
University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and
Engineering

Bachelor Thesis

Interpolation methods for

Triangulation Represented Digital

Image

Pilsen, 2009 Tomáš Janák

Originál zadání práce (ten s červeným kulatým razítkem) v jednom výtisku práce,
oboustranná kopie zadání (stačí černobílá) ve druhém.

I hereby declare that this bachelor thesis is completely my own work and that I used only
the cited sources.

Pilsen ………………… ………………………………
 Tomáš Janák

Acknowledgments:

I would like to thank Ing. Josef Kohout PhD for supervising me on this project in the past
two years, for his valuable insights and advices, for his quick responses to any problem
which occurred and for his concerned help with their solution. Another portion of gratitude
belongs to Doc. Dr. Ing. Ivana Kolingerová, for helpful discussions and advices about
some of the interpolation methods, as well as for her moral support. A special thanks goes
to my parents for their intensive support during my whole studies. Without them, this work
surely would not be possible.

Abstract

It has been proven that triangulation can be a good tool for vector representation of image
data. To visualize the image represented by triangulation, one needs to fit a continuous
surface of colour intensity in the triangulation, i.e. to interpolate data stored in its vertices.
The commonly used piecewise linear interpolation lacks means to adapt to behaviour of
intensity in the surroundings of currently interpolated triangle. This leads to disturbance of
continuity of the mentioned intensity surface. This thesis presents and describes five other
interpolation methods, each representing a possibility to remove the flaws of the bilinear
interpolation. Zienkiewicz’s interpolation is presented as a method to use information from
surrounding triangles in the form of gradient vectors; interpolations on Bézier triangle
patch and on Coons patch are presented as methods of interpolation on larger surfaces;
Natural Neighbour interpolation and piecewise linear interpolation on Voronoi diagram use
the Voronoi diagram instead of the triangulation. Each method is described and tested and
the methods are compared to each other in terms of time complexity and quality of the
resulting image.

Table of Contents 6/51

Table of Contents

Table of Contents .. 6
1. Introduction ... 7
2. Used geometrical structures .. 8

2.1. Triangulation ... 8
2.2. Delaunay triangulation .. 8
2.3. Voronoi diagram.. 9
2.4. Co-triangulation... 10

3. Interpolation methods .. 11
3.1. Bilinear interpolation... 11
3.2. Zienkiewicz’s interpolation ... 11
3.3. Interpolation on the Bézier triangle patch ... 13
3.4. Interpolation on the Coons patch... 16
3.5. Piecewise linear Interpolation on the Voronoi diagram 18
3.6. Natural neighbour interpolation .. 20

4. Implementation difficulties.. 22
4.1. Bilinear and Zienkiewicz’s interpolation .. 22
4.2. Patch-based interpolations... 23
4.3. Interpolation on Voronoi diagram ... 23
4.4. Natural neighbour interpolation .. 25

5. Experiments settings.. 27
5.1. Image measurement methods .. 27
5.2. Colour systems .. 28
5.3. Testing subjects and environment ... 29

6. Experiments ... 30
6.1. Quality comparisons .. 30

6.1.1. Greyscale images... 30
6.1.2. Separately interpolated coloured images... 37
6.1.3. Coloured images represented by Co-triangulation 41

6.2. Time comparisons ... 44
7. Conclusion... 46
References ... 47
Appendix ... 48

User manual... 49
Programmer’s manual.. 50
Overview of appended material... 50

1. Introduction 7/51

1. Introduction
A digital image is nowadays usually represented by a rectangular grid of pixels, where
each pixel contains a colour value or a greyscale luminance. Though this (a matrix of
pixels) is the form in which we visualize the image, scaling or other transformations of
such bitmap are rather problematic as they introduce various artifacts, distortions and other
unwanted changes to the resulting image.

We can avoid such problems if we convert the raster into vector representation, i.e. if we
represent the image as a set of geometrical simplices. The transformation is then simplified
to a change of coordinates of the points, which define individual simplices (triangles in our
case). We interpolate among those points to get the remaining points, which create the
image. The basic strategy is to create some triangulation from the input image and, when
visualizing it, reconstruct the image with a bilinear interpolation of each triangle. This
simple approach obviously does not generate satisfactory results. Main problems are that
large, almost mono-coloured, areas are not “smooth” enough and colour edges are not
“sharp” enough. Lack of smoothness means discontinuity in colour intensity among
individual triangles and lack of sharpness means that the colour edges, which make an
individual object in the picture recognizable, are blurred. There are basically two directions
in which this model has to be modified in order to achieve better results.

First of them is an improvement of the process of triangulation construction. The set of
vertices, which forms the triangulation, resembles pixels of the original image (their x and
y coordinates and colour intensity). This means that there are many different ways of how
to choose which pixel should become a vertex. There are also many different types of
triangulations that can be used. The construction can have various impacts on the quality of
the reconstructed image, thus the choice of the type of triangulation is very important.
Interpolation methods presented further in this thesis were tested on Delaunay
triangulations.

The second thing to improve is the interpolation method itself, which is the topic of this
thesis. Flaws of the commonly used bilinear interpolation are mainly caused by an
ignorance of intensity behaviour in areas surrounding the interpolated triangle. This thesis
describes some interpolation methods, which would enable us to incorporate those areas
into calculations of the resulting intensity.

Chapter two briefly describes the Delaunay triangulation, the Voronoi diagram and co-
triangulations, which are the geometric structures used for the representation of the image.
The interpolation methods themselves are presented in chapter three. Chapter four focus on
some details concerning to their implementation and singular cases. Chapter five is
dedicated to image quality measurement methods, used colour systems and also the
hardware and subjects configurations used for the tests are mentioned. Then the quality
comparisons follow in chapter six, as well as comparisons of time consumed by individual
methods. The methods are compared to each other and their overall quality is evaluated.
Chapter seven summarize all the conclusions the research brought.

This main goal of this thesis is to compare interpolation approaches, which has not been
examined too much so far. Though it would be great, this thesis does not present a perfect
solution to the problem presented above. It is rather opening new possibilities for further
development.

2. Used geometrical structures 8/51

2. Used geometrical structures

2.1. Triangulation

Triangulations are a common tool of computational geometry not only in computer
graphics, but also in various other fields, like terrain modelling, computer vision and other.
We can define a common triangulation in two-dimensional space as follows [3]:

Given a point set S in two-dimensional space, the triangulation T(S) of this set of points is

a set of triangles such that:

• The point p from the space is a vertex of a triangle from T(S) if and only if p

belongs to S; i.e., the vertices of the triangles are some points from the input set.

• The intersection of two triangles is either empty or it is a shared face or a shared

vertex.

• The set T(S) is maximal: there is no triangle that can be added into T(S) without

violating previous rules.

However, there can be numerous different triangulations of the same point set, which
match this definition. To ensure that the triangulation is unique for a given point set,
additional constrains have to be set. Numerous specific triangulations, with different
qualities and requirements, are known and used. For example, some research of
triangulation-represented digital image using data dependent triangulations (DDT) was
done by other researchers ([2], [7]). However, since this thesis is not focused on
triangulations, only Delaunay triangulation (see part 2.2) will be used further, because it is
suitable for our needs.

2.2. Delaunay triangulation

Delaunay triangulation (DT) was proposed by a Russian scientist Boris N. Delone.
Although it can be defined for more dimensional space, only two-dimensional triangulation
is considered in further text. Delaunay triangulation DT(S) of a set of points S in two
dimensions is a triangulation such that the circum-circle of any of its triangles does not
contain any other point of S in its interior.

Due to this additional constraint, the DT has the following properties [3]:

• If no four points lie on the same circle, DT(S) is unique. E.g., four points lying in

the vertices of an empty square have a common circle and two possible

configurations of their triangulation.

• The Delaunay triangulation includes at most O(N
d/2

) triangles, where N is the

number of points to be triangulated.

• The boundary of the DT(S) is a convex hull
1
 of S.

• DT(S) maximizes the minimal angle and, therefore, the Delaunay triangulation

contains the most equiangular triangles of all triangulations (i.e., it limits the

number of too narrow triangles that may cause problems in further processing).

• In the worst case, it can be computed in O(N·log N). However, algorithms with

O(N) expected time also exist.

1 A convex polygon made from some points from a point set S, which encapsulates all the other points in S

2. Used geometrical structures 9/51

Because of these properties, Delaunay triangulation is used very often. Also, the Voronoi
diagram (see part 2.3) is actually a dual configuration to this triangulation, which is another
welcomed quality.

In our case, the Delaunay triangulation is constructed from several points, which are
chosen from the original picture. Thus the resulting triangulation is actually a three-
dimensional structure, where each of its vertices is defined by spatial coordinates and a
colour intensity value. The points, future vertices of the triangulation, are chosen in order
to preserve as much information about colour changes in the image as possible. Obviously,
the more vertices the triangulation has, the more accurate the interpolation will be. More
information about the construction can be found in [4].

2.3. Voronoi diagram

Voronoi diagram is a geometrical structure named after Russian mathematician Georgy
Feodosevich Voronoi, who defined it. It divides the space into smaller regions, which are
built around certain chosen points (vertices of the diagram). These regions, called Voronoi
cells, contain such part of the space, which is closest to the respective vertex of the
diagram. For two-dimensional case it can be defined as follows:

Given a point set S in two-dimensional space, the Voronoi diagram VD(S) of this set of

points is a set of Voronoi cells, such that:

• Exactly one point p from the point set S lies inside the cell. In further text, this point

will be called the control vertex of the cell.

• The cell is a convex polygon.

• Each point x, for which the Euclidean distance between it and a given point p from

the set S is smaller then the distance between x and any other point from S, i.e.

control vertex of any other cell, lies inside the cell denoted by p.
• Each point y, for which the Euclidean distance between it and a given point p from

the set S, is equal to the distance between y and exactly one other point q from the

point set S, lies on an edge e. This edge is shared by the cells denoted by points p
and q. In further text, edge e will be called a neighbouring edge and the two cells

that share it will be called neighbouring cells.

• Each point z, for which the Euclidean distance between it and a given point p from

the set S, is equal to the distance between y and more then one other points R from

the point set S, is a vertex of the cell denoted by p and the other cells denoted by

points from set R. In further text, all cells which share vertex z will be called

adjacent to vertex z and the set of all points z will be called vertices of the Voronoi

diagram. Point z lies on the end of neighbouring edges between neighbouring cells

adjacent to z.

Unlike the triangulation, Voronoi diagram is obviously unique for a given set of points. As
mentioned in part 2.2, the Voronoi diagram is a dual configuration to the Delaunay
triangulation of the same set of points. Specifically, the vertices of a given Voronoi cell
with control vertex p are the centres of circum-circles2 of all triangles from the Delaunay
triangulation, which are adjacent to p. This knowledge is used to construct the diagram
from the triangulation, which was the input structure used for all the implemented
methods.

2 A circle which passes thru each vertex of the triangle

2. Used geometrical structures 10/51

2.4. Co-triangulation

Structures described in parts 2.1 – 2.3 lack the means to represent more then three values in
each vertex (assuming that two of them are spatial coordinates). The main implication for
purposes of digital image is that they cannot be used to represent coloured image, because
commonly used colour systems, like RGB3 for example, consist of more then one
components (usually three). One possibility that allows processing of coloured images is
usage of three triangulations or Voronoi diagrams, one for each colour component,
interpolated separately and then merged into one coloured image. The other, more
convenient way, is to use the co-triangulation.

