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Abstract 
 
Morphing is a technique which transforms one object into another object. It can be used 
to simulate natural phenomena which involve some kind of shape transformation, or it 
can be used to produce completely artificial shape transformations used in computer 
games and movie industry. Alternatively, it can be viewed as a modeling technique 
which combines some existing shapes to obtain new shapes. 
 
This thesis is focused on morphing of objects given in boundary representation, namely 
triangular meshes. Triangular mesh is a “native” representation of graphical hardware, it 
is widely used and due to its piecewise linear nature it is easy to store, modify and 
render. 
 
The morphing technique is partially covered in professional animation tools. 
Particularly, the morphing of images has been successfully used in the movie industry 
to produce special effects. Also the 3d morphing of boundary representation is 
supported in some 3d animation tools. However, the technique is limited because it 
allows to morph between objects with the same connectivity. Therefore, it is mainly 
used with objects which are specially prepared for morphing, e.g., objects deformed by 
skeletal deformation or free-form deformation. Thus, a technique which handles meshes 
with arbitrary connectivities is needed. 
 
We approached morphing at several different levels. First, we focus on morphing 
between meshes with different connectivities. Here, we improved some aspects of a 
well established technique called topology merging. Next, we focus on a generalization 
of classical morphing – the multimorphing. We introduce an abstract space of shapes 
which is motivated by the affine space. We propose a new method for synthesis of new 
shapes and animations and analysis of existing shapes. Next, we focus on a post-
processing stage of deforming meshes animations. At this stage we show our 
achievements in normal vector computation and collision detection. Last but not least, 
we introduce core-increment morphing – a new 2d polygon morphing technique which 
is motivated by the process of growing. 
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Abstrakt 
Morfing je technika používaná pro transformaci tvaru jednoho objektu v druhý. Lze ji 
použít pro simulaci různých přírodních jevů, jejichž součástí je tvarová změna, nebo pro 
vytvoření zcela umělých animací pro počítačové hry a filmový průmysl. Morfing lze 
také chápat jako modelovací techniku, která umožňuje kombinovat existující tvary pro 
tvorbu nových tvarů. 
 
Tato práce je zaměřena na morfing objektů daných v hraniční reprezentaci, konkrétně 
na trojúhelníkové sítě. Trojúhelníková síť je často používaná po částech lineární 
aproximace povrchu, poměrně snadno se ukládá, upravuje a zobrazuje. Jedná se také o 
„nativní“ reprezentaci grafických karet. 
 
Morfing je podporován i v profesionálních animačních nástrojích. Zejména morfing 
obrázků je úspěšně používán ve filmovém průmyslu pro tvorbu speciálních efektů. 3d 
morfing objektů v hraniční reprezentaci je částečně podporován i v 3d animačních 
nástrojích, avšak omezuje se pouze na objekty se stejnou konektivitou. Je tedy zejména 
používán na speciálně předpřipravené objekty, např. objekty deformované skeletálními 
nebo free-form deformacemi. Je tedy zapotřebí metoda, která by dokázala morfovat 
objekty s libovolnou konektivitou. 
 
K problematice morfingu přistupujeme na několika různých úrovní. Nejdříve se 
zaměříme na morfing trojúhelníkových sítí s různou konektivitou. Zde jsme se snažili o 
zlepšení některých aspektů zavedené techniky topologického slučování. Dále se 
zaměříme na zobecnění klasického morfingu, tzv. multimorfing. Zde ukážeme prostor 
tvarů jakožto analogii afinního prostoru. Také ukážeme jak vytvářet nové tvary a 
analyzovat existující tvary. Dále se zaměříme na fázi post-procesingu animace 
deformujících se trojúhelníkových sítí. V této fázi se zabýváme výpočtem normálových 
vektorů a detekcí kolizí. V neposlední řadě se zaměříme na core-increment morfing – 
novou metodu 2d polygonálního morfingu, která je inspirovaná procesem růstu. 
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1. Introduction 
Almost every thing in the world changes its shape. Erosion, growth of plants or animals, 
metal forging, sculpting – all these processes and many others involve some kind of 
shape transformation. One of the techniques which helps to simulate the shape 
transformation is morphing. Morphing is a shape transformation which transforms one 
shape into another. It is essentially an interpolation between two shapes. Generally, the 
interpolation can be viewed as a tool which fills gaps between some discrete samples. 
Thus, morphing between an initial shape and a final shape is a continuous sequence of 
shapes which starts in the initial shape and ends in the final shape. Clearly, the gap 
between the samples can be filled in many different ways. Therefore, additional 
interpolation constrains are usually defined. The interpolation constrain usually depends 
on the application domain. 
 
There are two main areas where the shape interpolation can be used – an animation and 
a modeling. In the animation, the morphing is used to produce a sequence of shapes. 
Animations are used, e.g., in scientific visualization, education, entertainment industry, 
etc. Especially large field, where the computer animation is used, is the movie industry. 
In the modeling, the morphing is used to produce new shapes by combining some 
existing shapes. The advantage is that the new shapes do not have to be modeled from 
scratch; instead the user specifies shares of input shapes, which express how much the 
given shape contributes to the desired final shape. 
 
The morphing technique has been extensively studied in morphing of 2d raster images 
which has been successfully used in the movie industry. The problem of 2d morphing is 
that it is not possible to change the camera position, environment properties (e.g., 
lighting, shadows) or material properties during the morphing. A 3d morphing goes one 
step further – instead of interpolation of images of objects, it interpolates the objects and 
the images are produced (if needed) by rendering the intermediate 3d objects. The 2d 
techniques are unable to handle correctly visibility, shadows or highlights, because they 
do not work with a 3d representation of objects. On the other hand, the 3d techniques 
allow capturing changes of viewing and lighting parameters during morphing.  
 
The 3d morphing is partially covered in professional animation tools. It appears under 
different names in different products (e.g., Blend shapes in Maya, Morph targets in 3ds 
max, Posemixer in Cinema4D, Morph Mixer in Lightwave). A common limitation of 
these techniques is that the morphed objects are required to have the same connectivity, 
i.e., the same number of vertices and the same number of faces. This limitation avoids 
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use of morphing on arbitrary objects. Clearly, morphing among arbitrary objects is a hot 
topic in the research. 
 
In this thesis we focused on objects given in boundary representation. The reason is that 
the boundary representation is very widespread; it is a “native” representation of GPU 
and it is easy to store, modify and render. However, some of our techniques 
(multimorphing) are general enough so that they can be used with another 
representation as well. 

1.1. Contribution of the thesis 
Morphing can be viewed as a part of an animation production system. Such system 
generally consists of three main blocks: 
 

• objects acquisition (e.g., by scanning or modeling) and preprocessing 
• animation generation 
• animation rendering and post-processing 

 
The contribution of this thesis touches all three blocks of the animation production 
system. The preprocessing of the input data is done by a topology merging technique 
(Chapter 4). It is a well established technique used by several authors [Ale00b, Ken92, 
Kan97]. It is used to convert meshes with different connectivities into meshes with a 
shared connectivity. It is also a key step to overcome the limitation of commercial 
applications which are not able to morph between meshes with different connectivities. 
We describe algorithmic aspects of this technique and we present our original 
modification. 
 
The result of the topology merging can be imported into a professional animation tool 
and the rest of the animation production can be done there. Or, our second contribution 
– the multimorphing (Chapter 5) – can be used. The multimorphing operates in the 
animation generation stage. The inputs of multimorphing are meshes with the same 
connectivity. It offers some new ways how to generate shapes and animations. It also 
shows how to “invert” morphing so that it can be used for shape analysis instead of the 
usual shape synthesis. While in the morphing an intermediate shape is computed by 
specifying weights of the input shapes, in the “inverted” morphing the weights of an 
unknown shape are computed.  
 
The last block of the animation system is touched in Chapter 6 and Chapter 7. Chapter 6 
is focused on fast computation of normal vectors of deforming meshes. The normal 
vectors are important, e.g., in rendering, point containment test, collision tests, etc. 
Therefore a fast method for normal vector computation is needed. Chapter 7 deals with 
continuous collision detection of deforming meshes. We focused on fast and robust 
elementary collision detection tests which include point/plane intersection test and 
line/line intersection test. 
 
Another contribution of this thesis is a new morphing technique called core-increment 
morphing. This new technique is focused on morphing of very complicated shapes. The 
reason why we paid attention to a new morphing technique is that a lot of methods are 
able to morph quite similar shapes. However, morphing between highly dissimilar 
shapes is required as well, especially in the entertainment industry or in the art. The 
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core-increment technique is motivated by a process of growing; therefore it is suitable 
for growing like morphing animations. 

1.2. Organization of the thesis 
In Chapter 2 we will introduce a notation which will be used throughout the thesis. It 
also contains a description of common terms and some definitions. The definitions are 
presented to fit the context of this thesis, for more general definitions the reader must 
refer to a corresponding textbook (e.g., [Ebe04]).  
 
Chapter 3 reviews a related work in the area of morphing in general. It presents 
taxonomy of morphing techniques and it describes common techniques which are 
shared among different morphing approaches. It briefly reviews the most important 
approaches in morphing of various object representations. It focuses on morphing of 
boundary representation in more detail since it is the main topic of this thesis. 
 
The following chapters (4-8) contain a description of our contribution. Since the 
contribution cover different areas of morphing the chapters are organized so that they 
are self-contained. Each section contains an introduction, description of related work, 
description of our contribution and directions and analysis for a future research. 
 
Chapter 4 contains a description of algorithmic technique called topology merging. 
Chapter 5 describes multimorphing – a tool for shape synthesis and analysis. Chapter 6 
discusses fast computation of normal vectors and Chapter 7 shows elementary 
predicates for continuous collision detection of deformable meshes. Chapter 8 
introduces core-increment morphing – a new technique for morphing of highly 
dissimilar shapes. 
 
Appendixes A – C contain some additional description of a mathematical apparatus 
used in the thesis. It is in a separate section so that a reader is not overloaded with 
details when reading the main part of the thesis. However, the equations presented there 
can be useful when implementing techniques described in the thesis.  
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2. Notation, terms and definitions 
In this section we will describe basic terms and definitions which will be repeatedly 
used throughout the thesis. If a term appears in a limited scope only it is defined in the 
text to facilitate the reading. 

2.1. Mathematical expressions 
In the mathematical expressions we will use following notation: 
 
Example Notation Use 
V small boldfaced letters vectors 
A capital boldfaced letters points, sets 
R small italic letters scalar values 
Φ capital Greek letters mappings 
|A|  cardinality of the set A 
N small normal font letters integer values, number of 

elements, loop variables 

2.2. Terms 
A 3d entity will be denoted as an object. The term shape will be understood as a 
property of an object (i.e., an object has a shape). In some cases, especially when 
speaking in general about any 2d or 3d entity, the term shape will be used 
interchangeably with the term object. 
 
A triangular mesh will be shortly denoted as a mesh. The mesh consists of vertices, 
edges and faces, where the faces are the triangles of the mesh. The way how vertices are 
connected by edges will be denoted as connectivity, the set of vertices will be referred 
to as geometry.  
 
We will say that an object is bounded if it has a boundary. On the other hand, the term 
unbounded object will refer to an object which is closed and it does not have any holes 
in its surface. 
 
An animation of a shape transformation between two or multiple shapes will be referred 
to as a morphing transition . In the context of morphing between two shapes we will 
use terms a source shape and a target shape to refer to the initial and the final shape of 
the morphing transition, respectively. Generally, the shapes which we want to morph 
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will be denoted as input shapes. The in-between shapes generated by morphing will be 
denoted intermediate shapes. In the context of mesh representation, we will use terms 
as source mesh, target mesh, input meshes or intermediate meshes to refer to shapes 
represented as meshes. Similarly, the term source vertex will refer to a vertex of the 
source mesh; the term target face will refer to a face of the target mesh, etc. In 
symbolical expressions, the elements regarding the source shape will be denoted with 
the number zero in the upper index (e.g., 0

iV  refers to an i-th vertex of the source mesh) 
and the elements regarding the target shape will be denoted with the number one in the 
upper index (e.g., 1jf  refers to a j-th face of the target mesh). 

 
A value which controls an amount of morphing between two shapes will be called a 
transition parameter (TP) and it will be denoted t. The values of the transition 
parameter are usually restricted to the canonical interval <0; 1>, i.e., for t=0 the object 
has the shape of the source object and for t=1 the object has the shape of the target 
object. 

2.3. Definitions 
Vector space consists of a set of vectors with two operations: addition and scalar 
multiplication. The vector space is closed under these two operations. There is one 
important element called zero vector o with the properties that a.o = o for all scalars a 
and o + v = v for all vectors v. In the text we will denote vectors as lower case bold 
letters. 
 
Affine space consists of a set of points and an associated vector space. It has two 
operations: subtraction of two points yielding a vector in the associated vector space and 
a point and a vector addition yielding another point in the affine space. In the text we 
will denote points as upper-case bold letter. 
 
Linear combination is an expression in the form: 
 

∑
=

n

1i
ii xa , 

 
where ai are the coefficients of the linear combination, xi are element which are being 
combined with weights ai, n is the number of elements in the linear combination. 
 
Affine combination is a special case of a linear combination where the coefficients ai 
sum up to one (so called “sum-up-to-one condition”), i.e.: 
 

1
n

1i
i =∑

=

a . 

 
Convex combination is a special case of an affine combination where all coefficients ai 
are positive. 
 
Barycentric coordinates express the position of a point with respect to some simplex, 
i.e., they express the position of a point P as an affine combination of vertices V i of a 
simplex. For example, for a simplex in 2d (a triangle), the point P can be expressed as 
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P = tV1 + uV2 + wV3, where t, u, w are barycentric coordinates and V1, V2, V3 are 
vertices of the simplex. More, t, u, w are positive and t+ u+ w = 1 for a point inside the 
triangle, i.e., the point P can be expressed by a convex combination of vertices of the 
simplex with weights given by barycentric coordinates. 
 
Bijection is a function which maps values from a set A to a set B so that for each 
element of B there is exactly one element in A. Also, the bijection defines a one-to-one 
correspondence between sets A and B. 
 
Genus is a number of handles of an object. Equivalently, the genus is the maximum 
number of cuts which does not disconnect an object. For instance, a sphere has the 
genus 0, a torus has the genus 1. 
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3. Related Work 
In this chapter we will review a related work in the area of morphing between two 
objects. In the sections 3.1 and 3.2 we present taxonomy of morphing approaches. The 
sections 3.4 – 3.6 contain a brief overview of areas where the morphing is extensively 
researched. The Section 3.7 describes the related work in the area of mesh morphing. It 
is more detailed since the mesh morphing is the main topic of this thesis. 

3.1. Data representation 
Approaches to morphing can be divided according to a dimension (usually 2d and 3d) 
or a representation of input data. One rough division of data representations in computer 
graphics is a volume representation and a boundary representation. Additionally, the 
data representation can be further divided according to the raster/vector nature of the 
data. The raster representation represents an object by discrete samples (e.g., pixels or 
voxels) whereas the vector representation represents an object by lines, curves, patches 
or analytical surfaces. 
 
The volume representation describes an object by enumerating the volume it occupies. 
It is usually represented by an analytic function or 3d grid of discrete samples. The 
advantage of this representation is that it defines also an interior of objects. On the other 
hand, the boundary representation describes just a boundary of an object. Examples are 
polygons (2d), triangular meshes (3d) or parametric surfaces (3d). The advantage of the 
boundary representation is that it is usually more economical (from the storage point of 
view) than volume representation because it enumerates just the boundary of the object 
and not the entire volume. On the other hand, since the interior is not defined, the 
boundary representation may cause problems during an object deformation. 
 
Advantages and disadvantages of the object representation project to the morphing 
approaches as well. The morphing is essentially a deformation; therefore, the morphing 
of a volume representation must handle an interior of objects, too. For instance, when 
morphing between objects represented as a 3d grid of voxels, one has to interpolate all 
voxels comprising the object volume. On the other hand, in the morphing of a boundary 
representation it is enough to handle only a boundary (e.g., a triangular mesh) of an 
object. By a deformation of the boundary we must “pretend” a deformation of a volume 
enclosed by the boundary. The problem is that a volume in the boundary representation 
is not properly defined. A typical consequence of this problem is a self-intersection of 
deformed objects in the boundary representation. 
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Despite the problems with deformation of boundary representation, the boundary 
representation is widespread. It is mainly because it is easier to capture just the 
boundary than an entire volume (scanning, modeling). Therefore, in the morphing more 
attention has been given to algorithms working with boundary representation.  
 
A comprehensive description of different morphing approaches with respect to the input 
data representation was given by Lazarus and Verroust in [Laz98]. Overview of the 
most common approaches was also given [Par05]. In this section we will briefly 
describe the most important methods. Methods which we have developed are described 
in more detail in later sections. 

3.2. Paradigms 
Another possible classification of the morphing approaches is a classification according 
to an algorithmic technique used to compute the morphing. In computational geometry 
and algorithmic, well known paradigms are divide-and-conquer, sweep line or sweep 
plane, incremental construction, brute force solution, etc. In the morphing, we identified 
the following ideas which are common for various approaches: 
 

• physical model, 
• decomposition, 
• space-time, 
• alternative representation, 
• dimension reduction. 

 
The physical model paradigm models the shape transformation as some physical 
process which constrains the deformation. For instance, in [Sed93a] the input polygons 
were modeled as a piece of wire and the shape transformation is done so that the work 
needed to bend and stretch the wires is minimized. Din et al. [Din05] model the 
morphing problem as heat propagation from the source to the target contour. The 
decomposition paradigm decouples a possibly complicated task of morphing into 
several less complicated morphing problems. For instance, Shapira and Rappoport 
[Sha95] decompose the input polygons into star-shaped polygons which are interpolated 
independently. We also use the decomposition paradigm in our core increment 
morphing approach (Chapter 8). We decouple a complicated task of morphing of two 
polygons into several less complicated tasks of morphing of polylines. The space-time 
paradigm transforms the dynamic morphing problem into a static problem in a higher 
dimension. Turk and O’Brien [Tur99] placed 2d polygons in a 3d space and computed a 
smooth 3d surface which interpolates the input polygons. The 3d surface is then cut by a 
plane to obtain intermediate shapes. An alternative representation paradigm is used to 
transform the morphing in some representation (e.g., 3d grid) to another representation 
(e.g., Fourier domain) where it might be easier to solve the morphing problem. The 
dimension reduction paradigm was used, e.g., in [Kor98], where the input 3d meshes 
were sliced to obtain 2d cross-sections. The cross-sections were interpolated using some 
polygon morphing approach and the interpolated cross-sections were then merged to 
obtain intermediate 3d shape. 
 
In the subsections 3.4-3.6 we will describe a related work in image morphing (2d raster 
representation), volume morphing, polygon morphing and boundary representation 
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morphing. When describing the approaches, when applicable, we will indicate 
paradigms used to solve the morphing. 

3.3. Interpolation constrains 
Morphing is essentially an interpolation. In general, the interpolation takes some 
discrete samples and computes a function which fits those samples. In practice, it is 
usually used to replace discrete samples by a continuous function. There are many 
different ways how to interpolate data, e.g., simple nearest-neighbor interpolation, 
polynomial interpolation, radial basis functions, etc. Clearly, the same holds for 
morphing.  
 
The transformation between two shapes is not unique. Theoretically there is a big 
number of possible transformations, e.g., a degeneration of the source object into one 
single point followed by an evolution of the target object or disintegration of the source 
object to individual faces and transformation of the individual faces into the shape of 
the target object. The problem is that such a kind of transformation is usually not very 
visually plausible and so we are looking for some more attractive shape transformations. 
In [Gom99], there are given some principles for a good morphing. These include: 
 

• topology preservation, 
• feature preservation, 
• rigidity preservation, 
• smoothness, 
• monotonicity. 

 
Topology preservation means to preserve topology of the source and the target object, 
e.g., no holes should suddenly appear during the morphing transition when the source 
and the target objects are topologically equivalent. Feature preservation refers to the 
preservation of important features, which are present in the source as well as in the 
target object during the morphing transition, e.g., when morphing between two animals, 
legs, heads, tails, etc. should remain aligned during the transition. Rigidity preservation 
refers to the fact that sometimes a rigid transformation (rotation, translation) is preferred 
to a soft-body transformation (scaling, shearing, etc.). Smoothness means that the shape 
transformation should be smooth, avoiding discontinuities. Monotonicity refers to a 
monotone change of some parameters, e.g., angles should change monotonically 
avoiding so a local self-intersection. It is important that these principles are strongly 
application dependent, e.g., in special-effects industry an artificial shape transformation 
violating some of theses principles is simply more impressive that some completely 
physically correct transformation, which on the other side would be required in some 
technical applications. 

3.4. Image morphing 
A morphing of 2d raster images is probably the oldest form of morphing in computer 
graphics. It has been successfully used in the entertainment industry to produce special 
effects and it is supported by many professional image and video processing tools.  
 
The original method was described by Beier and Neely [Bei92]. Their approach uses the 
physical model paradigm – they model the raster image as a field which is deformed by 
corresponding line segments. The line segments are used to warp the source and the 
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target image to produce two intermediate images. The intermediate images are then 
blended to produce an in-between image. The blending is usually some interpolation of 
pixel values of the warped images. 
 
Since the 2d raster image is some projection of a real 3d scene, the intermediate stages 
of morphing of 2d image need not correspond to morphing of a real 3d scene. For 
instance, when morphing between two shapes with highly specular material. In the 2d 
morphing, the specular highlights are somehow interpolated between the source image 
and the final image. On the other hand in the 3d morphing we compute for each 
intermediate stage of the morphing a complete 3d representation of a shape. Then, the 
intermediate shape is rendered using some lighting model and the specular highlights 
are represented exactly according to the 3d shape, lights and a camera position. 
Additionally, using 3d representation of the intermediate shape we can change a 
position of camera during the morphing transition, so that it is possible to observe the 
morphing from different points of view, which is of course not possible in the case of 2d 
image morphing, where we have just a fixed view of some 3d scene. 

3.5. Volume morphing 
The idea of Beier and Neely [Bei92] was generalized for 3d grids by Lerios et al. 
[Ler95]. In their approach, a user delineates corresponding features using pairs of 
feature elements (points, lines, rectangles and boxes). During morphing, the 
corresponding feature elements are interpolated. Together with a feature element a 
certain neighborhood (i.e., voxels) is warped. Similarly to [Bei92] the warped grids are 
blended to produce an in-between grid. Other approaches incorporate the alternative 
representation paradigm – they interpolate 3d grids in Fourier [Hug92] or in wavelet 
[He94] domain, which allows scheduled interpolation of different frequency bands. 
 
Another interesting approach is the so-called space-time morphing. It is usually 
connected with the implicit representation [Pas04, Tur99] but also with tetrahedral 
meshes [Din05]. The basic idea is that the space in which the input objects (e.g., a 2d 
space for polygons or a 3d space for meshes) are defined is extended with one more 
dimension. The added dimension can be considered a time, thus the new space is called 
space-time. For example a 2d point (x, y) is expressed in space-time as a triple (x, y, t). 
The basic idea is to interpolate n-dimensional input objects by an (n+1)-dimensional 
smooth surface. The cross-sections of the interpolating surface define an intermediate 
shape. The advantage of this method is that is handles the topological transformation, 
e.g., genus change or morphing between sets of disconnected objects. The topological 
transformation is “for free” given by the interpolation method. On the other hand, the 
topological transformation is usually hard to control because it is automatically solved 
by an underlying mathematical apparatus. 

3.6. Polygon morphing 
The morphing of polygons is usually divided into two parts – a computation of 
correspondence between vertices of input polygons and a computation of trajectories of 
corresponding vertices (the so-called vertex path problem). Note that the source and the 
target polygon need not have the same number of vertices, so some new vertices have to 
be added. 
 
