.2. Delaunay triangulation 

Delaunay triangulation (DT) was proposed by a Russian scientist Boris N. Delone. 
Although it can be defined for more dimensional space, only two-dimensional triangulation 
is considered in further text. Delaunay triangulation DT(S) of a set of points S in two 
dimensions is a triangulation such that the circum-circle of any of its triangles does not 
contain any other point of S in its interior.  

Due to this additional constraint, the DT has the following properties [3]: 

• If no four points lie on the same circle, DT(S) is unique. E.g., four points lying in 

the vertices of an empty square have a common circle and two possible 

configurations of their triangulation. 

• The Delaunay triangulation includes at most O(N
d/2

) triangles, where N is the 

number of points to be triangulated. 

• The boundary of the DT(S) is a convex hull
1
 of S. 

• DT(S) maximizes the minimal angle and, therefore, the Delaunay triangulation 

contains the most equiangular triangles of all triangulations (i.e., it limits the 

number of too narrow triangles that may cause problems in further processing). 

• In the worst case, it can be computed in O(N·log N). However, algorithms with 

O(N) expected time also exist. 

                                                 
1 A convex polygon made from some points from a point set S, which encapsulates all the other points in S 
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Because of these properties, Delaunay triangulation is used very often. Also, the Voronoi 
diagram (see part 2.3) is actually a dual configuration to this triangulation, which is another 
welcomed quality. 

In our case, the Delaunay triangulation is constructed from several points, which are 
chosen from the original picture. Thus the resulting triangulation is actually a three-
dimensional structure, where each of its vertices is defined by spatial coordinates and a 
colour intensity value. The points, future vertices of the triangulation, are chosen in order 
to preserve as much information about colour changes in the image as possible. Obviously, 
the more vertices the triangulation has, the more accurate the interpolation will be. More 
information about the construction can be found in [4]. 

2.3. Voronoi diagram 

Voronoi diagram is a geometrical structure named after Russian mathematician Georgy 
Feodosevich Voronoi, who defined it. It divides the space into smaller regions, which are 
built around certain chosen points (vertices of the diagram). These regions, called Voronoi 
cells, contain such part of the space, which is closest to the respective vertex of the 
diagram. For two-dimensional case it can be defined as follows: 
  
Given a point set S in two-dimensional space, the Voronoi diagram VD(S) of this set of 

points is a set of Voronoi cells, such that: 

• Exactly one point p from the point set S lies inside the cell. In further text, this point 

will be called the control vertex of the cell. 

• The cell is a convex polygon. 

• Each point x, for which the Euclidean distance between it and a given point p from 

the set S is smaller then the distance between x and any other point from S, i.e. 

control vertex of any other cell, lies inside the cell denoted by p. 
• Each point y, for which the Euclidean distance between it and a given point p from 

the set S, is equal to the distance between y and exactly one other point q from the 

point set S, lies on an edge e. This edge is shared by the cells denoted by points p 
and q. In further text, edge e will be called a neighbouring edge and the two cells 

that share it will be called neighbouring cells. 

• Each point z, for which the Euclidean distance between it and a given point p from 

the set S, is equal to the distance between y and more then one other points R from 

the point set S, is a vertex of the cell denoted by p and the other cells denoted by 

points from set R. In further text, all cells which share vertex z will be called 

adjacent to vertex z and the set of all points z will be called vertices of the Voronoi 

diagram. Point z lies on the end of neighbouring edges between neighbouring cells 

adjacent to z. 

Unlike the triangulation, Voronoi diagram is obviously unique for a given set of points. As 
mentioned in part 2.2, the Voronoi diagram is a dual configuration to the Delaunay 
triangulation of the same set of points. Specifically, the vertices of a given Voronoi cell 
with control vertex p are the centres of circum-circles2 of all triangles from the Delaunay 
triangulation, which are adjacent to p. This knowledge is used to construct the diagram 
from the triangulation, which was the input structure used for all the implemented 
methods. 

                                                 
2 A circle which passes thru each vertex of the triangle 
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2.4. Co-triangulation 

Structures described in parts 2.1 – 2.3 lack the means to represent more then three values in 
each vertex (assuming that two of them are spatial coordinates). The main implication for 
purposes of digital image is that they cannot be used to represent coloured image, because 
commonly used colour systems, like RGB3 for example, consist of more then one 
components (usually three). One possibility that allows processing of coloured images is 
usage of three triangulations or Voronoi diagrams, one for each colour component, 
interpolated separately and then merged into one coloured image. The other, more 
convenient way, is to use the co-triangulation. 

The co-triangulation [10] is constructed from N D-dimensional data sets. These data sets 
are transformed into one D-dimensional Delaunay triangulation in D + N-dimensional 
space. For the purpose of coloured image representation this means that the inputs are three 
triangulations, one for each colour component and the output is one triangulation, which 
includes all the colour channels. 

The spatial distribution of vertices in the input data set does not have to (and usually do 
not) match, i.e. for some vertex of one input set, there does not have to be a vertex at the 
same position in the other two sets. To be able to construct the co-triangulation, error 
tolerances εi has to be defined, one for each of the input data set. These tolerances help to 
direct the further construction process in order to make the resulting co-triangulation 
suitable for interpolation of all of its N properties. 

As the process of the construction is rather complicated and actually not every interesting 
from the point of view of the topic of this thesis, only its main idea will be described, more 
details can be found in [10]. It is an iterative algorithm, starting with a simple initial 
triangulation and then continuing over all of the N data sets. When processing data set Ns, 
each vertex of the current (i.e. not final) co-triangulation is assigned some value for its s-th 

parameter, based on the Ns data set. The value is chosen as an average of a few points in 
the data set, which are nearest to the processed vertex. 

After all the vertices of the current co-triangulation are processed in this way, it is 
interpolated and compared with the result of interpolation of the data set Ns. If the result is 
in bounds of the error tolerance εs, the data set is discarded and the algorithm continues 
with data set Ns+1. Otherwise new vertices are added to the co-triangulation, in order to 
satisfy the error tolerance. The new vertices are chosen directly from the data set Ns, i.e. 
the new vertex has the same spatial coordinate and the same value in the s-th parameter. 
For s > 1, there are already some other processed parameters which has to be assigned to 
the new vertex. In this case, these parameters are gained by bilinear interpolation of the 
triangle from the former co-triangulation (i.e. the one before the insertion of the new 
point), in which the inserted point lies. 

For more insight and details about the algorithm and the co-triangulation itself, please refer 
to [10]. The important conclusion for the case of this thesis is that the co-triangulation is a 
structure, which allows processing of coloured digital image in exactly the same way as the 
usual triangulations – the resulting structure is also a Delaunay triangulation, only with five 
(e.g. x, y, R, G, B) instead of three (x, y, intensity) parameters assigned to each vertex. 

                                                 
3 Each colour is described as a combination of Red, Green and Blue component 
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3. Interpolation methods 

3.1. Bilinear interpolation 

Bilinear interpolation is the most commonly used method for interpolating a triangle. This 
popularity is based mainly on its simplicity, both in terms of computational time and its 
implementation. Its idea is very simple: first, linearly interpolate pixels on the edges of the 
triangle and then use these values to linearly interpolate each horizontal line of the triangle. 
To simplify this algorithm, we can use barycentric coordinates to achieve the same results 
without having to distinguish between pixels on the edge and inside the triangle. 

Barycentric coordinates of a triangle are three numbers respective to individual vertices of 
the triangle. They describe every point inside the triangle as an interpolation of the 
vertices. Equation 3.1 shows how they are computed. 
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b

ABCArea
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a ===  

 
Equation 3.1: Barycentric coordinates a, b, c of point P in triangle ABC. They are gained 

as a portion of triangle created by point P and the two vertices, which are opposite to the 

vertex for which the coordinate is computed. Therefore coordinates a, b, c belongs to 

vertices A, B, C respectively. 

A simple linear combination of the barycentric coordinates and their respective vertices is 
then the Bilinear interpolation. This allows us to interpolate the colour intensity of all 
pixels using the following algorithm: 
 
For each triangle ABC of the triangulation do 
 Area = compute_area(ABC); 
 For each pixel P of the triangle do 
  a = compute_area(BCP) / Area; 
  b = compute_area(ACP) / Area; 
  c = compute_area(ABP) / Area; 

P.Intensity = a * A.Intensity + b * B.Intensity + c 
* C.Intensity; 

3.2. Zienkiewicz’s interpolation 

This method was used in [1] for interpolation of geographical data represented by 
triangulation. Because of its plausible results, it was worth trying to exploit it for our 
purpose. It uses gradient vectors to describe the behaviour of the intensity in the area that 
surrounds the interpolated triangle.  

Gradient in a vertex can be estimated as an average of normalized surface normal vectors 
(which are gained as a cross product of any two edge vectors of a triangle) of each of the 
triangle adjacent to the vertex, weighted by their areas, as expressed by Equation 3.2. 

This estimation is then inserted into formula of Zienkiewicz’s interpolation, which 
cubically interpolates intensity across the triangle. The formula is described by Equation 
3.3. 
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Equation 3.3: Zienkiewicz’s interpolation. For better clarity, some terms of the actual 

formula were shortened into terms u1 – u9 and k1 and k2. AB, BC and CA are the edge 

vectors of the triangle ABC (edges B - A, C - B and A - C, respectively), ga, gb and gc are 

gradients in vertices A, B, C; a, b, c are the barycentric coordinates and Ai, Bi, Ci are 

colour intensities in the corresponding vertices. The formula itself is a function of the 

barycentric coordinates of point P.  