The co-triangulation [10] is constructed from N D-dimensional data sets. These data sets
are transformed into one D-dimensional Delaunay triangulation in D + N-dimensional
space. For the purpose of coloured image representation this means that the inputs are three
triangulations, one for each colour component and the output is one triangulation, which
includes all the colour channels.

The spatial distribution of vertices in the input data set does not have to (and usually do
not) match, i.e. for some vertex of one input set, there does not have to be a vertex at the
same position in the other two sets. To be able to construct the co-triangulation, error
tolerances εi has to be defined, one for each of the input data set. These tolerances help to
direct the further construction process in order to make the resulting co-triangulation
suitable for interpolation of all of its N properties.

As the process of the construction is rather complicated and actually not every interesting
from the point of view of the topic of this thesis, only its main idea will be described, more
details can be found in [10]. It is an iterative algorithm, starting with a simple initial
triangulation and then continuing over all of the N data sets. When processing data set Ns,
each vertex of the current (i.e. not final) co-triangulation is assigned some value for its s-th

parameter, based on the Ns data set. The value is chosen as an average of a few points in
the data set, which are nearest to the processed vertex.

After all the vertices of the current co-triangulation are processed in this way, it is
interpolated and compared with the result of interpolation of the data set Ns. If the result is
in bounds of the error tolerance εs, the data set is discarded and the algorithm continues
with data set Ns+1. Otherwise new vertices are added to the co-triangulation, in order to
satisfy the error tolerance. The new vertices are chosen directly from the data set Ns, i.e.
the new vertex has the same spatial coordinate and the same value in the s-th parameter.
For s > 1, there are already some other processed parameters which has to be assigned to
the new vertex. In this case, these parameters are gained by bilinear interpolation of the
triangle from the former co-triangulation (i.e. the one before the insertion of the new
point), in which the inserted point lies.

For more insight and details about the algorithm and the co-triangulation itself, please refer
to [10]. The important conclusion for the case of this thesis is that the co-triangulation is a
structure, which allows processing of coloured digital image in exactly the same way as the
usual triangulations – the resulting structure is also a Delaunay triangulation, only with five
(e.g. x, y, R, G, B) instead of three (x, y, intensity) parameters assigned to each vertex.

3 Each colour is described as a combination of Red, Green and Blue component

3. Interpolation methods 11/51

3. Interpolation methods

3.1. Bilinear interpolation

Bilinear interpolation is the most commonly used method for interpolating a triangle. This
popularity is based mainly on its simplicity, both in terms of computational time and its
implementation. Its idea is very simple: first, linearly interpolate pixels on the edges of the
triangle and then use these values to linearly interpolate each horizontal line of the triangle.
To simplify this algorithm, we can use barycentric coordinates to achieve the same results
without having to distinguish between pixels on the edge and inside the triangle.

Barycentric coordinates of a triangle are three numbers respective to individual vertices of
the triangle. They describe every point inside the triangle as an interpolation of the
vertices. Equation 3.1 shows how they are computed.

)(

)(
,

)(

)(
,

)(

)(

ABCArea

ABPArea
c

ABCArea

ACPArea
b

ABCArea

BCPArea
a ===

Equation 3.1: Barycentric coordinates a, b, c of point P in triangle ABC. They are gained

as a portion of triangle created by point P and the two vertices, which are opposite to the

vertex for which the coordinate is computed. Therefore coordinates a, b, c belongs to

vertices A, B, C respectively.

A simple linear combination of the barycentric coordinates and their respective vertices is
then the Bilinear interpolation. This allows us to interpolate the colour intensity of all
pixels using the following algorithm:

For each triangle ABC of the triangulation do
 Area = compute_area(ABC);
 For each pixel P of the triangle do
 a = compute_area(BCP) / Area;
 b = compute_area(ACP) / Area;
 c = compute_area(ABP) / Area;

P.Intensity = a * A.Intensity + b * B.Intensity + c
* C.Intensity;

3.2. Zienkiewicz’s interpolation

This method was used in [1] for interpolation of geographical data represented by
triangulation. Because of its plausible results, it was worth trying to exploit it for our
purpose. It uses gradient vectors to describe the behaviour of the intensity in the area that
surrounds the interpolated triangle.

Gradient in a vertex can be estimated as an average of normalized surface normal vectors
(which are gained as a cross product of any two edge vectors of a triangle) of each of the
triangle adjacent to the vertex, weighted by their areas, as expressed by Equation 3.2.

This estimation is then inserted into formula of Zienkiewicz’s interpolation, which
cubically interpolates intensity across the triangle. The formula is described by Equation
3.3.

3. Interpolation methods 12/51

∑ ⋅
=

k

kk

A

nA
normal

 −−
=

I

Y

I

X

normal

normal

normal

normal
gradient ,

Equation 3.2: Estimation of a gradient. nk is the normalized surface vector of the k-th

triangle, Ak is its area and A is the sum of all the areas Ak. With the weighted normal,

gradient along x and y axis is estimated as the x and y component of the normal divided by

its intensity component normalI.

b

a

i

gABu

gABu

Au

⋅=

⋅=

=

3

2

1

c

b

i

gBCu

gBCu

Bu

⋅=

⋅=

=

6

5

4

a

c

i

gCAu

gCAu

Cu

⋅=

⋅=

=

9

8

7

2

2

2

1

cba
k

cbak

⋅⋅
=

⋅⋅⋅=

[]
[]
[])()()23(

)()()23(

)()()23(),,(

2
2

92
2

81
2

7

2
2

62
2

51
2

4

2
2

32
2

21
2

1

kacukacukccu

kcbukcbukbbu

kbaukbaukaaucbaP

+⋅⋅−+⋅⋅++−⋅+

++⋅⋅−+⋅⋅++−⋅+

++⋅⋅−+⋅⋅++−⋅=

Equation 3.3: Zienkiewicz’s interpolation. For better clarity, some terms of the actual

formula were shortened into terms u1 – u9 and k1 and k2. AB, BC and CA are the edge

vectors of the triangle ABC (edges B - A, C - B and A - C, respectively), ga, gb and gc are

gradients in vertices A, B, C; a, b, c are the barycentric coordinates and Ai, Bi, Ci are

colour intensities in the corresponding vertices. The formula itself is a function of the

barycentric coordinates of point P.

Result of the interpolation formula described in equation 3.3 is the intensity value in the
interpolated pixel. Therefore the algorithm for interpolation of the whole triangulation is
similar to that of a bilinear interpolation; we only need to compute the gradient vectors
beforehand:

For each triangle ABC of the triangulation do
 ComputeGradient(ABC);
For each triangle ABC of the triangulation do
 u1 = A.Intensity;

u2 = (B.x – A.x) * A.grad.x + (B.y – A.y) * A.grad.y;
...

u9 = (A.x – C.x) * A.grad.x + (A.y – C.y) * B.grad.y;
 For each pixel P of the triangle do
 GetBarycentricCoo(out a, out b, out c, ABC);
 k1 = 2 * a * b * c, k2 = k1 / 4;

P.Intensity = u1 * (a2 * (3 - 2 * a) + k1) + u2 *
(a2 * b + k2) - u3 * (a * b2 + k2) + ... - u9 * (c * a2 +
k2);

3. Interpolation methods 13/51

3.3. Interpolation on the Bézier triangle patch
Bézier triangle patch is a triangular surface, which can be made by joining three Bézier
curves4. Its degree is denoted by the degree of these curves, i.e. by the number of control
points the curves have. For our purpose we consider patches of the second degree.
Therefore, each boundary curve has three control points, which makes six control points to
define the surface. A possible configuration of such a patch can be seen in Figure 3.1.

P200 P110 P020

P101 P011

P002

Figure 3.1: Bézier patch of the second degree with its control points marked P200 – P002.

Upon looking on Figure 3.2, another way of interpretation of such a patch might occur. It
can be viewed it as a patch created by some triangle and its neighbours, i.e., the triangles,
which share an edge with the one in centre. Therefore, the patch can be easily constructed
for each triangle in our triangulation, by appending the neighbours of the triangle to it.

To describe points inside the patch, barycentric coordinates of vertices P200, P020 and P002

can be used. They will be referred to as a, b and c, respectively. The conditions ensuring
that the point P(a, b, c) lies inside triangle P200, P020, P002 are mentioned in Equation 3.4.

0;0;01 ≥≥≥∧=++ cbacba

Equation 3.4: Constrains for barycentric coordinates to describe points inside a triangle.

Point P lying in the patch can than be described in the form of Bernstein polynomials with
the barycentric coordinates as parameters, as Equation 3.5 shows:

kjin

ijk

nkji

ijk

n

ijk

cba
kji

n
cbaBwhere

PcbaBcbaP

!!!

!
),,(

),,(),,(

⋅⋅
=

⋅= ∑
=++

Equation 3.5: Bernstein polynomials describing point P as a function of its barycentric

coordinates a, b, c. n is the degree of the patch.

After inserting our values into Equation 3.5, i.e. the degree n = 2 and expanding it, we get
Equation 3.6.

4 Curves defined as a set of points, where each point is assigned several parameters to control the derivatives
of the curve. They became very popular for purposes of geometrical modelling (originally for car industry, by
Pierre Bézier, 1962).

3. Interpolation methods 14/51

101011110002
2

020
2

200
2 222),,(PacPbcPabPcPbPacbaP ⋅+⋅+⋅+⋅+⋅+⋅=

Equation 3.6: Formula of Bézier triangle patch of second degree. a, b, c are barycentric

coordinates of vertices P200, P020 and P002.

With the resulting formula presented in Equation 3.6, we are able to describe the whole
surface defined by our patch. Coordinates (x, y and intensity) of each point Pijk of this
surface are obtained from Equation 3.6 by a successive insertion of x, y and intensity
coordinates of respective points Pijk into the formula.

All points defined by coordinates a, b, c, which satisfy conditions in Equation 3.4, then
form a surface with the following qualities:

• It lies in the convex hull of all control points of the patch.
• It passes through terminal control points P200, P020, P002.
• Its boundaries, thanks to the quadratic interpolation function, are parabolic splines

corresponding to the control points of individual boundary curves.

Though these properties are welcome, they also cause problems with determining which
pixels actually belong to the patch. The points of the patch do not have to project into each
pixel of the triangles, which create the patch. On the contrary, some of those points can
project outside of those triangles. Therefore it is unknown how many pixels, and which of
them, will be in the patch, before the computation is made. The algorithm for the
interpolation will also be different, because there cannot be any “for each pixel” loop.

A proposed solution to this problem is to compute intensity values for all possible triplets
a, b, c that satisfy Equation 3.4. Of course, it is not possible to count with every number
between zero and one. But since the number of the pixels to be rendered is finite and
relatively small, a sufficiently large set of coordinates can be computed. This can be done
if any two of the coordinates are subsequently incremented from zero to one by some
“step”, a small (much smaller than one) real number. The third coordinate is easily
calculated, because, as Equation 3.4 shows, their total sum must be one. This way the
desired surface can finally be rendered.

However, the choice of this “step” brings some difficulties. Real values (a, b, c) are
projected on integer values (pixel coordinates) and therefore some pixel could be missed
entirely because of rounding mistakes. Therefore, even if an approximation of the number
of pixels in the patch could be calculated, there is no insurance that it will suffice to
compute that many intensity values. Much more values than there are pixels to render have
to be computed, which result in lengthier time consumed by the computation. Though
some optimization can be made (e.g. the mentioned estimation of pixel count), the
quadratic time complexity of the algorithm makes it unable to compete with interpolation
methods that interpolate on a single triangle, like bilinear or Zienkiewicz’s method,
mentioned in parts 3.1 and 3.2.