The computation of the correspondence was addressed by Sedeberg and Greenwood in 
[Sed93a]. They incorporated the physical model paradigm. The polygon edges are 
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modeled as wires with some material properties (modulus of elasticity, stretching 
stiffness constant). Then, the shape transformation involves some stretching and 
bending work. The goal is to establish such a correspondence, that the work needed to 
transform the source shape to the target shape is minimized. This algorithm performs 
well if the input polygons are similar, it can also handle cases when the first shape is a 
rotated or translated copy of the other shape. It has problems with highly dissimilar 
shapes, where intersections usually occur. 
 
The vertex path problem was addressed by Sedeberg et al. in [Sed93b]. They used the 
alternative representation paradigm; they represent a polygon in terms of edge lengths 
and angles (so-called edge-angle representation [Gom99]) instead of the absolute 
vertex positions. The advantage of the edge-angle representation is that it is invariant to 
rigid transformation. The absolute vertex coordinates are extracted from interpolated 
intrinsic parameters. This interpolation scheme avoids edge collapsing and non-
monotonic angle changes. This technique was used for generating in-betweens for the 
animation based on keyframes. The concept of interpolation of intrinsic parameters was 
also further used for morphing of planar triangulations in [Sur01, Sur04]. 
 
Another interesting approach to 2d morphing was introduced in [Sha95]. It combines 
the divide and conquer paradigm with alternative representation paradigm. It first 
decomposes the source and the target polygon into star-shaped polygons. Then the 
skeletons of the decompositions are constructed. The skeleton is a planar graph which 
joins star-points of neighboring star-shaped polygons, i.e., it is a dual graph to the star-
shaped decomposition. Important is that the skeletons of the source and the target 
polygon have to be isomorphic, which requires an isomorphic star-shaped 
decomposition. Then, the interior and the boundary of the polygon can be expressed 
relatively to the skeleton. During the morphing, the skeletons are interpolated and the 
intermediate shapes are reconstructed from the interpolated skeletons. The difference 
between this approach and previous approaches [Sed93a, Sed93b] is that this approach 
takes into consideration also the interior of the polygon and not only the boundary. 
 
Alexa et al. [Ale00c] introduced an approach called as-rigid-as-possible shape 
interpolation. The basic idea is to compute a compatible triangulation of input polygons. 
The compatible triangulation is a dissection of the source and the target polygon so that 
the triangulations are isomorphic, i.e., we have one-to-one correspondence between 
triangles in the source triangulation and triangles in the target triangulation. Then, for 
each triangle an affine transformation which transforms a source triangle to the target 
triangle is computed. By interpolation of the affine transformation a source triangle is 
transformed to the target triangle. The transformation of one triangle influences the 
transformation of adjacent triangles as well; therefore the transformations for the whole 
triangulations are computed in a least square sense. Similar approaches were also 
described by Surazhsky and Gotsman in [Sur01, Sur04]. A challenging issue of 
approaches based on compatible triangulation is an extension of this idea in 3d, where it 
requires computing compatible tetrahedronization of input 3d objects.  
 
Another approach is called 2d merging [Gom99]. It is a “generalization” of an 
algorithm which was originally developed for 3d meshes, e.g., [Ken92, Ale00b]. Input 
polygons are mapped to the unit disc. Then both mappings are merged, the vertices of 
the first polygon are mapped on the second polygon and vice versa using an inverse 
mapping. This results in polygons with the same number of vertices. A linear 
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interpolation is used to obtain the resulting morphing transition. This technique is 
suitable for convex, star-shaped or slightly non-convex polygons. For highly non-
convex polygons (spirals etc.) it produces self-intersections during the morphing 
transition. 
 
Johnstone and Wu [Joh02] described an approach to morph two separate polygons into 
one. The 2-to-1 morphing is a fundamental case in morphing between different numbers 
of polygons. The basic idea is to merge the two polygons into one and then use some 1-
to-1 polygon morphing technique to morph between the merged polygon and a target 
polygon. The key step is the merging. During the merging the two polygons are 
morphed towards each other until they meet in one point. Then a curve evolution 
technique is used to morph the two polygons connected in some point into a more 
natural shape which is later morphed towards the target shape. 

3.7. Mesh morphing 
In this section we will review the core idea of mesh morphing. We will not present 
method by method, instead, we identified subproblems which are common for many 
methods. These subproblems are – a correspondence computation, a remeshing and an 
interpolation. We will describe each subproblem in a separate section. This section will 
be more detailed than the previous sections since the mesh morphing is the main topic 
of this thesis. 
 
A triangular mesh is probably the most widespread boundary representation. It is 
supported by a graphical hardware and standard libraries (e.g., OpenGL, DirectX) and it 
is easy to store and modify. Therefore, a lot of attention has been given to morphing of 
triangular meshes. In the further text we will denote a triangular mesh shortly as a mesh. 

3.7.1. Correspondence computation 
Correspondence computation is further divided into two steps – a feature 
correspondence and a vertex correspondence. A feature correspondence is usually 
established by a user. It involves a selection of corresponding features, e.g., when 
morphing between human faces, a user usually selects eyes, nose, mouth and ears on 
both input objects. This step ensures that corresponding features remain aligned during 
a morphing transition, i.e., the eyes of the first object transform to the eyes of the other 
object, etc. The feature correspondence is usually established by specifying several 
corresponding vertices (Figure 3.1a). Sometimes, the feature correspondence is not 
established by a user but it is derived from a mutual position and an orientation of the 
input objects. 
 
During the mesh morphing we only change the vertex positions, i.e., we do not modify 
the connectivity. Therefore, it is necessary to compute a correspondence between 
vertices, i.e., a vertex correspondence, which is guided by the feature correspondence. 
Formally, we need a map Ψ: V0→V1, where V0 and V1 are sets of the vertices of the 
source mesh and the target mesh respectively. The map Ψ represents a correspondence 
between vertices 0

iV  and 1
jV , i=1, …, m, j=1,…, n. It is required that the map Ψ is 

bijective. The main problem here is that the source and the target meshes generally do 
not have the same connectivity, they may even have a different number of vertices (m ≠ 
n), and so it is not possible to establish a bijective map. Instead, two independent maps 
Ψ0:V

0→P and Ψ1:V
1→Q are computed, which are later merged to compute the map Ψ. 
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The map Ψ0 represents a correspondence between vertices 0
iV , i=1, …, m of the source 

mesh and generally some places Pi on the surface of the target mesh (i.e., a vertex-place 
correspondence), analogously, the map Ψ1 represents a correspondence between 
vertices 1

jV , j=1, …, n of the target mesh and generally some places Qj on the surface of 

the source mesh (Figure 3.1b). Figure 3.1c) shows an example of vertex-vertex 
correspondence which is computed by merging Ψ0 and Ψ1 (see Section 4). 

Figure 3.1: a) feature correspondence, b) example of a vertex-place correspondence, c) example of a 
vertex-vertex correspondence. 

Technically, the vertex correspondence is established by computing a parametrization 
of input meshes. The parametrization is a mapping Π: S→D of a 3d surface S to a 2d 
parametric domain D. The parametric domain D is chosen according to the topology of 
the input shapes. For shapes topologically equivalent1 to the unit sphere (e.g., 
unbounded genus 0 meshes), the surface of the unit sphere is used as a parametric 
domain, for shapes topologically equivalent to the unit disc (e.g., bounded meshes) the 
unit disc is used as a parametric domain. A mapping to a planar parametric domain is 
called planar parametrization; a mapping to spherical parametric domain is called 
spherical parametrization. Parametric domains for objects with genus higher than one 
are constructed by adding an appropriate number of handles to the unit sphere, e.g., by 
adding one handle to the sphere a torus is obtained, which can be used as a parametric 
domain for genus one objects. In this work we will focus on meshes topologically 
equivalent to the disc and to the sphere, i.e., we will consider planar and spherical 
parametrizations. In the case of the planar parametrization edges of the mesh map to 2d 
line segments and faces map to 2d triangles. In the case of the spherical parametrization 
the edges of the mesh map to arcs2, the faces of the mesh map to spherical triangles. In 
the further text, we will not distinguish between the planar and the spherical 
parametrization unless necessary. Many operations are common for both types of 
parametrization3; the difference is only in fundamental geometrical computations – e.g., 
point-in-triangle test, edge-edge intersection, etc. A description of the fundamental 
spherical geometric operations is in the Appendix A.  
 

                                                 
1 In simple terms, topological equivalence of two objects means that one can be deformed to the other 
only by twisting or stretching but without tearing or cutting. 
2 These arcs are always parts of great circles, i.e., they are the shortest connection between two points on 
a surface of a sphere. 
3 Note that a point position in 3d can be expressed in spherical coordinates which are essentially three 
dimensional but since the parametrized points lie on the surface of the unit sphere, they can be 
represented just by 2 parameters, which makes the spherical parametric domain similar to the planar 
parametric domain. 

 
a) b) c) 
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A mesh parametrization is computed by mapping its vertices V i to the parametric 
domain. A vertex V i mapped to the parametric domain will be denoted Π(V i). Many 
methods for parametrization computation exist. Kent et al. [Ken92] used a spherical 
parametrization. They considered only star-shaped meshes. Star-shaped mesh is such a 
mesh where at least one interior point exists (so-called star-point) from which all mesh 
vertices are visible. The term visibility means here that the line segment connecting the 
star-point and a vertex lies entirely inside the polygon. A subset of star-shaped objects 
are, e.g., convex objects. A spherical parametrization of star-shaped meshes is 
computed by projecting the vertices of the mesh to a unit sphere. The vertices of the 
mesh are projected to the unit sphere using a star-point4. Alexa [Ale00b] used the 
spherical parametrization too but he was able to process general genus 0 meshes. He 
proposed a relaxation scheme which starts with spherical projection and it is further 
optimized to obtain a valid parametrization. Additionally, he warped the 
parametrization according to a feature correspondence in order to align corresponding 
features. In the work of Zockler et al. [Zoc00] the input shapes are dissected into 
patches which are parametrized independently. The dissection is based on a feature 
correspondence. 
 
Whereas the mapping Π: S→D is usually computed using some algorithm, the inverse 
mapping Π-1: D→S of points from a parametric domain to points of a 3d surface is 
computed using barycentric coordinates. Each point Q∈D of the parametrization can be 
expressed by barycentric coordinates u, v, w with respect to some triangle Π(A), Π(B), 
Π(C) in which the point Q lies. Note that A, B, C are vertices of the 3d surface. Then 
the coordinates of the point Q on the 3d surface are computed as: 
 

Π-1(Q) = u.Π(A) + v.Π(B) + w.Π(C), u + v + w = 1 (3.1) 

 
As some steps of the mesh morphing are done in the parametric domain we need the 
inverse mapping to “project” vertices and edges computed in the parametric domain 
back to the 3d mesh. The inverse mapping is also the core idea behind remeshing using 
a parametrization [Mic01].  
 
The parametrization is not only useful in mesh morphing but also in texture mapping, 
interactive 3d painting, remeshing, geometry processing, etc. In the mesh morphing it is 
important that the input meshes are mapped to a common parametric domain. This 
implies a restriction that both meshes have to be topologically equivalent. The key 
problem of morphing between shapes with different topology (e.g., a sphere to a torus) 
is a discontinuity during the change of topology. 
 
To compute a vertex-place correspondence, the parametrizations must be overlaid, i.e., 
the parametrizations are put each over other. If a parametric domain is a unit disc, the 
discs are moved so that their centers coincide. Analogously, if a parametric domain is a 
unit sphere, the spherical parametrizations are overlaid by moving spheres so that their 
center coincide (Figure 3.2a). First, we will describe how to compute the vertex-place 
correspondence for the vertices of the source mesh. Each vertex Π )( 0

iV  of the 

parametrization of the source mesh lies in some triangle Π )( 1
jf of the parametrization of 

                                                 
4 If the mesh is translated so that the star-point is in an origin of a coordinate system, then the projection 
is computed simply by normalization of vertex positions. 
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the target mesh. In the case of a planar parametrization, it can be checked by a standard 
point-in-triangle test; in the case of spherical parametrization, a specialized point-in-
spherical-triangle test must be used (see Appendix A). The position of the vertex 
Π )( 0

iV  is expressed by barycentric coordinates u, v, w with respect to the triangle 

Π )( 1
jf 5. The inverse mapping (Eq. 3.1) is used to compute the corresponding place of 

the vertex 0
iV  on the surface of the target, i.e.: 

 
CBAP ...1

i wvu ++= , (3.2) 

 
where the point 1

iP  is a point on the surface of the target mesh which corresponds to the 

vertex 0
iV  of the source mesh, A, B, C are the vertices of the triangle 1

jf . The situation 

is also depicted in Figure 3.2. There is a vertex Π )( 0
iV which lies inside the triangle 

Π )( 1
jf  formed by the vertices A, B, C. 

 
In a similar way, corresponding places for vertices of the target mesh are computed. 
Each vertex Π )( 1

kV  of the parametrization of the target mesh lies in some triangle 

Π )( 0
lf of the parametrization of the source mesh. Again, barycentric coordinates of the 

vertex Π )( 1
kV  are computed with the respect to the triangle Π )( 0

lf , the barycentric 
coordinates computed in the parametric domain are used to compute a corresponding 
place 0

kP  of the vertex 1
kV on the surface of the source mesh. 

 
Algorithmically, the vertex-place correspondence computation is a point location 
problem. For each vertex Π(V) of one mesh we have to determine a triangle Π(f) of the 
other mesh in which the vertex Π(V) lies. Many algorithms for point location in a planar 
subdivision exist. Note that even for a spherical parametrization the point location is 
possible, because vertices mapped to the surface of a sphere always lie in some 
spherical triangle. Also note that in the case of spherical parametrization almost the 
same algorithms as in the planar case can be used, it is only necessary to change some 
elementary predicates – e.g., a point-in-planar-triangle test replace by a 
point-in-spherical-triangle test, an edge-edge intersection replace by an arc-arc 
intersection, etc. A detailed description of the point-in-spherical-triangle test and the 
arc-arc intersection test is in the Appendix A. 
 

                                                 
5 The computation of barycentric coordinates of a point with respect to a spherical triangle is described in 
the Appendix A. 
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Figure 3.2: a) an overlying of the source parametrization (top) and the target parametrization (bottom), b) 
a detail of the overlaying planar parametrization, the red triangulation is the parametrization of the source 
mesh and the green triangulation is the parametrization of the target mesh. 

3.7.2. Remeshing 
After the vertex-place correspondence is computed, it is not possible to interpolate 
between input meshes yet. To be able to interpolate between the input meshes, a 
correspondence between vertices (i.e., a vertex-vertex correspondence) must be 
computed. Since the input meshes have a different number of vertices, it is not possible 
to compute one-to-one correspondence between the vertices of the input meshes. 
Therefore, the input meshes must be refined in order to be able to compute one-to-one 
correspondence. 
 
Hence, a general idea of the remeshing step is to construct a new mesh (called 
supermesh) by refining one of the input meshes so that it is possible to transform the 
new mesh to the shape of the source mesh as well as to the shape of the target mesh. Of 
course, the remeshing takes into consideration the previously established vertex-place 
correspondence. Several approaches to compute the supermesh exist. Michikawa 
[Mic01] used a subdivision scheme to remesh both input meshes. Since the subdivision 
scheme is the same for both input meshes it results in two meshes with the same 
connectivity. Kraewoy and Scheffer [Kra04] remeshed the target mesh with the 
connectivity of the source mesh and later they optimized both the source and the target 
mesh so that the new mesh represents sufficiently the shape of the source mesh as well 
as the shape of the target mesh. Kent et al. [Ken92] remeshed the target shape by 
inserting edges of the source mesh. This approach is described in more detail in the 
Section 4 together with our original modifications. 

3.7.3. Interpolation 
In the previous step a new mesh which is possible to transform to the shape of the 
source mesh as well as to the shape of the target mesh was constructed. The morphing 
transition is done by interpolating the vertex positions. The simplest way how to 
interpolate between two vertex positions is a linear interpolation, i.e. the vertices travel 
along a line connecting corresponding vertices. This simple approach is used in the 
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majority of morphing approaches.  As stated in [Ale01a], the linear interpolation works 
well for morphing of objects which are rather similar and are oriented in a similar way. 
For objects with different shapes the linear vertex interpolation may introduce a self-
intersection or some sort of collapsing, which is usually not a very plausible effect. 
 
An interpolation of higher degree is also possible. It yields a smoother vertex path, but 
on the other side it requires adding some information, e.g., in the form of tangents for 
Hermite interpolation, control vertices for Bézier interpolation, etc. For instance, 
Michikawa et al. [Mic01] suggest using vertex normals as tangents for Hermite 
interpolation. Gregory et al. [Gre99] suggest specifying tangent vectors for some vertex 
paths. The modified trajectory is then spread with some falloff to the neighboring 
vertices. 
 
Besides the methods which interpolate between corresponding vertices, there are so-
called intrinsic interpolation methods which take into account also intrinsic shape 
parameters. A basic idea of intrinsic interpolation methods is to represent a mesh in 
some alternative representation, then interpolate the alternative representation and 
convert the interpolated form back to a mesh representation to obtain an intermediate 
shape. The alternative representation must unambiguously represent the original mesh. 
The interpolation of an alternative representation is usually easier or it has better results 
than direct interpolation of original representations. Methods based on the intrinsic 
interpolation require a forward transformation from the mesh representation to an 
intrinsic representation and a backward transformation which transforms an interpolated 
intrinsic representation back to the original mesh representation. The backward 
transformation is usually harder to compute. In 2d, examples of intrinsic representation 
are the edge-angle representation [Sed93b] or star skeleton representation [Sha95]. In 
3d we will briefly describe Laplacian representation and an analogy of edge-angle 
representation for 3d meshes. 
 
In the Laplacian representation a vertex V i is represented as follows. First a center of 
mass Ci of one-ring neighborhood6 of the vertex V i is computed. The Laplacian 
representation7 l i of V i is the difference between Ci and V i, i.e., l i = Ci – V i. Thus, the 
forward transformation is simple; the backward transformation involves computation of 
a linear system. Alexa [Ale01b, Ale03] used this representation to morph between 
isomorphic meshes. Instead of interpolating absolute vertex coordinates, he interpolated 
linearly the Laplacian coordinates. The interpolated Laplacian coordinates are 
transformed backwards in order to obtain absolute vertex coordinates. The advantage of 
the Laplacian representation is that it is translation invariant. Therefore they are suitable 
for morphing of features which are not aligned in space. Laplacian coordinates were 
also used in the mesh editing [Lip04] where a mesh is deformed by a handle which 
influences some specified region of interest. 
 
Sun et al. [Sun97] showed an intrinsic representation similar to edge-angle 
representation [Sed93b]. Their approach considers isomorphic meshes. First, a vertex 
adjacency graph (a graph representing vertices of the mesh connected by edges, 
denoted as VAG) and its dual, a face adjacency graph (a graph representing adjacent 
faces of the mesh, denoted as FAG) for the source and the target mesh are constructed. 

                                                 
6 One-ring neighborhood of a vertex V is a set of vertices which are connected with the vertex V by an 
edge. 
7 Some authors refer to this representation as a differential representation. 
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A FAG contains face normals in its nodes and each edge of the graph contains a flag 
indicating whether two incident faces form a convex or a concave dihedral angle or 
whether they are coplanar. Note that face adjacency does not represent a mesh uniquely, 
so an additional geometric representation is needed to make the FAG a complete 
representation of a mesh. The interpolation then goes as follows. First the FAG is 
interpolated, which means an interpolation of face normals. It is started with two initial 
faces; the remaining normals are computed by propagation along edges of the FAG. The 
result of the FAG interpolation is establishing of an intermediate orientation of faces. 
Then the VAG is interpolated so that the vertices fit the already oriented faces. 
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4. Topology merging 
In this section we will describe the method of topology merging. First, we will describe 
the original method – we will show that the underlying geometrical operation is an edge 
insertion and we will discuss its algorithmic aspects (Section 4.2). Then we will show 
our contribution where we extended this method in the following directions: merging of 
meshes with attributes (Section 4.3), improvements of quality of the resulting mesh 
(Section 4.4) and a generalization for multiple meshes (Section 4.5). The sections 4.4 
and 4.5 do not describe a finished research; it rather contains a problem description and 
a suggestion how to solve it. In some cases we also included some preliminary results 
which indicate that this direction is worth researching in the future. 

4.1. General idea 
The basic idea behind the topology merging is to insert edges of one mesh into the other 
mesh. Without loss of generality, we will insert edges of the target mesh to the source 
mesh8. The result is a mesh which shares connectivity of both input meshes. We will 
refer to this mesh as a supermesh9. Edges are inserted so that the shape of the mesh is 
not altered, but the connectivity allows transforming from one shape to the other shape. 
To be able to insert an edge of the target mesh into the source, first we have to 
determine where to insert it. An edge is defined by two endpoints; therefore, we have to 
determine where to insert its endpoints. The endpoints are inserted at places defined by 
the vertex-place correspondence computed in the correspondence computation step (i.e., 
the mapping Ψ1 defined in Section 3.7.1). 
 
After an edge of the target mesh is inserted into the source mesh, it “disappears” in the 
surface of the source mesh, i.e., it does not disturb the original shape of the source 
mesh. But it can be moved towards its original position in the target mesh to represent 
some feature of the target mesh. The basic idea of the topology merging is demonstrated 
in Figure 4.1. There is a source mesh (Figure 4.1a) and a target mesh (Figure 4.1b). The 
red edges of the target mesh are inserted into the source mesh. It is demonstrated in 
Figure 4.1c) – it can be seen that the edges of the target mesh are inserted in the source 
mesh so that the shape of the source mesh is not changed, i.e., the red edges are 
“wrapped” along the 3d surface of the source mesh. Figure 4.1d) shows the supermesh 
transformed to the shape of the target mesh. The transformation is done by moving the 

                                                 
8 It can be done in the reversed order as well. 
9 In the literature the supermesh appears also under the terms metamesh [Lee99], combination mesh or an 
interpolation mesh [Kan97, Kan99]. 
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edges of the target mesh (picked out in red) towards its original position while the edges 
of the source mesh (picked out in blue) “disappear” in the surface of the target mesh. 
The places where the edges of the source mesh “disappear” are given by the vertex-
place correspondence between the vertices of the source mesh and the surface of the 
target mesh. Figure 4.1e) shows an example of an interpolation of the supermesh. 
 

 
 

a) b) 

  
c) d) 

 
e) 

Figure 4.1: a) source mesh, b) target mesh, c) supermesh transformed to the shape of the source mesh, 
d) supermesh transformed to the shape of the target mesh, e) an example of an interpolation of the 
supermesh. 

In Figure 4.1c), d) it can be seen that an edge may extend across several triangles; 
therefore, it is necessary to subdivide the triangles which are intersected by the edge and 
subdivide the edge in the intersection points. Additionally, in Figure 4.1c), d) it can be 
seen that there are some non-triangular polygons; these polygons have to be triangulated 
in order to have a valid triangular mesh. Also note that the supermesh contains the 
vertices of the source mesh, the vertices of the target mesh and the intersection vertices 
(picked out in yellow in Figure 4.1). 
 
The main problem with the edge insertion is that it is not possible to insert an edge 
directly in another mesh in the 3d space. Even though we know where to insert 
endpoints of edges, it is not clear how to “wrap” an edge along a 3d surface, i.e., which 
triangles to subdivide. The reason is that the inserted edge is generally nonparallel and 
nonintersecting with edges and triangles of the other mesh. For this reason, we have to 
insert edges in the parametric domain.  
 