Result of the interpolation formula described in equation 3.3 is the intensity value in the 
interpolated pixel. Therefore the algorithm for interpolation of the whole triangulation is 
similar to that of a bilinear interpolation; we only need to compute the gradient vectors 
beforehand: 

For each triangle ABC of the triangulation do 
 ComputeGradient(ABC); 
For each triangle ABC of the triangulation do 
 u1 = A.Intensity; 

u2 = (B.x – A.x) * A.grad.x + (B.y – A.y) * A.grad.y; 
... 

u9 = (A.x – C.x) * A.grad.x + (A.y – C.y) * B.grad.y; 
 For each pixel P of the triangle do 
  GetBarycentricCoo(out a, out b, out c, ABC); 
  k1 = 2 * a * b * c, k2 = k1 / 4; 

P.Intensity = u1 * (a2 * (3 - 2 * a) + k1) + u2 * 
(a2 * b + k2) - u3 * (a * b2 + k2) + ... - u9 * (c * a2 + 
k2); 

 



3. Interpolation methods  13/51 

3.3. Interpolation on the Bézier triangle patch 
Bézier triangle patch is a triangular surface, which can be made by joining three Bézier 
curves4. Its degree is denoted by the degree of these curves, i.e. by the number of control 
points the curves have. For our purpose we consider patches of the second degree. 
Therefore, each boundary curve has three control points, which makes six control points to 
define the surface. A possible configuration of such a patch can be seen in Figure 3.1.  

P200 P110 P020

P101 P011

P002

 

Figure 3.1: Bézier patch of the second degree with its control points marked P200 – P002. 

Upon looking on Figure 3.2, another way of interpretation of such a patch might occur. It 
can be viewed it as a patch created by some triangle and its neighbours, i.e., the triangles, 
which share an edge with the one in centre. Therefore, the patch can be easily constructed 
for each triangle in our triangulation, by appending the neighbours of the triangle to it.  

To describe points inside the patch, barycentric coordinates of vertices P200, P020 and P002 

can be used. They will be referred to as a, b and c, respectively. The conditions ensuring 
that the point P(a, b, c) lies inside triangle P200, P020, P002  are mentioned in Equation 3.4.  

0;0;01 ≥≥≥∧=++ cbacba  

Equation 3.4: Constrains for barycentric coordinates to describe points inside a triangle. 

Point P lying in the patch can than be described in the form of Bernstein polynomials with 
the barycentric coordinates as parameters, as Equation 3.5 shows:  
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Equation 3.5: Bernstein polynomials describing point P as a function of its barycentric 

coordinates a, b, c. n is the degree of the patch. 

After inserting our values into Equation 3.5, i.e. the degree n = 2 and expanding it, we get 
Equation 3.6. 

                                                 
4 Curves defined as a set of points, where each point is assigned several parameters to control the derivatives 
of the curve. They became very popular for purposes of geometrical modelling (originally for car industry, by 
Pierre Bézier, 1962). 
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Equation 3.6: Formula of Bézier triangle patch of second degree. a, b, c are barycentric 

coordinates of vertices P200, P020 and P002. 

With the resulting formula presented in Equation 3.6, we are able to describe the whole 
surface defined by our patch. Coordinates (x, y and intensity) of each point Pijk of this 
surface are obtained from Equation 3.6 by a successive insertion of x, y and intensity 
coordinates of respective points Pijk into the formula. 

All points defined by coordinates a, b, c, which satisfy conditions in Equation 3.4, then 
form a surface with the following qualities: 

• It lies in the convex hull of all control points of the patch. 
• It passes through terminal control points P200, P020, P002. 
• Its boundaries, thanks to the quadratic interpolation function, are parabolic splines 

corresponding to the control points of individual boundary curves. 

Though these properties are welcome, they also cause problems with determining which 
pixels actually belong to the patch. The points of the patch do not have to project into each 
pixel of the triangles, which create the patch. On the contrary, some of those points can 
project outside of those triangles. Therefore it is unknown how many pixels, and which of 
them, will be in the patch, before the computation is made. The algorithm for the 
interpolation will also be different, because there cannot be any “for each pixel” loop. 

A proposed solution to this problem is to compute intensity values for all possible triplets 
a, b, c that satisfy Equation 3.4. Of course, it is not possible to count with every number 
between zero and one. But since the number of the pixels to be rendered is finite and 
relatively small, a sufficiently large set of coordinates can be computed. This can be done 
if any two of the coordinates are subsequently incremented from zero to one by some 
“step”, a small (much smaller than one) real number. The third coordinate is easily 
calculated, because, as Equation 3.4 shows, their total sum must be one. This way the 
desired surface can finally be rendered. 

However, the choice of this “step” brings some difficulties. Real values (a, b, c) are 
projected on integer values (pixel coordinates) and therefore some pixel could be missed 
entirely because of rounding mistakes. Therefore, even if an approximation of the number 
of pixels in the patch could be calculated, there is no insurance that it will suffice to 
compute that many intensity values. Much more values than there are pixels to render have 
to be computed, which result in lengthier time consumed by the computation. Though 
some optimization can be made (e.g. the mentioned estimation of pixel count), the 
quadratic time complexity of the algorithm makes it unable to compete with interpolation 
methods that interpolate on a single triangle, like bilinear or Zienkiewicz’s method, 
mentioned in parts 3.1 and 3.2. 

On the other hand, each of the redundant value always projects onto some pixel. Because 
of that, more and not necessarily equal intensity values for each pixel are obtained. Note 
that this is not the only reason why there are more values for each pixel – the patches are 
constructed for each triangle in the triangulation. And because each patch is made of four 
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triangles, each triangle is involved in four patches. This implies even more intensity values 
for pixels in the intersection of the neighbouring patches. It must be ensured that the finally 
displayed value is correct (that it did not end in the pixel only due to a rounding mistake). 
Theoretically, the most often value should be the most suitable, but experiments showed 
that results are almost the same as with the arithmetical average of all values projected into 
the pixels. Because computing arithmetical average has much lower memory demands, it is 
the suggested option. 

Finally, the algorithm for interpolation using the Bézier triangle patch can be stated: 

Bitmap = array with length equal to the number of pixels, 
filled with 0 /* for a coloured image, there would be 
three such arrays, one for each colour component */ 

Counter = array of the same length as Bitmap, filled with 0 
For each triangle ABC of the triangulation do 
 a = 0, b = 0; 
 P200 = Vertex of the first neighbour, which is not also 
a vertex of ABC 
 P020 = Vertex of the second neighbour, which is not also 
a vertex of ABC 
 P002 = Vertex of the third neighbour, which is not also 
a vertex of ABC 
 P110 = A, P011 = B, P101 = C; 

step = 0.005; /* the step can be various */ 
While a <= 1 do 

  a = a + step; 
  While b <= 1 - a do 
   b = a + step; 
   c = 1 – a – b; 
 

X = a2 * P200.X + b2 * P020.X + c2 * P002.X + 2 
* a * b * P110.X + 2 * b * c * P011.X + 2 * a * c * 
P101.X; 

Y = a2 * P200.Y + b2 * P020.Y + c2 * P002.Y + 2 
* a * b * P110.Y + 2 * b * c * P011.Y + 2 * a * c * 
P101.Y; 

I = a2 * P200.Intensity + b2 * P020.Intensity 
+ c2 * P002.Intensity + 2 * a * b * P110.Intentsity 
+ 2 * b * c * P011.Intensity + 2 * a * c * 
P101.Intensity; 

 
Bitmap[Y * Width + X] += I; 
Counter[Y * Width + X]++; 

 
i = 0; 
While i < length of Bitmap do 
 Bitmap[i] = Bitmap[i] / Counter[i] 
 i++; 
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3.4. Interpolation on the Coons patch 
Coons patch5 is a surface defined by four curves as boundaries of the patch. As in the case 
of the Bézier triangle patch (part 3.3), this method suggests creating the Coons patch from 
quartets of triangles (one central triangle and his neighbours). The boundary curves are 
then defined by vertices on edges of such a configuration, i.e. P200-P110-P020, P020-P011-P002 
and P200-P101-P002 (using notation as presented in Figure 3.1). In order to get four curves, 
subdivision of the longest of those three is suggested. But before that, decision about what 
kind of curves will actually lead through those vertices must be made. 

There are three control points per curve. Therefore it is reasonable to define the boundary 
curves for the patch as parabolic, i.e. defined by a quadratic polynomial. Equation 3.7 
shows a parametrical formula for such a curve (with the parameter t).  

curve(t) = a·t
2
 + b· t + c 

Equation 3.7: Parametrical formula of a parabolic curve. t is the parameter, coefficient a, 
b, c define behaviour of the curve. 

In order to set the curve uniquely, coefficients a, b and c are found in order to fulfil this 
requirement: the curve must pass through the three vertices on each border of the triangle 
configuration. Simply said, the terminal vertices A and B (which are equal to either P200 
and P020, P020 and P002 or P200 and P002) will be the “start” and “end” of the curve and the 
middle vertex M (P110, P011 or P101) will be the peak (or at least close to the peak) of the 
created parabola. This requirement can be written as a system of equations, presented as 
Equation 3.8, for parameter t varying from zero to one. Its solution is the three coefficients 
a, b, c to be inserted into Equation 3.7. 