On the other hand, each of the redundant value always projects onto some pixel. Because
of that, more and not necessarily equal intensity values for each pixel are obtained. Note
that this is not the only reason why there are more values for each pixel – the patches are
constructed for each triangle in the triangulation. And because each patch is made of four

3. Interpolation methods 15/51

triangles, each triangle is involved in four patches. This implies even more intensity values
for pixels in the intersection of the neighbouring patches. It must be ensured that the finally
displayed value is correct (that it did not end in the pixel only due to a rounding mistake).
Theoretically, the most often value should be the most suitable, but experiments showed
that results are almost the same as with the arithmetical average of all values projected into
the pixels. Because computing arithmetical average has much lower memory demands, it is
the suggested option.

Finally, the algorithm for interpolation using the Bézier triangle patch can be stated:

Bitmap = array with length equal to the number of pixels,
filled with 0 /* for a coloured image, there would be
three such arrays, one for each colour component */

Counter = array of the same length as Bitmap, filled with 0
For each triangle ABC of the triangulation do
 a = 0, b = 0;
 P200 = Vertex of the first neighbour, which is not also
a vertex of ABC
 P020 = Vertex of the second neighbour, which is not also
a vertex of ABC
 P002 = Vertex of the third neighbour, which is not also
a vertex of ABC
 P110 = A, P011 = B, P101 = C;

step = 0.005; /* the step can be various */
While a <= 1 do

 a = a + step;
 While b <= 1 - a do
 b = a + step;
 c = 1 – a – b;

X = a2 * P200.X + b2 * P020.X + c2 * P002.X + 2
* a * b * P110.X + 2 * b * c * P011.X + 2 * a * c *
P101.X;

Y = a2 * P200.Y + b2 * P020.Y + c2 * P002.Y + 2
* a * b * P110.Y + 2 * b * c * P011.Y + 2 * a * c *
P101.Y;

I = a2 * P200.Intensity + b2 * P020.Intensity
+ c2 * P002.Intensity + 2 * a * b * P110.Intentsity
+ 2 * b * c * P011.Intensity + 2 * a * c *
P101.Intensity;

Bitmap[Y * Width + X] += I;
Counter[Y * Width + X]++;

i = 0;
While i < length of Bitmap do
 Bitmap[i] = Bitmap[i] / Counter[i]
 i++;

3. Interpolation methods 16/51

3.4. Interpolation on the Coons patch
Coons patch5 is a surface defined by four curves as boundaries of the patch. As in the case
of the Bézier triangle patch (part 3.3), this method suggests creating the Coons patch from
quartets of triangles (one central triangle and his neighbours). The boundary curves are
then defined by vertices on edges of such a configuration, i.e. P200-P110-P020, P020-P011-P002
and P200-P101-P002 (using notation as presented in Figure 3.1). In order to get four curves,
subdivision of the longest of those three is suggested. But before that, decision about what
kind of curves will actually lead through those vertices must be made.

There are three control points per curve. Therefore it is reasonable to define the boundary
curves for the patch as parabolic, i.e. defined by a quadratic polynomial. Equation 3.7
shows a parametrical formula for such a curve (with the parameter t).

curve(t) = a·t
2
 + b· t + c

Equation 3.7: Parametrical formula of a parabolic curve. t is the parameter, coefficient a,
b, c define behaviour of the curve.

In order to set the curve uniquely, coefficients a, b and c are found in order to fulfil this
requirement: the curve must pass through the three vertices on each border of the triangle
configuration. Simply said, the terminal vertices A and B (which are equal to either P200
and P020, P020 and P002 or P200 and P002) will be the “start” and “end” of the curve and the
middle vertex M (P110, P011 or P101) will be the peak (or at least close to the peak) of the
created parabola. This requirement can be written as a system of equations, presented as
Equation 3.8, for parameter t varying from zero to one. Its solution is the three coefficients
a, b, c to be inserted into Equation 3.7.

A = curve(0) = a·0 + b·0 + c

M = curve(0.5)= a·0.25 + b·0.5 + c

B = curve(1) = a·1+ b·1 + c

a = 2·A + 2·B – 4·M

b = 4·M - 3·A – B

c = A

Equation 3.8: Solution of Equation 3.7 for parabolic curve. A and B are its terminal

vertices, M is the peak.

Note that A, B and M represent either x, y or the intensity value of the corresponding
vertex, therefore, each curve is actually defined by nine coefficients – ax, bx, cx; ay, by, cy;

aI, bI, cI.

To select which curve to subdivide, distances from A to M and M to B are computed for all
three curves and the longest curve is then subdivided into two as follows: x, y and intensity
values of the longest curve for t = 0.25 and t = 0.75 are computed using formula Equation
3.7 (with a,b,c coefficients already known). The results are used to construct vertices T0.25

(for t = 0.25) and T0.75 (for t = 0.75). Vertices A, T0.75, M then define one of the new curves
and M, T0.25, B the other.

5 Defined by Steven Anson Coons in 1964

3. Interpolation methods 17/51

In this way we get two pairs of opposite curves. We can now use them to describe the
surface delimited by them. Intensity value in each point of the surface is gained as a
superposition of splines corresponding to the boundary curves in that point characterized
by some parameter.

The routine then looks subsequently: let a1, a2 and b1, b2 be the pairs of the opposite
boundary curves. Values in the parameter u for the curves b1, b2 gives us terminal points of
the spline bu. In Figure 3.2, the terminal points are marked as P0 and P10. We interlace this
spline with each possible spline av characterized by the points of pair a1, a2, i.e. by each
parameter v from zero to one. Parameter u is then incremented (a new spline bu is chosen)
and the inner cycle repeats. Routine ends when u reaches one (every possible spline bu has
been used).

In Figure 3.2, two iterations of this routine with step 0.1 are depicted. During each
iteration, you can see the spline bu (marked by a solid line) being interlaced with all eleven
splines av with v varying from zero to one (marked by a dashed line). Each intersection of
those splines is the interpolated point P(u, v).

A

M

B

C

a2

a1

b1

b2

b0.1

a0.1

a0.2 a0.3

a0.6 a0.7 a0.8 a0.9

a0.5a0.4

P0

P10

A

M

B

C

a2

a1

b1

b2

b0.5

a0.1

a0.2 a0.3

a0.6 a0.7 a0.8 a0.9

a0.5a0.4

P0

P10

Figure 3.2: Visualization of two iterations of the spline superpositioning. A, B, C and M
are the terminal vertices of the boundary curves a1, a2, b1 and b2.

As in the Bézier patch interpolation, it is unknown which pixel lies on the surface.
Therefore the “step” we add to the parameters during each iteration of the cycle should be
as small as possible to ensure that all pixels are covered. Computation of a point of the
surface (the superposition of splines in a certain point) can be expressed by Equation 3.9.

3. Interpolation methods 18/51

[] 01

1

)(

)(),()(

)(

11

2

21

1

=

−

−

⋅

⋅−−

v

v

BvaC

ubvuPub

MvaA

uu

Equation 3.9: Formula expressing the spline superposition depicted on Figure 3.3. A, M, B
and C are spatial or colour intensity values in the respective vertices, a1(v), a2(v), b1(u),
b2(u) are spatial or colour intensity values of points in respective boundary curves,

denoted by parameters u and v. The curves and vertices used here are described in

Equation 3.11.

After expansion of Equation 3.9, shown in Equation 3.10, x and y coordinates as well as
the colour intensity of point P dependently on parameters u and v can be obtained.

P(u,v) = (1 – u)·a1(v) + u·a2(v) + (1 – v) ·b1(u) + v·b2(u) +

 – (1 – u) ·(1 – v) ·A - u·(1 – v) ·C – (1 – u) ·v·M – u·v·B

Equation 3.10: The interpolated point P as a function of parameters u, v of the boundary

curves. This formula is gained by extraction of the term P(u,v) from Equation 3.9.

Control points of the curves a1, a2, b1, b2 are described in Equation 3.11. The considered
longest initial curve is the curve denoted by the vertices A, M, B.

 a1 = (A, MAC, C), a2 = (M, T0.25, B)

 b1 = (A, T0.75, M), b2 = (C, MBC, B)

Equation 3.11: Boundary curves a1, a2, b1, b2, described by their terminal and middle

vertices. MAC is the vertex between A and C, MBC is the vertex between B and C, T0.25 and

T0.75 are vertices created during subdivision of curve A, M, B.

The visualized value in each pixel is also gained as an arithmetic average of all values
which were projected into that pixel (see part 3.3 for details behind this decision).

Unfortunately, among other similarities, this method also shares a long computing time
with the interpolation on the Bézier triangle patch. The reason is the same algorithm that is
used for intensity distribution among pixels in the patch. The full algorithm of the
interpolation is similar to that of Bézier triangle patch interpolation, only with different
equations for the interpolation. The only significant change is the computation of the
boundary curves, which is described by Equations 3.7 and 3.8 and is neither interesting nor
complex in terms of the algorithm. Therefore the description of the interpolation algorithm
in pseudo code will be omitted in this part.

3.5. Piecewise linear Interpolation on the Voronoi diagram

This method is loosely based on usual bilinear interpolation, which uses barycentric
coordinates of the pixel in a triangle as weights for the interpolation. The same principle is
applied in this method, only this time it uses Voronoi cell instead of a simple triangle. The
cell is a polygon with generally more then three edges, which implies the main problem

3. Interpolation methods 19/51

associated with this method – finding barycentric coordinates of a general convex polygon
is much more complicated then finding them for a triangle.

However, this problem has already been solved and an easy way of computing barycentric
coordinates for a convex polygon was described in [Mark Meyer, Haeyoung Lee].
Equation 3.12 describes the proposed formula for a barycentric coordinate in a given
vertex of the polygon. Such coordinates retain all the useful properties as common
triangular barycentric coordinates. Namely, as in Equation 3.4, their sum is one and they
are positive for points inside the polygon.

∑
=

==
−

+
=

N

j

j

j

j

j

jj

j totalSum
totalSum

B
QP 0

2
;;

||||

)cot()cot(
ω

ωδγ
ω

Equation 3.12: barycentric coordinate of point P respective to vertex Qj in a convex

polygon. γ and δ are angles between lines P-Qj, Qj-Qj-1 and P-Qj, Qj-Qj+1. Bj is the resulting

coordinate.

Complications occur when the interpolated point is too close to edges of the cell. Such
cases are checked and handled specially – linear interpolation of the vertices of the edge
where the interpolated pixel lies is used instead. Simple test of parallelism (cross product)
between vectors of the currently involved edges and the vector of the interpolated point
and the point Qj can reveal these cases.