In the parametric domain, all edges are mapped to a plane (a planar parametrization) or 
to a sphere. In both cases an edge is the shortest connection between its endpoints and it 
is unambiguous which triangles will be affected by the edge insertion. During the edge 
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insertion intersections between the inserted edge and the original triangulation must be 
computed. The intersection vertices computed in the parametric domain are mapped 
back to the original mesh using an inverse mapping (Section 3.7.1). 

4.2. Edge insertion 
In this section we will discuss algorithmic aspects of the edge insertion. In the context 
of the edge insertion we will use the term original triangulation to refer to the 
triangulation in which the edge is being inserted.  

4.2.1. Overview 
The edge insertion consists of an endpoints insertion and a subdivision of triangles 
intersected by the inserted edge. The subdivision requires finding all triangles which are 
intersected by the inserted edge and computing intersections between them. After the 
edge is inserted, the triangulation must be repaired in order to have a valid triangulation. 
It is schematically demonstrated in Figure 4.2. Figure 4.2a) shows the original 
triangulation (green) and the inserted edge (red). In Figure 4.2b) the orange points 
represent the intersection vertices and finally Figure 4.2c) shows the final triangulation 
after the edge insertion. It can be seen that some additional edges (dashed lines) had to 
be inserted in order to have a valid triangulation. 

Figure 4.2: A demonstration of an edge insertion – a) the original triangulation (green) and the inserted 
edge (red), b) the intersection vertices (orange), c) the resulting triangulation. 

In the following subsections we will describe the intersection computation and the re-
triangulation in more detail. 

4.2.2. Intersection computation 
Intersections between the inserted edge and the original triangulation can be computed 
by brute force checking of each edge of the original triangulation against the inserted 
edge. In the topology merging process we have to insert all edges of the target mesh to 
the source mesh, therefore the brute force approach has a quadratic complexity, which is 
not very suitable for complex meshes with a high number of edges. 
 
In [Ken92] and [Ale00b] better algorithms based on walking were described. Both 
algorithms work basically in the same way; they differ only in the underlying data 
structure. The former approach by Kent et al. [Ken92] uses a variation of the winged-
edge data structure; the latter approach uses the DCEL10 data structure. In our 
description we abstract away from a specific data structure, we only suppose that we are 
able to extract adjacency of triangles and edges. 
 
The algorithm is based on the idea that for the inserted edge we can construct a 
candidate list (CL) of edges of the original triangulation. The candidate list contains 
edges which may be possible intersected by the inserted edge. Additionally, we have to 
                                                 
10 DCEL – Doubly Connected Edge List. 

 
a) b) c) 
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know, in which triangles of the original triangulation the endpoints of the inserted edge 
lie. Generally, it can be computed by some point location algorithm, but in the case of 
morphing we already know it from the vertex-place correspondence step11. Let us 
denote V the starting vertex of the inserted edge e, f0 the face in which the vertex V lies 
(see Figure 4.3). Edges of the face f0 are added to CL because one of them is intersected 
by the inserted edge e originating from V. When the intersection I  is encountered, the 
algorithm “walks” to the face f1, which is neighboring to f0 so that f1 and f0 share an 
edge e0,1. Now, two edges of f1 are inserted into CL because one of them is intersected 
by e. In this way, the algorithm walks until no intersection of e and edges in CL is 
found. The algorithm is schematically depicted in Figure 4.3. 

 

 
Figure 4.3: A demonstration of the walking algorithm which encounters all intersections of the inserted 
edge e (red) with the original triangulation (green). 

4.2.3. Re-triangulation 
After the intersections are computed, the inserted edge and the original triangulation are 
merged in the intersections. Then, new triangles must be created in order to have a valid 
triangulation.  
 
Let us remind that the topology merging consists of many edge insertions. Therefore, 
there are basically two approaches how to re-triangulate the modified area – an 
incremental approach and a global approach. The approaches differ in the aspect when 
is the re-triangulation done. In the case of the incremental approach, the incremental 
construction concept is used, i.e., the original triangulation is re-triangulated each time a 
new edge is inserted. In the global approach the re-triangulation is done after all edges 
are inserted.  
 
The advantage of the local approach is that it is usually easier to implement because a 
mesh is modified only in a relatively small part. The disadvantage is that in some cases 
the part which was re-triangulated in the previous step must be subdivided and re-
triangulated again because a new edge was inserted close to the previously inserted 
edge. So, in the topology merging the incremental approach may lead to a repeated re-
triangulation of the same area which is time consuming. Additionally, it may lead to a 
high number of edges of the resulting triangulation. On the other hand, the incremental 
nature can be useful in some progressive or adaptive processing. For instance, in time 
critical applications we can insert edges edge by edge while the incremental 
construction concept guarantees that after each edge insertion we have a valid triangular 
model. 
 

                                                 
11 See Section 3.7.1. 

V 
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The global approach [Kan97] works in two stages. In the first stage, for each inserted 
edge the intersection vertices are computed using the procedure from the Section 4.2.2 
and the edges are merged with the original triangulation. In the second stage, for each 
vertex V an edge fan is computed. The edge fan is an angularly sorted list of edges 
incident to the vertex V. Each edge fan is traversed and locally triangulated (to create a 
triangle fan around the vertex V) by inserting some edges. The edge fan triangulation is 
done by checking if endpoints of two successive edges in the edge fan are connected by 
an edge. If they are not connected, a new edge is inserted together with a creation of a 
new face. The fan triangulation is demonstrated in Figure 4.4, where first a triangle fan 
around the central vertex is built and then in a greedy way all remaining vertices are 
processed, which results in a completely triangulated model. 
 

 
Figure 4.4: Demonstration of the edge fan triangulation, the black thick lines are added during the edge 
fan triangulation (taken from [Kan97]). 

The global approach avoids multiple processing of the same area as the incremental 
approach. Thus, it is more efficient from the time consumption point of view and it 
generates fewer edges than the incremental approach. On the other hand, it relies on the 
angularly sorted edge fans which are more complicated to compute than the local 
subdivision as in the case of the incremental approach. 

4.2.4. Additional use of edge insertion 
The edge insertion is not only useful in the topology merging. It can be used in the area 
of terrain modification. The terrain modification usually involves some raising or 
lowering of a landscape. The terrain is usually represented as 2.5D triangular mesh. 
Sometimes, the mesh is not dense enough to represent an intended terrain modification. 
Usually some edges must be added. Since the terrain is 2.5D, the parametrization is 
obtained by omitting heights of vertices. Thus, the edge insertion can be done in 2d and 
only the heights of newly added vertices must be computed. An example of the terrain 
modification is in Figure 4.5 where a terrain is modified by “digging” a ridge. Note that 
it is not possible to dig a ridge in the original triangulation (Figure 4.5a) since there is 
no connectivity to represent the ridge. 
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a) b) c) 

Figure 4.5: An example of terrain modification – a) the original terrain with an intended modification 
represented by red lines which delineate a bottom of some ridge, b) the terrain mesh is subdivided so that 
the bottom of the ridge can be lowered, c) the shaded terrain with the resulting ridge. 

Another application is a computation of compatible triangulations of polygons [Ale00c]. 
Two triangulations are compatible if they have the same number of vertices connected 
in the same way. In other words, if we take the triangulations as graphs12 then the 
graphs are isomorphic. If the two triangulations are compatible it is possible to 
interpolate them, e.g., to interpolate the corresponding vertices.  
 
The computation of compatible triangulations works as follows. The input polygons are 
triangulated independently using Delaunay triangulation. Then, the perimeter of the 
triangulated polygons is mapped to a regular n-gon, which results in a triangulated n-
gon. Then, n-gons are overlaid and edges of the first n-gon are inserted into the 
triangulation of the other n-gon. The new interior vertices are mapped back into the 
original polygons, which yields a compatible triangulation of the input polygons. 

4.3. Surface attributes 
In the previous sections we described how to modify a connectivity of meshes so that it 
is possible to transform them to some other shapes. In this section we will show our 
contribution which deals with surface attributes.  
 
Until now we dealt with a shape transformation only. However, objects are represented 
not only by the shape but also by surface attributes – e.g., color, texture coordinates, 
surface normals, opacity, BRDF13, etc. Since the topology merging modifies a mesh so 
that new vertices and faces appear, it is necessary to assign attributes to the newly added 
vertices and faces. Then, during the morphing, the surface attributes are interpolated 
along with a shape transformation. In the following sections we will describe how to 
handle surface attributes after the topology merging process. First we will describe 
attributes classification and then we will introduce an approach called face mapping 
which computes attributes of the supermesh. 

4.3.1. Attributes classification 
To be able to generalize the attributes handling for different kinds of attributes we will 
classify the surface attributes into two groups [Hop96] – discrete attributes and scalar 
attributes. Discrete attributes are usually associated with faces. A typical discrete 
attribute is, e.g., a material identifier, i.e., some property which is constant over the 

                                                 
12 The triangulation can be viewed as a planar graph by using the triangulation vertices as vertices of the 
graph and the triangulation edges as edges of the graph.  
13 BRDF – Bidirectional Reflectance Distribution Function 
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whole face. From a certain point of view a face normal can be considered an 
independent discrete attribute as well14.  
 
On the other hand, the scalar attributes represent some local property of a surface. In 
simple cases the scalar attributes are associated with the vertices of the mesh – e.g., a 
per vertex color or per vertex texture coordinates. In a simple case a value of a scalar 
attribute in the vertex V is common for all faces adjacent to the vertex V. Hence, it is 
not possible to represent a discontinuity of the attribute field along an edge. Therefore, 
the scalar attributes are associated rather with corners than with vertices. The corner is a 
tuple (face, vertex) which allows us to assign some attribute to a particular vertex with 
respect to same face. For example a vertex normal is a typical scalar attribute, for one 
vertex we can have multiple normals depending on which face we are considering, e.g., 
a vertex representing a corner of a cube has typically three different normals (one for 
each face adjacent to the vertex). 

4.3.2. Face mapping 
The topology merging process builds a supermesh so that it “inherits” a shape of the 
source mesh and it is possible to transform it to the shape of the target mesh. Naturally, 
it is expected that the supermesh also “inherits” the surface attributes of the source mesh 
and it is possible to interpolate these attributes together with the shape. The problem is 
that during the topology merging a new mesh (i.e., the supermesh) is constructed, 
therefore, it is necessary to compute values of attributes (i.e., scalar and discrete) for the 
supermesh in the shape of the source mesh and the values of attributes for the 
supermesh in the shape of the target mesh. We propose a method called face mapping 
which computes the values of attributes so that it is possible to interpolate the attributes 
during the morphing transition. 
 
The basic idea is that the faces and the vertices of the supermesh inherit attributes from 
faces and vertices of the input meshes. Therefore, for each face and for each vertex of 
the supermesh we have to establish how the attributes will be inherited. This is done by 
computing two mappings. A mapping between the faces of the supermesh and the faces 
of the source mesh and a mapping between the faces of the supermesh and the faces of 
the target mesh. The map represents from which face of the source mesh and the target 
mesh a face of the supermesh originate. A face of the supermesh inherits attributes of 
the face of the source mesh or the target mesh, respectively, to which it maps. From the 
topology merging process it is clear that each face of the supermesh maps to (i.e., 
originates from) exactly one face of the target mesh and to exactly one face of the 
source mesh (i.e. no face of the supermesh can overlap faces of the source and the target 
mesh)15. Let us denote 0

ji0 : ff →Φ  the mapping of the face f i of the supermesh to the 

face 0
jf  of the source mesh and analogously 1

ji1 : ff →Φ  for the mapping of the face f i 

of the supermesh to the face 1
jf of the target mesh. Since the topology merging is done in 

a parametric domain, the mapping is established in the parametric domain as well. 
Figure 4.6 depicts a principle of the face mapping approach, on the right side there is a 
supermesh transformed to the shape of the source mesh (top) and to the shape of the 

                                                 
14 Usually the face normal is computed as a normal of a triangle, thus the face normal is essentially a 
function of geometry of the mesh. However, in some applications (e.g., shading) the face normal can be 
modulated; therefore it can be considered as an independent discrete attribute. 
15 So this mapping is “onto”. 
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target mesh (bottom), the arrows demonstrate the mapping of faces of the supermesh to 
the faces of the source and the target mesh. It can be seen that the highlighted face (the 
four-sided polygon) of the supermesh in the shape of the source mesh inherited the blue 
color from the source mesh while the same face inherited the red color from the target 
mesh when the supermesh is deformed to the shape of the source mesh. During the 
morphing transition the highlighted face will change its color from blue to red. 

Figure 4.6: Mapping of a face of the supermesh to faces of the source mesh (top) and the target mesh 
(bottom). 

Now we will describe how to compute the face map. In general, it is a location problem 
of a triangle f in some coarse triangulation, where f is the triangle of the supermesh and 
the coarse triangulation is the source or the target mesh. Note that a brute force 
approach would require checking each face of the supermesh against each face of the 
source and the target mesh. The complexity of the brute force approach is then 
O(|F|.|F0| + |F|.|F1|), where |F| is the number of faces of the supermesh and |F0| and 
|F1| is the number of faces of the source mesh, target mesh, respectively. We propose a 
simple O(N) algorithm which reuses an already established mapping of vertices of one 
mesh to the surface of the other mesh. The supermesh is traversed vertex by vertex and 
triangle fans of each vertex are processed. A triangle fan is a set of triangles incident to 
a particular vertex. Each triangle fan is processed depending on the type of the central 
vertex. Let us remind that there are three types of vertices in the supermesh – source 
vertices, target vertices and intersection vertices. Also note that each triangle belongs to 
more than one triangle fan, so once the triangle is processed, it must be marked by some 
flag to avoid multiple processing in the context of other triangle fans.  
 
Let us first consider the case of the source vertex Vs. From the correspondence 
computation step we know the mapping of the source vertex Vs to the target face f t. So 
each face of the supermesh adjacent to the vertex Vs maps to the face f t, i.e.: 
 

ti1 )( ff =Φ , (4.1) 
 

 
 
 

0
ji0 : ff →Φ

1
ki1 : ff →Φ
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where f i are faces incident to the vertex Vs, f t is the face of the target mesh to which the 
vertex Vs maps. Now the mapping Φ1 is solved. It remains to compute the mapping Φ0, 
i.e., the mapping of the faces to the source mesh. It is easy, because faces of the 
supermesh adjacent to the source vertex map to the faces of the source mesh adjacent to 
the same vertex. So the faces adjacent to the vertex Vs in the source mesh are candidates 
for mapping of faces of the supermesh adjacent to the vertex Vs in the supermesh. 
 
For the case of the target vertices the mapping is computed analogously. For the target 
vertex Vt the mapping to the face fs of the source mesh is known. So each face of the 
supermesh adjacent to the vertex Vt maps to the face fs, i.e.: 
 

sj0 )( ff =Φ , (3.2) 
 
where f j are incident faces to the vertex Vt, fs is the face of the source mesh to which 
vertex Vt maps. The establishing of mapping Φ1 is again easy, because faces of the 
supermesh adjacent to the target vertex map to the faces of the target mesh adjacent to 
the same vertex. 
 
For the intersection vertex we know from which two edges of the source and the target 
mesh it arises. For each edge we also know the indices of adjacent faces. Adjacent faces 
are candidates for mapping of faces of the supermesh. So it remains to check to which 
of candidates a particular face of the supermesh maps.  

4.3.3. Handling attributes 
Once we establish the mapping of the faces of the supermesh, it is necessary to establish 
the extreme values of attributes, i.e., the values between which we are going to 
interpolate during the morphing animation. 
 
For discrete attributes it is simple, because the face f i of the supermesh gets the value of 
the discrete attribute of the face to which it maps, i.e. for the transition parameter t=0 
the face of the supermesh  f i gets the value of the discrete attribute of the face of the 
source mesh 0jf  to which the face f i maps; and for the transition parameter t=1 the face 

of the supermesh f i gets the values of the discrete attribute of the face of the target mesh 
1
kf  to which the face f i maps. Let us denote D(f i)(t) a value of a discrete attribute of the 

face f i for the transition parameter t, then for t=0 we can write: 
 

))(()0)(( i0i ff Φ= DD , (3.3) 
 
where Φ0(f i) is the mapping of the face f i of the supermesh to the face of the source 
mesh. For t=1 we can analogously write: 
 

))(()1)(( i1i ff Φ= DD , (3.4) 
 
where Φ1(f i) is the mapping of the face f i of the supermesh to the face of the target 
mesh. A linear interpolation of a discrete attribute is then: 
 

))(())(()1())(( i1i0i fff Φ+Φ−= tDDttD . (3.5) 
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The values of scalar attributes are computed with respect to the relative position of the 
vertex inside the face to which the vertex maps. Let us denote S(f i, vj)(t) a value of a 
scalar attribute of the corner (f i, vj) for the transition parameter t. So for t=0 we can say 
that the value of scalar attribute S(f i, vj)(0) is given by some linear combination of the 
values of the attributes in corners of the face 0

jf , where 0
jf  is the face of the source 

mesh to which the face f i of the supermesh maps. The coefficients of the linear 
combination are barycentric coordinates of the vertex vj with respect to the face0jf . This 

situation is depicted in the Figure 4.7, where the blue triangle f i is the face of the 
supermesh and the green triangle 0

jf  is the face of the source mesh to which the face f i 

maps. The values of the scalar attribute S(f i, vk) are given by the relative position of the 
vertex vk with respect to vertices of the triangle 0

jf .  

 

 
Figure 4.7: Mapping of the face f i of the supermesh (blue) to the face f j

0 of the source mesh (green). 

It is similar for the time t=1, with the difference that the mapping of the faces of the 
supermesh to the faces of the target mesh is considered. During the morphing transition 
the values of scalar attributes are linearly interpolated. 

4.3.4. Examples 
In this section we will show some results of the face mapping approach. The first 
example (Figure 4.8) is focused on computation of normal vectors which are used for 
shading. Figure 4.8a) shows a morphing animation between a cube and a sphere. The 
objects are rendered so that sharp edges were not considered. It is especially apparent in 
the first frame of the animation where the object is in the shape of cube. Since the 
existence of sharp edges is not considered the edges which should be sharp are 
smoothed out. Figure 4.8b) shows a sequence of another animation. In this case we 
recomputed normal vectors in each frame of the animation. It can be seen (the detailed 
view at the bottom) that it is not correct as well since the sharp edge appears abruptly. 
Finally, Figure 4.8c) shows an animation where the face mapping approach was used to 
compute normal vectors for the supermesh in the shape of the source and the target 
mesh. The normals for the intermediate shape were interpolated linearly. It can be seen 
that the sharp edges of the box smoothly disappear while the sharp edges of the cylinder 
smoothly appear. 
 

f i 

S(f j, V0) 

S(f j, V1) S(f j, V2) 

S(f i, Vk) 

S(f i, V l) S(f i, Vm) 

0
jf



 34 

 

a) b) 

 
c) 

Figure 4.8: A morphing animation rendered so that: a) sharp edges were not considered, b) normals 
recomputed in each animation frame, c) normals computed using the face mapping approach. 

The next example (Figure 4.9) demonstrates how the face mapping works for colored 
meshes. Figure 4.9a) shows a morphing animation between objects which were painted 
per face, i.e., a color was assigned to a whole face (discrete attribute). On the other 
hand, Figure 4.9b) shows a morphing animation between objects which were painted 
per vertex, i.e., a color was assigned to vertices. Per vertex painting allows us to make 
smooth painting of the surface. In fact, the underlying data structure which contains 
information about color is “per corner” oriented, i.e. color is assigned to corners of 
triangles (Section 4.3.1). It is a little bit redundant, especially in the case of per face 
painting, but it allows to combine per face painting and the per vertex painting. It is 
demonstrated in Figure 4.9c), where a morphing animation between per face painted 
flower and per vertex painted pig is shown. 
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a) 

 
b) 

 
c) 

Figure 4.9: A morphing animation between a) per face painted meshes, b) per vertex painted meshes, 
c) a combination of per face and per vertex painted meshes. 

4.4. Mesh improvements 
In this section we will deal with an improvement of a quality of a mesh which was 
constructed by the topological merging procedure. This section contains description of 
methods which has not been fully tested, yet they have some promising results 
providing directions for a future research. Additionally, in the subsections 4.4.1 and 
4.4.3 we present some preliminary results which indicate that these methods could be 
used to improve the quality of the mesh and to reduce the complexity of the mesh. 
However, we are aware that the following methods require additional research and tests. 

4.4.1. Point insertion 
The topology merging is based on the edge insertion. The edge insertion consists of 
some vertex insertions (i.e., insertion of endpoints of the edge and insertion of 
intersection vertices). In the original version of the algorithm [Ken92, Ale00b] the 
vertices were inserted in the plane of the triangles or on the edges (intersection vertices). 
However, the meshes are usually a piecewise linear representation of some smooth 
surface, therefore in some cases it would be better to insert vertices so that the resulting 
subdivided region is more curved. To accomplish this, we use a Bézier triangular patch 
[Vla01]16. It is supposed that the input meshes have vertex normals which reflect the 
true shape of the original object. Therefore, before a vertex is inserted into a triangle we 
build a cubic triangular Bézier patch. The patch is constructed using vertex normals and 
the vertices of the triangle. Since we know the barycentric coordinates of the inserted 
vertex with respect to a triangle in which the vertex is inserted, we can compute a 
                                                 
16 In [Vla01] referred to as PN triangle. 



 36 

position of the vertex on the Bézier patch. It usually results in a position which is 
slightly above the original triangle. The advantage of the Bézier patches is that the 
“bulging” of a patch is controlled by normals associated with the vertices of the triangle. 
For instance, if the normals are parallel, the patch is flat, after inserting some vertices in 
the flat patch the patch still remains flat. Therefore the concept of Bézier patches can be 
used for non-smooth shapes (e.g., a cube) as well. 
 
The influence of the type of vertex insertion is demonstrated in Figure 4.10. Figure 
4.10a) shows the original mesh, it can be seen that the contour is not smooth because 
the mesh is not dense enough. During the topology merging some vertices are inserted, 
these new vertices can be used to improve the contour of the shape. Figure 4.10b) shows 
the result of topology merging when the vertices are inserted in planes of the triangles 
(i.e., the standard approach). The detailed picture (Figure 4.10b), bottom) shows that 
even if many new vertices were added, the contour is the same as the contour of the 
original mesh. Figure 4.10c) shows the result of topology merging when vertices are 
inserted in patches, it can be seen that the contour is much smoother.  
 

  

  
Figure 4.10: a) the original mesh, b) the result of the topology merging process with vertex insertion in a 
plane of a triangle, c) the result of the topology merging process with vertex insertion in a Bézier patch. 

4.4.2. Edge flipping 
The advantage of the topology merging is that the shape of the supermesh can capture 
exactly the shape of the source mesh as well as the shape of the target mesh. This fact is 
paid by a poor quality of the triangular mesh, i.e., the mesh contains badly shaped 
triangles. Generally, the quality of a mesh is important for computational analysis, it can 
influence a quality of a solution and a time needed to obtain it. For instance, vertex 
normals of triangular meshes are usually computed using some weighting scheme which 
takes into account the triangles adjacent to the vertex. If the triangles have a bad shape 
(i.e., long skinny triangles) and we use the computed vertex normals for shading, the 
shading is bad. 
 
One possibility how to improve the quality of the mesh is a flipping of edges. Each non 
boundary edge has two adjacent triangles; the two adjacent triangles form a 
quadrilateral where the edge is its diagonal. In some cases it is possible to flip the 
diagonal in order to improve the quality of the mesh. 
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During the topology merging some edges are added, these edges must not be flipped 
since they might represent some important feature when transforming the supermesh to 
the shape of the target mesh. However, during the topology merging some regions must 
be re-triangulated (Section 4.2.3), i.e., some edges must be inserted to have a valid 
triangular mesh. These edges can be arbitrarily flipped to improve the quality of the 
mesh. 
 