A  =  curve(0)   = a·0 + b·0 + c 

M =  curve(0.5)= a·0.25 + b·0.5 + c 

B  =  curve(1)   = a·1+ b·1 + c 
------------------------------------------- 

a = 2·A + 2·B – 4·M 

b = 4·M - 3·A – B 

c = A 

Equation 3.8: Solution of Equation 3.7 for parabolic curve. A and B are its terminal 

vertices, M is the peak. 

Note that A, B and M represent either x, y or the intensity value of the corresponding 
vertex, therefore, each curve is actually defined by nine coefficients – ax, bx, cx; ay, by, cy; 

aI, bI, cI. 

To select which curve to subdivide, distances from A to M and M to B are computed for all 
three curves and the longest curve is then subdivided into two as follows: x, y and intensity 
values of the longest curve for t = 0.25 and t = 0.75 are computed using formula Equation 
3.7 (with a,b,c coefficients already known). The results are used to construct vertices T0.25 

(for t = 0.25) and T0.75 (for t = 0.75). Vertices A, T0.75, M then define one of the new curves 
and M, T0.25, B the other.  

                                                 
5 Defined by Steven Anson Coons in 1964 
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In this way we get two pairs of opposite curves. We can now use them to describe the 
surface delimited by them. Intensity value in each point of the surface is gained as a 
superposition of splines corresponding to the boundary curves in that point characterized 
by some parameter.  

The routine then looks subsequently: let a1, a2 and b1, b2 be the pairs of the opposite 
boundary curves. Values in the parameter u for the curves b1, b2 gives us terminal points of 
the spline bu. In Figure 3.2, the terminal points are marked as P0 and P10. We interlace this 
spline with each possible spline av characterized by the points of pair a1, a2, i.e. by each 
parameter v from zero to one. Parameter u is then incremented (a new spline bu is chosen) 
and the inner cycle repeats. Routine ends when u reaches one (every possible spline bu has 
been used). 

In Figure 3.2, two iterations of this routine with step 0.1 are depicted. During each 
iteration, you can see the spline bu (marked by a solid line) being interlaced with all eleven 
splines av with v varying from zero to one (marked by a dashed line). Each intersection of 
those splines is the interpolated point P(u, v). 
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Figure 3.2: Visualization of two iterations of the spline superpositioning. A, B, C and M 
are the terminal vertices of the boundary curves  a1, a2, b1 and b2. 

As in the Bézier patch interpolation, it is unknown which pixel lies on the surface. 
Therefore the “step” we add to the parameters during each iteration of the cycle should be 
as small as possible to ensure that all pixels are covered. Computation of a point of the 
surface (the superposition of splines in a certain point) can be expressed by Equation 3.9.  
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Equation 3.9: Formula expressing the spline superposition depicted on Figure 3.3. A, M, B 
and C are spatial or colour intensity values in the respective vertices, a1(v), a2(v), b1(u), 
b2(u) are spatial or colour intensity values of points in respective boundary curves, 

denoted by parameters u and v. The curves and vertices used here are described in 

Equation 3.11. 

After expansion of Equation 3.9, shown in Equation 3.10, x and y coordinates as well as 
the colour intensity of point P dependently on parameters u and v can be obtained.  

P(u,v) = (1 – u)·a1(v) + u·a2(v) + (1 – v) ·b1(u) + v·b2(u) + 

 – (1 – u) ·(1 – v) ·A - u·(1 – v) ·C – (1 – u) ·v·M – u·v·B 

Equation 3.10: The interpolated point P as a function of parameters u, v of the boundary 

curves. This formula is gained by extraction of the term P(u,v) from Equation 3.9. 

Control points of the curves a1, a2, b1, b2 are described in Equation 3.11. The considered 
longest initial curve is the curve denoted by the vertices A, M, B.  

 a1 = (A, MAC, C), a2  = (M, T0.25, B) 

 b1 = (A, T0.75, M), b2 = (C, MBC, B) 

Equation 3.11: Boundary curves a1, a2, b1, b2, described by their terminal and middle 

vertices. MAC is the vertex between A and C, MBC is the vertex between B and C, T0.25 and 

T0.75 are vertices created during subdivision of curve A, M, B. 

The visualized value in each pixel is also gained as an arithmetic average of all values 
which were projected into that pixel (see part 3.3 for details behind this decision). 

Unfortunately, among other similarities, this method also shares a long computing time 
with the interpolation on the Bézier triangle patch. The reason is the same algorithm that is 
used for intensity distribution among pixels in the patch. The full algorithm of the 
interpolation is similar to that of Bézier triangle patch interpolation, only with different 
equations for the interpolation. The only significant change is the computation of the 
boundary curves, which is described by Equations 3.7 and 3.8 and is neither interesting nor 
complex in terms of the algorithm. Therefore the description of the interpolation algorithm 
in pseudo code will be omitted in this part.  

3.5. Piecewise linear Interpolation on the Voronoi diagram 

This method is loosely based on usual bilinear interpolation, which uses barycentric 
coordinates of the pixel in a triangle as weights for the interpolation. The same principle is 
applied in this method, only this time it uses Voronoi cell instead of a simple triangle. The 
cell is a polygon with generally more then three edges, which implies the main problem 
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associated with this method – finding barycentric coordinates of a general convex polygon 
is much more complicated then finding them for a triangle. 

However, this problem has already been solved and an easy way of computing barycentric 
coordinates for a convex polygon was described in [Mark Meyer, Haeyoung Lee]. 
Equation 3.12 describes the proposed formula for a barycentric coordinate in a given 
vertex of the polygon. Such coordinates retain all the useful properties as common 
triangular barycentric coordinates. Namely, as in Equation 3.4, their sum is one and they 
are positive for points inside the polygon. 
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Equation 3.12: barycentric coordinate of point P respective to vertex Qj in a convex 

polygon. γ and δ are angles between lines P-Qj, Qj-Qj-1 and P-Qj, Qj-Qj+1. Bj is the resulting 

coordinate. 

Complications occur when the interpolated point is too close to edges of the cell. Such 
cases are checked and handled specially – linear interpolation of the vertices of the edge 
where the interpolated pixel lies is used instead. Simple test of parallelism (cross product) 
between vectors of the currently involved edges and the vector of the interpolated point 
and the point Qj can reveal these cases. 

For each cell C of the Voronoi diagram do 
For each pixel P of the cell C do 

SumOfCoordinates = 0; 
Coo = array of barycentric coordinates; 
For j = 0, while j < number of vertices of C do 

A = vector P – C[j]; 
PREV = vector C[j-1] – C[j]; 
NEXT = vector C[j+1] – C[j]; 
TEST = cross product of A and PREV; 
IF TEST == 0 

P.Intensity = Linear interpolation 
between C[j-1] and C[j]; 

Continue with next pixel; 
TEST = cross product of A and NEXT; 
IF TEST == 0 

P.Intensity = Linear interpolation 
between C[j+1] and C[j]; 

Continue with next pixel; 
C_PREV = cotangent between A and PREV; 
C_NEXT = cotangent between A and NEXT; 
Coo[j] = (C_PREV + C_NEXT) / (A.X2 + A.Y2); 
SumOfCoordinates = SumOfCoordinates + Coo[j]; 

Divide each coordinate by SumOfCoordinates; 
P.Intensity = 0; 
For j = 0, while j < length of Coo do 
P.Intensity += Coo[j] * C[j].Intensity; 
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3.6. Natural neighbour interpolation 

This interpolation method was taken from [5] and only transformed for the needs of a 
digital image. It uses two Voronoi diagrams – the one on the input (i.e. created from the 
triangulation that is on the input) and other, which contains the interpolated point as a 
vertex of the diagram. The new vertex locally modifies the initial diagram – some cells 
next to the point will become smaller, because the new cell, created around the new vertex, 
“steals” some area of the adjacent cells. The main idea of the interpolation is to compute 
this stolen area and use it to assign weights to the vertices, from which it was stolen. Those 
vertices then participate in the interpolation.  

The main problems are to construct the second diagram and to find the participating cells. 
Luckily, this is actually one and the same if we use the incremental insertion algorithm for 
creation of the new diagram. First, an arbitrary participating cell has to be found. The cell, 
in which the point that is going to be inserted lies, definitely fulfils this demand, so it can 
be used as an initial cell of the process. The insertion algorithm in one cell can be 
described in the following steps: 

1) Construct a line between the inserted point and the control point of the 

participating cell. 

2) Find the centre of this line and construct a parallel line, passing thru the centre. 

3) Find the intersections A and B of the parallel line and edges of the cell. Line AB 

is an edge of the new cell. 

 
The edges on which are the points A and B are shared with other two cells. And as points 
A and B are part of the new cell, these another cells must also be the participating cells. 
Therefore the same algorithm can be used on one of these cells and another edge of the 
new cell will be gained. One end of this edge will be the old intersection B (or A), and 
second end will be another point, which will also reveal another participating cell. The 
algorithm continues this way until it reaches the initial cell from another end, i.e. the newly 
found intersection will be the second intersection from the initial cell. This way the new 
cell is obtained as well as all the participating cells. 