For each cell C of the Voronoi diagram do
For each pixel P of the cell C do

SumOfCoordinates = 0;
Coo = array of barycentric coordinates;
For j = 0, while j < number of vertices of C do

A = vector P – C[j];
PREV = vector C[j-1] – C[j];
NEXT = vector C[j+1] – C[j];
TEST = cross product of A and PREV;
IF TEST == 0

P.Intensity = Linear interpolation
between C[j-1] and C[j];

Continue with next pixel;
TEST = cross product of A and NEXT;
IF TEST == 0

P.Intensity = Linear interpolation
between C[j+1] and C[j];

Continue with next pixel;
C_PREV = cotangent between A and PREV;
C_NEXT = cotangent between A and NEXT;
Coo[j] = (C_PREV + C_NEXT) / (A.X2 + A.Y2);
SumOfCoordinates = SumOfCoordinates + Coo[j];

Divide each coordinate by SumOfCoordinates;
P.Intensity = 0;
For j = 0, while j < length of Coo do
P.Intensity += Coo[j] * C[j].Intensity;

3. Interpolation methods 20/51

3.6. Natural neighbour interpolation

This interpolation method was taken from [5] and only transformed for the needs of a
digital image. It uses two Voronoi diagrams – the one on the input (i.e. created from the
triangulation that is on the input) and other, which contains the interpolated point as a
vertex of the diagram. The new vertex locally modifies the initial diagram – some cells
next to the point will become smaller, because the new cell, created around the new vertex,
“steals” some area of the adjacent cells. The main idea of the interpolation is to compute
this stolen area and use it to assign weights to the vertices, from which it was stolen. Those
vertices then participate in the interpolation.

The main problems are to construct the second diagram and to find the participating cells.
Luckily, this is actually one and the same if we use the incremental insertion algorithm for
creation of the new diagram. First, an arbitrary participating cell has to be found. The cell,
in which the point that is going to be inserted lies, definitely fulfils this demand, so it can
be used as an initial cell of the process. The insertion algorithm in one cell can be
described in the following steps:

1) Construct a line between the inserted point and the control point of the

participating cell.

2) Find the centre of this line and construct a parallel line, passing thru the centre.

3) Find the intersections A and B of the parallel line and edges of the cell. Line AB

is an edge of the new cell.

The edges on which are the points A and B are shared with other two cells. And as points
A and B are part of the new cell, these another cells must also be the participating cells.
Therefore the same algorithm can be used on one of these cells and another edge of the
new cell will be gained. One end of this edge will be the old intersection B (or A), and
second end will be another point, which will also reveal another participating cell. The
algorithm continues this way until it reaches the initial cell from another end, i.e. the newly
found intersection will be the second intersection from the initial cell. This way the new
cell is obtained as well as all the participating cells.

The weights assigned to each of the participating cells are gained as a fraction of the stolen
area and the whole area of the new cell. Therefore, the bigger is the area stolen from a cell,
the bigger is the impact this cell has on the interpolation. The resulting colour is gained as
a linear combination of the control points of the cells and the weights assigned to them.

There are singular cases of the insertion (the parallel line from step 2 passes directly thru a
vertex, or is identical to an edge), which needs to be taken care of in the implementation.
However, they do not need any special treatment, like for example parallel vectors in the
method described in part 3.5 and therefore they are mentioned only in part 4.4 (as well as
other implementation problems of this method).

For each cell C of the Voronoi diagram do
For each pixel P of the cell C do

TotalArea = 0;
Areas = list of the areas stolen from cells;
Cells = list of participating cells;
Used = list of already used participating cells;
Add C to Cells;

3. Interpolation methods 21/51

While Cells is not empty do

StolenCell = polygon stolen by P from cell at
index 0 in Cells;

Add the area of StolenCell to Areas;
TotalArea = TotalArea + the area of

StolenCell;
Add neighbouring cells of Cells[0] which share

the dividing edge of StolenCell to Cells unless
they are in Used;

Add Cells[0] to Used;
Remove cell at index 0 from Cells;

Divide each area by TotalArea;
P.Intensity = 0;
For j = 0, while j < length of Coo do

P.Intensity += Areas[j] * Used[j].Intensity;

4. Implementation difficulties 22/51

4. Implementation difficulties

4.1. Bilinear and Zienkiewicz’s interpolation

The Bilinear interpolation, as described in part 3.1, and the Zienkiewicz’s interpolation
(part 3.2) are both very easy to implement and also very similar in terms of the used
algorithm. There is only one problem related to both of these interpolation methods.

When interpolating using these methods, a pixel is the basic unit – for each pixel of a
triangle, the colour intensity is set. However, the edges of the triangle have no width – they
are not “pixelated”. As such, they can divide the pixels they intersect into two pieces, each
belonging to one of the neighbouring triangles, which share the intersecting edge. The
choice of which of the neighbouring triangles should be the one to use for computing the
intensity of the pixel actually should not be important, because the interpolation should be
smooth over triangle edges anyway. The barycentric coordinates are the real problem.
Their computation, as presented in part 3.1, assumes that the interpolated point is inside the
triangle, or at least on its edges. But the coordinate that is passed to the formula is the
coordinate of a pixel, an integer.

Figure 4.1 shows what this integer means in the space of real numbers. It is not the whole
pixel anymore; it is the upper left corner of the pixel. The point 1;2 on the figure clearly
does not lie inside the marked triangle. But the pixel 1;2 does, though only partly, and
therefore the interpolation algorithm will use it. If the coordinates 1;2 are inserted into the
formula for computing the barycentric coordinates, the results will not meet the constraints
for points inside triangle (Eq. 3.4), i.e. some of the resulting barycentric coordinates might
get bigger then one, or smaller then zero.

Figure 4.1: a triangle on a 5x5 grid of pixels. In the space of real numbers, pixel

coordinates are actually the coordinates of their upper left corners. Therefore, points

denoted by pixel coordinate, e.g. 1;2, may not actually be inside the triangle, though the

pixel 1;2 is.

Using these coordinates for intensity computation may result in colour intensity being out
of the range of the colour system (i.e. over 255, when using standard 8-bit per colour
component format), or negative. Either way, it won’t be possible to display such colour. A
simple solution is to skip interpolating the pixel when the barycentric coordinates does not
meet the constraints in Eq. 3.4. This way it is ensured, that no fault colour intensities will
be set to the pixels. On the other hand, because the triangulation covers the whole image, it

4. Implementation difficulties 23/51

is ensured that all the pixels will eventually be set – for each pixel there is a triangle which
contains its upper left corner. At the same time, this solution does not require much more
of additional code or calculations.

4.2. Patch-based interpolations

Parts 3.3 and 3.4 described two interpolation methods, which interpolate on a patch
constructed from a triangle and its three neighbours. But on the edges of the triangulation,
which is usually shaped as a rectangle, there are triangles which obviously have only two
neighbours, because their third edge lies on the edge of the triangulation. Moreover, in the
corners of the triangulation there might be triangles with only one neighbour. Therefore,
the methods cannot be used in the same way as described in the third chapter.

The only way to solve this problem is to use a different interpolation method, which
interpolate on a single triangle, for these triangles. For example, the solution used for
experiments presented in chapter six interpolates the bitmap using bilinear interpolation
first. Therefore, the array “Bitmap”, as used in the algorithm description in the end of part
3.3, will be filled with valid colour intensity values for each pixel. The interpolation then
continues as usual, adding the computed intensity values for each pixel together and
counting them. In the end, when the average of these values is made, it is assumed, that the
number of values in each pixel is one more then in the “Counter” array; that is the one
value from the pre-processing.

This way, pixels on the borders of the image will have their intensity assigned as if they
were interpolated by bilinear interpolation, as there will be zero values computed by the
patch-based method and one value computed by bilinear interpolation. The rest of the
image will be slightly modified by the result of the linear interpolation, but if the stepping
of the patch-based method (either Coons of Bézier) is dense enough, it will not be
significant, as there will be approximately other twenty values in each pixel, computed by
the patch-based method.

4.3. Interpolation on Voronoi diagram

The first difficulty connected with interpolation on Voronoi diagram is the construction of
the diagram itself. Part 2.3 mentions that the diagram can be created from the Delaunay
triangulation: each vertex of the triangulation is a control vertex of a Voronoi cell and each
centre of a circum-circle of each triangle is a vertex of the Voronoi diagram. Although
various ways to compute locations of the centres of circum-circles are known and easy to
implement, the colours in the vertices has to be interpolated somehow.

The implementations used for experiments presented in chapter six uses Zienkiewicz’s
interpolation to interpolate the pixels corresponding to the location of Voronoi diagram’s
vertices and sets their colour value this way. Nevertheless, it is important to realize that
this way, an error in the colour intensity of the image is introduced prior to the
interpolation itself (which brings another error to it). Better results might be obtained if the
colour is set according to the original image. However, this image is not always available
(after all, the main role of the triangulation is to represent that image) and it is over the
topic of this thesis to exploit this possibility.

Another problem is also bound to the centres of circum-circles. For the triangles on the
edges of the image, there is nothing that would assure that their centres of circum-circles

4. Implementation difficulties 24/51

will be exactly on the edge, or over it. Therefore the Voronoi diagram does not have to
cover the whole image, which would lead to leaving parts of the image blank after its
interpolation. This is certainly not tolerable. It is necessary to enclose the diagram in order
to cover the whole image.

To do that, three artificial vertices are added to the triangulation. These vertices form a
huge triangle, which encapsulate the whole triangulation by connecting the vertices on the
edges and the artificial vertices – several artificial triangles are created. For example, for
512x512 points large triangulation, vertices with coordinates (256, -10000), (-10000,
10000) and (10000, 10000) are added.

When the Voronoi diagram is created from this new triangulation, it is assured that whole
image is covered, because the new cells on the border of the image span far over it. The
remaining action is to clip the diagram by the edges of the image and this way, a Voronoi
diagram covering whole image is gained.

Unfortunately, another problem occurs here. The vertices on the edges, created during
clipping, do not have any colour intensity value associated to them. In the presented
implementation, the value assigned to them is the value in the nearest vertex of the cell –
that is the second vertex on the same edge as the clipped one. Although in some cases this
is quite precise approximation, in some cases it is not. Therefore the results on the edges of
the image tend to be extremely poor for the piecewise linear interpolation on the Voronoi
diagram.

The natural neighbour interpolation does not use the colour intensity values in the cell’s
vertices to get the interpolated value; it uses the value in the control vertices of the cells.
These are actually vertices of the triangulation, so their intensity value is correct. However,
the cells created by clipping do not have to meet the definition of a Voronoi cell, i.e. some
of the points in one of such cell might actually be closer to the control vertex of some other
cell. Therefore the areas of these cells, which are used as weights for the interpolation, are
degraded to a set of random numbers and quality of the resulting interpolation obviously
decreases.

In the presented implementation, the Cohen-Sutherland clipping algorithm [11] was used
for clipping. It was slightly modified, as this algorithm was originally designed for line
clipping. However, clipping of cells covering the corners is practically impossible without
using more complicated algorithm. As was said in the previous paragraphs, the vertices
created by clipping introduce some error to the resulting interpolation, although the reasons
are different for the piecewise linear and the natural neighbour interpolation. This led to
the decision to abandon rather time-consuming efforts to improve the clipping technique
(actually, it would have to be fully redesigned).

Instead a simple pre-processing similar to that used for patch-based method (see part 4.2)
has been used. Before the interpolation on Voronoi diagram, either the linear interpolation
or Natural Neighbour interpolation, the image is interpolated using the Bilinear
interpolation. Then the interpolation on Voronoi diagram is processed. Those pixels, which
are possible to interpolate using this interpolation, are rewritten and the rest remain with
the values calculated by bilinear interpolation.

4. Implementation difficulties 25/51

4.4. Natural neighbour interpolation

Although all the problems concerning interpolation on Voronoi diagram and described in
part 4.3 apply to all of the interpolations on Voronoi diagram, including Natural Neighbour
interpolation, there are yet several other special difficulties in this method.