It must be said that during morphing the quality of the mesh varies as the shape 
transforms. Using edge flipping it is possible to improve only one frame of the 
animation. For instance, edge flips done for the supermesh in the shape of the source 
mesh may be different than edge flips needed to improve the quality of the supermesh in 
the shape of the target mesh. 

4.4.3. Adaptivity 
In the original version of the topology merging process, all edges of the target mesh 
were inserted in the source mesh. We found out that it is not necessary to insert all 
edges; moreover, the amount of edges can be adaptively controlled in order to reduce 
the complexity of the supermesh. 
 
In the mesh morphing, the edges of the target mesh are inserted in the source mesh so 
that they “respect” the shape of the source mesh, i.e., they are not visible when the 
supermesh is in the shape of the source mesh. However, the inserted edges can be 
interpolated to represent some feature of the target mesh, i.e., during the interpolation 
edges “emerge” from the source shape to form the target shape. 
 
Generally, we distinguish between two types of edges – feature edges and auxiliary 
edges. The feature edges represent the shape of the mesh; the auxiliary edges do not 
contribute to the shape of the mesh but they keep the mesh triangular. For instance, a 
simple triangular mesh representing a cube contains 12 feature edges (i.e., edges of the 
cube) and 6 auxiliary edges which subdivide each quadrilateral face of the cube so that 
the mesh consists solely of triangles. When using the topology merging in the context of 
the mesh morphing, it is enough to insert feature edges only. Since the auxiliary edges 
do not contribute to the shape of the object, they do not have to be inserted. Clearly, if 
we do not insert some edges, we save some computation and the resulting supermesh 
will contain less triangles. 
 
To distinguish between feature edges and auxiliary edges, we use a geometric criterion 
based on a dihedral angle between faces adjacent to an edge. We set a threshold value of 
the dihedral angle so that an edge is auxiliary if the dihedral angle of the faces adjacent 
to the edge is less than the threshold value, an edge is a feature edge if the dihedral 
angle of the faces adjacent to the edge is greater than the threshold value. For instance, 
setting the threshold value to zero makes auxiliary edges only those edges whose 
adjacent faces lie in the same plane. 
 
Let us demonstrate an adaptive edge insertion on supermesh which was computed to 
morph between a sphere and a cube, i.e., the model of the cube was inserted to the 
model of sphere. In Figure 4.11a) all edges (including the auxiliary edges) of the cube 
were inserted into the sphere mesh. It can be seen how the diagonal subdivides the 
sphere mesh. On the other hand, Figure 4.11b) shows a supermesh where the auxiliary 
edges were not inserted. It is clear that the supermesh without auxiliary edges contains 



 38 

fewer triangles. Let us recall that the shape transformation of both supermeshes will be 
the same even though the supermesh without auxiliary edges contains less elements 
than the supermesh with auxiliary edges. Note that in the figures, for simplicity, we do 
not display the edges which need to be inserted during the re-triangulation process. 
 

  
# vertices: 269, # faces: 534, # edges: 801 # vertices: 191, # faces: 378, # edges: 567 

a) b) 

Figure 4.11: a) the supermesh with all edges inserted, b) the supermesh with only feature edges inserted 
(the ‘#’ sign indicates the number of elements). 

The concept of adaptive edge insertion can be used for progressive refinement of large 
meshes. For instance, let us have very dense meshes, first we can insert only the most 
important edges of the target shape to the source shape. Immediately we are able to 
morph between an original shape and the rough approximation (given by the most 
important edges) of the target shape. Then we can progressively insert the remaining 
edges to obtain more detailed morphing between the source and the target mesh. 

4.5. Generalization for multiple meshes 
The original version of the topology merging was designed for two input meshes only. 
However, in many applications (e.g., animation, design) it is required to morph multiple 
meshes at the same time. Therefore, we will show how to generalize the topology 
merging for multiple meshes. The goal is to compute such a supermesh which can be 
transformed to the shapes of all input meshes. 
 
The basic idea is that we use the original topology merging technique and we apply it 
on pairs of meshes (see an example for 8 meshes in Figure 4.12). Let us have n input 
meshes M0,0, M1,0, …, Mn-1,0. For simplicity, suppose that n is a power of 2. In the first 
stage we will always merge pairs of meshes, i.e., we merge M0,0 and M1,0, M2,0 and 
M3,0, etc. The result is a set of meshes M0,1, M1,1, …, Mn-1,1 where the pairs M i,1, M i+1,1, 
i=0, 2,…, n-2 can be interpolated because they have the same number of vertices and 
the same connectivity. Then we merge meshes M0,1 and M2,1, M1,1 and M3,1, etc. The 
result is a set of meshes M0,2, M1,2, …, Mn-1,2 where the quadruples can be interpolated. 
We continue in this way until all meshes share the same connectivity. log2n merging 
stages is required, in each stage the merging is computed n/2 times. If the number of the 
input meshes is not a power of 2 we always merge pairs, quadruples, octets, etc., as long 
as possible and the remaining meshes are transferred to the next stage. Main advantage 
of this approach is that it is not necessary to modify the original algorithm; we just 
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repeatedly apply the merging technique so that the input of j-th merging stage is the 
result of the (j-1)-th merging stage. 
 
Recall that the merging procedure operates in the parametric domain; the vertices 
inserted during merging are projected back to the input meshes using an inverse 
mapping (Section 3.7.1). The key assumption of the described method is that we use a 
common parametrization for the merged meshes, e.g., the meshes M0,1 and M1,1 have a 
common parametrization. 
 

 

Figure 4.12: An example of topology merging for 8 input meshes, the red box represents the merging 
operation which always takes two meshes as an input and it produces two isomorphic meshes as an 
output. 

M0,0 M1,0 M2,0 M3,0 M4,0 M5,0 M6,0 M7,0 

M0,1 M1,1 M2,1 M3,1 M4,1 M5,1 M6,1 M7,1 

merge merge merge merge 

merge merge merge merge 

M0,2 M1,2 M2,2 M3,2 M4,2 M5,2 M6,2 M7,2 

merge merge merge merge 

M0,3 M1,3 M2,3 M3,3 M4,3 M5,3 M6,3 M7,3 
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5. Multimorphing 
In this chapter we will show a generalization of the classical morphing. The classical 
morphing operates between two input shapes (a source and a target). We will show how 
to extend it to multiple input shapes. A morphing between multiple input shapes 
generates a space of shapes which we approach as an analogy of the affine space. The 
general idea has been already described in [Ale99], but we concretize their ideas for 
boundary representation, additionally we introduce an inner product which allows us to 
compute distances in the space of shapes and to compute an orthogonal projection. The 
orthogonal projection is used to express a shape as a weighted combination of basis 
shapes. We also show how to explore a space of shapes spanned by the basis shapes and 
we discuss some user interaction aspects of the shape generation. We propose a 
geometrical representation of a morphing space and we show how to easily generate 
new shapes using the geometrical representation in a similar way as a geometrical 
representation of a color space (i.e., a color system) is used to choose colors. 
 
In this chapter we will consider so-called isomorphic meshes, i.e., meshes which have 
the same connectivity but different vertex positions. First, we will describe isomorphic 
meshes and how to compute them, then we will describe some related work in the area 
of spaces of shapes and finally we will present our contribution. 

5.1. Isomorphic meshes 

5.1.1. Definition 
Isomorphic meshes are meshes with the same number of vertices and the same 
connectivity. A formal definition is as follows. Let us have a set of meshes M i, i=1, …, 
n. Meshes M i are said to be isomorphic if there is a bijective map f: V i→V j between 
vertices of the meshes M i, M j, i≠j with the property that any two vertices from V i are 
adjacent in M i if and only if they are adjacent in M j. In other words, graphs of triangular 
meshes are isomorphic. The connectivity which is shared among isomorphic meshes 
will be denoted as common connectivity. Although the isomorphic meshes share a 
common connectivity, they can differ in vertex positions so that each mesh can have a 
different shape. Therefore, isomorphic meshes are economical from data storage point 
of view. For a set of meshes, it is enough to store only one instance of connectivity (i.e., 
the common connectivity) and vertex positions for each element of the set. It is 
significantly less than storing connectivity and vertex positions for each mesh. 
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Additionally, in many applications, besides a bijective map between vertices, a feature 
vertex correspondence is required. The bijective map between vertices requires that 
vertices of isomorphic meshes are interconnected by edges in the same way in all 
meshes. The feature vertex correspondence additionally requires that the bijective map 
relates vertices which represent the same feature in all meshes. For instance, let us have 
isomorphic meshes representing human faces; vertices of each mesh are stored in an 
array. The feature vertex correspondence requires that eyes, noses or mouths are 
represented by vertices with the same index in the array. Clearly, the concept of the 
feature vertex correspondence is applicable only in cases when the set of isomorphic 
meshes is homogenous, i.e., the meshes represent some class of shapes which have 
some common features, e.g., human faces, models of cars, etc. 

5.1.2. Use of isomorphic meshes 
Besides the efficient storing, which does not require the feature vertex correspondence; 
isomorphic meshes are useful in many areas. Since there is a one-to-one correspondence 
between vertices, we can directly interpolate between corresponding vertices to obtain 
intermediate meshes. The intermediate meshes can be used to produce an animation or 
it can be viewed as a way to generate a new mesh by combination of some existing 
meshes.  
 
Isomorphic meshes are well suited for attributes transplantation. Usually, a mesh does 
not only contain information about a shape but also information about an appearance the 
shape, e.g., color, texture coordinates, opacity, etc. Attribute transplantation is useful in 
the cases when we have a reference mesh equipped with some attributes and we want to 
apply these attributes also on another shapes. For instance, let us have a reference mesh 
representing a human face. The mesh has a texture and texture coordinates. The texture 
coordinates are assigned to the vertices of the mesh. Then, let us have another face 
without a texture. It is possible to paint the other mesh from the scratch, however it 
might be very time consuming. Using the attribute transplantation it is possible to use 
the texture of the reference mesh to paint the other mesh. It is done by copying the 
attributes of the reference mesh vertices to the corresponding vertices of the other mesh. 
Clearly, it requires a feature vertex correspondence; otherwise the painting of features 
of the reference mesh might be transplanted on different features of the other meshes. 
 
Another important application of isomorphic meshes is the area of mesh analysis. 
Vertices of the mesh can be organized into a vector. A set of isomorphic meshes forms a 
matrix. The matrix can be analyzed by means of principal component analysis in order 
to find a new uncorrelated basis. Then, each original mesh can be expressed in the terms 
of the new basis. This concept was used by Alexa and Müller [Ale00d] to compress the 
animation. The basic idea was to choose from the new basis only a subset of basis 
vectors with the highest importance and represent the remaining meshes with respect to 
the new basis. 
 
The main problem of isomorphic meshes is that meshes rarely fulfill the conditions 
described in the definition (Section 5.1.1). Therefore, meshes have to be preprocessed in 
order to be isomorphic. 

5.1.3. Computation of isomorphic meshes – general a spects 
Usually, during the mesh generation, the main goal is to represent some shape, the 
underlying connectivity is not important at this stage. Therefore, if we want to work 
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with isomorphic meshes, the meshes have to be remeshed. The remeshing is an 
operation which changes the connectivity (i.e., the model) while the shape is 
maintained. First, let us discuss some general aspects of methods used for a computation 
of isomorphic meshes. Then, we will describe particular methods which are used to turn 
a set of meshes into isomorphic meshes. 
 
The input of isomorphic meshes computation algorithms is a set of meshes with 
generally different connectivity. The goal is to remesh the input meshes so that they are 
isomorphic. The following aspects of the isomorphic meshes computation algorithms 
are usually evaluated: 
 

• mesh complexity, 
• mesh quality, 
• number of input meshes, 
• method complexity. 

 
The mesh complexity aspect is important when the input meshes have many small 
detailed features. Then the common connectivity must be dense enough to be able to 
represent all features of all input meshes. The mesh quality aspect refers to the shape of 
triangles; usually long skinny triangles (slivers) are not convenient, because they cause 
problems for example in shading (Figure 6.8). Note that, even if the input shapes have 
good quality of triangles, the remeshed models may contain triangles with a bad shape 
because of the remeshing procedure. Another important aspect is the number of input 
meshes which it is possible to process. In a morphing between two objects it is enough 
to remesh just the source and the target mesh, if we consider a morphing between 
multiple objects, all input objects must be remeshed. Last but not least the method 
complexity and robustness is also important from the practical point of view. 
 
The simplest way how to generate isomorphic meshes is to modify some reference 
mesh. This approach is usually used in commercial applications to generate so called 
morph targets. Morph targets are meshes obtained by modification of vertex positions 
of the reference mesh. Facial animations are usually done in this way. A user usually 
models a neutral face expression (which is the reference mesh) and then adjusts 
positions of some vertices to create a specific face expression, e.g., a happy expression 
is made by adjusting of vertex positions in the corner of the lips. If the user manipulates 
just vertex positions then all new meshes created from the reference model are 
isomorphic. Another possibility how to model isomorphic meshes is a free-form 
deformation (e.g., bending, twisting or tapering [Bar84]). By a free-form deformation 
we usually change the overall shape but not the connectivity. 

5.1.4. Computation of isomorphic meshes – a related  work 
Hutton et al. [Hut01] described an algorithm to compute isomorphic meshes for models 
of human faces. They first established a feature correspondence by placing nine 
landmark points (eyes, mouth, nose and chin). Then, they computed mean landmarks by 
averaging individual landmark positions. Then, each mesh is warped onto mean 
landmarks using thin-plate spline (TPS) technique. One of the input meshes is chosen as 
a reference mesh and the rest of warped meshes are remeshed using the connectivity of 
the base mesh. Then, the warped meshes are transformed back using the inverse TPS. 
The result is a set of isomorphic meshes. The resulting meshes were used to compute a 
principal component analysis. 
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Kraevoy and Sheffer [Kra04] described an algorithm which produces isomorphic 
meshes with adequate number of elements and it preserves the original shape of the 
input meshes. First, a feature correspondence is established by manual selection of 
corresponding vertices. Based on the feature correspondence, a common base mesh is 
computed. The common base mesh is a coarse approximation of the input meshes and it 
has the identical connectivity for all input meshes. The common base mesh partitions 
the input meshes into patches. Triangles of the common base mesh are used as 
parametrical domains for the corresponding patches. The patches of the input meshes 
are mapped to the corresponding triangle of the common base mesh which provides a 
parametrization of input meshes. Using the parametrization, the target mesh is remeshed 
with the connectivity of the source mesh. It results in meshes with identical 
connectivity. However, since the target mesh was remeshed with the connectivity of the 
source mesh the resulting shape is a poor approximation of the original shape, therefore, 
an additional smoothing and refinement steps are applied which minimize the difference 
between the original shape and the remeshed shape. The advantage of this method is an 
automatic coarse mesh generation (in contrast to [Mic01]). Also, the method can be 
generalized for multiple input objects. 
 
Michikawa et al. [Mic01] proposed to compute isomorphic meshes using 
multiresolution representation. They first construct17 a common base mesh. Similarly to 
Kraevoy and Sheffer [Kra04] they dissect input meshes into patches according to the 
common base mesh. Then each patch is parametrized over a planar face of the base 
mesh using Floater’s shape preserving parametrization [Flo05]. Using the 
parametrization the input meshes are remeshed using 4-to-1 splits18. The advantage of 
this approach is a semiregular connectivity. It is also very easy to extend this approach 
to more than two meshes. The subdivision scheme works adaptively which means that 
some areas of input meshes can be subdivided more in order to capture some small 
features. On the other hand, if one mesh contains small detailed features which require 
denser subdivision, also the other input meshes must be subdivided in the same way 
even though it is not really necessary. 
 
The approach introduced by Kent et al. [Ken92] was originally designed for two input 
meshes. Briefly, it works as follows. Edges of the target mesh are inserted into the 
source mesh so that the shape of source mesh is maintained; only the connectivity is 
modified. The topology merging method represents the input shapes exactly but it 
produces meshes with large number of faces and faces might have bad shape. The edge 
insertion involves computation of intersections which might be a weak point due to 
numerical stability and robustness. A detailed description together with our original 
improvements of the topology merging method is described in the Section 4. 
 
Let us summarize the aforementioned approaches in the following table. The 
complexity of the method will be characterized by the most difficult part in the 
computation. 
 

                                                 
17 In contrast to [Kra04] the common base mesh is constructed manually, i.e., along with feature vertices, 
edges and faces of the common base mesh must be constructed. 
18 4-to-1 split is a subdivision of one face into four sub-faces. New vertices are inserted in the midpoints 
of the original face edges. 
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Approach Mesh 
complexity 

Mesh quality Number of 
input meshes 

The most 
difficult part 

Hutton et al. 
[Hut01] 

given by the 
base mesh 

given by the 
base mesh 

any thin-plate spline 
interpolation 

Kraevoy and 
Sheffer [Kra04] 

Optimal good any decomposition, 
remeshing 

Michikawa et 
al. [Mic01] 

according to the 
subdivision 

good any decomposition, 
subdivision 

Kent et al. 
[Ken92] 

Complex poor 2 remeshing 

Table 5.1: A comparison of different approaches for a computation of isomorphic meshes. 

5.2. Multimorphing – a related work 
Next we will describe a related work in the area of space of shapes generated by means 
of morphing. Approaches differ mainly in the object representation. Each representation 
requires specific techniques for interpolation between multiple objects.  
 
Cheng et al. [Che97] constructed a space of shapes from a collection of base shapes. 
They considered an implicit shape representation based on spheres and blending 
patches. The space of shapes is modeled as an n-dimensional manifold, where n is the 
number of basis shapes. A shape is represented by barycentric coordinates of a point 
inside an n-dimensional manifold. They sketched an approach for a metric based on the 
Hausdorff distance and using the metric they envisioned a stochastic process for 
identification of base shapes. 
 
Similarly to [Che97], Lee et al. [Lee99] approached the space of images as a simplex 
where an image is represented by barycentric coordinates with respect to the simplex 
vertices. They extended the traditional formulation of image morphing to morphing 
among multiple images (denoted as polymorphing). They represent a morphing 
animation as a path inside the simplex where each point of the path corresponds to some 
intermediate image. 
 
Alexa and Müller [Ale99] formalized a morphing between two objects as a morphing 
function. Using the morphing function they derived a morphing space and investigated 
conditions under which the morphing space is linear. The general concept is 
independent of shape representation. They approached the morphing space as an affine 
space. Elements of the morphing space are again represented by barycentric coordinates 
with respect to basis shapes. They proposed a recursive procedure to synthesize new 
shapes, i.e., to compute a shape given by its barycentric coordinates within the 
morphing space. They also propose an algorithm for analysis of existing shapes, i.e., to 
express some shape as a convex combination of the basis shapes. 
 
Rossignac and Kaul [Ros94]] described an approach for computing polyhedral shapes in 
the space of all possible polyhedra. For morphing between polyhedra A and B to obtain 
intermediate t-variant shape C(t) they used a linear interpolation C(t) = (1-t) * A + t * B 
where A, B are input shapes, t is a transition parameter which controls a morphing 
between A and B. This relation combines shapes A, B and scalar t. The multiplication 
operator “*” denotes scaling and the addition operator “+” denotes Minkowski sum. 



 45 

They further extended the interpolation among multiple meshes by introducing 
parametric curves (Bézier curves) and bi-parametric patches in the space of polyhedra. 
 
Alexa and Müller [Ale00d] analyzed the space of shapes by means of principal 
component analysis. They focused on static connectivity mesh animations, where each 
frame of the animation represents one element of the space of shapes. Each frame is 
represented as a 3*n vector where n is the number of vertices. The vectors for each 
frame are organized into an m x 3*n matrix, where m is the number of frames. The 
matrix is analyzed by means of principal component analysis in order to find a new 
uncorrelated basis. Then, each original frame can be expressed in the terms of the new 
basis. This concept is used in their paper to compress the animation, because it is 
possible to choose from the new basis only the subset of basis vectors with the highest 
importance. 
 
Sloan et al. [Slo01] described an abstract space of shapes which is defined by a set of 
examples and their adjectives. A set of examples is a homogenous user supplied set of 
shapes. Examples are characterized by adjectives. For instance, when shapes are human 
faces then adjectives can be gender or age. Additionally, the user has to annotate the 
examples with values of adjectives, e.g., specify an age and a gender of a human face. 
The adjectives form an axis of the abstract space of shapes. Then a smooth interpolation 
of examples is computed by using radial basis functions. Using a smooth interpolation 
new shapes can be generated by specifying values of adjectives. 
 
Our approach differs from [Che97] in the data representation, additionally we are more 
specific about an analysis of a set of shapes and about a metric on the space of shapes. 
In [Ale99] a very general concept was introduced, as we focused on concrete 
representation, we can concretize a general idea of the morphing function. Rossignac 
and Kaul [Ros94] focused mainly on a novel morphing technique (based on the 
Minkowski sum) which was further extended to consider multiple input shapes. Sloan et 
al. [Slo01] considers the same representation as we do, however, they focus on 
synthesis of new shapes based on the values of adjectives, and they also do not consider 
an analysis of examples. 

5.3. Morphing space 
In this section we will approach the space of shapes as an affine space and a vector 
space. We will show how general concepts of the affine space generalize for meshes 
and we will introduce an inner product on the space of meshes. 

5.3.1. Affine morphing space – space of shapes 
In this section we will describe the Affine Morphing Space (AMS) which is an analogy 
of an affine space. Definitions and properties of the affine space suited for the computer 
graphics community are given in [Mil99]. Elements of the classical affine space are 
points; elements of AMS are isomorphic meshes. In the affine space we can compute an 
affine combination of points. In AMS we can compute an affine combination of meshes 
so that each vertex of the mesh is computed as an affine combination of corresponding 
vertices, i.e.: 
  

∑
=

=
n

1i

i
jij VR w , (5.1) 
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where Rj is the resulting j-th vertex, wi are weights of the affine combination and i

jV  is 

the j-th vertex of the i-th basis mesh. Symbolically, we will write: 
 

S = Σ wiSi , i=1,2, …, n, (5.2) 
  
where Si are the basis meshes and S is the resulting mesh. An affine combination of n 
basis meshes requires to specify weights wi, i=1, …, n, so that Σwi = 1. Since we can 
choose independently only n-1 weights, all shapes obtained by the affine combinations 
of n basis shapes form n-1 dimensional AMS. A simple case of the affine combination 
is a linear interpolation between two shapes, i.e., the classical linear morphing. In this 
case there are two basis shapes and their combinations form a one dimensional AMS. 
Vertices of intermediate shapes move along lines defined by the initial and the final 
positions of corresponding vertices.  
 
Note that the classical morphing usually generates shapes “between” the initial and the 
final shape. Clearly the affine combination allows shapes which are not only between 
the initial and final shapes, but also shapes which are extrapolations of the classical 
morphing, thus the affine combination generates a wider class of shapes than the convex 
combination (i.e., the classical morphing). Negative weights in the affine combination 
might cause flipping of orientation which may result in distorted shapes. Therefore, in 
some cases it is convenient to restrict a general affine combination to a convex 
combination. In this case the intermediate shapes will lie “between” basis shapes. In the 
case of classical morphing the vertices will move along line segments defined by the 
initial and the final position, in the case of multimorphing the vertices will move inside 
the convex hull of corresponding vertices. The fact that vertices of intermediate shapes 
move within some fixed region can be used for example in the area of collision 
detection [Lar03]. 

5.3.2. Morphing vector space 
In the previous section we showed that the basis shapes can be viewed as elements of 
the affine space and that they can be combined using an affine combination to produce 
new shapes. In this section we will show an analogy of a vector space. Elements of the 
vector space are vectors which can be viewed as a relation between two elements of an 
affine space (i.e., points). We will use the concept of vector space to produce new 
shapes by a linear combination. 
 