The weights assigned to each of the participating cells are gained as a fraction of the stolen 
area and the whole area of the new cell. Therefore, the bigger is the area stolen from a cell, 
the bigger is the impact this cell has on the interpolation. The resulting colour is gained as 
a linear combination of the control points of the cells and the weights assigned to them. 

There are singular cases of the insertion (the parallel line from step 2 passes directly thru a 
vertex, or is identical to an edge), which needs to be taken care of in the implementation. 
However, they do not need any special treatment, like for example parallel vectors in the 
method described in part 3.5 and therefore they are mentioned only in part 4.4 (as well as 
other implementation problems of this method). 

For each cell C of the Voronoi diagram do 
For each pixel P of the cell C do 

TotalArea = 0; 
Areas = list of the areas stolen from cells; 
Cells = list of participating cells; 
Used = list of already used participating cells; 
Add C to Cells; 
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While Cells is not empty do 
 

StolenCell = polygon stolen by P from cell at 
index 0 in Cells; 

Add the area of StolenCell to Areas; 
TotalArea = TotalArea + the area of 

StolenCell; 
Add neighbouring cells of Cells[0] which share 

the dividing edge of StolenCell to Cells unless 
they are in Used; 

Add Cells[0] to Used; 
Remove cell at index 0 from Cells; 
 

Divide each area by TotalArea; 
P.Intensity = 0; 
For j = 0, while j < length of Coo do 

P.Intensity += Areas[j] * Used[j].Intensity; 
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4. Implementation difficulties 

4.1. Bilinear and Zienkiewicz’s interpolation 

The Bilinear interpolation, as described in part 3.1, and the Zienkiewicz’s interpolation 
(part 3.2) are both very easy to implement and also very similar in terms of the used 
algorithm. There is only one problem related to both of these interpolation methods. 

When interpolating using these methods, a pixel is the basic unit – for each pixel of a 
triangle, the colour intensity is set. However, the edges of the triangle have no width – they 
are not “pixelated”. As such, they can divide the pixels they intersect into two pieces, each 
belonging to one of the neighbouring triangles, which share the intersecting edge. The 
choice of which of the neighbouring triangles should be the one to use for computing the 
intensity of the pixel actually should not be important, because the interpolation should be 
smooth over triangle edges anyway. The barycentric coordinates are the real problem. 
Their computation, as presented in part 3.1, assumes that the interpolated point is inside the 
triangle, or at least on its edges. But the coordinate that is passed to the formula is the 
coordinate of a pixel, an integer. 

Figure 4.1 shows what this integer means in the space of real numbers. It is not the whole 
pixel anymore; it is the upper left corner of the pixel. The point 1;2 on the figure clearly 
does not lie inside the marked triangle. But the pixel 1;2 does, though only partly, and 
therefore the interpolation algorithm will use it. If the coordinates 1;2 are inserted into the 
formula for computing the barycentric coordinates, the results will not meet the constraints 
for points inside triangle (Eq. 3.4), i.e. some of the resulting barycentric coordinates might 
get bigger then one, or smaller then zero. 

  

Figure 4.1: a triangle on a 5x5 grid of pixels. In the space of real numbers, pixel 

coordinates are actually the coordinates of their upper left corners. Therefore, points 

denoted by pixel coordinate, e.g. 1;2, may not actually be inside the triangle, though the 

pixel 1;2 is. 

Using these coordinates for intensity computation may result in colour intensity being out 
of the range of the colour system (i.e. over 255, when using standard 8-bit per colour 
component format), or negative. Either way, it won’t be possible to display such colour. A 
simple solution is to skip interpolating the pixel when the barycentric coordinates does not 
meet the constraints in Eq. 3.4. This way it is ensured, that no fault colour intensities will 
be set to the pixels. On the other hand, because the triangulation covers the whole image, it 
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is ensured that all the pixels will eventually be set – for each pixel there is a triangle which 
contains its upper left corner. At the same time, this solution does not require much more 
of additional code or calculations. 

4.2. Patch-based interpolations 

Parts 3.3 and 3.4 described two interpolation methods, which interpolate on a patch 
constructed from a triangle and its three neighbours. But on the edges of the triangulation, 
which is usually shaped as a rectangle, there are triangles which obviously have only two 
neighbours, because their third edge lies on the edge of the triangulation. Moreover, in the 
corners of the triangulation there might be triangles with only one neighbour. Therefore, 
the methods cannot be used in the same way as described in the third chapter. 

The only way to solve this problem is to use a different interpolation method, which 
interpolate on a single triangle, for these triangles. For example, the solution used for 
experiments presented in chapter six interpolates the bitmap using bilinear interpolation 
first. Therefore, the array “Bitmap”, as used in the algorithm description in the end of part 
3.3, will be filled with valid colour intensity values for each pixel. The interpolation then 
continues as usual, adding the computed intensity values for each pixel together and 
counting them. In the end, when the average of these values is made, it is assumed, that the 
number of values in each pixel is one more then in the “Counter” array; that is the one 
value from the pre-processing.  

This way, pixels on the borders of the image will have their intensity assigned as if they 
were interpolated by bilinear interpolation, as there will be zero values computed by the 
patch-based method and one value computed by bilinear interpolation. The rest of the 
image will be slightly modified by the result of the linear interpolation, but if the stepping 
of the patch-based method (either Coons of Bézier) is dense enough, it will not be 
significant, as there will be approximately other twenty values in each pixel, computed by 
the patch-based method. 

4.3. Interpolation on Voronoi diagram 

The first difficulty connected with interpolation on Voronoi diagram is the construction of 
the diagram itself. Part 2.3 mentions that the diagram can be created from the Delaunay 
triangulation: each vertex of the triangulation is a control vertex of a Voronoi cell and each 
centre of a circum-circle of each triangle is a vertex of the Voronoi diagram. Although 
various ways to compute locations of the centres of circum-circles are known and easy to 
implement, the colours in the vertices has to be interpolated somehow. 

The implementations used for experiments presented in chapter six uses Zienkiewicz’s 
interpolation to interpolate the pixels corresponding to the location of Voronoi diagram’s 
vertices and sets their colour value this way. Nevertheless, it is important to realize that 
this way, an error in the colour intensity of the image is introduced prior to the 
interpolation itself (which brings another error to it). Better results might be obtained if the 
colour is set according to the original image. However, this image is not always available 
(after all, the main role of the triangulation is to represent that image) and it is over the 
topic of this thesis to exploit this possibility. 

Another problem is also bound to the centres of circum-circles. For the triangles on the 
edges of the image, there is nothing that would assure that their centres of circum-circles 
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will be exactly on the edge, or over it. Therefore the Voronoi diagram does not have to 
cover the whole image, which would lead to leaving parts of the image blank after its 
interpolation. This is certainly not tolerable. It is necessary to enclose the diagram in order 
to cover the whole image. 

To do that, three artificial vertices are added to the triangulation. These vertices form a 
huge triangle, which encapsulate the whole triangulation by connecting the vertices on the 
edges and the artificial vertices – several artificial triangles are created. For example, for 
512x512 points large triangulation, vertices with coordinates (256, -10000), (-10000, 
10000) and (10000, 10000) are added. 

When the Voronoi diagram is created from this new triangulation, it is assured that whole 
image is covered, because the new cells on the border of the image span far over it. The 
remaining action is to clip the diagram by the edges of the image and this way, a Voronoi 
diagram covering whole image is gained. 

Unfortunately, another problem occurs here. The vertices on the edges, created during 
clipping, do not have any colour intensity value associated to them. In the presented 
implementation, the value assigned to them is the value in the nearest vertex of the cell – 
that is the second vertex on the same edge as the clipped one. Although in some cases this 
is quite precise approximation, in some cases it is not. Therefore the results on the edges of 
the image tend to be extremely poor for the piecewise linear interpolation on the Voronoi 
diagram. 

The natural neighbour interpolation does not use the colour intensity values in the cell’s 
vertices to get the interpolated value; it uses the value in the control vertices of the cells. 
These are actually vertices of the triangulation, so their intensity value is correct. However, 
the cells created by clipping do not have to meet the definition of a Voronoi cell, i.e. some 
of the points in one of such cell might actually be closer to the control vertex of some other 
cell. Therefore the areas of these cells, which are used as weights for the interpolation, are 
degraded to a set of random numbers and quality of the resulting interpolation obviously 
decreases.  

In the presented implementation, the Cohen-Sutherland clipping algorithm [11] was used 
for clipping. It was slightly modified, as this algorithm was originally designed for line 
clipping. However, clipping of cells covering the corners is practically impossible without 
using more complicated algorithm. As was said in the previous paragraphs, the vertices 
created by clipping introduce some error to the resulting interpolation, although the reasons 
are different for the piecewise linear and the natural neighbour interpolation. This led to 
the decision to abandon rather time-consuming efforts to improve the clipping technique 
(actually, it would have to be fully redesigned). 