The main part of the algorithm, i.e. the creation of the new cells, consists of three steps
described in part 3.6. As it is rather complicated process, it will be described more
thoroughly in the following text. To remind the algorithm:

1) Construct a line between the inserted point and the control point of the

participating cell.

2) Find the centre of this line and construct a parallel line, passing thru the centre.

3) Find the intersections A and B of the parallel line and edges of the cell. Line AB

is an edge of the new cell.

In the beginning, one of the not-yet processed cells is chosen (and removed) from the list
of not-yet processed cells, which are the participating (see part 3.6) cells for the inserted
point. Steps one and two of the algorithm are done and then begins the search for
intersections (step 3). Starting from the first vertex of the cell and continuing in a counter
clockwise order, each edge of the cell is tested against the parallel line computed in step
two. If an intersection is found, its location is computed and it is stored.

A singular case of the intersection being vertex of the cell is tested here. If it occurs, two
edges are candidates for beings shared with a participating cell (if the intersection is in
vertex Qj, it can be either edge Qj-1-Qj or Qj-Qj+1). The closer one to the inserted point is
chosen.

Moreover, if such intersection is found, it would be found again while checking another
edge of the cell for intersections. Therefore, whole edges are not considered for testing, but
only part of them – without one of the terminal vertices (it is always contained in the
neighbouring edge, so it is assured that it won’t be missed).

To get the stolen area, another two lists of vertices are kept. They represent the two
polygons that develop from the participating cell when it gets divided by the edge of the
new cell. Until the first intersection is found, all processed vertices of the cell are appended
to the first polygon. When the first intersection is found, it is added to the first polygon and
also it is set as a first vertex of the second. Then until the second intersection is found, all
vertices are appended to the second polygon. When the second intersection is found, it is
the last point of the second polygon and also another point of the first. Then rest of the cell
is added to the first polygon.

To find out which of these polygons is the stolen area and which is just the rest of the cell,
the known orientation of the cell (counter clockwise in the presented implementation), and
therefore the polygons as well, can be used. A simple “sign-test” (cross product) of the
dividing (new) edge and the inserted point shows which polygon is the right one (is closer
to the inserted vertex). The area of this polygon is then computed by the formula showed
on Equation 4.1 and set as the area stolen from the processed cell.

4. Implementation difficulties 26/51

Area = -(V1 x V2 + V2 x V3 + …+ Vn-1 x Vn) / 2

Equation 4.1: Formula for computing an area of a convex polygon. V1…Vn are the

vertices of the polygon as vectors, i.e. V = (V.X, V.Y), “x” is a cross product. The vertices

must be sorted in a counter clockwise order.

There is another singular case when looking for the intersection and that is when the
parallel line is identical with an edge of a cell. However, this case should occur only when
the inserted point is identical with a control point of some existing cell. Then no
intersections are found, only one cell (the initial) is involved in the process and the stolen
area is identical with the whole area of the cell. Simply put, the colour intensity value
assigned to the cell is the colour of the control vertex, which is just right in this case.
Therefore this singular case actually does not need be taken care of in any special way.

5. Experiments settings 27/51

5. Experiments settings

5.1. Image measurement methods

Mean square error, abbreviated as MSE, is one of the simplest methods for measurement of
image compression quality. Its value is gained as an average of the quadrates of differences
in pixels of the original image and of the compressed one. Obviously, lower value means
better quality, with zero meaning equal images. Equation 5.1 shows the mathematical
formula that corresponds to that idea:

[]

[]∑∑∑

∑∑
−

=

−

= =

−

=

−

=

−
⋅⋅

=

−
⋅

=

1

0

1

0

2

0

2

1

0

1

0

2

),(),(
3

1
)

),(),(
1

)

m

x

n

y k

kk

m

x

n

y

yxKyxI
nm

MSEb

yxKyxI
nm

MSEa

Equation 5.1: The formula of the MSE. m and n is the size of the image in pixels, I(x,y) is a

pixel of the original image in position (x,y), K(x,y) is a pixel of the interpolated image.

Formula a is for greyscale images, formula b for coloured images. In the second case, Ik

and Kk are images with only one of the colour components.

Though widely used, the mean square error actually is not a good tool for measurement of
image quality. Its main flaw is that because of the quadrate of pixel differences, a huge
weigh is assigned to outliers, i.e. pixels, for which the difference is very big. Though this
might seem reasonable, imagine the following scenario: there is an image, exactly the same
as the original one, only with few (e.g. less then one percent) scattered pixels having
absolutely black or white, whichever is farther from the original. Such image will be rated
very poorly by MSE, while human’s eye might not even notice the flawed pixels.

More common method used for image comparison is the “peak signal to noise ratio”, or
PSNR. Equation 5.2 shows how it is computed.

⋅=

⋅=

MSE

MAX

MSE

MAX
PSNR 10

2

10 log20log10

Equation 5.2: The formula of the PSNR. MSE is the mean square error of the image, MAX
is the maximal possible value in a pixel, usually 255 (for system with 8-bits per colour

channel).

Unlike the MSE, PSNR is measured in dB, the more, the better. Usual values are around 20
– 40 dB, where 30 dB is usually stated as a threshold between the ability to recognize the
compressed image from the original. Although, as can be seen in the equation, the PSNR is
still based on the MSE, and therefore it does not actually solves the problem of low
correlation between it and human perception, i.e. images rated as better then others by
PSNR often get opposite rating from humans, and vice versa.

Structural similarity index, or SSIM, is a relatively new metric, which in most cases
overcomes the PSNR when compared with human’s eye rating, while having equal
computation power needs. In [9] is described a way how to numerically express structural

5. Experiments settings 28/51

information about the image, which is what a human is used to extract from the image.
Therefore the SSIM should be more suitable for image comparisons, as it more correlate
with the human perception system.

Unlike the previous methods, SSIM operates with larger structures then one pixel, e.g. 8x8
(or other size) pixels windows. This helps to prevent the already mentioned problem with
outliers.

Equation 5.3 shows the formula of how to compute the index.

)()(

)2()2(
),(

2
22

1
22

21

CC

CC
yxSSIM

yxyx

xyyx

++⋅++

+⋅+
=

σσµµ

σµµ

[]∑∑ ∑
== =

−⋅−
−

=

−

−
==

N

ï

yixixy

N

i

N

i

xixix yx
N

x
N

x
N 11 1

2)()(
1

1
;)(

1

1
;

1
µµσµσµ

2
22

2
11)(;)(MAXKCMAXKC ⋅=⋅=

Equation 5.3: The formula of the SSIM (with additional declarative formulas). x and y are

the pixel windows, µ is an average of intensity in given window, σx and σy are the square

roots of variance, σxy is the covariance, C1 and C2 are constants, which avoid instability

when (µx
2

+ µy
2
) or (σx

2
+ σy

2
) are close to zero. MAX is the maximal possible value in a

pixel (usually 255), K1 and K2 are small (much smaller then one) constants, N is the size of

the window.

To get one rating for the whole image, a mean structural similarity index (MSSIM) can be
used. It is computed as an average of all the SSIM of the image. SSIM takes values
between -1 and 1, with 1 meaning equality of images.

Although the MSSIM usually behave better then MSE or PSNR in terms of being close to
rating by human perception, the authors of [9] state that it tends to be dependent on the
input. Therefore the images presented in chapter 6 will be compared by both MSSIM and
the standard methods, i.e. MSE and PSNR.

5.2. Colour systems

For the purpose of coloured images, two colour systems were considered. First of them is
the RGB system, simply because it is undoubtedly the most commonly used system when
it comes to digital image. The second system is the YCbCr. This system was regarded as
the best for the purpose of triangulation represented digital image in [8]. As the topic of
this thesis is closely related to [8], it seemed more then reasonable to take its conclusions
into account.

The most common way to represent colours in today’s computers is to use 32-bit number,
where first 8 bits are reserved for the alpha channel6 and the rest are used for the individual

6 The transparency of the image, where maximal value means solid image and zero means fully transparent.

5. Experiments settings 29/51

components of the respective colour system, 8-bits each. This implies the maximal and
minimal value ranging from 0 to 255.

The RGB is an additive colour system, which means that the intensity is added to the
intensity of the background, resulting in more intensive colours the bigger the value of the
RGB components are, with white being the maximal value and black being the minimal
(zero) value. This makes additive systems like RGB suitable for monitors and other display
hardware, because they emit light, so they correlate well with the system – the bigger the
value, the more light is emitted and vice versa.

To create a coloured image, one light emitter would not suffice. Therefore a blending of
more basic colours is used generally. In case of RGB, these basic colours are, as the name
suggests, red, green and blue.

The RGB system has proven to have too much of redundant information to be used for
transmission. This led to development of other system, YCbCr, which would be able to
store almost the same information as the RGB colour but with less bit per pixel demand.
The way to do this was to separate the intensity value (Y component) from the chromatic
blue (Cb) and red (Cr) modifiers, which are actually differences between the intensity and
the blue or red component. While the Y component still needs to be transferred in high
resolution, the Cb and Cr can be reduced and compressed without influencing the overall
quality of the resulting image.

5.3. Testing subjects and environment

All the results presented and discussed in chapter six were created using the “Interpolator”
software, which is a part of this thesis. All the experiments were processed on a PC station
with the following configuration:

• Processor: Intel Pentium Core2Duo E6300 (two cores, processor clock 1.86GHz
per core, 2MB L2 shared cache)

• Memory: DDR2 Kingmax PC800 1GB (memory clock 800Hz)
• Operating system: Windows XP SP2

10 greyscale and 7 coloured images were used as the testing subjects. These images were
picked in order to incorporate the commonly used images (like the Lena or Baboon
images), classical scenery images (the Yacht), images with sharp colour edges (the
Peppers, the Baboon), images with low colour variety (the Airplane, the Maran) as well as
with tiny details (the Boat, the Lukas) and also one rendered image, the Pool.

6. Experiments 30/51

6. Experiments

6.1. Quality comparisons

The three following parts will present the results of individual interpolation methods when
applied on the set of images described in part 5.3 and compare each to other. The first part
(6.1.1) focus on greyscale images, the second part (6.1.2) describes the application on
coloured images represented by separate triangulations and the third part (6.1.3) shows the
results gained when using the co-triangulations.

The interpolation methods themselves do not change at all no matter if the image is
coloured or grey. Therefore their performance does not really differ when used on the
coloured image. For this reason, there are more data and statistics in the first part (6.1.1),
as the typical characteristics and behaviour of individual methods is more clear and easier
to see on the case with only one triangulation per image. The other two parts then describes
only differences between the greyscale and coloured images, i.e. the impact of the colour
systems described in part 5.2, relation between vertex count of individual triangulations
and the quality of resulting image (as more information is obviously needed to interpolate a
coloured image then a greyscale one), etc.

The data presented in the following text is usually only one typical image, which represent
most of the other tested images in terms of achieved quality (using quality measurement
methods described in part 5.1). On the opposite side, images that were atypical in some
way are also presented and discussed. However, if you are interested in seeing more
experiment results anyway, please refer to the material appended to this thesis.

6.1.1. Greyscale images

Greyscale images were tested with five different vertex counts per triangulation – 1000,
2000, 5000, 10000 and 15000. Naturally, the more vertices there are in a triangulation, the
better is the result. The images (both original and interpolated) are in 512x512 pixel
resolution, with these exceptions: the Maran image (400x300), the Kodim image
(465x375) and the Monarch (768x512). First set of charts (figures 6.1 – 6.3) compares the
quality of the images interpolated by the individual methods.