In the affine space the subtraction P – Q of two points P, Q results in a vector from Q to 
P in an associated vector space. In AMS two shapes are subtracted by subtracting the 
corresponding vertices. The result is an n-tuple of vectors which we denote as a 
morphing vector. Its components are vectors of trajectory which we will refer to as 
trajectory vectors (in fact, the morphing vector is an n x 3 matrix, where each row is a 
3d vector but we will use the term vector instead of matrix to be consistent with the 
terminology of the vector space). Morphing vectors are elements of the Morphing 
Vector Space (MVS) which is an analogy of a vector space. So the MVS is a space of 
trajectories. A morphing vector is computed as: 
 

0
j

1
jj VVv −= , (5.3) 
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where 0
jV , 1

jV  are corresponding vertices of the initial and the final shape, vj is the j-th 

component of the morphing vector. Symbolically we will write v = B – A, where A, B 
are shapes and v is the morphing vector. 
 
Addition of a point P and a vector v results in another point P’ which is translated by an 
amount given by the vector, i.e., P’ = P + v. Addition of a shape and a morphing vector 
results in another shape whose vertices are translated by the amount given by the 
components of the morphing vector. Symbolically we will write B = A + v, where B is 
the resulting shape obtained by adding a morphing vector v and a shape A. 
 
Scalar multiplication of a morphing vector is represented in the MVS as a scalar 
multiplication of individual components of the morphing vector. Similarly, the vector 
addition is represented by vector addition of individual components of morphing 
vectors. Note that MVS is closed under scalar multiplication and vector addition.  
 
In Figure 5.1a) there are two shapes – a square and a triangle. Arrows represent 
components of a morphing vector, i.e., trajectories of vertices when morphing from the 
shape of triangle to the shape of the square. Figure 5.1b) shows symbolically basic 
operations between shapes and morphing vectors. The first symbolical relation 
represents a computation of a morphing vector. The second relation shows an addition 
of a shape and a morphing vector which results in another shape. The third relation 
demonstrates an addition of a shape and a 0.5 multiple of a morphing vector which 
results in a halfway shape between the triangle and the square. 
 

 
a) b) 

Figure 5.1: a) an example of morphing between a square and a triangle, arrows represent individual 
components of the morphing vector, b) a symbolical expression of morphing vector computation (1), an 
addition of a shape and a morphing vector (2) and an addition of a shape and a scalar multiple of a 
morphing vector (3). 

 
Note that the MVS is a space of morphing vectors, so it does not contain any shapes, but 
the elements of MVS are used to construct new shapes by adding a shape from the AMS 
and morphing vector from the associated MVS. Elements of a vector space are usually 
represented as a linear combination of basis vectors. The number of linearly 
independent basis vectors gives us the dimension of the vector space. For example, E2 is 
a two-dimensional vector space spanned by basis vectors (1, 0) and (0, 1). 
 
In the MVS the basis morphing vectors are constructed as follows. Let us have n basis 
shapes M i, i=0,…,n-1, without a loss of generality let us pick the shape M0 as a zero 
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element shape and compute the basis morphing vectors vj = M j – M0, j=1,…, n-1. Note 
that the element M0 is an analogy of the zero element vector o in the classical vector 
space. 
 
It is clear that by adding M0 and vj we obtain M j. The classical linear morphing M j(t) 
between two shapes M0 and M j is computed as M j(t) = M0 + vj(t) where vj(t) = t.vj, t ∈ 
<0; 1>, i.e., a scalar multiplication of the vector vj by t. It is also demonstrated in Figure 
5.1b) in the third symbolical relation. Basis morphing vectors vk are combined by means 
of a linear combination to compute new shapes, i.e.: 
 

M (w1, ..., wn-1) = M0 + Σwivi, i=1,…, n-1, (5.4) 

 
where wi are coefficients of a linear combination. It is clear that if wi = 0, i=1, …, n-1, 
then M (w1, …, wn-1) = M0. Note that n shapes generate n-1 dimensional AMS. Also 
note that if Σwi = 1 then the term M0 cancels out - it has no meaning - and Eq. 5.4 turns 
to the affine combination of shapes as defined in Section 5.3.1. If Σwi ≠ 1 then the task 
of M0 is to “stabilize” the morphing. The linear combination of basis morphing vectors 
can be rewritten as an affine combination of basis shapes so that the weight of the zero 
element shape is 1 - ∑wi, i = 1, …, n-1.  
 
So, why do we bother with the zero element shape if the same result can be achieved 
with the affine combination? It is mainly because of a user interaction. First, the zero 
element shape is usually some “neutral” shape so if the user does not specify any 
weights in the Eq. 5.4, the resulting shape is just the neutral shape. Second, the concept 
of the zero element shape allows us to work in an additive way as for example in the 
RGB color system, where by adding color components we obtain brighter colors. For 
instance, let us have face expressions. A neutral shape is some neutral face expression 
and the basis shapes contain some simple face expression – e.g., “left eye closed”, 
“right eye closed” or a “smile” expression. The simple face expressions are added to the 
neutral face expression to create a new complex face expression. 
 
Additionally, the morphing vectors express the difference between the zero element 
shape and some specific shape. If the difference is only in some local area (e.g., one eye 
closed) then the morphing vector is a sparse vector, which might be useful for instance 
for some efficient encoding. For example, to represent the morphing vector as a list of 
tuples (i, v), where v is a non-zero component of the sparse morphing vector on the i-th 
position.  
 
With an analogy of vectors we can now define an inner product which is used to 
introduce a norm on the space of shapes. 

5.3.3. An inner product in the AMS 
In order to define a norm in the space of shapes, we have to introduce an inner product. 
We define the inner product as a sum of dot products of components of the morphing 
vector. We will denote such an inner product as a morph dot product. The morph dot 
product is computed as Frobenius inner product of morph vectors u, v, i.e.: 
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=
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where u, v are n-component morphing vectors and each component is an m-dimensional 
vector. Note that the inner sum ∑uijvij is the classical dot product of i-th components of 
the morphing vectors u, v. The components of a morphing vector are 3d (or 2d) vectors 
from the Euclidean space. In the Euclidean space an inner product is defined (denoted 
as dot product). Then our definition of the inner product is correct as well because it is a 
sum of properly defined dot products and it fulfills all properties of the inner product 
(i.e., it is distributive, commutative and positive). By defining the morph dot product we 
can introduce a norm l(x) on the space of shapes: 
 

l(x) = (x,x) , (5.6) 
 
where x is a morphing vector. Using the norm we can compare shapes of the AMS. The 
distance between the points A and B is the size of the vector v obtained as v = B – A. In 
the same way we can compute the distance between the shapes M1, M2 which is a sum 
of distances between corresponding vertices. If the distance is zero then the shapes M1 
and M2 are identical. 
 
Note that the norm takes into account only relative positions of corresponding vertices, 
so it is not possible to capture scaling or rotation. For instance, let us have two input 
objects where the other object is the uniformly scaled first object. Even if the overall 
shape of both objects is the same, our norm will yield non-zero value since 
corresponding vertices are not coincident. In this case the input shapes must be properly 
aligned first and the effects of an affine transformation must be eliminated [Ale00d].  

5.3.4. Orthogonal projection 
We use the concept of the orthogonal projection to express a shape S as an affine 
combination of basis shapes. First, let us briefly describe the concept of the orthogonal 
projection in general. Denote L  a vector space spanned by linearly independent basis 
vectors b0, b1, …, bn-1. Denote L 0 a subspace of L  spanned by basis vectors g0, g1, …, 
gm-1, m < n. The vector v0 is an orthogonal projection of v ∈ L  iff (i) v0 ∈ L 0 and (ii) (v–
v0)⊥gi, i=0, …, m-1. The condition (i) can be expressed as v0=λ0g0 + λ1g1 + … + λm-

1gm-1. By substituting the condition (i) into the condition (ii) and by expanding the dot 
products a linear system is obtained: 
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 (5.7) 

 
Note that the matrix of the linear system contains all possible inner products – it is 
called a Gram matrix. By solving the system we obtain coefficients λ0, λ1,…, λm-1 of a 
linear combination which expresses the orthogonal projection of v to L 0. The system 
can be solved only if the Gram matrix is regular. The Gram matrix is regular if the basis 
vectors g0, g1, …, gm-1 are linearly independent. The orthogonal projection guarantees 
the “closest” approximation of the vector v in the subspace L 0. The closeness of the 
projection is of course expressed with respect to the defined inner product. Note that 
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|v – v0| expresses the distance between the original vector v and its projection v0. If  |v – 
v0| is zero then v0 ∈ L . 
 
Since we introduced the morph dot product in the Section 5.3.3, we can compute 
orthogonal projections of morphing vectors. We will show an algorithm which 
computes a projection of a shape S into a subspace spanned by shapes Bi, i=0, …, n-1. 
 
Input : a set of shapes B = {Bi}, i=0, …, n-1, a shape S to be projected 
Output : S’ – the projection of S 
 

1. Without loss of generality, pick B0 as the zero element shape. 
2. Compute the basis morphing vectors gj=Bj – B0, j=1,…, n-1. 
3. Compute the morphing vector v = S – B0. 
4. Compute the Gram matrix (Eq. 5.7). 
5. If the Gram matrix is singular eliminate an arbitrary shape from B and continue 

with the step 1. 
6. Solve the linear system for λ0, λ1,…, λm-1. 
7. Compute the projection S’ = B0 + Σλkgk, k = 0, …, m-1. 

 
Additionally, a distance between the original shape S and the projected shape S’ can be 
computed using the norm (Section 5.3.3). If the distance is zero, then the shape S is an 
element of L 0 (i.e., it can be obtained as an affine combination of basis shapes Bi). 
Otherwise, the distance represents an error of the approximation. Note, that in the step 5 
the algorithm essentially checks for a linear independence of the basis shapes. In linear 
algebra, a set of vectors is linearly independent if none of them can be expressed as a 
linear combination of vectors from the set. In MVS, if morphing vectors are linearly 
dependent then it means that some of the basis shapes can be obtained by a linear 
combination of the other basis shapes. Naturally, a set of basis shapes with no redundant 
shapes is required. Therefore, the steps 1-5 can be used to compute linearly independent 
set of basis shapes. 
 
Alexa and Müller [Ale99] introduced a concept of a morphing function m(A, B, t) 
where the parameters A, B are input shapes and t is a transition parameter, which 
expresses the contribution of an input shape to the final shape. Thus, the orthogonal 
projection can be viewed as an inverse morphing function m-1(A, B, C) which computes 
the value of the transition parameter t of the shape C when morphing between A and B. 
Of course, if the shape C does not “lie between” A and B, then t is the transition 
parameter of the projection of C to the morphing space spanned by A and B. 
Furthermore, the concept of the orthogonal projection is not limited just to two shapes 
(1D morphing space), so we can project to any-dimensional morphing space. 

5.4. An exploration of the space of shapes 
In this section we will describe user interaction aspects of the multimorphing. 
Theoretically, new shapes are generated by specifying weights of a linear combination 
of basis shapes. In an implementation, it is usually done by a set of sliders where each 
slider controls a contribution of one basis shape. The number of sliders is given by the 
dimension of the morphing space. It is clear that manipulation of large number of sliders 
might be complicated. Moreover, it is even harder when we want to maintain sum-up-
to-one condition for computation of affine combinations. Therefore we propose two 
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alternative ways how to control the synthesis of new shapes – barycentric coordinates 
and curves in the morphing space. 

5.4.1. Barycentric coordinates 
Barycentric coordinates allow a coordinate-free expression of a point with respect to a 
triangle; they are infinitely differentiable, so they provide a good technique to 
interpolate data given in the vertices of a triangle. The concept of barycentric 
coordinates can be directly generalized for n-dimensional simplices. Other 
generalizations were proposed for general n-sided irregular polygons [Mey02], 3d 
convex and star-shaped polyhedra [Flo05] or for convex sets [War06]. An important 
property is that they fulfill sum-up-to-one condition so they can be directly used for the 
affine combinations of shapes. 
 
First, we will describe the use of barycentric coordinates for a triangle and later we will 
discuss possible generalizations and their limitations with respect to the multimorphing 
application. First, let us have three basis shapes. The key idea is to associate the basis 
shapes B0, B1, B2 with the vertices of a triangle V0, V1, V2. By picking a point P from 
inside (or possibly outside) the triangle we can compute the barycentric coordinates u, v, 
w of P with respect to the triangle and use the barycentric coordinates as coefficients 
when computing an affine combination of the basis shapes. It is clearly easier to pick a 
point from a triangle than to independently specify three values.  
 
By picking an arbitrary vertex of the triangle we obtain the shape associated with the 
vertex of the triangle (Figure 5.2a). By picking a point on an edge of the triangles we 
obtain a shape computed by morphing between the shapes associated with the endpoints 
of the edge, by picking a point from the interior of the triangle we obtain a mixture of 
all three basis shapes. Clearly, a sequence of points generates a sequence of shapes, i.e., 
an animation.  
 

  

a) b) c) 

Figure 5.2: a) an association between a point (the red cross) and a shape, b) a sequence of points 
generates a sequence of shapes, c) the sequence of shapes. 

Considering the triangle as a geometrical representation of the morphing space, the user 
associates shapes with a point. It is considerably easier to reproduce a point position 
than some complicated shape. Additionally, the user has a notion of distances in the 
space, i.e., if a point P is close to some triangle vertex V i,  the resulting shape will be 
influenced most by the shape Bi associated with the triangle vertex V i. Analogously, 
when specifying points close to the edge, the resulting shape will be mostly a mixture of 
shapes associated with the endpoints of the edge. Similarly, in the geometrical 
representation of the morphing, the morphing animation is represented as a curve. So it 
is possible to associate the whole morphing transition (possibly very complicated) with 

B1 

B2 

B3 
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a simple curve. It is demonstrated in Figure 5.2b) where the red line segment represents 
the glass animation depicted in Figure 5.2c). 
 
Since the computation of barycentric coordinates can be generalized for n-dimensional 
simplices, we can use the same idea for four basis shapes and a tetrahedral simplex. By 
picking an inner point of the tetrahedron we can compute affine combinations of four 
basis shapes.  
 
The problem of higher dimensions (n > 3) is that it is hard to imagine and display an n-
dimensional simplex and it is not easy to pick points from higher dimensional simplex 
using conventional input devices. 
 
A generalization of barycentric coordinates for n-sided polygons [Mey02] can be used 
for higher dimensional morphing spaces. Again, the basis shapes are associated with 
vertices of the polygon and by picking points from the interior of the polygon 
coefficients of a convex combination are obtained. Generally, all coefficients of the 
convex combination are non-zero (except the cases when a point lies on a polygon 
vertex or on a polygon edge). It means that, using a polygon as a geometrical 
representation of a morphing space, it is not possible to generate a shape which is a 
mixture of a subset of basis shapes. For instance, given 5 basis shapes, it is not possible 
to generate a mixture of only 3 basis shapes, because the coefficients of the convex 
combination of a point inside a polygon are non-zero. So it means that using barycentric 
coordinates for polygons we cannot access the whole space of shapes. Note that in the 
case of tetrahedra it was possible to compute combinations of 1, 2, 3 or 4 shapes, which 
corresponds to points on a vertex, on an edge, in a face or generally inside the 
tetrahedra. In case of four sided polygon only a combination of 1, 2 and 4 shapes can be 
computed. The same problem will appear in 3d generalization of barycentric 
coordinates [Flo05, War06]. 

5.4.2. Curves in the morphing space 
Another interesting way how to easily generate shapes in the space of shapes was 
outlined by Rossignac and Kaul [Ros94], but they considered a different morphing 
technique (Section 5.2). We consider a boundary representation and we propose a 
generalization of de Casteljau algorithm, which can be used for fast generation of 
shapes. De Casteljau algorithm for morphing can be used for other representations as 
well. We will briefly review the basic idea and then we will describe our extensions. 
Rossignac and Kaul proposed the so called Bézier metamorphosis which is motivated 
by a classical Bézier curve. As the points of a Bézier curve are computed as convex 
combinations of control points, the Bézier metamorphosis consists of shapes which are 
convex combinations of the control shapes. Rossignac and Kaul defined the convex 
combination of objects using the Minkowski sum and scaling.  
 
Our basic idea is the same as Rossignac’s and Kaul’s [Ros94]. Control points of the 
Bézier curve are replaced by the control shapes. To compute a point on a Bézier curve, 
Bernstein polynomials must be evaluated. The difference between Rossignac’s and 
Kaul’s approach and our approach is that we use the values of the Bernstein 
polynomials in the convex combination of the control shapes (Eq. 5.2) while Rossignac 
and Kaul used them for scaling of control shapes which are subsequently added using 
the Minkowski sum. By replacing the control points by the control shapes, a Bézier 
curve in the space of shapes is generated. This curve has analogous properties as the 
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classical Bézier curve. It interpolates the first and the last control shape and it 
approximates intermediate control shapes. 
 
Bézier metamorphosis can be viewed as a new way of designing morphing animations. 
In the classical morphing a user chooses two shapes between which some smooth 
transition is computed. Then, the transition can be adjusted by introducing other shapes 
which bend the animation so that the initial and the final shapes are preserved but the 
intermediate shapes are influenced by the additional shapes. The amount of influence is 
given by Bernstein polynomials. Note that using this idea is extremely easy; the user 
just adds intermediate shapes to adjust the multimorphing animation and it is still 
controlled by one parameter. 
 
Interesting and useful property of Bézier curves is that they can be generated using de 
Casteljau algorithm. De Casteljau algorithm is a recursive subdivision of a control 
polygon. It is used to evaluate a point on a Bézier curve using a sequence of linear 
interpolations. In the multimorphing, instead of the linear interpolation, a classical 
morphing function is used to compute a shape on a Bézier curve in the space of shapes. 
It is depicted in Figure 5.3a), where the classical morphing between two glasses M1,0 
and M4,0 is influenced by additional shapes M2,0, M3,0. The first subdivision results in 
shapes M1,1, M2,1, M3,1, the second subdivision results in shapes M1,2, M2,2 and the third 
subdivision results in the final shape M (0,5). 
 

 
 

 

a) b) c) 
Figure 5.3: a) a demonstration of the de Casteljau algorithm in the multimorphing setting, b) a quadratic 
Bézier curve in the morphing space, c) a cubic Bézier curve in the morphing space. 
 
We propose two approaches for Bézier morphing computation. In the first approach we 
compute values of Bernstein polynomials for a given t. The values are used as weights 
in Eq. 5.1. This approach considers isomorphic meshes or polygons. The second 
approach is based on the de Casteljau algorithm. All it requires is just a classical 
morphing function. So it can be used in any area where a morphing between two objects 
(shapes, volumes, images, etc.) is defined. For example, if we are able to morph 
between two meshes with different connectivities, we can use the Bézier morphing 
among multiple basis meshes with different connectivities as well, since we just apply 
repeatedly a morphing function on two meshes. But let us remind that it might be 
computationally expensive because in each step of the de Casteljau algorithm the whole 
morphing function must be computed (including the correspondence computation and 
the remeshing), which is not a problem in the first approach for the Bézier morphing. 
 

M 1,0 

M 2,0 M 3,0 

M 4,0 

M 1,1 

M 2,1 

M 3,1 
M 1,2 M 2,2 

M (t) 
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The de Casteljau algorithm is a subdivision scheme which converges towards a Bézier 
curve. In a similar manner as we subdivide the curve we can subdivide a morphing 
animation. In each subdivision stage we can adaptively control the depth of the 
subdivision. In the case of curves the curve is subdivided until a small relatively flat 
segment is generated or until a segment is smaller than a pixel size (in case of 
generating a curve on a raster device). In each stage of the subdivision process we have 
two shapes. We can adaptively control the depth of the animation subdivision by 
comparing these two shapes and possibly stop further subdivision. Of course, some 
function which compares shapes is required. Generally, we can use some measure based 
on the Hausdorff distance to compare two shapes. Since we work with isomorphic 
meshes, we can use the measure introduced in Section 5.3.3. Or, for example, we can 
compare some scalar quantity of the two shapes (e.g., volume or area) and stop the 
subdivision if the quantity difference is small. Using this approach we can generate a 
morphing animation which is parameterized by an amount of the shape transformation 
(and not by an artificial transition parameter). For instance, it should be possible to 
reparametrize the animation so that the volume of the shapes changes linearly.  
 
Clearly, the Bézier curve in the morphing space addresses just a small subspace of the 
entire morphing space. It generates just convex combinations of basis shapes. Simplicity 
of the use is paid by less control over the whole morphing transition. One possibility 
how to control an influence of some specific basis shape (except the initial and the final) 
is an increase of multiplicity of the basis shape. If we want some basis shape to 
influence more on the morphing animation we just repeat the basis shape in the 
sequence of control shapes. It is demonstrated in Figure 5.3b), where a quadratic Bézier 
curve in the morphing space is depicted. In Figure 5.3c) we wanted to emphasize the 
glass shape, so we increased the multiplicity of the glass shape. It can be seen that the 
intermediate shape is closer to the glass shape. 
 
The idea of Bézier curves can be generalized for other types of curves as well. For 
example, rational Bézier curves have similar properties as Bézier curves, but each 
control shape can be explicitly assigned a weight. It can be useful when we want to 
change the influence of some basis shapes. It can be done by increasing the multiplicity 
of the basis shape but still the weights are given by Bernstein polynomials, whereas 
using the rational specialization of Bézier curves, the weights can be adjusted more 
precisely. Another well known type of curves is B-spline curve. Besides, it has a local 
support which means that by changing some of control shapes we do not change an 
entire animation but just a local part of the animation. B-splines are defined by 
specifying an order of basis function (which implies an extent of the local support) and 
by a knot vector. There is also an analogy of de Casteljau algorithm for B-spline 
generation which is called de Boor algorithm. A rational specialization of B-spline 
curves are NURBS curves, which in addition to the degree of basis function and the 
knot vector introduce weights for each control shape. 
 
The idea of generating one-parametric curves in the morphing space can be also 
generalized for multi-parametric objects as well. For example, a bilinear patch can be 
used to control the morphing among four objects. It can be useful, e.g., for controlling 
LOD morphing animations where one parameter controls the shape transition whereas 
the second parameter controls the level of detail. 
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5.5. Examples of use of our apparatus 
Using our apparatus we can construct new shapes in two ways – by a convex 
combination of shapes or by a linear combination of morphing vectors. In fact both 
approaches can be expressed by an affine combination. But let us consider both cases 
separately because we use each apparatus in a slightly different situation. 

5.5.1. Shape synthesis – convex combination 
The convex combination of shapes is used when no zero element shape is specified, i.e., 
all basis shapes are on the same level. As an example let us show a multimorphing 
between an apple, a lemon, an orange and a pear (Figure 5.4a). In this case no shape has 
a special role, all shapes are equal. Shapes in Figure 5.4b) and c) are examples of 
convex combinations of basis shapes. 
 

    
a) 

  

  
[0.20; 0,20; 0.20; 0.40] [0.05; 0,80; 0.10; 0.05] [0.10; 1,60; 0.20; 0.10] [-0.90; -0.26; 0.10; 0.96] 

b)  c) d) e) 
Figure 5.4: a) basis shapes, b), c) an example of a convex combination, d) an example of linear 
combination, e) an example of linear combination with negative weights. 
 
An affine combination of shapes is theoretically well defined too but it may produce 
distorted shapes as shown in Figure 5.4e). It is because it accesses an extrapolation area 
of the classical morphing (in the same way as all the affine combinations of two points 
fill a line in contrast to the convex combinations which fill just a line segment). One 
effect of accessing the extrapolation area of the morphing is a flipping inside out of an 
orientation of triangles and their normals which results in distorted rendering 
(wireframe triangles in Figure 5.4e).  
 