Instead a simple pre-processing similar to that used for patch-based method (see part 4.2) 
has been used. Before the interpolation on Voronoi diagram, either the linear interpolation 
or Natural Neighbour interpolation, the image is interpolated using the Bilinear 
interpolation. Then the interpolation on Voronoi diagram is processed. Those pixels, which 
are possible to interpolate using this interpolation, are rewritten and the rest remain with 
the values calculated by bilinear interpolation. 
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4.4. Natural neighbour interpolation 

Although all the problems concerning interpolation on Voronoi diagram and described in 
part 4.3 apply to all of the interpolations on Voronoi diagram, including Natural Neighbour 
interpolation, there are yet several other special difficulties in this method.  

The main part of the algorithm, i.e. the creation of the new cells, consists of three steps 
described in part 3.6. As it is rather complicated process, it will be described more 
thoroughly in the following text. To remind the algorithm: 

1) Construct a line between the inserted point and the control point of the 

participating cell. 

2) Find the centre of this line and construct a parallel line, passing thru the centre. 

3) Find the intersections A and B of the parallel line and edges of the cell. Line AB 

is an edge of the new cell. 

 

In the beginning, one of the not-yet processed cells is chosen (and removed) from the list 
of not-yet processed cells, which are the participating (see part 3.6) cells for the inserted 
point. Steps one and two of the algorithm are done and then begins the search for 
intersections (step 3). Starting from the first vertex of the cell and continuing in a counter 
clockwise order, each edge of the cell is tested against the parallel line computed in step 
two. If an intersection is found, its location is computed and it is stored. 

A singular case of the intersection being vertex of the cell is tested here. If it occurs, two 
edges are candidates for beings shared with a participating cell (if the intersection is in 
vertex Qj, it can be either edge Qj-1-Qj or Qj-Qj+1). The closer one to the inserted point is 
chosen. 

Moreover, if such intersection is found, it would be found again while checking another 
edge of the cell for intersections. Therefore, whole edges are not considered for testing, but 
only part of them – without one of the terminal vertices (it is always contained in the 
neighbouring edge, so it is assured that it won’t be missed). 

To get the stolen area, another two lists of vertices are kept. They represent the two 
polygons that develop from the participating cell when it gets divided by the edge of the 
new cell. Until the first intersection is found, all processed vertices of the cell are appended 
to the first polygon. When the first intersection is found, it is added to the first polygon and 
also it is set as a first vertex of the second. Then until the second intersection is found, all 
vertices are appended to the second polygon. When the second intersection is found, it is 
the last point of the second polygon and also another point of the first. Then rest of the cell 
is added to the first polygon.  

To find out which of these polygons is the stolen area and which is just the rest of the cell, 
the known orientation of the cell (counter clockwise in the presented implementation), and 
therefore the polygons as well, can be used. A simple “sign-test” (cross product) of the 
dividing (new) edge and the inserted point shows which polygon is the right one (is closer 
to the inserted vertex). The area of this polygon is then computed by the formula showed 
on Equation 4.1 and set as the area stolen from the processed cell. 
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Area = -( V1 x V2 + V2 x V3 + …+ Vn-1 x Vn) / 2 

Equation 4.1:  Formula for computing an area of a convex polygon. V1…Vn are the 

vertices of the polygon as vectors, i.e. V = (V.X, V.Y), “x” is a cross product. The vertices 

must be sorted in a counter clockwise order. 

There is another singular case when looking for the intersection and that is when the 
parallel line is identical with an edge of a cell. However, this case should occur only when 
the inserted point is identical with a control point of some existing cell. Then no 
intersections are found, only one cell (the initial) is involved in the process and the stolen 
area is identical with the whole area of the cell. Simply put, the colour intensity value 
assigned to the cell is the colour of the control vertex, which is just right in this case. 
Therefore this singular case actually does not need be taken care of in any special way. 
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5. Experiments settings 

5.1. Image measurement methods 

Mean square error, abbreviated as MSE, is one of the simplest methods for measurement of 
image compression quality. Its value is gained as an average of the quadrates of differences 
in pixels of the original image and of the compressed one. Obviously, lower value means 
better quality, with zero meaning equal images. Equation 5.1 shows the mathematical 
formula that corresponds to that idea: 
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Equation 5.1: The formula of the MSE. m and n is the size of the image in pixels, I(x,y) is a 

pixel of the original image in position (x,y), K(x,y) is a pixel of the interpolated image. 

Formula a is for greyscale images, formula b for coloured images. In the second case, Ik 

and Kk are images with only one of the colour components. 

Though widely used, the mean square error actually is not a good tool for measurement of 
image quality. Its main flaw is that because of the quadrate of pixel differences, a huge 
weigh is assigned to outliers, i.e. pixels, for which the difference is very big. Though this 
might seem reasonable, imagine the following scenario: there is an image, exactly the same 
as the original one, only with few (e.g. less then one percent) scattered pixels having 
absolutely black or white, whichever is farther from the original. Such image will be rated 
very poorly by MSE, while human’s eye might not even notice the flawed pixels. 

More common method used for image comparison is the “peak signal to noise ratio”, or 
PSNR. Equation 5.2 shows how it is computed. 
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Equation 5.2: The formula of the PSNR. MSE is the mean square error of the image, MAX 
is the maximal possible value in a pixel, usually 255 (for system with 8-bits per colour 

channel). 

Unlike the MSE, PSNR is measured in dB, the more, the better. Usual values are around 20 
– 40 dB, where 30 dB is usually stated as a threshold between the ability to recognize the 
compressed image from the original. Although, as can be seen in the equation, the PSNR is 
still based on the MSE, and therefore it does not actually solves the problem of low 
correlation between it and human perception, i.e. images rated as better then others by 
PSNR often get opposite rating from humans, and vice versa. 

Structural similarity index, or SSIM, is a relatively new metric, which in most cases 
overcomes the PSNR when compared with human’s eye rating, while having equal 
computation power needs. In [9] is described a way how to numerically express structural 
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information about the image, which is what a human is used to extract from the image. 
Therefore the SSIM should be more suitable for image comparisons, as it more correlate 
with the human perception system. 

Unlike the previous methods, SSIM operates with larger structures then one pixel, e.g. 8x8 
(or other size) pixels windows. This helps to prevent the already mentioned problem with 
outliers. 

Equation 5.3 shows the formula of how to compute the index. 
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Equation 5.3: The formula of the SSIM (with additional declarative formulas). x and y are 

the pixel windows, µ is an average of intensity in given window, σx and σy are the square 

roots of variance, σxy is the covariance, C1 and C2 are constants, which avoid instability 

when (µx
2 

+ µy
2
) or (σx

2 
+ σy

2
) are close to zero. MAX is the maximal possible value in a 

pixel (usually 255), K1 and K2 are small (much smaller then one) constants, N is the size of 

the window. 

To get one rating for the whole image, a mean structural similarity index (MSSIM) can be 
used. It is computed as an average of all the SSIM of the image. SSIM takes values 
between -1 and 1, with 1 meaning equality of images. 

Although the MSSIM usually behave better then MSE or PSNR in terms of being close to 
rating by human perception, the authors of [9] state that it tends to be dependent on the 
input. Therefore the images presented in chapter 6 will be compared by both MSSIM and 
the standard methods, i.e. MSE and PSNR. 

5.2. Colour systems 

For the purpose of coloured images, two colour systems were considered. First of them is 
the RGB system, simply because it is undoubtedly the most commonly used system when 
it comes to digital image. The second system is the YCbCr. This system was regarded as 
the best for the purpose of triangulation represented digital image in [8]. As the topic of 
this thesis is closely related to [8], it seemed more then reasonable to take its conclusions 
into account. 

The most common way to represent colours in today’s computers is to use 32-bit number, 
where first 8 bits are reserved for the alpha channel6 and the rest are used for the individual 

                                                 
6 The transparency of the image, where maximal value means solid image and zero means fully transparent. 
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components of the respective colour system, 8-bits each. This implies the maximal and 
minimal value ranging from 0 to 255. 

The RGB is an additive colour system, which means that the intensity is added to the 
intensity of the background, resulting in more intensive colours the bigger the value of the 
RGB components are, with white being the maximal value and black being the minimal 
(zero) value. This makes additive systems like RGB suitable for monitors and other display 
hardware, because they emit light, so they correlate well with the system – the bigger the 
value, the more light is emitted and vice versa. 

To create a coloured image, one light emitter would not suffice. Therefore a blending of 
more basic colours is used generally. In case of RGB, these basic colours are, as the name 
suggests, red, green and blue. 

The RGB system has proven to have too much of redundant information to be used for 
transmission. This led to development of other system, YCbCr, which would be able to 
store almost the same information as the RGB colour but with less bit per pixel demand. 
The way to do this was to separate the intensity value (Y component) from the chromatic 
blue (Cb) and red (Cr) modifiers, which are actually differences between the intensity and 
the blue or red component. While the Y component still needs to be transferred in high 
resolution, the Cb and Cr can be reduced and compressed without influencing the overall 
quality of the resulting image. 