Figure 6.1 present charts of the Lena image. Most of the other tested images have similar
results (see the appendix for charts of more images), with the Bilinear and Zienkiewicz’s
interpolation leading independently on the measurement methods. On the other side, the
piecewise linear interpolation on Voronoi diagram fails significantly. Either way, the SSIM
ranging from 0.5 to 0.7 is a sign of a poor similarity between the interpolated and original
images. This actually is not very surprising, 1000 vertices for a 512 per 512 pixel image
means 97.38 % of the initial colour information has been lost.

The absolute ratings of individual images vary, dependently on how many tiny details and
empty spaces there are in the image. For example, Figure 6.2 show comparison charts for
the Maran image, which has flat, empty background and only the centre of the image is
covered. Such image gets good rating, with SSIM rising over 0.8. However, as can be seen
on Figure 6.3, the resulting image does not look any better for humans then the other
images, because a human will still see a blurry object in the centre. That the simple
background looks exactly the same as on the original is not important for most people,
even if it covers most of the image.

6. Experiments 31/51

Figure 6.1: The MSE (upper left), PSNR

(upper right) and SSIM (down) values of

the Lena image interpolated from a

triangulation with 1000 vertices,

compared with the original image

221.642

342.342

375.054

269.717

540.64

233.679

100

200

300

400

500

600

700

MSE

24.708

22.82

22.424

23.856

20.836

24.479

20

21

22

23

24

25

26

27

PSNR

0.669

0.597 0.597

0.643

0.514

0.671

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

SSIM

Figure 6.2: The MSE (upper left), PSNR

(upper right) and SSIM (down) values of

the Maran image interpolated from a

triangulation with 1000 vertices,

compared with the original image

153.168

240.733 251.114

162.864

339.685

161.497

100

200

300

400

500

600

700

MSE

26.313

24.349 24.166

26.047

22.854

26.083

20

21

22

23

24

25

26

27

PSNR

0.826

0.762
0.779

0.814

0.702

0.828

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

SSIM

6. Experiments 32/51

Increasing the vertex count to 2000 does not bring any significant changes to the
performance of individual methods. There is, however, one interesting thing. The charts of
the Lukas image, Figure 6.4, show unexpectedly large MSE (and therefore small PSNR)
for the Coons patch method. This is due to artifacts, to which this method is vulnerable.

The reason of these artifacts is more evident with increasing vertex count. Figure 6.5 show
images of the 10000-vertex triangulation of the Lukas image as well as the result of the
Coons interpolation on this triangulation. The artifacts appear when triangles of very
different sizes meet in one patch. As was described in part 3.4, the boundary curve of the
coons patch is constructed in such a way, that the middle vertex of the curve is a peak of
the curve. When two very different triangles meet, the spatial distances between the peak
vertex and the terminal vertices will be also very different. The impact is that as these
points are forced to create one continuous curve, this curves shape will be very distant
from the shape of the polyline created by the same vertices as the curve.

Figure 6.4: The MSE (upper left), PSNR

(upper right) and SSIM (down) values of

the Lukas image interpolated from a

triangulation with 2000 vertices,

compared with the original image

700.43

776.044

1166.106

731.118

1030.274

746.713

0

200

400

600

800

1000

1200

1400

MSE

19.711

19.266

17.497

19.525

18.035

19.433

16

16.5

17

17.5

18

18.5

19

19.5

20

PSNR

0.516

0.442 0.438

0.493

0.353

0.517

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SSIM

Figure 6.3: The Maran image, bilinearly

interpolated.

6. Experiments 33/51

Figure 6.5: Part of the Lukas image triangulation with 10000 vertices (right), and its

interpolation by the Coons patch method (left).

It is quite interesting that these artifacts do not seem to influence the SSIM much. On the
other hand, the piecewise linear interpolation on Voronoi diagram fails in every possible
measurement method, including human eye perception, even though it does not suffer from
similar singularities.

With 5000 vertices per triangulation, the interpolated images are getting much closer to
looking like the original ones. The Bilinear, Zienkiewicz’s and Natural Neighbour
interpolations are proving to be the best among the set. Figures 6.7 and 6.8 show
comparison charts for the Lena and Peppers images. Note, that the results are almost the
same for both images, with one difference. The PSNR of Bilinear and Zienkiewicz’s
interpolation is significantly bigger for the Peppers image. This is suggested to be a matter
of sharp edges in the image. The Peppers image contains a lot more of them, which has its
impact on the created triangulation. Figure 6.6 shows that this results in a strip of tiny
triangles being along these sharp edges.

Figure 6.6: A small portion of the Peppers triangulation with 10000 vertices. Note the

strips of very small triangles along colour edges.

6. Experiments 34/51

This evidently helps the Bilinear and Zienkiewicz’s interpolation to preserve edges better.
On the other hand, a drop in performance of the Coons patch interpolation can also be
seen, which is due to the artifacts mentioned before – the tiny triangles meet with the large
ones inside individual peppers, which are large smooth areas and therefore represented by
big triangles. The Bezier patch interpolation is also affected by similar artifacts as the
Coons patch interpolation, also with similar reasons. However, as the charts show, their
impact is not as huge as in case of the Coons patch.

One look on Figure 6.9 is enough to see, that the piecewise linear interpolation on Voronoi
diagram is simply useless. One could assume from the charts that the same is true for the
patch-based methods. However, closer look on the results of their performance, as can be
seen on Figure 6.10 shows, that these methods have their merits.

The images on that figure are the results of the two patch-based methods and the
Zienkiwcz’s method for comparison. As expected, the colour edges are blurred. But the flat
areas are smoothed perfectly, leaving no trace of the underlying triangulation – which is
something that cannot be said about the overall favourites Bilinear and Zienkiewicz’s
interpolation.

69.217

125.442

153.087

79.942

186.894

68.545

0

50

100

150

200

250

MSE

29.763

27.18

26.315

29.137

25.449

29.805

23

24

25

26

27

28

29

30

31

32

PSNR

0.797

0.74 0.745

0.784

0.674

0.799

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

SSIM

Figure 6.7: The MSE (upper left), PSNR

(upper right) and SSIM (down) values of

the Lena image interpolated from a

triangulation with 5000 vertices,

compared with the original image

6. Experiments 35/51

Figure 6.9: Part of the Fruits image, as interpolated by the piecewise linear interpolation

on Voronoi diagram from a 5000-vertex triangulation.

48.886

120.74

174.04

87.716

206.677

48.069

0

50

100

150

200

250

MSE

31.273

27.346

25.758

28.734

25.012

31.346

23

24

25

26

27

28

29

30

31

32

PSNR

0.836

0.785
0.775

0.826

0.727

0.839

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

SSIM

Figure 6.8: The MSE (upper left), PSNR

(upper right) and SSIM (down) values of

the Peppers image interpolated from a

triangulation with 5000 vertices,

compared with the original image

6. Experiments 36/51

With vertex count increasing to 10000 and 15000, nothing surprising happens. The
Zienkiewicz’s interpolation outperforms the Bilinear interpolation (as well as any other) on
every tested image, securing its position as the “best” method.

The Natural Neighbour interpolation is able to keep pace with the Zienkiewicz’s and
Bilinear interpolations. Acknowledging the problem with interpolating the border of the
image with that interpolation (see part 4.3 for details), which certainly has a negative effect
on the results, this interpolation method seems quite perspective.

With 10000 vertices the PSNR is usually going over 30 dB, which is commonly considered
as a limit for being able to recognize the image from the original. Although several images
with a lot of details, like the Boat, can still be easily recognizable from the original image,
on the “average” images, the flaws of the interpolations are only minor (see the appended
material for your own comparisons).

Though the quality of the results of patch-based methods improve with the vertex count, it
is clear that no matter how many vertices there are, these methods cannot be used
universally, because there will always be some artifacts present. However, there might be a

Figure 6.10: Part of the Lena image

interpolated from a 5000-vertex

triangulation by Bezier patch (upper left),

Coons patch (upper right) and

Zienkiewicz’s (down) interpolation.

6. Experiments 37/51

way of adjusting the construction of the triangulations in such a way that could make these
methods useful, at least for interpolation of some, the “smooth”, parts of the triangulation.

Lastly, on Figure 6.11 is a chart, which describes the effect vertex count has on the quality
of the interpolation for individual methods. The Fruits image was chosen for this
measurement, because it contains some small details and sharp edges as well as some flat
areas. It documents, that the differences between the 10000 and 15000 vertices are small,
more or less insignificant. Note that the 30 dB limit in PSNR can is reached already with
5000 vertices.

6.1.2. Separately interpolated coloured images

This part will analyze the performance of the individual methods when applied to coloured
images represented by three separate triangulations, one for each colour component.
Unlike with the Greyscale images, the triplets of triangulations were not chosen based
solely on their vertex count, but rather on the PSNR they achieve when interpolated by the
Bilinear interpolation when compared to the given component, extracted from the original
image.

For the RGB colour system, this meant simply finding a “green” and a “blue”
triangulation, which PSNR is nearest to a PSNR of a given “red” triangulation. As the Cb
and the Cr components of YCbCr system contain less information then the Y component,
they are more likely to look like the original components extracted from the image.
Therefore the Y component obviously scored much lower then the other two. To be able to
put different triplets of triangulations together, a constant value was added to the PSNR of
the Y component to make it more or less matching with the interval in which the PSNR
values of Cb and Cr components usually were.

22

72

122

172

222

272

322

372

422

0 5000 10000 15000

Vertex count

M
S
E

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 5000 10000 15000

Vertex Count

S
S
IM

22

24

26

28

30

32

34

36

0 5000 10000 15000

Vertex count

P
S
N
R

Figure 6.11: the MSE (upper left), PSNR

(upper right) and SSIM (down) values of

the Fruits image for triangulations with

1000, 2000, 5000, 10000 and 15000

vertices interpolated by all the methods.

6. Experiments 38/51

The triangulations were chosen from a set of 20 triangulations for each colour component,
ranging from 1000 to 20000 vertices. In the following text, results for some of these
triplets will be shown and discussed. All the images are in 512x512 pixel resolution, with
one exception, the Pool image (510x383).

In general, the performance of individual methods when interpolating coloured images is
similar to the greyscale case. As charts on Figure 6.12 document, the Zienkiewicz’s and
Bilinear interpolation are still the best, followed closely by the Natural Neighbour
interpolation. The data on these charts are from the Lena image, interpolated from various
triplets of Triangulations, using the RGB colour system.

The numbers of vertices presented on the charts are a sum of vertices in all the three
triangulations. The vertex count in individual triangulations is more or less equal simply to
the third of this sum – in general, the components are equal in terms of how much
information they carry, although in some pictures some colour component can be, and
usually is, dominant.

In the case of the YCbCr system, things get more complicated, as the Y component carries
much more information then the remaining components. After all, this is why the system
was designed in first place. This brings some problems into the evaluation process of the
quality of the image. While the number of vertices in the triangulation, which represents
the Y component, influences the resulting image greatly, the impact of the Cb and Cr
components is much smaller.