The shape in Figure 5.4d) shows a result of a linear combination of shapes, i.e., sum-up-
to-one condition was violated. Weights of the linear combination can be normalized to 
obtain convex combination, i.e.: 
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where wi are original weights, wi’ are normalized weights. By normalizing weights of 
the third shape (Figure 5.4d) the second shape (Figure 5.4c) is obtained. It can be also 
seen that the third shape is just a scaled version of the second shape where the scale 
factor is 2, i.e., the sum of weighs ∑wj, j=1,…,n [Klu04]. So, the linear combination 
does not bring a wider shape variety than the affine combination, it generates the same 
class of shapes but it just introduces an additional uniform scaling. 
 
Another problem with a non-affine combination appears when interpolating surface 
attributes as for example color. Color is usually interpolated with the same weights as 
geometry [Par04] and it can happen that the resulting color jumps outside a color 
system. Then the color must be clamped to values within the color system. A similar 
problem appears for the normal vector computation, as long as we compute an affine 
combination of unit length normal vectors the result has still a unit length, but in the 
case of non-affine combination, the normal vector has to be renormalized. 

5.5.2. Shape synthesis – linear combination of morp hing vectors 
We discussed the motivation for the concept of a zero element shape in the Section 
5.3.2. Next, let us remind that the linear combination does not restrict the sum of 
weights, but it is convenient that each individual weight is in the interval <0; 1>, 
otherwise we access an extrapolation area of the classical morphing. 
 
We will demonstrate the concept of a zero element shape on an example of four hand 
gestures which are depicted in Figure 5.5a). We can identify a zero element shape as an 
“all fingers straight” gesture; simple gestures are left, middle and right finger bent. 
Simple gestures are added to the zero element shape to obtain more complex gestures, 
e.g., two fingers bent. With respect to the zero element shape we generated three 
morphing vectors v1 = M1 – M0, v2 = M2 – M0, v3 = M3 – M0. It is clear that by adding 
the shape M0 and a vector vi we obtain the shape M i. By adding all three vectors we 
obtain an “all fingers bent” gesture.  
 

a) b) c) 

Figure 5.5: a) basis shapes, b) examples of a linear combination of basis shapes, c) a graphical 
representation of morphing vectors. 

On the other hand, when combining shapes M0, M1, M2, M3 using a convex 
combination we would never achieve a gesture where two or three fingers are 
completely bent. Thus, the linear combination of morphing vectors allows us to 
generate a wider class of shapes than a convex combination. Examples of linear 
combinations of morphing vectors are shown in Figure 5.5b). The first symbolical 
expression combines shapes M0, M2 and M3, where the shapes M2 and M3 bend one 

+1*(           -         ) + 1*(         -          ) =          (1) 

+1*(           -         ) + 1*(         -          ) =          (2) 

v1 v3 

v1 v2 

M0 M1 

M2 M3 

v1 v2 v3 
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finger (left one and right one), the result is a shape with two fingers bent. Similarly, the 
second symbolical expression combines the shapes M0, M1 and M2, where M1 and M2 
bend one finger (the middle one and the left one); the result is a shape with two fingers 
bent. Note that such shapes cannot be obtained using convex combination apparatus. 
 
Note that the morphing vectors v1, v2 and v3 are really sparse because they contain just 
trajectory vectors to bend one finger. Also, in this example, we can work with shapes in 
the additive way, because each time we add some morphing vector to the neutral shape 
we add some specific gesture. By adding all three morphing vectors we obtain a 
complex “all fingers bent” gesture. Morphing vectors are depicted in Figure 5.5c), 
where the white regions represent zero components and the gray regions represent the 
non-zero component. It can be seen that the non-zero components are disjoint among 
morphing vectors which correspond to the fact that each morphing vector represents a 
movement of a local part of the mesh which is disjoint among M1, M2 and M3. 

5.5.3. Shape analysis 
Now let us have a reversed problem, given a set of shapes of interest, we want to 
analyze the set, to find the basis shapes and to try to express the elements of the set with 
respect to the basis shapes. Usually we want the dimension of the morphing space as 
low as possible so that the elements of the set can be expressed with respect to a 
relatively small number of basis shapes. The essential tool in the shape analysis is the 
orthogonal projection (Section 5.3.4) which can be used as an analogy of the inverse 
morphing function [Ale99]. 
 
We will demonstrate the orthogonal projection on a following example. We have 5 
basis shapes Bi, i=1,…, 5 which represent fish contours (Figure 5.6). Let us denote L  a 
space of shapes generated by basis shapes B1, B2, …, B5. We computed 5 different 
shapes M i, i = 1, …, 5 as a convex combination of basis shapes (Figure 5.6b). Each 
shape is represented by 5 weights which express a contribution of the basis shapes. As a 
subspace L 0 of L  we choose 1 dimensional space of shapes spanned by the shapes B1 
and B5. Using the algorithm described in Section 5.3.4 we computed projections of 
shapes from Figure 5.6a) to the subspace L 0. The projected shapes are shown in Figure 
5.6c). The key benefit is that each shape in L 0 is represented by one weight (in contrast 
to 5 weights needed to express a shape in L ) while the difference between the original 
shapes and their projections is small. The shapes M1, M5 are approximated exactly 
because they form a basis morphing vector of L 0. The difference between the original 
shapes and their projections can be seen in Figure 5.6d), where the black shapes are 
original shapes M2, M3, M4 (elements of L ) and the blue shapes M2’, M3’, M4’ ∈ L 0 are 
projections of M2, M3, M4 ∈ L .  
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B1 B2 B3 B4 B5 

a)  

 
M 1 = [1,0,0,0,0] M 2 = [0.004; 0.047; 

0.211; 0.422; 0.316] 
M 3 = [0.063; 0.250; 
0.375; 0.250; 0.063] 

M 4 = [0.316;0.422; 
0.211; 0.047; 0.004] 

M 5 = [0,0,0,0,1] 

b) 

 
M 1’=[0] M 2’=[0.23] M 3’=[0.26] M 4’=[0.40] M 5’=[1] 

c)  

 
d) 

Figure 5.6: a) basis shapes, b) combination of basis shapes, c) orthogonal projections, d) comparison of 
original shapes (black) and their approximation (blue). 

 
In the previous example we showed how the orthogonal projection can be used do 
reduce the dimension of the morphing space by choosing specific basis shapes and 
projecting elements of the original morphing to the lower dimensional morphing space. 
We also showed the difference between the shape in the original space and the shape in 
the space with lower dimension. The concept of the orthogonal projection can be also 
used for an analysis of unknown shapes, i.e., shapes where we have a geometrical 
description but we do not know the representation of the shape with respect to the basis 
shapes. For instance, let us have a shape processing system which has some built-in 
basis shapes. New shapes which enter the system are expressed in terms of built-in basis 
shapes by projecting a new shape to the space of shapes generated by the built-in basis 
shapes. 
 
In the following example (Figure 5.7) we will demonstrate a computation of linearly 
independent set of basis shapes. Let us have a set of four basis shapes – B0, B1, B2 and 
B3. Intuitively, the shape B3 can be obtained by combining shapes B1 and B2 with B0 as 
a zero element shape. This can be confirmed by computing the Gram matrix (Section 
5.3.4) of MVS spanned by B0, …, B3 which is singular. Alternatively, we can try to 
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project the shape B3 in a subspace spanned by the shapes B0, B1, B2. Note that it is 
possible because the shapes B0, B1, B2 are linearly independent. As a result, of the 
orthogonal projection, coefficients λ1 = 1.0, λ2 = 1.0 are obtained. Thus, the projected 
shape is 
 

B3’ = B0 + 1.(B1 – B0) + 1.(B2 – B0). 
 
By computing the distance (Section 5.3.3) between the projected shape B3’ and the 
original shape B3 it can be seen that the shapes are the same, which means that the 
shape B3 can be expressed in terms of shapes B0, B1, B2. Hence, by removing the shape 
B3 from the set a linearly independent set is obtained. Note that, instead of removing B3, 
e.g., the shape B1 can be removed. Then, the shape B1 can be still obtained as: 
 

B1 = B0 + (-1).(B2 – B0) + 1.(B3 – B0) 
 
and the shapes B0, B2, B3 form a linearly independent set. 
 

    
B0 B1 B2 B3 

Figure 5.7: An example of linearly dependent shapes. 

5.5.4. Exploration of space of shapes 
In this example we used four hand gestures as basis shapes. We used the Bézier 
morphing to produce an animation of a waving hand. It can be seen that the basis shapes 
are too extreme for the waving hand animation, i.e., the fingers are bent too much. The 
Bézier morphing attenuates the influence of the intermediate shapes. We used a 
sequence of basis shapes M0, M1, M2, M3, M0, i.e., the animation starts and ends in the 
shape M0. The basis shapes are depicted in Figure 5.8a) and some frames of the 
animation are depicted in Figure 5.8b). 
 

M 0 M1 M2 M3 

 

a) b) 

Figure 5.8: a) basis shapes, b) some frames of the resulting waving hand animation. 

Note that this animation can be produced by any tool which supports a linear 
combination of basis shapes (e.g., 3ds max). However, using the linear combination, the 
user must control all four weights to precisely model the final shape. On the other hand, 
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using the Bézier morphing the user manipulates just the curve parameter, while the 
weights are generated automatically by Bernstein polynomials. Clearly, controlling the 
animation by direct manipulation of the weights is more general, but the Bézier 
morphing is easier to control. 

5.6. Summary and possible extensions 
In this chapter we described a generalization of morphing, called multimorphing, which 
extends the idea of classical morphing between two shapes to morphing between 
multiple shapes. The classical morphing generates shapes between the initial and the 
final shape and the morphing transition is controlled by one transition parameter (in 
animation understood as a time). By gradually changing the transition parameter a 1-
dimensional space of shapes is generated. In the multimorphing setting it is not 
straightforward how to systematically generate shapes; therefore we proposed an 
approach where we handle the morphing space as an analogy of an affine space and a 
vector space.  
 
In the examples we showed how to generate new shapes by affine and linear 
combinations. We can also use our apparatus to analyze some existing set of shapes – 
we showed how to find basis shapes and how to express elements of the set with respect 
to the basis shapes. A general technique of orthogonal projection is used to compute a 
representation of shapes with respect to the basis shapes. Using the orthogonal 
projection we can project shapes from generally higher dimensional space to a lower 
dimensional space, thereby reduce the data needed to express the shape. By introducing 
the norm on the space of shapes we also know the error of the projection. We also 
discussed some user interaction aspects of generation of new shapes (i.e., barycentric 
coordinates and curves in the morphing space), which could help when implementing an 
editor for shape generation.  
 
We considered shapes represented as triangular meshes and polygons; nonetheless, the 
method works just with vertex positions, so it can be used in any representation where 
the shape is induced by the points (e.g., point based representation). Additionally, the 
idea of Bézier morphing using de Casteljau algorithm is very general, so we think it 
could be used for morphing of any representation as long as a morphing between two 
objects is defined. 
 
By introducing an analogy of the morphing space and a vector space and by introducing 
a norm on the morphing space we open a big area for a future research, because we can 
now generalize concepts well known from the Euclidean space as, e.g., the area. 
Another interesting field is the analysis of sets of shapes, where we used a concept of 
orthogonal projection. In this chapter we showed how to choose linearly independent 
basis shapes to represent some set of shapes, in the future research, it would be 
interesting to compute basis shapes not from the set of interest but to compute some 
artificial basis shapes so that the number of basis shapes is as low as possible and all 
shapes of the set can be represented with respect to the artificial basis. This would 
probably lead to some optimization problem, e.g., least squares fitting. 
 
We also think that our approach can be generalized for other representations as well. 
For example, raster images consist of pixels. In a similar manner we could define affine 
combination of raster images, a vector representation describing a difference between 
zero element image and some basis image, inner product on a space of images, etc. 
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6. Normal computation for 
deformable meshes 

In this chapter we will focus on one of the later stages of the morphing process – normal 
computation. In the case of triangular meshes, the normal vectors are essential for 
rendering. At this stage, we consider that some morphing technique computed two 
isomorphic meshes which will be interpolated linearly. Together with the shape 
interpolation, the normal vectors must be interpolated as well to be able to render the 
intermediate shapes. We have already described one solution in Section 4.3. In this 
chapter we will describe a drawback of this method and we will suggest some 
alternative solutions. The contribution of this chapter does not apply only for mesh 
morphing – generally it can be used to compute normal vectors of any deformable 
meshes, e.g., garment simulation, collision detection of deformable meshes, etc. 
 
In the further text we will briefly review a related work (Section 6.1). Then we will 
introduce a t-variant cross product which is a basis of a new method for the computation 
of normal vectors for deformable isomorphic meshes (Section 6.2). In the case of the 
triangular meshes, we distinguish between face normals (normals of triangles) and 
vertex normals. It will be described in the sections 6.3 and 6.4. 
 
This research was done in cooperation with Anders Hast, Univesity of Gävle, Sweden, 
who sketched many interesting ideas. Some of them were further investigated and they 
also appear in this chapter. 

6.1. Related work 
A normal vector to a surface is a vector perpendicular to it. In the differential geometry 
the normal vector of a smooth surface can be computed by taking cross-product of 
partial derivatives. However, the triangular mesh is a piecewise linear approximation of 
a real surface, thus the normal is usually computed only for the vertices of the mesh and 
for the rest of the surface the normals are interpolated. Basically, the normal vector 
determines an orientation of the surface; therefore it is extensively used in shading, 
collision detection or mesh editing.  

6.1.1. Vertex normal computation 
Vertex normals can be computed from an arbitrary triangle mesh in many different 
ways. One of the most often used approaches is to compute the vertex normal as a 
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weighted average of normals of faces which are incident to the vertex. An overview and 
a comparison of different weighting schemes is given in [Jin05]. The basic relation is: 

 
where nV is the vertex normal of the vertex V, ni is a normal of a face adjacent to the 
vertex V and wi is a weight of the face normal ni. The simplest form of the weighting 
scheme is to set all weights wi to 1.0, then each face normal contributes equally to the 
resulting vertex normal. Other schemes consider the fact that faces adjacent to the 
processed vertex have different size and therefore they contribute differently to the 
resulting vertex normal. Some weighting schemes are summarized in Table 6.1. 
 
Weighting 
scheme 

Description 

equal weighting all faces contribute equally to the resulting face normal, regardless 
the area or the angle 

angle weighting considers the angle under which the face is incident to the vertex, 
i.e., faces with larger angles contribute more to the resulting vertex 
normal 

area weighting considers areas of faces incident to the vertex, i.e., larger faces 
contribute more to the resulting vertex normal 

inverse area 
weighting 

considers areas of faces incident to the vertex, smaller faces 
contribute more to the resulting vertex normal 

Table 6.1: Some weighting schemes for the vertex normal computation. 

The use of a specific weighting scheme depends on the application domain. Max 
[Max99] tested the aforementioned weighting schemes on random analytical cubic 
surfaces. On his testing data the inverse area weighting scheme generated the most 
accurate vertex normals. Jin et al. [Jin05] tested the weighting schemes on 
parameterized surfaces and marching tetrahedral-tessellated surfaces. On these testing 
data the area weighting scheme generated the most accurate results. The area weighting 
scheme was also suggested by Lengyel [Len04] as a method giving more appealing19 
vertex normals for some models. The vertex normal computed using the area weighting 
scheme is computed as follows: 
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where ni is the normal of the face f i formed by the vertex V and edges ei, ei+1, 
i = 1, …, n, where n is the number of faces adjacent to the vertex V. Note, that faces f i 
may or may not form a closed triangle fan. The main advantage of the area weighting 
scheme is that individual face normals which appear in the sum in Eq. 6.2 do not need 
to be normalized. Normalization is computationally expensive unless hardware is used, 
not the least depending on the square root involved.  

                                                 
19 The vertex normals were used for smooth shading. 
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6.1.2. Deformable meshes 
The area of computer animation could be divided into a rigid-body motion and a soft-
body motion. In the rigid-body motion the relative position of each two vertices stays 
fixed during the transformation and the object transforms as one entity [Kar04]. 
Examples of the rigid-body motion are a rotation or a translation.  
 
The rigid-body transformation can be expressed by a transformation matrix A, then the 
normal field of the transformed object under a rigid-body motion is transformed by the 
inverse transpose of the Jacobian matrix J of the transformation matrix A, i.e., (J -1)T 
[Gom99]. Moreover, if the transformation is linear, the normal field is transformed by 
the matrix A directly, because in the case of a linear transformation A it holds that 
(J-1)T=J=A.  
 
In the soft-body motion there are no restrictions on change of a relative position of two 
vertices; each vertex can travel along its trajectory independently on other vertices. 
Hence, no global transformation can be applied on the normal field, as in the rigid-body 
motion case. In this chapter we will deal with soft-body motion, however, our 
techniques are general enough so that they can be used for linear transformations as 
well. 
 
A lot of methods for computing vertex normals for static meshes exist. In the case of 
deformable meshes, there are basically two approaches how to compute normal vectors 
– deform the mesh and recompute the normal vectors using some standard approach or 
interpolate the normal vectors during the mesh deformation. The recomputation 
approach takes usually more time but it computes exact normals (with respect to the 
current mesh shape). The interpolation approaches are usually faster, but they may be 
inaccurate because the interpolation need not reflect the true mesh shape. 
 
Besides the recomputation and the interpolation approach, Alexa et al. [Ale00a] suggest 
to compute normals only for the first frame of the animation and leave them unchanged 
for the remaining frames. This may work in the cases when a mesh does not deform 
very dramatically and when only several in-between frames are needed, however it is 
not very useful for morphing because morphing might involve a dramatic shape 
transformation and a lot of in-between frames. 

6.2. t-variant cross product 
In this section we will describe an essential tool for the computation of a normal vector 
of a moving plane. 
 
Let us recall that the cross product is an operator which takes two non-parallel vectors 
v1, v2 and computes a vector n which is perpendicular to both v1 and v2. In the computer 
graphics, it is often used to compute a normal of a triangle. We generalized the cross 
product for a computation of a normal of a deforming triangle. The triangle can 
arbitrarily deform as long as the vertices of the triangle travel along straight lines with a 
constant velocity (so-called linear motion). The situation is depicted in Figure 6.1. 
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Figure 6.1: A linear motion of a triangle from an initial position (vertices P0, P1, P2) to a final position 
(vertices P0’, P1’, P2’). Vertices travel along linear trajectories P0(t), P1(t) and P2(t), n0 is the normal of 
the triangle in the initial position, n1 is the normal of the triangle in the final position and n(t) is the t-
variant face normal depending on vertex trajectories P0(t), P1(t) and P2(t). 

If the vertices move from the source position P0, P1, P2 to the target position P0’, P1’, 
P2’ along a straight line, the trajectory can be described as P0(t)=P0+t(P0’-P0) (and 
analogously P1(t), P2(t)). The normal of the triangle in the source position can be 
computed as n0=(P1-P0) × (P2-P0). If we want a relation for the t-variant face normal, 
we have to substitute the vertex trajectories P0(t), P1(t), P2(t) into the cross product, i.e.:  
 

n(t) = (P1(t) – P0(t)) x (P2(t) – P0(t)) = [nx(t), ny(t), nz(t)], where 
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(6.3) 

 
Each component nx(t), ny(t), nz(t) of the normal vector n(t) is a degree two polynomial20. 
After expanding Eq. 6.3 and organizing the terms by the power of t, Eq. 6.4 is obtained: 

 
where di = Pi‘-Pi, i = 1, 2, 3 is the vector of the trajectory. Eq. 6.4 represents the 
t-variant cross product (TCP). Note, that if two trajectory vectors di, dj are the same, 
i.e., di=dj, i≠j, i, j=1, 2, 3, then TCP is linear, i.e., the quadratic term disappears. If all 
trajectory vectors are the same, i.e., when the plane just translates, then TCP is constant. 
It is clear that if two points of the face do not move then TCP is linear, if all three points 
do not move then TCP is constant. 
 
This fact can be used for an analysis of the motion and for simplification of TCP. We 
can compare21 the trajectory vectors and use the appropriate form of TCP. For instance, 
if two trajectory vectors are almost the same, the coefficient of the quadratic term would 
yield a very small absolute value, which may cause numerical problems when 
evaluating the polynomial. However, we can explicitly unify similar trajectories, which 
turns TCP to a linear polynomial. By unifying the trajectories we know exactly what 

                                                 
20 The trajectory is expressed by a degree one polynomial; in the cross product, two degree one 
polynomials are multiplied, therefore the resulting polynomial will have degree two. 
21 Since we compare vectors, we have to compare a direction (i.e., an angle between the vectors) and a 
length. 

n(t) =  (P1 × P2 – P1 × P0 – P0 × P2) +  
 t(d1 × P2 + P1 × d2 – (d1 × P0 + P1 × d0) – (d0 × P2 + P0 × d2)) +  
 t2(d1 × d2 – d1 × d0 – d0 × d2) , 

(6.4) 
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kind of error we introduce, i.e., the angle difference or the trajectory length difference. 
On the other hand, similar trajectories lead to small absolute values of the polynomial 
coefficients. If the coefficient value is very small, we could disregard it, but we would 
have to set some artificial limit value, so that the coefficient values smaller than the 
limit value are disregarded. Additionally, it is not completely clear how big error we 
introduced by disregarding some term. Also, very small values of the coefficients may 
cause numerical problems when evaluating the polynomial22. 
 
Note that the coefficients are computed using a vector addition and the cross product, 
thus it can be precomputed very efficiently on hardware with a vector operation support. 
 
After computing the coefficients of the degree two polynomials of the t-variant cross 
product the intermediate normals can be evaluated by evaluating the degree two 
polynomials. Generally, a degree two polynomial at2 + bt + c can be evaluated by 3 
multiplications and 3 additions. It can be further optimized by using the Horner scheme. 
It transforms the quadratic polynomial to the form t(at + b) + c. To evaluate this form, 2 
multiplications and 2 additions are required. In the case of t-variant cross product we 
have to evaluate three degree two polynomials (one for each component of the normal 
vector), thus we need 6 multiplications and  6 additions. Horner scheme is the fastest 
method for evaluating a polynomial at a single point. However, an animation usually 
requires evaluating a polynomial at several evenly spaced values. In this case, an 
incremental scheme based on the forward differencing can be used. For degree two 
polynomials, the forward differencing method requires 2 additions per one evaluation 
(plus some setup needed to initialize the incremental scheme). Thus, the t-variant cross 
product can be evaluated by 6 additions using the forward differencing method. 
 
Sometimes, the normal vectors are required to be unit length. In this case the 
intermediate normal vectors obtained by evaluating the t-variant cross product must be 
normalized. On the other hand the length of the normal vector obtained by evaluating 
the t-variant cross product is proportional to the area of the triangle formed by the 
moving vertices P0, P1, P2 (Figure 6.1), i.e., the normal vector is implicitly weighted by 
an area. 

6.3. Face normal computation 
In this section we will deal with face normal vector computation of deforming triangular 
meshes. Face normals are essential vectors for vertex normal computation using some 
weighting schemes (see Section 6.1.1); they can be also used for the shading. 
 
As stated before, there are basically two approaches for the normal vector computation 
– a recomputation approach and an interpolation approach. In the case of the 
recomputation approach a mesh is deformed and the face normals are recomputed from 
the scratch. In the case of the interpolation approach we set several key-frames for 
which exact face normals are computed (i.e., interpolation constrains) and the 
intermediate (i.e., between the key-frames) face normals are interpolated using some 
interpolation technique. In the further text we will propose several approaches how to 
compute face normals. 

                                                 
22 Such problems are related to the floating point numbers representation and they usually appear when 
doing numerical operations between a very big and a very small number. 