5.3. Testing subjects and environment 

All the results presented and discussed in chapter six were created using the “Interpolator” 
software, which is a part of this thesis. All the experiments were processed on a PC station 
with the following configuration:  

• Processor: Intel Pentium Core2Duo E6300 (two cores, processor clock 1.86GHz 
per core, 2MB L2 shared cache) 

• Memory: DDR2 Kingmax PC800 1GB (memory clock 800Hz) 
• Operating system: Windows XP SP2 

10 greyscale and 7 coloured images were used as the testing subjects. These images were 
picked in order to incorporate the commonly used images (like the Lena or Baboon 
images), classical scenery images (the Yacht), images with sharp colour edges (the 
Peppers, the Baboon), images with low colour variety (the Airplane, the Maran) as well as 
with tiny details (the Boat, the Lukas) and also one rendered image, the Pool. 
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6. Experiments 

6.1. Quality comparisons 

The three following parts will present the results of individual interpolation methods when 
applied on the set of images described in part 5.3 and compare each to other. The first part 
(6.1.1) focus on greyscale images, the second part (6.1.2) describes the application on 
coloured images represented by separate triangulations and the third part (6.1.3) shows the 
results gained when using the co-triangulations. 

The interpolation methods themselves do not change at all no matter if the image is 
coloured or grey. Therefore their performance does not really differ when used on the 
coloured image. For this reason, there are more data and statistics in the first part (6.1.1), 
as the typical characteristics and behaviour of individual methods is more clear and easier 
to see on the case with only one triangulation per image. The other two parts then describes 
only differences between the greyscale and coloured images, i.e. the impact of the colour 
systems described in part 5.2, relation between vertex count of individual triangulations 
and the quality of resulting image (as more information is obviously needed to interpolate a 
coloured image then a greyscale one), etc. 

The data presented in the following text is usually only one typical image, which represent 
most of the other tested images in terms of achieved quality (using quality measurement 
methods described in part 5.1). On the opposite side, images that were atypical in some 
way are also presented and discussed. However, if you are interested in seeing more 
experiment results anyway, please refer to the material appended to this thesis. 

6.1.1. Greyscale images 

Greyscale images were tested with five different vertex counts per triangulation – 1000, 
2000, 5000, 10000 and 15000. Naturally, the more vertices there are in a triangulation, the 
better is the result. The images (both original and interpolated) are in 512x512 pixel 
resolution, with these exceptions: the Maran image (400x300), the Kodim image 
(465x375) and the Monarch (768x512). First set of charts (figures 6.1 – 6.3) compares the 
quality of the images interpolated by the individual methods.  

Figure 6.1 present charts of the Lena image. Most of the other tested images have similar 
results (see the appendix for charts of more images), with the Bilinear and Zienkiewicz’s 
interpolation leading independently on the measurement methods. On the other side, the 
piecewise linear interpolation on Voronoi diagram fails significantly. Either way, the SSIM 
ranging from 0.5 to 0.7 is a sign of a poor similarity between the interpolated and original 
images. This actually is not very surprising, 1000 vertices for a 512 per 512 pixel image 
means 97.38 % of the initial colour information has been lost. 

The absolute ratings of individual images vary, dependently on how many tiny details and 
empty spaces there are in the image. For example, Figure 6.2 show comparison charts for 
the Maran image, which has flat, empty background and only the centre of the image is 
covered. Such image gets good rating, with SSIM rising over 0.8. However, as can be seen 
on Figure 6.3, the resulting image does not look any better for humans then the other 
images, because a human will still see a blurry object in the centre. That the simple 
background looks exactly the same as on the original is not important for most people, 
even if it covers most of the image. 
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Figure 6.1: The MSE (upper left), PSNR 

(upper right) and SSIM (down) values of 

the Lena image interpolated from a 

triangulation with 1000 vertices, 

compared with the original image 
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Figure 6.2: The MSE (upper left), PSNR 

(upper right) and SSIM (down) values of 

the Maran image interpolated from a 

triangulation with 1000 vertices, 

compared with the original image 
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Increasing the vertex count to 2000 does not bring any significant changes to the 
performance of individual methods. There is, however, one interesting thing. The charts of 
the Lukas image, Figure 6.4, show unexpectedly large MSE (and therefore small PSNR) 
for the Coons patch method. This is due to artifacts, to which this method is vulnerable. 

The reason of these artifacts is more evident with increasing vertex count. Figure 6.5 show 
images of the 10000-vertex triangulation of the Lukas image as well as the result of the 
Coons interpolation on this triangulation. The artifacts appear when triangles of very 
different sizes meet in one patch. As was described in part 3.4, the boundary curve of the 
coons patch is constructed in such a way, that the middle vertex of the curve is a peak of 
the curve. When two very different triangles meet, the spatial distances between the peak 
vertex and the terminal vertices will be also very different. The impact is that as these 
points are forced to create one continuous curve, this curves shape will be very distant 
from the shape of the polyline created by the same vertices as the curve. 

 

Figure 6.4: The MSE (upper left), PSNR 

(upper right) and SSIM (down) values of 

the Lukas image interpolated from a 

triangulation with 2000 vertices, 

compared with the original image 
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interpolated. 
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Figure 6.5: Part of the Lukas image triangulation with 10000 vertices (right), and its 

interpolation by the Coons patch method (left). 

It is quite interesting that these artifacts do not seem to influence the SSIM much. On the 
other hand, the piecewise linear interpolation on Voronoi diagram fails in every possible 
measurement method, including human eye perception, even though it does not suffer from 
similar singularities. 

With 5000 vertices per triangulation, the interpolated images are getting much closer to 
looking like the original ones. The Bilinear, Zienkiewicz’s and Natural Neighbour 
interpolations are proving to be the best among the set. Figures 6.7 and 6.8 show 
comparison charts for the Lena and Peppers images. Note, that the results are almost the 
same for both images, with one difference. The PSNR of Bilinear and Zienkiewicz’s 
interpolation is significantly bigger for the Peppers image. This is suggested to be a matter 
of sharp edges in the image. The Peppers image contains a lot more of them, which has its 
impact on the created triangulation. Figure 6.6 shows that this results in a strip of tiny 
triangles being along these sharp edges. 

 

Figure 6.6: A small portion of the Peppers triangulation with 10000 vertices. Note the 

strips of very small triangles along colour edges. 
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This evidently helps the Bilinear and Zienkiewicz’s interpolation to preserve edges better. 
On the other hand, a drop in performance of the Coons patch interpolation can also be 
seen, which is due to the artifacts mentioned before – the tiny triangles meet with the large 
ones inside individual peppers, which are large smooth areas and therefore represented by 
big triangles. The Bezier patch interpolation is also affected by similar artifacts as the 
Coons patch interpolation, also with similar reasons. However, as the charts show, their 
impact is not as huge as in case of the Coons patch. 

One look on Figure 6.9 is enough to see, that the piecewise linear interpolation on Voronoi 
diagram is simply useless. One could assume from the charts that the same is true for the 
patch-based methods. However, closer look on the results of their performance, as can be 
seen on Figure 6.10 shows, that these methods have their merits. 

The images on that figure are the results of the two patch-based methods and the 
Zienkiwcz’s method for comparison. As expected, the colour edges are blurred. But the flat 
areas are smoothed perfectly, leaving no trace of the underlying triangulation – which is 
something that cannot be said about the overall favourites Bilinear and Zienkiewicz’s 
interpolation. 
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Figure 6.9: Part of the Fruits image, as interpolated by the piecewise linear interpolation 

on Voronoi diagram from a 5000-vertex triangulation. 
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With vertex count increasing to 10000 and 15000, nothing surprising happens. The 
Zienkiewicz’s interpolation outperforms the Bilinear interpolation (as well as any other) on 
every tested image, securing its position as the “best” method. 

The Natural Neighbour interpolation is able to keep pace with the Zienkiewicz’s and 
Bilinear interpolations. Acknowledging the problem with interpolating the border of the 
image with that interpolation (see part 4.3 for details), which certainly has a negative effect 
on the results, this interpolation method seems quite perspective. 

With 10000 vertices the PSNR is usually going over 30 dB, which is commonly considered 
as a limit for being able to recognize the image from the original. Although several images 
with a lot of details, like the Boat, can still be easily recognizable from the original image, 
on the “average” images, the flaws of the interpolations are only minor (see the appended 
material for your own comparisons). 

Though the quality of the results of patch-based methods improve with the vertex count, it 
is clear that no matter how many vertices there are, these methods cannot be used 
universally, because there will always be some artifacts present. However, there might be a 

Figure 6.10: Part of the Lena image 

interpolated from a 5000-vertex 

triangulation by Bezier patch (upper left), 

Coons patch (upper right) and 

Zienkiewicz’s (down) interpolation. 
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way of adjusting the construction of the triangulations in such a way that could make these 
methods useful, at least for interpolation of some, the “smooth”, parts of the triangulation. 

Lastly, on Figure 6.11 is a chart, which describes the effect vertex count has on the quality 
of the interpolation for individual methods. The Fruits image was chosen for this 
measurement, because it contains some small details and sharp edges as well as some flat 
areas. It documents, that the differences between the 10000 and 15000 vertices are small, 
more or less insignificant. Note that the 30 dB limit in PSNR can is reached already with 
5000 vertices. 

 

6.1.2. Separately interpolated coloured images 

This part will analyze the performance of the individual methods when applied to coloured 
images represented by three separate triangulations, one for each colour component. 
Unlike with the Greyscale images, the triplets of triangulations were not chosen based 
solely on their vertex count, but rather on the PSNR they achieve when interpolated by the 
Bilinear interpolation when compared to the given component, extracted from the original 
image. 