Figure 6.13 presents comparison charts for an image represented by YCbCr triangulations.
There are two cases, one using a triangulation of the Y component with 3000 vertices and
with 7000 vertices. The triangulations of the Cb and Cr components added to these

0

50

100

150

200

250

300

350

400

450

0 5000 10000 15000 20000 25000 3000035000 40000 45000 50000 55000 60000

Vertex count

M
S
E

20

22

24

26

28

30

32

34

36

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

Vertex count

P
S
N
R

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

Vertex count

S
S
IM

Figure 6.12: the PSNR (upper left), MSE

(upper right) and SSIM (down) values of

the coloured Lena image represented by

triplets of triangulations and interpolated

by all the methods.

6. Experiments 39/51

triangulations have 1000 vertices each in one case and 20000 vertices in the other one. I.e.,
there are four test cases – one with 3000 vertices in Y and 1000 in Cb and Cr, then 3000
vertices in Y and 20000 in Cb and Cr, 7000 vertices in Y and 20000 in the other
components and lastly 7000 in Y plus 20000 in each of the others. The difference between
1000 and 20000 vertices per Cr and Cb triangulations has only a minor effect to the
measurement statistics, while on the other hand, raising the vertex count by “only” 4000
vertices in the Y component matters much more.

This could lead to a conclusion (and as [8] proves, a right one) that the YCbCr might be
more useful when better compression of the image is a priority, because most of the
“important” information about the colour can be stored by only one component instead of
three. Figure 6.14 uses the Yacht image, a typical scenery photo, to compare the impact the
two colour systems have on the quality of the interpolated image. As the charts show, the
differences are rather minor, but still the RGB is slightly better. Therefore it seems like a
good choice when the quality of the image is preferred before compression.

On the few following figures, more atypical cases will be presented. On Figure 6.15, there
is a comparison for the Baboon image. This image has a lot of colour edges and therefore it
is not a surprise, that even with relatively large vertex count, the results are not very good,
independently on the used interpolation method.

As in the case of greyscale images, the artifacts produced by patch-based methods are
obviously present in the coloured images as well. Moreover, the distortion in colour hues is
much more distracting for human eye then the distortion of the greyscale intensity.
Therefore even when the effect on the measurement statistics is the same as with greyscale
images, artifacts in coloured images are less likely to be overlooked by a human.

313.313

375.994

175.659

248.41

100

150

200

250

300

350

400

M
S
E

23.208

22.451

25.724

24.226

20

21

22

23

24

25

26

P
S
N
R

0.61 0.607

0.699
0.683

0.5

0.55

0.6

0.65

0.7

S
S
IM Figure 6.13: The MSE (upper left), PSNR

(upper right) and SSIM (down) values for

four test cases of the Yacht image

represented by triangulations using the

YCbCr colour system.

6. Experiments 40/51

Figure 6.14: A comparison of two of the Yacht images, interpolated from triangulations

with 20000 vertices in each component. Image in RGB system is on the left, YCbCr on the

right.

27.553

25.872

24.04

27.419

24.592

28.852

22

23

24

25

26

27

28

29

PSNR

28.137

25.559

23.867

27.224

24.313

28.317

22

23

24

25

26

27

28

29

PSNR

21.84

21.134

19.739

21.826

19.983

22.038

18

19

20

21

22

23

PSNR

429.04

508.337

700.162

431.255

661.627

410.641

300

400

500

600

700

800

MSE

Figure 6.15: The MSE (upper left), PSNR

(upper right) and SSIM (down) values of

the Baboon image interpolated from a

triangulations with 15000 vertices for

red, 20000 vertices for green and 20000

vertices for blue component. Compared

with the original image

0.65

0.524 0.522

0.633

0.437

0.655

0.4

0.45

0.5

0.55

0.6

0.65

0.7

SSIM

Figure 6.16: Part of the Fruits image,

interpolated by the Coons patch method

from triangulations with 6000 vertices

in red, 9000 vertices in green and 9000

vertices in blue component.

6. Experiments 41/51

Figure 6.16 shows part of the Fruits image, which’s red component suffers from artifacts.
That results in rapid change of hue on the afflicted parts. Note that even though these
artifacts are not present in the YCbCr version of the image, it is solely a matter of the
geometry of the triangulation. I.e. there might be other image, which would be perfect in
RGB system, but produced artifacts in the YCbCr system.

6.1.3. Coloured images represented by Co-triangulation

The following text evaluates the differences between coloured images represented by
separate triangulations and by co-triangulations. Figures 6.17 and 6.18 shows comparison
charts for the Yacht and the Baboon images when interpolated from separate triangulations
and co-triangulations. The images behaved similarly for both tested colour systems,
therefore the results presented on Figures 6.17 – 6.20 all use the RGB colour system.

An interesting finding is that while the PSNR value is better for separate triangulations,
while the SSIM is better for co-triangulations. This behaviour is quite expectable. The
value of PSNR is an average of PSNR for each colour component. As the separate
triangulations are constructed from (and compared to) individual colour components, they
are likely to be similar to them. On the other hand, the co-triangulation is a compromise
between individual components. Therefore lower PSNR values are obtained when the
components are extracted from the co-triangulation and compared separately. The SSIM is
designed to express overall structural similarity of the image. Because the co-triangulation
is constructed with respect to the whole image (all its components at once), it is more
likely to be able to capture the “structure” of the image then separate triangulation can.

Figure 6.17: The PSNR (upper) and SSIM (down) values for the Yacht image interpolated

from separate triangulations (blue colour) with 10000 vertices (1000 red, 4000 blue and

5000 green component) and from co-triangulation (red colour) with 7000 vertices.

23.082

22.13

21.442

22.995

20.639

23.548

22.659

22.31

20.512

22.829

20.723

22.866

20

20.5

21

21.5

22

22.5

23

23.5

24

Bilinear Bezier Coons Natural Neighbor Voronoi Zienkiewicz

P
S
N
R Separate

Co-triangulation

0.621

0.555
0.569

0.612

0.491

0.624

0.65

0.6

0.576

0.672

0.527

0.658

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Bilinear Bezier Coons Natural Neighbor Voronoi Zienkiewicz

S
S
IM Separate

Co-triangulation

6. Experiments 42/51

Figure 6.18: The PSNR (upper) and SSIM (down) values for the Baboon image

interpolated from separate triangulations (blue) with 35000 vertices (7000 red, 14000 blue

and 14000 green component) and from co-triangulation (red) with 19000 vertices.

Figure 6.19: The PSNR (upper) and SSIM (down) values for the Peppers image

interpolated from separate triangulations (blue colour) with 20000 vertices (7000 red,

6000 blue and 7000 green component) and from co-triangulation (red colour) with 10000

vertices.

28.771

27.44

23.204

28.154

25.397

30.387

28.909

26.953

21.734

27.399

24.891

28.815

21

22

23

24

25

26

27

28

29

30

31

Bilinear Bezier Coons Natural Neighbor Voronoi Zienkiewicz

P
S
N
R Separate

Co-triangulation

0.782

0.739

0.69

0.776

0.691

0.785

0.761

0.738

0.647

0.774

0.688

0.763

0.6

0.65

0.7

0.75

0.8

Bilinear Bezier Coons Natural Neighbor Voronoi Zienkiewicz

S
S
IM Separate

Co-triangulation

20.734

20.523

19.31

20.785

19.452

20.753

20.418
20.235

18.625

20.987

18.991

20.403

18

18.5

19

19.5

20

20.5

21

Bilinear Bezier Coons Natural Neighbor Voronoi Zienkiewicz

P
S
N
R Separate

Co-triangulation

0.562

0.46
0.475

0.545

0.374

0.566
0.579

0.479

0.455

0.601

0.377

0.589

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Bilinear Bezier Coons Natural Neighbor Voronoi Zienkiewicz

S
S
IM Separate

Co-triangulation

6. Experiments 43/51

On the other hand, Figure 6.19 and 6.20, showing charts of the Lena and the Peppers
image, prove that this is not always true, as the comparison statistics behave as usual, i.e.
the better the PSNR, the better the SSIM. As there is no obvious resemblance between the
above mentioned two pairs of images, whether in what they depict or how their
triangulations look like, it is hard to tell which of these cases are atypical in terms of
“separate triangulations versus co-triangulations” behaviour. Much more tests (tens to
hundreds of images) would have to be made in order to find out. As the co-triangulations
are only a minor subtopic of this thesis and taking into account the time demands of such
extensive testing, this problem is to remain unsolved for now.

The main merit of the co-triangulation is its effect on the compression ratio. Note that
images depicted on Figures 6.17 – 6.20 needed fewer vertices for co-triangulation to
achieve similar PSNR and SSIM scores as images interpolated from separate triangulations
with significantly more vertices.

Figure 6.20: The PSNR (upper) and SSIM (down) values for the Lena image interpolated

from separate triangulations (blue colour) with 45000 vertices (7000 red, 20000 blue and

18000 green component) and from co-triangulation (red colour) with 19000 vertices.

Automatic measurement methods put aside, images interpolated from co-triangulations
have one flaw, which is usually easy to spot for a human. On Figure 6.21, two images with
very similar PSNR and SSIM values are compared, one interpolated from co-triangulation,
one from separate triangulations. Traces of the triangular structure can be seen on some
parts of the image interpolated from co-triangulation, while the other one is smooth in
those parts. This has quite obvious reason, as the separate triangulations does not (usually)

32.37

29.175

27.202

31.962

28.193

32.583

31.954

29.142

26.871

31.702

27.744

31.942

26

27

28

29

30

31

32

33

Bilinear Bezier Coons Natural Neighbor Voronoi Zienkiewicz

P
S
N
R Separate

Co-triangulation

0.851

0.806

0.781

0.85

0.767

0.852
0.841

0.807

0.769

0.85

0.76

0.843

0.7

0.75

0.8

0.85

0.9

Bilinear Bezier Coons Natural Neighbor Voronoi Zienkiewicz

S
S
IM Separate

Co-triangulation

6. Experiments 44/51

have the same structure. Therefore any visible transition between individual triangles,
which might occur during the interpolation, is in most cases overlaid when the three
components are blended together. Because the structure is the same in for all colour
components in the case of co-triangulations, any visible transitions remain.

Figure 6.21: A part of the Lena image interpolated by Zienkiewicz’s method from separate

triangulations (upper) with 60000 vertices (20000 for each component) and from co-

triangulation (down) with 32000 vertices. The upper image has PSNR 33.778 and SSIM

0.866, the lower has PSNR 33.858 and SSIM 0.864. Note the triangle traces in the face, on

the nose and in the surrounding area on the left and on the right, which makes the lower

image looks more “rugged”, even though it has better PSNR and almost the same SSIM.

6.2. Time comparisons

This part evaluates the time demands of individual interpolation methods. The time
complexity of the methods is completely independent on the used colour system or the
triangulation geometry. The only important parameter is the number of triangles in the
triangulation.

Moreover, the implementation, which is part of this thesis, assumes that each triangulation
is fully coloured, i.e. all the vertices have three different colour components assigned.
However, this is true only for co-triangulations. Separate coloured triangulations and

6. Experiments 45/51

greyscale triangulations have only one colour component per vertex or putted in other way,
they have the same value in all three components. The consumed time (will be referred to
simply as “the time” in the following text) could therefore be reduced slightly for these
cases, because only one instead of three interpolation expressions per pixel would have to
be computed.