 66 

6.3.1. t-variant cross product 
The t-variant cross product can be directly used for face normal computation. The 
advantage of this approach is that the coefficients of the degree two polynomials can be 
precomputed during a preprocessing stage. During the mesh deformation we just 
evaluate 3 degree two polynomials for each face. Of course, the precomputed 
coefficients must be stored somehow. The space cost is 9 floating point values (i.e., 3 
quadratic expressions, one for each component of the normal vector) for each triangle.  
 
The recomputation approach consists of a computation of two linearly independent 
vectors v1, v2 and a cross product computation between v1, v2. The vectors v1, v2 are 
usually computed by taking the vertices of the faces, i.e., v1 = P1 – P0, v2 = P2 – P0. It 
requires 6 additions. Furthermore, the cross product requires 6 multiplications and 3 
additions. Thus, the recomputation approach requires 9 additions and 6 multiplications 
per face. In the case of triangular meshes, an edge is shared by two triangles (except the 
boundary edges); therefore, the computation of the vectors v1, v2 can be used for the 
neighboring triangles as well. Using the Horner scheme, the face normal computation 
based on the t-variant cross product requires 6 multiplications and 6 additions per face 
which is less than the number of arithmetical operations required by the recomputation 
approach. 
 
The length of the normal is proportional to the area of the face P0, P1, P2. If 
normalization is required, the normalized t-variant cross product is defined as follows: 
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The resulting relation is clearly more complicated that the t-variant cross product 
because it requires computation of the square root.  

6.3.2. Lagrange interpolation 
Linear interpolation (degree one Lagrange interpolation) of normal vectors is described 
by the following expression: 
 

n(t) = n0 + t(n1 – n0), (6.6) 
 
where n0 is an initial normal and n1 is a final normal. This approach is used, e.g., for 
spatial normal interpolation in Phong shading. In fact, the Lagrange interpolation 
interpolates the vector as if it was a point. It is fast but not sufficient because the 
intermediate normals are far from being perpendicular to the triangle; furthermore the 
intermediate normals are not of unit length (Figure 6.2a). 
 
Higher degree Lagrange interpolation fits better the true normal behavior but there is 
always a tradeoff between a better fit and an oscillation due to the higher degree of an 
interpolation function. Also, unit length is not preserved. Figure 6.2b) shows degree two 
Lagrange interpolation which needs an additional intermediate normal nh to fit a 
quadratic interpolation curve. Figure 6.2c) shows a higher degree Lagrange 
interpolation where a number of intermediate normals is required to precompute the 
interpolation curve, it can be seen that due to the high degree of the interpolation 
polynomial the normal is oscillating. 
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a) b) c) 

Figure 6.2: a) a linear interpolation, b) a quadratic interpolation, c) a higher degree interpolation. 

6.3.3. Vector SLERP 
SLERP (Spherical Linear intERPolation) is a technique for interpolation of vectors, 
which maintains unit length. It is defined as: 
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where n0, n1 is the initial and target normal, respectively, f is the angle between n0, n1. 
This approach preserves unit length normals but again the direction of the normal is far 
from being perpendicular to the intermediate triangle. 

6.3.4. Spherical de Casteljau 
Slightly better idea based on [Ježek, F., personal communication, 2005] is to compute 
several intermediate normals exactly (as in the higher degree Lagrange interpolation) 
and interpolate these vectors on the surface of the unit sphere. In this case, a generalized 
de Casteljau algorithm for spherical interpolation can be used. The de Casteljau 
algorithm is well known for a fast generation of Bézier curves. It is basically a recursive 
subdivision of the control polygon which converges to the Bézier curve. The 
generalization of de Casteljau algorithm for fast vector interpolation means to replace 
line segments with the shortest great circle arcs, i.e., the line segment subdivision step is 
replaced by SLERP of consecutive intermediate normals. It is demonstrated in Figure 
6.3a), there is an initial normal n0,0, a final normal n0,3 and two intermediate normals 
n0,1 and n0,2 (e.g., in the time t=0.33 and t=0.66). To compute the normal nf at the time t 
the normals n1,0, n1,1, n1,2 are computed by applying SLERP on pairs of successive 
normals, i.e., n1,0=SLERP(n0,0, n0,1, t), n1,1=SLERP(n0,1, n0,2, t), n1,2=SLERP(n0,2, n0,3, 
t). This process is repeated until one single normal n3,1 is obtained.  
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a) b) 

Figure 6.3: a) a demonstration of de Casteljau algorithm for vectors, the gray thick arrow represents 
application of SLERP on two successive normals, b) quaternion interpolation of face normal, 
transformation M  transforms triangle A0, B0, C0 to the triangle A1, B1, C1 and n0 to n1. Frame F1=(t1, b1, 
n1) is computed by transforming F0=(t0, b0, n0) by the transformation M . 

6.3.5. Quaternion SLERP 
In this section we will describe a new idea which uses quaternions to interpolate face 
normals. A brief introduction to quaternions is in Appendix B. First, let us recall two 
important identities which we will use in the following description: 
 
(i) Rotation in 3d around an axis a by an angle ϕ is represented by a 3x3 rotation matrix 
R or by a quaternion q [Sho85, Ebe04]. Both representations are equivalent. 
 
(ii) Matrix R of rotation transformation is orthogonal and its columns (and rows) are of 
unit length, thus the matrix of rotation forms an orthonormal frame. By the term frame 
we understand here an orthogonal basis of E3. The orthonormal frame is formed by 
three unit length vectors. 
 
The central idea is to set an orthogonal frame F0 = (n0, t0, b0) for the initial face, set an 
orthogonal frame F1 = (n1, t1, b1) for the final face and interpolate between F0 and F1 
using QSLERP. To set a frame F = (n, t, b) means to associate one vector of the frame 
with the normal n of the face, to choose the tangent vector t which lies in the plane of 
the face (e.g., an edge of the triangle) and compute the binormal vector b by taking the 
cross product of n and t, i.e., b = n x t. By organizing the column vectors t, b, n into a 
3x3 matrix R = [ t | b | n ] a rotation matrix R is obtained (ii). The matrix R can be 
converted into a quaternion representation q [Ebe04]. By converting the frames F0, F1 
into the quaternion representation, quaternions q0, q1 are obtained. They represent the 
initial and the final orientation of the face. To obtain intermediate normals n(t), 
quaternions are interpolated using QSLERP. The interpolated quaternion q(t) can be 
converted back to the orthogonal matrix R(t) and the normal is extracted from the last 
column of R(t). It is demonstrated in Figure 6.3b) where the triangle A0, B0, C0 with the 
frame F0 is transformed into the triangle A1, B1, C1 with the frame F1. The intermediate 
quaternion q(t) is converted to the frame (t(t), b(t), n(t)) and the intermediate normal 
n(t) is extracted. 
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The question is how to set frames F0 and F1. One possibility is to use the following 
method. First we compute a transformation matrix M  which transforms the vertices of 
the initial triangle into the vertices of the final triangle; moreover, we want the 
transformation M  to transform also the initial normal to the final normal. All conditions 
can be expressed by a matrix equation, i.e.: 
 

M .[A0 | B0 | C0 | n0] = [A1 | B1 | C1 | n1], (6.8) 
 
where A0, B0, C0, n0 can be written as column vectors, e.g., A0 = [a0x, a0y, a0z, 1.0]T. The 
matrix M  can be computed as: 
 

M  = [A1 | B1 | C1 | n1].[A0 | B0 | C0 | n0]
-1. (6.9) 

 
Then, we set an arbitrary frame F0 for the initial face. The vectors b1 and t1 of the frame 
F1 are computed as follows: 
 

b1 = M .b0 
t1 = n1 × b1 

(6.10) 

 
Since the initial frame is chosen arbitrarily, the problem is that there is an infinite 
number of the initial and the final frame configurations. The choice of the initial and the 
final frame influences the quality of the interpolation. Therefore, the best configuration 
of frames (from the interpolation quality point of view) is needed. Unfortunately, we did 
not succeed in deriving the rule for the best frame configuration. Clearly, the best 
configuration of frames can be approximately computed by brute force testing of 
random configurations, however, it is very time consuming. Therefore, an algebraic 
solution of this problem belongs to our future work. 

6.3.6. Comparisons and discussion 
We compared approaches described in the sections 6.3.1 – 6.3.5 from two points of 
view. We observe an error of the interpolation and the time consumption. The error of 
the interpolation is measured as follows. The time interval (usually <0, 1>) is sampled 
and in each sample an angle between an exact normal (computed by the cross product) 
and an interpolated normal (computed by some method described above) is computed. 
The error of the interpolation scheme is expressed as a sum of angles: 
 

∑
=

=
1-n

0i
iae , (6.11) 

 
where n is the number of samples, ai is the angle between the exact normal and the 
interpolated normal in the sample i. 
 
We tested different interpolation approaches on four morphing animations, where a 
mesh composed of triangles deforms from one shape into the other shape so that the 
trajectories of individual vertices are linear. Numbers in Table 6.2 represent an error of 
the interpolation for the whole mesh. It is computed as a sum of interpolation errors ej of 
individual triangles, i.e., E = Σej, j=0, ..., m-1, where m is the number of triangles of the 
mesh and ej is the interpolation error of the j-th triangle (Eq. 6.11). The numbers in 
Table 6.2 must be always viewed with respect to the number of triangles and the 
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number of samples. Rather than the absolute values it is more important to compare 
ratios between different methods, e.g., it can be seen that the quadratic interpolation is 
almost 4-times better than a simple linear interpolation. The second, third and fourth 
row show results of the normal interpolation described in the Section 6.3.2. The “t-
variant cross product” row shows results of the approach from the Section 6.3.1. The 
row “Vector SLERP” shows results of method described in Section 6.3.3. Results of 
vector interpolation using generalized de Casteljau algorithm (Section 6.3.4) are shown 
in the “Spherical de Casteljau” row. The last row shows the quality of normal 
interpolation using quaternions (Section 6.3.5). 
 

Normal 
interpolation 
approach 

 
# faces: 15300 

 
# faces: 44700 

 
# faces: 35180 

 
# faces: 21040 

Linear 18916 55756 44078 20061 
Quadratic 4820 15792 9681 5425 
Cubic 1906 6444 3640 1572 
t-variant cross 
product 

0 0 0 0 

Vector SLERP 19427 57999 44972 20861 
Spherical de 
Casteljau 

7039 21772 16068 7647 

Quaternion SLERP 17766 53492 42831 19202 

Table 6.2: Comparison of error of different normal interpolation approaches. The images in the table 
heading show the example mesh deformation. The numbers of faces of the example deformations are 
indicated below the images. 

From Table 6.2 it is clear that the best approach from the interpolation quality point of 
view is the t-variant cross product approach which produces exact normals, i.e., it is not 
really an interpolation approach. Other proposed approaches (except the quaternion 
approach) handle the normal vectors as usual vectors, i.e., it is not respected that 
normals vector are perpendicular to some surface and in fact, these approaches can be 
used for an interpolation of any vectors. The worst but one results are obtained by the 
linear interpolation, better results can be achieved by the quadratic or the cubic 
interpolation (up to 90% improvement). The worst results were achieved by SLERP of 
normal vectors. The quality of interpolation of the spherical de Casteljau approach 
depends on how many intermediate normals we use. In this case we used initial, final 
normal and two additional intermediate normals. Quaternion SLERP approach has 
slightly better results (on average about 5%) than simple linear interpolation. 
 
Next we will compare various approaches from the time consumption point of view. We 
will not present an exact timing since it is dependent on how various elementary 
operations (SLERP, cross-product, polynomial evaluation, etc.) are implemented. Some 
of them can be implemented in hardware so that their execution can be very fast. We 
will express the time consumption in terms of elementary operations, so that the reader 
must decide which approach is the most suitable according to the actual application 
platform. 
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Elementary operations used in Table 6.3 are polynomial evaluation, SLERP and 
quaternion to matrix conversion. Polynomial evaluation is used in the Lagrange 
interpolation approach and in the t-variant cross product approach. Polynomials can be 
evaluated by Horner scheme which saves some multiplications in comparison with 
usual evaluation of polynomial in monomial form (see Section 6.2). SLERP is used in 
the Vector SLERP approach and in the de Casteljau approach. SLERP requires 
evaluation trigonometric functions which are computationally expensive, but it can be 
speeded up by an incremental approach described by Barrera et al. [Bar04]. Quaternion 
to matrix conversion is used in the Quaternion SLERP approach. Note that in our case 
we need to extract only one column from the matrix, i.e., the normal. 
 
It is also important to decide whether we need a “random access” to the deformation or 
just a “sequential access”. If we consider that the mesh deformation is parametrized by 
the time, the random access means that we can jump from one time instant to another 
without any limitation. The sequential access means that the mesh deformation is 
evaluated is evenly spaced time instants in an increasing or a decreasing order. In this 
case, incremental methods (using temporal coherence) for computing SLERP [Bar04] or 
polynomial evaluation [Has03] can be used. 
 
Method Normalization Computation 
Linear interpolation Yes 3 linear interpolations (Eq. 6.6) 
Quadratic, cubic 
interpolation 

Yes 3 evaluation of degree two (quadratic 
interpolation) or degree three (cubic 
interpolation) polynomials 

t-variant cross 
product 

yes (Eq. 6.4) 
no (Eq. 6.5) 

3 evaluation of degree two polynomials 
(Eq. 6.4) 
3 evaluation of rational polynomial (Eq. 6.5) 

Vector SLERP No 1 SLERP (Eq. 6.7) 
Spherical de 
Casteljau 

No n(n-1)/2 SLERPs, where n is the number in 
precomputed normals 

Quaternion SLERP No 1 SLERP, quaternion to matrix conversion 

Table 6.3: Comparison of various normal interpolation approaches from time consumption point of view 
in terms of elementary operations. 

6.4. Vertex normal computation 
The goal of this section is to show a new vertex normal computation approach based on 
the t-variant cross product. The basic idea is that we use a weighting scheme approach 
for the vertex normal computation so that the individual face normals are computed 
using the t-variant cross product. We consider the area weighting scheme since the 
normal vectors computed by the t-variant cross product are implicitly weighted by the 
area. First we will show the computation for the general case, later we will show a 
simplification for the case when a vertex is surrounded by a fan of triangles. 

6.4.1. A general case 
First let us formalize the input setting. A number of n triangles share the same vertex23 
denoted P0. We want to compute the vertex normal at the vertex P0. Every vertex Pk, 

                                                 
23 Note that the triangles need not to form a closed triangle fan. 
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k=0, …, n+1, where n is the number of faces adjacent to the vertex Pk, has a linear 
trajectory: 
 

Pk(t) = Pk + tdk , (6.12) 
 
where  
 

dk = P’k – Pk , (6.13) 
 
where P’ k is the final position of Pk and dk is a trajectory vector. Figure 6.4 shows how 
a mesh is deformed and which variables are involved in the process. 
 

 
Figure 6.4: A part of a triangle mesh under linear deformation. Each vertex travels from its initial 
position Pk towards its final position P’ k along a linear trajectory.  

Every edge ej, j=1, …, n+1 can be described as a vector 
 

ej(t) = Pj(t) – P0(t) . (6.14) 

 
And the face normal ni, i=1, …, n becomes 
 

ni(t) = ei(t) × ei+1(t) . (6.15) 

 

P0 

P1 

P5 

P4 

P2 

P´0 

P´1 

P´2 

P´3 
P´4 

P´5 
d4 

d1 

d5 

d0 d2 

d3 

P3 
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This implies that the edges must have a sorted order in each fan for computing the face 
normal. By substituting Eq. 6.14 into Eq. 6.15 we obtain: 
 

ni(t) = Pi(t) × Pi+1(t) – Pi(t) × P0(t) – P0(t) × Pi+1(t) (6.16) 
 
Expanding each cross product from Eq. 6.16 gives: 
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)()()()(

)()()()(

1i0
2
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×+×+×+×=×
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 (6.17) 

 
Now, the vertex normal can be computed as: 
 

∑
=

=
n

1i
i )()( tt nn  (6.18) 

 
We can now put Eq. 6.17 into Eq. 6.18 and get: 
 

∑
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PPPPPP

n

t

tt  (6.19) 

 
Eq. 6.19 is general enough so it can be used for computing a single face normal as well. 
In this case we just set n=1, i.e., the sum disappears and Eq. 6.19 turns to the standard 
t-variant cross product. 
 
The constant and quadratic terms in Eq. 6.19 behave in quite a similar way. We shall 
see that they can be simplified. The sum of constant terms is 
 

1n00n1nn

400343

300232

200121

++ ×−×−×+
+

×−×−×+
×−×−×+

×−×−×

PPPPPP

PPPPPP

PPPPPP

PPPPPP

L

 (6.20) 

 
Examining this sum further reveals that the second term in the second row cancels out 
the last term on the first row. This behavior is the same in each row. Hence we can 
rewrite the sum in Eq. 6.19 as: 
 

∑
+

=
++×

1n

0i
2)(n mod 1)(ii PP  (6.21) 
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Thus the quadratic term becomes: 
 

∑
+

=
++×

1n

0i
2)(n mod 1)(ii dd  (6.22) 

 
The linear term is: 
 

)dPP(d)dPP(ddPPd

)dPP(d)dPP(ddPPd

)dPP(d)dPP(ddPPd

)dPP(d)dPP(ddPPd

1n01n00n0n1nn1nn

404003034343

303002023232

202001012121

++++ ×+×−×+×−×+×+
+

×+×−×+×−×+×+
×+×−×+×−×+×+

×+×−×+×−×+×

L

 (6.23) 

 
Once again the second term in the second row cancels out the last term in the first row. 
This behavior is repeated for each row. 
 

)1n01n01nn1nn

4343

3232

01012121

++++ ×+×−×+×+
+

×+×+
×+×+
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 (6.24) 

 
Rearranging the terms gives 
 

)P(Pd

)P(Pd)P(Pd

)P(Pd)P(Pd

n01n

243132

0211n10

−×+

−×+−×+
−×+−×
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+

L
 (6.25) 

 
This can be written as: 
 

∑
+

=
+−++ −×

1n

0i
2)(n mod 1)(i2)(n mod 1)(ii )P(Pd  (6.26) 

 
The normal can finally be written as: 
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 (6.27) 

 
It should be noted that these sums can be pre-computed once before the actual mesh 
deformation, more specifically, each sum represent a coefficient (i.e., absolute, linear 
and quadratic) of a degree-two polynomial. Eq. 6.27 is in vector form, which means that 
for each coordinate component (x, y and z) we have a separate degree-two polynomial. 
Then, as the mesh deforms, only the degree-two polynomials for each of x, y and z 
coordinate components are evaluated to obtain the vertex normal in the particular time 
instant. It must be said that the resulting vertex normal is not of unit length; therefore it 
must be additionally normalized if necessary (e.g., when it is computed for shading 
purposes). 

6.4.2. Simplification of the Circular Case 
The presented formulas can be used for any number of adjacent triangles. This implies 
that one or several adjacent faces can be omitted from the computation. This can be 
useful if there is a sharp edge in the fan of faces. However, if all faces are included in 
the computation, then the last edge is the same as the first edge, i.e. the faces form a 
closed fan. The computation can then be reduced. The constant term is 
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 (6.28) 

 
Once again there are terms that cancel out terms in other rows. After simplification we 
have: 
 

1nn1n

5443
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This can be expressed as a sum: 
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In a similar way we can compute a sum for the quadratic term. 
 
The linear term for the simplified case can be derived from Eq. 6.24, where Pn+1=P1 and 
dn+1=d1 (because of the circular nature), which gives: 
 

)P(Pd

)P(Pd)P(Pd

)P(Pd)P(Pd

1n1n

354243

132n21

−−×

−×+−×
−×+−×

L
 (6.31) 

 
This can be expressed as a sum: 
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6.4.3. Examples 
In this section we will show that the usual linear interpolation of the normal vectors is 
not correct. Then we will show that our normal computation scheme (t-variant vertex 
normals) is better than the linear interpolation and it has similar results to the 
recomputation approach. We will also show that our normal computation scheme is 
faster than the recomputation approach.  
 
In the first example we will show that the linear interpolation of normal vectors is not 
good for some animations. Note that in the morphing animations the source and the 
target mesh could be highly dissimilar and the transformation of individual faces could 
be quite dramatic. If the shape transformation is dramatic we need a lot of in-between 
frames to represent the shape transformation, so it is not possible to “fake” the normal 
field by some approximation or even by leaving normals unchanged during the 
transformation as suggested in [Ale00a]. Figure 6.5a) shows a deforming mesh 
sequence with linearly interpolated normals. Figure 6.5b) and c) shows three frames of 
this sequence plus a detail of the problematic region (the region where the fish’s fin 
disappears in the octopus body). Figure 6.5b) shows the result of the linear interpolation 
of normals. In Figure 6.5b) right, vertex normals are depicted. It can be seen that 
linearly interpolated vertex normals do not reflect the true shape of the mesh (i.e., they 
are not perpendicular to the mesh) and therefore they lead to an incorrect shading. 
Figure 6.5c) shows the normals computed using recomputation approach24. On the 
detail view (Figure 6.5c) right) it can be seen that these normals reflect the true shape of 
the mesh and therefore the shading is correct. 
 

                                                 
24 We used the area weighting scheme. 
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a) 

  
b) 

 
  

c) 

Figure 6.5: a) Deforming mesh from the shape of fish to the shape of octopus (circles mark the 
incorrectly shaded region). b) Three frames of the shape transformation with linearly interpolated normals 
plus detail of the problematic region with depicted vertex normals. c) Three frames of the shape 
transformation with recomputed normals plus detail of the same region as in b). 

In the next example we will show that our normal computation scheme is better than the 
linear interpolation and that it has the same results as the recomputation approach. 
Figure 6.6a) is an example of linear normal interpolation. The problems can be seen in 
the third image, where the arising antennas are badly shaded. The detail of this area is 
depicted in Figure 6.6b), where the top row shows the linear normal interpolation, the 
middle row shows the result of our t-variant vertex normal approach and the bottom row 
shows deforming mesh rendered with the recomputed normals. It can be seen that the 
mesh rendered with t-variant vertex normals is almost the same as the mesh rendered 
with recomputed normals. In the last column (t=0.40) of Figure 6.6b there are also the 
vertex normals depicted. It can be seen that linearly interpolated normals do not reflect 
the mesh shape and our time vertex normals as well as recomputed normals do reflect 
the mesh shape and thus result in better shading. 
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Figure 6.6: a) An example of the morphing transition between two faces using linear normal 
interpolation. b) The detail of the problematic region – linear normal interpolation (top row sequence), 
our t-variant vertex normal approach (middle row), recomputed normals (bottom row). Last column 
(t=0.40) shows also vertex normals in the problematic region. 

If we compare the preprocessing time required for usual linear normal interpolation and 
the proposed approach, then we find that for linear normal interpolation we must first 
compute interpolation constraints, i.e., all vertex normals for the starting mesh and all 
the vertex normals for the final mesh. It means that we have to run the normal 
computation twice and normalize the initial and the final normal. The proposed 
approach requires that the coefficients for the degree-two polynomials are precomputed, 
i.e. to compute 3 sums (Eq. 6.27). It should be noted that both approaches require 
renormalization of the interpolated normals. 
 