For the RGB colour system, this meant simply finding a “green” and a “blue” 
triangulation, which PSNR is nearest to a PSNR of a given “red” triangulation. As the Cb 
and the Cr components of YCbCr system contain less information then the Y component, 
they are more likely to look like the original components extracted from the image. 
Therefore the Y component obviously scored much lower then the other two. To be able to 
put different triplets of triangulations together, a constant value was added to the PSNR of 
the Y component to make it more or less matching with the interval in which the PSNR 
values of Cb and Cr components usually were. 
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The triangulations were chosen from a set of 20 triangulations for each colour component, 
ranging from 1000 to 20000 vertices. In the following text, results for some of these 
triplets will be shown and discussed. All the images are in 512x512 pixel resolution, with 
one exception, the Pool image (510x383). 

In general, the performance of individual methods when interpolating coloured images is 
similar to the greyscale case. As charts on Figure 6.12 document, the Zienkiewicz’s and 
Bilinear interpolation are still the best, followed closely by the Natural Neighbour 
interpolation. The data on these charts are from the Lena image, interpolated from various 
triplets of Triangulations, using the RGB colour system. 

 

The numbers of vertices presented on the charts are a sum of vertices in all the three 
triangulations. The vertex count in individual triangulations is more or less equal simply to 
the third of this sum – in general, the components are equal in terms of how much 
information they carry, although in some pictures some colour component can be, and 
usually is, dominant. 

In the case of the YCbCr system, things get more complicated, as the Y component carries 
much more information then the remaining components. After all, this is why the system 
was designed in first place. This brings some problems into the evaluation process of the 
quality of the image. While the number of vertices in the triangulation, which represents 
the Y component, influences the resulting image greatly, the impact of the Cb and Cr 
components is much smaller. 

Figure 6.13 presents comparison charts for an image represented by YCbCr triangulations. 
There are two cases, one using a triangulation of the Y component with 3000 vertices and 
with 7000 vertices. The triangulations of the Cb and Cr components added to these 
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triangulations have 1000 vertices each in one case and 20000 vertices in the other one. I.e., 
there are four test cases – one with 3000 vertices in Y and 1000 in Cb and Cr, then 3000 
vertices in Y and 20000 in Cb and Cr, 7000 vertices in Y and 20000 in the other 
components and lastly 7000 in Y plus 20000 in each of the others. The difference between 
1000 and 20000 vertices per Cr and Cb triangulations has only a minor effect to the 
measurement statistics, while on the other hand, raising the vertex count by “only” 4000 
vertices in the Y component matters much more. 

 

This could lead to a conclusion (and as [8] proves, a right one) that the YCbCr might be 
more useful when better compression of the image is a priority, because most of the 
“important” information about the colour can be stored by only one component instead of 
three. Figure 6.14 uses the Yacht image, a typical scenery photo, to compare the impact the 
two colour systems have on the quality of the interpolated image. As the charts show, the 
differences are rather minor, but still the RGB is slightly better. Therefore it seems like a 
good choice when the quality of the image is preferred before compression. 

On the few following figures, more atypical cases will be presented. On Figure 6.15, there 
is a comparison for the Baboon image. This image has a lot of colour edges and therefore it 
is not a surprise, that even with relatively large vertex count, the results are not very good, 
independently on the used interpolation method. 

As in the case of greyscale images, the artifacts produced by patch-based methods are 
obviously present in the coloured images as well. Moreover, the distortion in colour hues is 
much more distracting for human eye then the distortion of the greyscale intensity. 
Therefore even when the effect on the measurement statistics is the same as with greyscale 
images, artifacts in coloured images are less likely to be overlooked by a human. 
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Figure 6.14: A comparison of two of the Yacht images, interpolated from triangulations 

with 20000 vertices in each component. Image in RGB system is on the left, YCbCr on the 

right. 
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Figure 6.16 shows part of the Fruits image, which’s red component suffers from artifacts. 
That results in rapid change of hue on the afflicted parts. Note that even though these 
artifacts are not present in the YCbCr version of the image, it is solely a matter of the 
geometry of the triangulation. I.e. there might be other image, which would be perfect in 
RGB system, but produced artifacts in the YCbCr system. 

6.1.3. Coloured images represented by Co-triangulation 

The following text evaluates the differences between coloured images represented by 
separate triangulations and by co-triangulations. Figures 6.17 and 6.18 shows comparison 
charts for the Yacht and the Baboon images when interpolated from separate triangulations 
and co-triangulations. The images behaved similarly for both tested colour systems, 
therefore the results presented on Figures 6.17 – 6.20 all use the RGB colour system. 

An interesting finding is that while the PSNR value is better for separate triangulations, 
while the SSIM is better for co-triangulations. This behaviour is quite expectable. The 
value of PSNR is an average of PSNR for each colour component. As the separate 
triangulations are constructed from (and compared to) individual colour components, they 
are likely to be similar to them. On the other hand, the co-triangulation is a compromise 
between individual components. Therefore lower PSNR values are obtained when the 
components are extracted from the co-triangulation and compared separately. The SSIM is 
designed to express overall structural similarity of the image. Because the co-triangulation 
is constructed with respect to the whole image (all its components at once), it is more 
likely to be able to capture the “structure” of the image then separate triangulation can. 

 

Figure 6.17: The PSNR (upper) and SSIM (down) values for the Yacht image interpolated 

from separate triangulations (blue colour) with 10000 vertices (1000 red, 4000 blue and 

5000 green component) and from co-triangulation (red colour) with 7000 vertices. 
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Figure 6.18: The PSNR (upper) and SSIM (down) values for the Baboon image 

interpolated from separate triangulations (blue) with 35000 vertices (7000 red, 14000 blue 

and 14000 green component) and from co-triangulation (red) with 19000 vertices. 

 

Figure 6.19: The PSNR (upper) and SSIM (down) values for the Peppers image 

interpolated from separate triangulations (blue colour) with 20000 vertices (7000 red, 

6000 blue and 7000 green component) and from co-triangulation (red colour) with 10000 

vertices. 
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On the other hand, Figure 6.19 and 6.20, showing charts of the Lena and the Peppers 
image, prove that this is not always true, as the comparison statistics behave as usual, i.e. 
the better the PSNR, the better the SSIM. As there is no obvious resemblance between the 
above mentioned two pairs of images, whether in what they depict or how their 
triangulations look like, it is hard to tell which of these cases are atypical in terms of 
“separate triangulations versus co-triangulations” behaviour. Much more tests (tens to 
hundreds of images) would have to be made in order to find out. As the co-triangulations 
are only a minor subtopic of this thesis and taking into account the time demands of such 
extensive testing, this problem is to remain unsolved for now. 

The main merit of the co-triangulation is its effect on the compression ratio. Note that 
images depicted on Figures 6.17 – 6.20 needed fewer vertices for co-triangulation to 
achieve similar PSNR and SSIM scores as images interpolated from separate triangulations 
with significantly more vertices. 

 

Figure 6.20: The PSNR (upper) and SSIM (down) values for the Lena image interpolated 

from separate triangulations (blue colour) with 45000 vertices (7000 red, 20000 blue and 

18000 green component) and from co-triangulation (red colour) with 19000 vertices. 

Automatic measurement methods put aside, images interpolated from co-triangulations 
have one flaw, which is usually easy to spot for a human. On Figure 6.21, two images with 
very similar PSNR and SSIM values are compared, one interpolated from co-triangulation, 
one from separate triangulations. Traces of the triangular structure can be seen on some 
parts of the image interpolated from co-triangulation, while the other one is smooth in 
those parts. This has quite obvious reason, as the separate triangulations does not (usually) 
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have the same structure. Therefore any visible transition between individual triangles, 
which might occur during the interpolation, is in most cases overlaid when the three 
components are blended together. Because the structure is the same in for all colour 
components in the case of co-triangulations, any visible transitions remain. 

 

Figure 6.21: A part of the Lena image interpolated by Zienkiewicz’s method from separate 

triangulations (upper) with 60000 vertices (20000 for each component) and from co-

triangulation (down) with 32000 vertices. The upper image has PSNR 33.778 and SSIM 

0.866, the lower has PSNR 33.858 and SSIM 0.864. Note the triangle traces in the face, on 

the nose and in the surrounding area on the left and on the right, which makes the lower 

image looks more “rugged”, even though it has better PSNR and almost the same SSIM. 

6.2. Time comparisons 

This part evaluates the time demands of individual interpolation methods. The time 
complexity of the methods is completely independent on the used colour system or the 
triangulation geometry. The only important parameter is the number of triangles in the 
triangulation. 

Moreover, the implementation, which is part of this thesis, assumes that each triangulation 
is fully coloured, i.e. all the vertices have three different colour components assigned. 
However, this is true only for co-triangulations. Separate coloured triangulations and 
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greyscale triangulations have only one colour component per vertex or putted in other way, 
they have the same value in all three components. The consumed time (will be referred to 
simply as “the time” in the following text) could therefore be reduced slightly for these 
cases, because only one instead of three interpolation expressions per pixel would have to 
be computed. 

The time of the patch-based methods is greatly influenced by choice of the “step” (see 
parts 3.3 and 3.4 for explanation). The step used for all the experiments presented in this 
thesis was 0.006 for the Bezier patch method and 0.007 for the Coons patch method. These 
values were chosen experimentally, in order to ensure full filling of even big triangles, i.e. 
triangles in triangulations with only 1000 vertices for a 512x512 pixel image. Several 
triangulations were tried in the experiments to make sure the values are right. 