The time of the patch-based methods is greatly influenced by choice of the “step” (see
parts 3.3 and 3.4 for explanation). The step used for all the experiments presented in this
thesis was 0.006 for the Bezier patch method and 0.007 for the Coons patch method. These
values were chosen experimentally, in order to ensure full filling of even big triangles, i.e.
triangles in triangulations with only 1000 vertices for a 512x512 pixel image. Several
triangulations were tried in the experiments to make sure the values are right.

As was said before, the only parameter, which influence the consumed time, is the triangle
count. However, the parameter used for triangulation construction is the vertex count.
Therefore it is more useful to find what is an average consumed time based on the vertex
count, because that is a parameter that can be modified – the number of triangles for a
given vertex count can be various, though still within some bound (see part 2.2).

Figure 6.22 shows a table of times for several vertex counts. The statistics were obtained as
an average of ten test cases for each vertex count. Note that unlike other algorithms, which
are linear in respect to triangle count, patch-based algorithms are quadratic. Therefore their
times for individual images may vary greatly from the presented average. The
triangulations were chosen randomly only by the vertex count, but triangulations of Cb and
Cr components were left out, as they tend to have very small triangle count (they do not
carry too much information, see part 6.1.2) as well as some other triangulations with
unusual triangle count.

Method

Vertex

count

Bilinear Bezier Coons
Natural

Neighbour
Voronoi Zienkiewicz

2000 0.0391 s 4.8888 s 17.2735 s 3.0807 s 0.6095 s 0.0656 s

4000 0.0531 s 9.5922 s 33.8125 s 3.2422 s 0.6531 s 0.0813 s

5000 0.0610 s 12.091 s 43.4367 s 3.3354 s 0.6502 s 0.0891 s

7000 0.0688 s 16.75 s 56.6 s 3.4234 s 0.6656 s 0.1141 s

10000 0.0906 s 24.070 s 83.2392 s 3.5322 s 0.6830 s 0.1344 s

12000 0.0938 s 29.064 s 98.2891 s 3.5922 s 0.6938 s 0.1594 s

15000 0.1313 s 37.597 s 128.57 s 3.6463 s 0.7127 s 0.1860 s

Figure 6.22: Average times in seconds of individual methods.

Figure 6.22 shows, that the only method which can keep up with the commonly used
bilinear interpolation is the Zienkiwicz’s interpolation, which is only few hundredths of
seconds slower. The Natural Neighbour method is significantly slower, due to its quite
complicated algorithm, which requires many arithmetic operations. Patch-based methods
fall behind even more, as was expected. The Coons patch method is the slower one
because of mathematically complicated computations required for defining the border
curves of the patch (see part 3.4 for details).

7. Conclusion 46/51

7. Conclusion
Six different interpolation methods have been examined, described, implemented and
tested. These methods represent three different possible approaches to interpolation of
triangulations representing digital image.

First of these approaches is a classic interpolation of individual triangles, with the Bilinear
interpolation being the known and most used representative of this approach.
Zienkiewicz’s interpolation was presented as an alternative for the Bilinear interpolation. It
uses information in triangles surrounding the interpolated triangle to achieve better results
and as experiments prove, it succeeds. Because its time consumption is only a little bit, in
usual application insignificantly, bigger, it is a suggested replacement for the traditional
Bilinear interpolation.

The Bezier patch and Coons patch methods presented another way of incorporating
additional information then the information in a single triangle and that is the way of
interpolating on larger, overlapping surfaces formed by more neighbouring triangles. They
successfully remove the traces of the triangulation, making the image smoother then in
case of Bilinear or Zienkiewicz’s interpolation. However, this also implies unwanted
blending of colour edges in the image. Unfortunately, another, initially not expected, flaws
appeared. First of them is their tendency to produce artifacts. Therefore they are not
suitable as universal interpolation methods. Nevertheless, this approach could be exploited
more and used for partial interpolation of smooth areas or for interpolation of specially
prepared triangulations, which would ensure that the artifacts won’t appear. However, the
second flaw of extremely large computational time is a big obstacle which would have to
be eliminated somehow in order to make these methods useful.

The last approach used a dual configuration of the Delaunay triangulation, the Voronoi
diagram. Although the piecewise linear interpolation proved to be a complete failure, the
Natural Neighbour interpolation brought some promising results. Its time consumption is
significantly higher then this of Bilinear or Zienkiewicz’s interpolation, but it is still in
bounds reasonable enough for using it. Though the quality of Natural Neighbour
interpolation does not outperforms the Zienkiewicz’s interpolation, it is close enough to
take it into account in further development.

The implementation enables interpolation of both greyscale and coloured images. Coloured
images may be represented by either separate triangulations for each colour component or
the co-triangulation. The co-triangulations are more suitable when more effective
compression is required, but their visual quality is usually worse then that of separate
triangulation.

To conclude all the findings, it has to be admitted that although some improvements can be
achieved when other then the Bilinear interpolation is used, they are not so major to make
the triangulations the best tool for representation of digital image. If it is even possible to
reach this goal, it is certain that the development of better interpolation methods has to be
combined with the development of techniques for triangulation construction.

References 47/51

References

[1] Čermák, P.. Výpočet vrstevnic na trojúhelníkové síti. Diploma thesis, Faculty of Applied Sciences,

University of West Bohemia in Pilsen, Czech Republic, 2002.

[2] Dyn, N. – Levin, D. – Rippa, S. Data Dependent Triangulations for Piecewise Linear Interpolation.
IMA Journal of Numerical Analysis, Vol. 10 (1990), pp. 137 – 154.

[3] Kohout, J. Delaunay Triangulation in Parallel and Distributed Environment. Doctoral Thesis, Faculty
of Applied Sciences, University of West Bohemia in Pilsen, Czech Republic, 2005.

[4] Kohout, J. On Digital Image Representation by the Delaunay Triangulation. PSIVT 2007, December 17
– 19 2007, pp. 826-840.

[5] Ledoux, H. – Gold C. Interpolation as a tool for the modelling of threedimensional geoscientific

datasets. 4th ISPRS Workshop on Dynamic and Multi-dimensional GIS, 2005, pp. 79 – 84.

[6] Meyer, M. – Lee, H. – Barr, A. – Desbrun, M. Generalized Barycentric Coordinates on Irregular

Polygons, Journal of Graphic Tools 7, 2002, pp. 13 – 22.

[7] Su, D. – Willis, P. Image Interpolation by Pixel Level Data-Dependent Triangulation. Computer
Graphics Forum, Vol. 23 No. 2, June 2004, pp. 189 – 201.

[8] Sýkora, R. Komprese barevných digitálních obrazů s využitím triangulace. Bachelor thesis, Faculty of
Applied Sciences, University of West Bohemia in Pilsen, Czech Republic, 2008.

[9] Wang, Z. – Bovik, A.C. – Sheikh, H.R. – Simoncelli, E.P. Image Quality Assessment: From Error

Visibility to Structural Similarity, IEEE Transactions on Image Processing, vol. 13, no. 4, Apr. 2004, pp.
600 – 612.

[10] Weimer, H. – Warren, J. – Troutner, J. – Wiggins, W. – Shrout, J. Efficient Co-Triangulation of Large

Data Sets. IEEE Visualization 98, pp. 119 – 126, 1998.

[11] http://en.wikipedia.org/wiki/Cohen-Sutherland

Appendix 48/51

Appendix

• User manual
• Programmer’s manual
• Overview of appended material

Appendix 49/51

User manual

This section will provide brief information on how to use the Interpolator program, which
was created as a tool for testing of various interpolation methods. It requires Microsoft
.NET framework to run.

Figure I: The user interface of the Interpolator.

Figure I shows the user interface of the program. The main portion of the area is reserved
for visualization of the loaded image. Each of the tab pages above means one interpolation
method, or some additional visualization option, like visualization of the triangulation,
visualization of the Voronoi diagram etc. When a tab page is selected, the respective image
is rendered based on the loaded triangulation and presented.

To load a triangulation, use either the first icon on the tool strip menu (the “Open” icon) or
the same option in the “File” menu. A dialog for opening a file will appear. Select the
triangulation and open it.

The other two buttons on the tool strip menu are for saving either the image of the
currently selected tab page, or images in all the tab pages. Note that as the second option
needs to have all the images rendered, it can take some time. The last control on the tool
strip menu is for changing the resolution of the loaded triangulation. Note that it is
important to keep the same ration of width and height in order to retain Delaunay
properties of the triangulation (in case that you are using Delaunay triangulation). If it is
not kept, erroneous result might appear, especially in case of methods based on the
Voronoi diagram.

One additional option is accessible through the “File” menu, the “Open and run many…”.
This option allows you to load more triangulations at the same time. Upon selecting this
option, a dialog for opening multiple files will appear. Select all the triangulations you
want to process and open them. They will be processed by the six methods described in
this thesis, the resulting images and file containing the consumed times will be stored in

Appendix 50/51

the root directory of the program in separate directories, one for each of the triangulation
(having its name).

Programmer’s manual

The program was originally created by Ing. Josef Kohout PhD., the supervisor of this
thesis. He designed the application and implemented the basic visualization plug-ins, i.e.
the visualization of the loaded triangulation, points of the triangulation, the Gouraud
interpolation (bilinear interpolation using the scanline algorithm instead of barycentric
coordinates) etc.

This implies he also implemented most of the data structures used by the application, like
the Triangulation class, the PrjTriangulation class, Vertex and PrjVertex classes and the
Triangle class. The author of this thesis implemented these data structures: VoronoiD class
(for representation of the Voronoi diagram), the Vector class (for purposes of the
Zienkiewicz’s interpolation) and the Spline class (for the Coons patch method). All these
structures are in module TriInterpolationCore.cs.

Module IncorporatedInterpolations.cs consists of classes respective to individual
interpolation methods and other visualization techniques. Each tab page, mentioned in the
User manual, is bound to one of these classes. They are inherited from the abstract
TriInterpolationPlugin class (stored in its own module). These classes contain the
information, whether the given method works with the triangulation or the Voronoi
diagram and implement the Interpolate method. However, this method only does some
initializations of the bitmap and then calls appropriate method from the RenderUnit class.

The RenderUnit is stored in module RenderUnit.cs. It contains the interpolation algorithms
themselves. The interpolation methods take as an input the triangulation to be interpolated,
its size and an array of the bitmap data to be filled.

Overview of appended material

The appended DVD contains several directories with additional material. Each of them
contains a text file “readme.txt”, which explains how the data in that directory are
structured. These directories are:

• Additional software: programs used by the author for the experiments, but
implemented by someone else. These programs include:

o CompareImages – tool for image comparisons using the MSE, PSNR and
SSIM metrics. Author: Ing. Josef Kohout PhD.

o TriImgCompress – a tool for creating the triangulations from bitmap
images. Author: Ing. Josef Kohout PhD.

o TriImgCotriangulation – a tool for creating the co-triangulations from a
given bitmap image. Author: Ing. Josef Kohout PhD.

o TriImgAnalyzer – Multifunctional tool for extracting individual colour
components from images and reconstruction of images from given
components. Author: Bc. Radek Sýkora.

• Experiments: contains the data used for experiments and the results of these
experiments.

• Interpolator: contains the actual program implemented (partly, see the
Programmer’s manual) by the author of this thesis and its source codes.

Appendix 51/51

• Text: contains the text of this thesis as well as additional text directly related to its
topic written by the author of this thesis. Namely its technical reports for subjects
KIV/PRJ3 and KIV/PRJ5, which directly preceded the work done within the scope
of this thesis and a paper presented in CESCG 2008 conference by the author.