As was said before, the only parameter, which influence the consumed time, is the triangle 
count. However, the parameter used for triangulation construction is the vertex count. 
Therefore it is more useful to find what is an average consumed time based on the vertex 
count, because that is a parameter that can be modified – the number of triangles for a 
given vertex count can be various, though still within some bound (see part 2.2). 

Figure 6.22 shows a table of times for several vertex counts. The statistics were obtained as 
an average of ten test cases for each vertex count. Note that unlike other algorithms, which 
are linear in respect to triangle count, patch-based algorithms are quadratic. Therefore their 
times for individual images may vary greatly from the presented average. The 
triangulations were chosen randomly only by the vertex count, but triangulations of Cb and 
Cr components were left out, as they tend to have very small triangle count (they do not 
carry too much information, see part 6.1.2) as well as some other triangulations with 
unusual triangle count. 

Method 

Vertex 

count 

Bilinear Bezier Coons 
Natural 

Neighbour 
Voronoi Zienkiewicz 

2000 0.0391 s 4.8888 s 17.2735 s 3.0807 s 0.6095 s 0.0656 s 

4000 0.0531 s 9.5922 s 33.8125 s 3.2422 s 0.6531 s 0.0813 s 

5000 0.0610 s 12.091 s 43.4367 s 3.3354 s 0.6502 s 0.0891 s 

7000 0.0688 s 16.75 s 56.6 s 3.4234 s 0.6656 s 0.1141 s 

10000 0.0906 s 24.070 s 83.2392 s 3.5322 s 0.6830 s 0.1344 s 

12000 0.0938 s 29.064 s 98.2891 s 3.5922 s 0.6938 s 0.1594 s 

15000 0.1313 s 37.597 s 128.57 s 3.6463 s 0.7127 s 0.1860 s 

Figure 6.22: Average times in seconds of individual methods. 

Figure 6.22 shows, that the only method which can keep up with the commonly used 
bilinear interpolation is the Zienkiwicz’s interpolation, which is only few hundredths of 
seconds slower. The Natural Neighbour method is significantly slower, due to its quite 
complicated algorithm, which requires many arithmetic operations. Patch-based methods 
fall behind even more, as was expected. The Coons patch method is the slower one 
because of mathematically complicated computations required for defining the border 
curves of the patch (see part 3.4 for details).  
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7. Conclusion 
Six different interpolation methods have been examined, described, implemented and 
tested. These methods represent three different possible approaches to interpolation of 
triangulations representing digital image. 

First of these approaches is a classic interpolation of individual triangles, with the Bilinear 
interpolation being the known and most used representative of this approach. 
Zienkiewicz’s interpolation was presented as an alternative for the Bilinear interpolation. It 
uses information in triangles surrounding the interpolated triangle to achieve better results 
and as experiments prove, it succeeds. Because its time consumption is only a little bit, in 
usual application insignificantly, bigger, it is a suggested replacement for the traditional 
Bilinear interpolation. 

The Bezier patch and Coons patch methods presented another way of incorporating 
additional information then the information in a single triangle and that is the way of 
interpolating on larger, overlapping surfaces formed by more neighbouring triangles. They 
successfully remove the traces of the triangulation, making the image smoother then in 
case of Bilinear or Zienkiewicz’s interpolation. However, this also implies unwanted 
blending of colour edges in the image. Unfortunately, another, initially not expected, flaws 
appeared. First of them is their tendency to produce artifacts. Therefore they are not 
suitable as universal interpolation methods. Nevertheless, this approach could be exploited 
more and used for partial interpolation of smooth areas or for interpolation of specially 
prepared triangulations, which would ensure that the artifacts won’t appear. However, the 
second flaw of extremely large computational time is a big obstacle which would have to 
be eliminated somehow in order to make these methods useful. 

The last approach used a dual configuration of the Delaunay triangulation, the Voronoi 
diagram. Although the piecewise linear interpolation proved to be a complete failure, the 
Natural Neighbour interpolation brought some promising results. Its time consumption is 
significantly higher then this of Bilinear or Zienkiewicz’s interpolation, but it is still in 
bounds reasonable enough for using it. Though the quality of Natural Neighbour 
interpolation does not outperforms the Zienkiewicz’s interpolation, it is close enough to 
take it into account in further development. 

The implementation enables interpolation of both greyscale and coloured images. Coloured 
images may be represented by either separate triangulations for each colour component or 
the co-triangulation. The co-triangulations are more suitable when more effective 
compression is required, but their visual quality is usually worse then that of separate 
triangulation. 

To conclude all the findings, it has to be admitted that although some improvements can be 
achieved when other then the Bilinear interpolation is used, they are not so major to make 
the triangulations the best tool for representation of digital image. If it is even possible to 
reach this goal, it is certain that the development of better interpolation methods has to be 
combined with the development of techniques for triangulation construction. 
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User manual 

This section will provide brief information on how to use the Interpolator program, which 
was created as a tool for testing of various interpolation methods. It requires Microsoft 
.NET framework to run. 

 

Figure I: The user interface of the Interpolator. 

Figure I shows the user interface of the program. The main portion of the area is reserved 
for visualization of the loaded image. Each of the tab pages above means one interpolation 
method, or some additional visualization option, like visualization of the triangulation, 
visualization of the Voronoi diagram etc. When a tab page is selected, the respective image 
is rendered based on the loaded triangulation and presented. 

To load a triangulation, use either the first icon on the tool strip menu (the “Open” icon) or 
the same option in the “File” menu. A dialog for opening a file will appear. Select the 
triangulation and open it. 

The other two buttons on the tool strip menu are for saving either the image of the 
currently selected tab page, or images in all the tab pages. Note that as the second option 
needs to have all the images rendered, it can take some time. The last control on the tool 
strip menu is for changing the resolution of the loaded triangulation. Note that it is 
important to keep the same ration of width and height in order to retain Delaunay 
properties of the triangulation (in case that you are using Delaunay triangulation). If it is 
not kept, erroneous result might appear, especially in case of methods based on the 
Voronoi diagram. 

One additional option is accessible through the “File” menu, the “Open and run many…”. 
This option allows you to load more triangulations at the same time. Upon selecting this 
option, a dialog for opening multiple files will appear. Select all the triangulations you 
want to process and open them. They will be processed by the six methods described in 
this thesis, the resulting images and file containing the consumed times will be stored in 
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the root directory of the program in separate directories, one for each of the triangulation 
(having its name). 

Programmer’s manual 

The program was originally created by Ing. Josef Kohout PhD., the supervisor of this 
thesis. He designed the application and implemented the basic visualization plug-ins, i.e. 
the visualization of the loaded triangulation, points of the triangulation, the Gouraud 
interpolation (bilinear interpolation using the scanline algorithm instead of barycentric 
coordinates) etc.  

This implies he also implemented most of the data structures used by the application, like 
the Triangulation class, the PrjTriangulation class, Vertex and PrjVertex classes and the 
Triangle class. The author of this thesis implemented these data structures: VoronoiD class 
(for representation of the Voronoi diagram), the Vector class (for purposes of the 
Zienkiewicz’s interpolation) and the Spline class (for the Coons patch method). All these 
structures are in module TriInterpolationCore.cs. 

Module IncorporatedInterpolations.cs consists of classes respective to individual 
interpolation methods and other visualization techniques. Each tab page, mentioned in the 
User manual, is bound to one of these classes. They are inherited from the abstract 
TriInterpolationPlugin class (stored in its own module). These classes contain the 
information, whether the given method works with the triangulation or the Voronoi 
diagram and implement the Interpolate method. However, this method only does some 
initializations of the bitmap and then calls appropriate method from the RenderUnit class. 

The RenderUnit is stored in module RenderUnit.cs. It contains the interpolation algorithms 
themselves. The interpolation methods take as an input the triangulation to be interpolated, 
its size and an array of the bitmap data to be filled.  

Overview of appended material 

The appended DVD contains several directories with additional material. Each of them 
contains a text file “readme.txt”, which explains how the data in that directory are 
structured. These directories are: 
 

• Additional software: programs used by the author for the experiments, but 
implemented by someone else. These programs include: 

o CompareImages – tool for image comparisons using the MSE, PSNR and 
SSIM metrics. Author: Ing. Josef Kohout PhD. 

o  TriImgCompress – a tool for creating the triangulations from bitmap 
images. Author: Ing. Josef Kohout PhD. 

o TriImgCotriangulation – a tool for creating the co-triangulations from a 
given bitmap image. Author: Ing. Josef Kohout PhD. 

o TriImgAnalyzer – Multifunctional tool for extracting individual colour 
components from images and reconstruction of images from given 
components. Author: Bc. Radek Sýkora. 

• Experiments: contains the data used for experiments and the results of these 
experiments. 

• Interpolator: contains the actual program implemented (partly, see the 
Programmer’s manual) by the author of this thesis and its source codes. 



Appendix  51/51 

• Text: contains the text of this thesis as well as additional text directly related to its 
topic written by the author of this thesis. Namely its technical reports for subjects 
KIV/PRJ3 and KIV/PRJ5, which directly preceded the work done within the scope 
of this thesis and a paper presented in CESCG 2008 conference by the author. 