To evaluate the t-variant vertex normals we have to store the coefficients of the 
polynomials computed in the preprocessing stage (Eq. 6.27). 9 floating point numbers 
per normal must be stored. Usual linear interpolation requires storing 6 floating point 
numbers, i.e. interpolation constraints. The recomputation approach requires a data 
structure which contains the incident faces to a particular vertex which is usually 
represented by a list of integer indices to faces, i.e., the number of indices required is at 
least ∑di, i=1, ..., n, where n is the number of vertices and di is the degree of the i-th 
vertex. Additionally, the closed form functional description of the normal behavior 
allows us to analyze normal behavior by means of function analysis, e.g., to 
approximate degree-two polynomial by degree-one polynomial and reduce the amount 
of data which is stored in the preprocessing stage. For example, the degree-two 
polynomial can be approximated by the first two terms of Taylor expansion, which 
yields a degree-one polynomial. Using Taylor expansion we also know the exact error 
caused by the approximation. 
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The recomputation approach is dependent on the actual connectivity of the mesh, i.e., 
the time needed for computation of one vertex normal depends on how many face 
normals contribute. It requires a fast data structure which contains, for each vertex, a set 
of incident faces. Of course the number of faces incident to a particular vertex is 
different for different vertices. During evaluation of Eq. 6.1 the data structure must be 
traversed to obtain the incident faces. Our t-variant approach requires traversing the data 
structure containing incident faces just in the preprocessing stage (computation of 
polynomial coefficients). During the vertex normal evaluation a constant time is 
required to evaluate three degree-two polynomials. Thus the proposed approach is not 
dependent on the actual mesh connectivity and underlying data structures. 
 
We measured computational time of our t-variant vertex normal (TVVT) computation 
and the recomputation approach (RA). We used four animations with different number 
of vertices. For each animation we generated 200, 500 and 1000 in-between frames. We 
measured only the pure vertex normal computation, i.e., times needed for a data 
structure update and the rendering were excluded from the time measurement. For the 
measurement we used P IV, 3 GHz, 1 GB RAM running on Windows 2003 Server. The 
measurement is summarized in Table 6.4. First three rows contain times for 200, 500, 
1000 in-between frames, “per frame” row shows times for vertex normals evaluation 
per one frame of the animation and the “per vertex” row shows times needed to evaluate 
one vertex normal. It is clear that the computational time increases linearly with the 
number of vertices and in-between frames. It can be seen that average time needed to 
compute one vertex normal is approximately the same for both approaches. Our 
technique is approximately four times faster than the usual recomputation approach 
which was verified also on different animations and different hardware configurations. 
 

9902 vertices, 
19800 faces 

39802 vertices, 79600 
faces 

89702 vertices, 
179400 faces 

159602 vertices, 
319200 faces 

 RA TVVN RA TVVN RA TVVN  RA TVVN 
200 
fr. 
[ms] 2653.00 668.80 10481.00 2678.00 23806.20 6031.20 45997.00 10581.20 
500 
fr. 
[ms] 6628.40 1662.20 25815.60 6609.60 59593.60 14868.60 116472.20 26684.40 
1000 
fr. 
[ms] 13400.20 3334.20 58484.40 15366.00 119186.80 29706.20 229999.80 52881.00 
per 
frame 
[ms] 

13.31 
 

3.33 
 

54.17 
 

13.99 
 

119.14 
 

29.87 
 

230.98 
 

53.05 
 

per 
verte
x [µs] 

1.34 
 

0.34 
 

1.36 
 

0.35 
 

1.33 
 

0.33 
 

1.45 
 

0.33 
 

spee
d-up 3.99 3.88 3.99 4.35 

Table 6.4: Time comparison of the t-variant vertex normal approach (TVVN) and the recomputation 
approach (RA).  

6.5. Quaternion correction 
In this section we will propose a new vector interpolation scheme which can be used for 
a normal vectors interpolation of meshes originating from the topology merging process 
(Section 4). For better understanding we will first describe the basic idea for an 
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interpolation of scalar quantities, and then we will generalize it for vector quantities. 
Then, two applications of the proposed approach will be showed. 

6.5.1. Basic idea 
Let us have two pairs of scalar values – an initial pair ( 0

ev , 0
fv ) and a final pair (1

ev , 1
fv ). 

The pair contains a correct value 0
ev  and a “fake” value 0

fv . The idea is that the correct 

value is computed by some elaborated method which has exact results but it is, for 
instance, computationally expensive. On the other hand, the fake value is computed by 
some simple method which does not produce exact results but it is, for instance, very 
fast. The goal is to use the simple method (which produces the fake values) to compute 
the intermediate values between 0

ev  and 1
ev  and correct these values towards the correct 

values. First, we compute the initial error value e0 between the initial fake value and the 
initial correct value, i.e., e0 = 0

ev  – 0
fv , similarly the final error value e1 is computed as 

e1 = 1
ev  – 1

fv . The core idea is to compute the intermediate value using the simple 

method and compensate the error by adding a linearly interpolated error value, i.e.: 
 

vc(t) = f(t) + (e0 + t(e1 – e0)), t ∈ <0; 1>, (6.33) 

 
where f(t) is the simple method for computing the fake values, e0 the initial error value, 
e1 is the final error value and vc(t) is the corrected value. Note that f(0) = 0

fv  and f(1) = 
1
fv . Also note that the corrected values vc(0) = 0

ev  and v(1) = 1
ev . Of course, the 

intermediate values are not exact, but in a relatively simple way, the values around t=0 
and t=1 are close to the correct values. Simplicity of this approach together with a small 
computation overhead is a motivation for generalization of this method for the 
interpolation of vector quantities. 
 
The generalization of the proposed approach for the vector quantities is as follows. The 
initial error is expressed as a correction quaternion q0 = (a0, α0), where α0 is computed 
as the angle between the initial correct vector and the initial fake vector, a0

 is computed 
as 0

e
0
f

0 vva ×= . Note that a0 is essentially an axis of rotation when we want to rotate the 

vector 0
fv  so that it coincides with0

ev , α0 is then an angle of rotation (Figure 6.7 left). 

Similarly, the final error is expressed as a correction quaternion q1 = (a1, α1), where α1 
is the angle between the final correct vector and the final fake vector, a1 is computed as 

1
e

1
f

1 vva ×=  (Figure 6.7 right). The intermediate correction quaternion q(t) is computed 

using the QSLERP (Eq. B.4). The correction quaternion q(t) is used to correct the fake 
vector values computed by some simple method by rotating the fake values using the 
correction quaternion (Eq. B.3), i.e.: 
 

)(*)(f)()(c tttt qqv ⋅⋅= , (6.34) 

 
where f(t) represents some simple method for vector computation which produces the 
fake vectors, q(t) is the correction quaternion, q*(t) is the conjugate correction 
quaternion and vc(t) is the vector corrected using the quaternion correction approach. 
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Figure 6.7: A demonstration of the quaternion correction idea. 

6.5.2. Applications 
In the first application we will use the quaternion correction to interpolate normal 
vectors of deforming meshes. The deforming meshes are constructed using the topology 
merging technique. The problem of the topology merging technique is that it produces a 
mesh with an irregular connectivity and unequally sized triangles. If we use such 
connectivity to compute vertex normals using a weighting scheme and if we use such 
normals for smooth shading, we obtain disturbing shading artifacts. Fortunately, using 
the method described in Section 4.3 we can compute vertex normals for the source 
shape and the target shape which produce plausible shading without any shading 
artifacts. It is demonstrated in Figure 6.8, Figure 6.8a) and b) shows the input meshes of 
the topology merging technique; Figure 6.8c) shows the supermesh in the shape of the 
flower, Figure 6.8d) shows the connectivity of the supermesh. Figure 6.8e) left shows 
the mesh rendered with vertex normals computed by a weighting scheme while Figure 
6.8e) right shows the mesh rendered with vertex normals computed using the face 
mapping approach (Section 4.3), Figure 6.8e) center shows the detailed views. 
 
The problem is that the face mapping approach computes normals only for the 
supermesh in the shape of the source mesh and the target mesh. The intermediate 
normals must be somehow interpolated. As shown before (Section 6.4), the linear 
normal interpolation is not completely correct for some kind of motions, because it does 
not respect the true mesh shape. On the other hand, the recomputation of the vertex 
normals using the weighting scheme produces bad normals because of bad connectivity. 
Recall that the result of the normal vectors recomputation is equivalent to t-variant 
vertex normal computation described in Section 6.4. Therefore, we suggest using the 
quaternion correction to diminish the problems caused by the bad connectivity. 
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a) b) c) d) 

 

 

 

 

e) 

Figure 6.8: a), b) – the input meshes of the topology merging technique, c) the supermesh in the shape of 
the target mesh, d) a detail view of the connectivity after the topology merging process, e) a topology 
merging mesh with normals computed using a weighting scheme (left) and the face mapping approach 
(right). 

The quaternion correction approach is applied as follows. The correct normals are 
computed using the face mapping approach. The fake normals are computed using the t-
variant vertex normals. Clearly, the t-variant vertex normals can be computed during the 
whole deformation, but the face mapping approach can be used only for the initial and 
the final mesh. Thus, the t-variant vertex normal computation acts as a simple method 
and the results are corrected using the correct normals computed by the face mapping 
approach.  
 
The results are shown in Figure 6.9. Figure 6.9a) shows the mesh rendered with linearly 
interpolated vertex normals. The artifacts caused by the linear interpolation are visible 
in the second and the third frame of the animation. Figure 6.9b) shows the mesh 
rendered with t-variant vertex normals, the shading artifacts caused by bad connectivity 
are visible especially in the first frame of the animation. Figure 6.9c) shows the mesh 
rendered with t-variant vertex normals corrected using the quaternion correction, it can 
be seen that the first frame does not have the shading artifacts caused by the bad 
connectivity and the intermediate frames do not have shading artifacts caused by the 
linear normal interpolation. 
 
 
 
 



 83 

  
a) 

  
b) 

c) 

Figure 6.9: a) linear interpolation, b) t-variant vertex normals, c) t-variant vertex normals corrected using 
the quaternion correction. 

In the second application we use the quaternion correction to mimic different weighting 
schemes in the vertex normal computation. The setting is as follows, we can compute 
vertex normals of deforming meshes using the t-variant vertex normal approach. The t-
variant vertex normals use the area weighting scheme. However, sometimes we might 
want to use another weighting scheme. The problem is that we do not have a simple 
expression (as Eq. 6.27) for the other weighting schemes. Therefore, we propose to 
compute vertex normals using the t-variant vertex normals approach. These normals act 
as fake normals. Then, using the desired weighting scheme, we compute the “more 
accurate” vertex normals for the mesh in the initial shape and for the mesh in the final 
shape. Using the difference between the “fake” and “more accurate” normals we can 
construct the correction quaternions as in the previous example. The intermediate 
normals computed by the t-variant vertex normals approach are corrected towards the 
desired weighting scheme by an interpolated correction quaternion. 
 
To compare two methods for vertex normal computation we use two measures: 
Accumulated Angle Error (AAE) and Angular Discrepancy Histogram (ADH) [Jin05]. 
Two normal vectors nc, nf are compared by computing the angle between them. If we 
have two normal fields, AAE is computed as sum of absolute values of angles between 
corresponding normals25. If AAE is zero than the two normal fields are identical. ADH 
is computed by evaluating angles between pairs of corresponding normals and 
organizing the angle values into a histogram. From the histogram we can read a 
percentage of normal vectors which have the discrepancy in a certain interval (given by 
the width of the histogram bin). 
 
To test the quaternion correction, we generated 20 frames of a morphing animation. In 
each animation frame we computed the vertex normals using the quaternion correction 

                                                 
25 Thus, the unit of AAE is the radian (if an angle is computed in the circular measure) or the degree (if an 
angle is computed in degrees). 
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approach and an “exact” normals using some elaborated weighting scheme. In each 
frame we computed AAE and ADH to compare the normals computed by the 
quaternion correction and by the direct evaluation of the weighting scheme. AAE for 3 
different weighting schemes (angle weighting scheme, inverse area weighting scheme 
and equal weighting) can be seen in Figure 6.10. It can be seen that for the initial and 
the final frame the AAE is zero since the normal vectors computed by the t-variant 
vertex normal are corrected towards the desired weighting scheme. It can be also seen 
that the angle weighting scheme was mimicked better using the quaternion correction 
that the inverse area weighting scheme or equal weighting.  
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Figure 6.10: Accumulated angle error (AAE) of an animation consisting of 20 frames. The blue curve 
shows AAE when mimicking angle weighting scheme using area weighting scheme and QC, the yellow 
curve shows AAE when mimicking equally weighted normals and the magenta curve shows AAE when 
mimicking inverse area weighting scheme. 

The biggest accumulated error occurs in the frames 12, 13, 14. It is given by the nature 
of the correction approach which corrects the values at the beginning and at the end of 
the interval the most while in the middle in the interval the correction influence is the 
smallest. To examine the distribution of error in the most problematic frames we will 
show ADH (Figure 6.11) when trying to mimic the angle weighting scheme using the 
quaternion correction. It can be seen that approximately 60% to 70% of vertex normals 
falls into the first histogram bin which corresponds to the angular discrepancy 0°-3°. 
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Figure 6.11: ADH of vertex normals when trying to mimic the angle weighting scheme using the 
quaternion correction. The horizontal axes represent histogram bins; the vertical axes represent a fraction 
of normal vectors in a histogram bin. 

6.6. Summary 
In this chapter we described some methods for computation of normal vectors of 
deforming meshes. We described a mathematical apparatus called t-variant cross 
product which can be used for fast computation of normal vectors of planes under linear 
motion. Subsequently, we used the t-variant cross product for fast vertex normal 
computation. 
 
We also outlined two ideas which need some further research – quaternion SLERP and 
quaternion correction. Quaternion SLERP requires determining a best pair of frames 
configuration. In the case of the quaternion correction we showed some preliminary 
results, however, as a potentially general technique for error compensation, it requires 
some more validation. 
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7. Continuous collision detection 
Collision detection is an important part of every simulation system ranging from 
computer games to surgical simulators. In the simulation, rigid or deformable objects 
can be involved. In this chapter we will show elementary predicates for the collision 
detection of deforming meshes which are produced by morphing. We focused on 
continuous collision detection because it considers the deformation as a continuous 
process in contrast to standard approaches which consider the deformation as a discrete 
sequence of shapes. 
 
The elementary predicates include point/plane intersection test and line/line intersection 
test. These tests are essential when computing intersections of more complicated 
entities. In the area of continuous collision detection, many elaborated techniques based 
on space subdivision and hierarchies of bounding volumes exist. Even though these 
techniques significantly improve a performance of a collision detection system, still a 
big amount of time is spent by computing intersections between individual primitives. 
Therefore an analysis and robust implementation of the elementary predicates is 
important. The elementary predicates have been already described by some authors 
[Pro97, Hut07], but we present here a full derivation which allows us to point out some 
special cases which may cause numerical problems when not handled properly.  

7.1. Introduction 
The goal of the collision detection system is to discover collisions or interpenetrations 
of objects involved in a simulation and generate an appropriate response. 
 
In collision detection we are usually interested in finding the time of the collision, the 
contact point and the contact normal [Ber03]. The contact point is a place where two 
objects first touch, the contact normal is the normal of the plane which contains the 
contact point and which separates colliding objects near the contact point (in some ε-
neighborhood). The contact normal is important in the context of collision response. 
 
Collision detection approaches can be divided into two categories – discrete and 
continuous. In discrete methods the time is considered to be discrete in contrast to the 
real world where the time is assumed to be continuous, thus collision or 
interpenetrations are investigated in discrete time samples only, which may result in 
missing or late detection of the collision (especially if the objects move rapidly or if 
they are very small). It can be solved by increasing the sampling rate of the time but it 
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brings higher computational demands. Another possibility is to use a backtracking 
method. Here, if a penetration occurs, the time interval is recursively subdivided in a 
binary search way until the first time of collision (FTC) is found. The computational 
cost of backtracking can be very high for complex objects and it can fail if objects are 
not connected [Red05]. On the other hand, continuous methods consider not only 
individual time samples but also an in-between motion, i.e., movement of objects 
between the individual time samples. 
 
Another possible division of the collision detection area is whether it deals with rigid 
bodies or with soft-bodies (deformable objects). Rigid bodies do not deform, formally, 
the relative position of each two points of the body stays fixed during the motion and 
the body transforms as one entity [Kar04]. Hence, it is just a translation and/or a 
rotation type of motion. On the other hand, there are no restrictions on the change of the 
relative position of two points in the case of soft-body motion; each point can travel 
along its trajectory independently of the other points. Soft-bodies appear in computer 
graphics, e.g., in surgery simulation, morphing, cloth simulation, etc. It is clear that 
handling collision detection for soft-bodies is something more difficult than for the 
rigid-body case. 
 
Collision detection algorithms can also be distinguished according to the representation 
of the objects involved in the simulation system. It can either be a point based 
representation, a volume representation or a boundary representation. Each 
representation requires different data structures and different algorithms. To speed up 
the computation of collision detection, two paradigms are usually used – hierarchy of 
bounding volumes (e.g., AABBs, OOBBs, k-DOPs, bounding spheres, convex hulls, 
etc.) and spatial subdivision (3d grid, octree, BSP, range trees, etc). Bounding volumes 
approximate the original objects by some simple volume with which it is easier to 
compute intersections. If there is no intersection, it is not necessary to further 
investigate intersections of the possibly more complex object. Bounding volumes are 
usually organized into hierarchies. Spatial subdivision can quickly answer which two 
objects may intersect. Usually, a combination of both techniques is used. No matter 
which bounding volume and spatial subdivision is used, sometimes (e.g., when 
bounding volumes intersect) it is necessary to investigate the exact intersection. Then it 
is important how the 3d object is represented. It may be a point based representation, 
volume representation or boundary representation. The exact intersection is computed 
by enumerating all elements involved in the collision (points, voxels or polygons 
depending on the actual representation) and tests them for the mutual intersection. 
 
An elementary collision detection test between triangular meshes is a computation of 
collision between two triangles. Mathematically, the intersection computation between 
triangles T0 and T1 involves computation of intersection line l of two planes ρρρρ0 (given 
by T0) and ρρρρ1 (given by T1) and further test whether l is common to T0 and T1. From an 
implementation point of view, a so called “early reject” test is important [Mol97]. The 
early reject test can decide very quickly whether two triangles can intersect without the 
need for a whole triangle/triangle intersection test. For example, if all points of T0 lie in 
the same half-space given by ρρρρ1, the triangles T0, T1 cannot intersect. 
 
This chapter deals with continuous collision between a moving point and a moving 
plane (Figure 7.1a) and between two moving lines (Figure 7.1b). These elementary tests 
are used for continuous collision between two moving triangles. We assume that the 
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behavior of objects between samples is linear (i.e., the linear motion, Section 6.2). The 
linear motion is simple enough so that the continuous collision detection can be 
computed by solving a cubic equation (so called collision equation) which can be 
solved algebraically. 
 

 
 

a) b) 

Figure 7.1: a) a collision between a triangle under linear motion and a point moving along linear 
trajectory, b) a collision between two edges, where each vertex of the edge moves independently along a 
linear trajectory. 

7.2. Related work 
A survey of discrete and continuous collision detection algorithms for deformable 
objects is given in [Tes04]. 
 
Redon et al. [Red00] approximated the in-between motion by so-called “arbitrary in-
between motion”. The basic idea is as follows. Given an initial and a final position and 
orientation of an object in time samples tn and tn+1. The in-between motion is given by 
screw motion [Kim03] – a combination of translation and rotation which transforms an 
object from the initial position at tn to the final position at tn+1. If the trajectory is known 
then it is possible to compute algebraically the collision time by solving a polynomial 
equation. This approach was used for rigid-bodies and articulated structures [Red04]. 
 
Cameron [Cam90] proposed to compute continuous collision detection by computing 4d 
swept volumes of moving objects. It turns the dynamic 3d problem into a static 4d 
problem. This approach requires the computation of 4d intersections. The main problem 
is that 4d swept volumes may be very complicated. Therefore, this approach is suitable 
only for a certain class of objects and motions. 
 
Larsson and Akeine-Möller [Lar03] proposed a discrete collision detection algorithm 
for meshes deformed by morphing, where the vertex positions are convex combinations 
of some reference models. The morphing model used for vertices is used for bounding 
volumes hierarchy (k-DOPs and spheres) as well. The hierarchy of bounding volumes is 
used to avoid expensive low level primitive vs. primitive tests. 
 
In [Her90, Sny93] a continuous collision detection approach for time-dependent 
parametric and implicit surfaces is presented. 
 
Provot [Pro97] showed similar relations to ours in the context of collision and self-
collision in cloth model. Other similar relations to ours were showed in [Hut07]. They 
showed that continuous collision detection between moving points, planes and lines can 
be generally formulated as a test for coplanarity of four points. Both [Pro97] and 
[Hut07] do not describe special cases which may in many cases simplify the solution of 
collision equation and which may cause numerical problems. 
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7.3. Moving point/plane test 
Let us recall the t-variant cross product which describes a behavior of a face normal 
under a linear motion (see also Section 6.2): 

 
Recall that the degree of the polynomial in Eq. 7.1 depends on the type of motion. If 
two trajectory vectors are the same, then the polynomial in Eq. 7.1 is linear. If all 
trajectory vectors are the same, i.e., when the plane just translates, then the polynomial 
in Eq. 7.1 is constant. It is clear that if two points of the face do not move, then the 
polynomial in Eq. 7.1 is linear, if all three points do not move, then the polynomial in 
Eq. 7.1 is constant. Also note that the coefficients of Eq. 7.1 can be precomputed in a 
preprocessing stage and stored for each investigated time interval or they can be 
computed on the fly using GPU as it needs only a number of vector operations. 
 
Next, let us recall a general equation of the plane, which is: 
 

nx + d = 0, (7.2) 
 

where n is a normal vector of the plane. If the normal has a unit length then d represents 
a distance of the plane from the origin. A plane is defined by three points. If the plane 
moves in time then it can be described by the movement of three points. Let us remind 
that each of the three points could travel independently along a linear trajectory. Then, 
the t-variant general equation of the plane is: 
 

n(t)x+d(t) = 0 . (7.3) 
 

From Eq. 7.1 we have n(t). It remains to compute d(t). For a static plane it is computed 
by substituting an arbitrary point v=(vx, vy, vz) of the plane into Eq. 7.2, i.e.: 
 

zyx cvbvavd −−−= . (7.4) 
 

Analogously, to compute d(t) we can substitute a moving point v(t)=v0+t(v1 – v0) into 
Eq. 7.3. Note that the point v(t) must be a point of the moving plane. Now, Eq. 7.3 can 
be rewritten as: 
 

0)()()( =− ttt vnxn , (7.5) 
 

where x = (x, y, z) is a point on the plane. If we want to test whether a moving point 
q(t) = q0 + t(q1 – q0) hits the moving plane, then we substitute the query point trajectory 
q(t) into (7.5 and solve the equation, i.e., 
 

0)()()()( =− tttt vnqn . (7.6) 
 

By solving Eq. 7.6 the time tcol of the collision between a moving plane and a moving 
point is computed. Of course, the contact normal is given by evaluating n(tcol), where tcol 
is the collision time. 
 

n(t) =  (P1 × P2 – P1 × P0 – P0 × P2) +  
 t(d1 × P2 + P1 × d2 – (d1 × P0 + P1 × d0) – (d0 × P2 + P0 × d2)) +  
 t2(d1 × d2 – d1 × d0 – d0 × d2) . 

(7.1) 
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Eq. 7.6 is generally cubic, since the normal behavior is quadratic and it is further 
multiplied by a linear term (query point trajectory q(t) and an arbitrary point of the 
plane trajectory). A cubic equation has three roots, so the transforming plane can be 
intersected up to three times by a point moving along a linear trajectory. A hybrid 
approach for finding roots of cubic equations is described in Appendix C. 
 
Next let us discuss some special cases which may in some situations lead to a lower 
degree of Eq. 7.6. We already discussed the degree of n(t) which depends on the 
trajectories of the points of the moving plane. If n(t) is linear then Eq. 7.6 is quadratic, if 
n(t) is constant then Eq. 7.6 is linear. Note that the case when n(t) is constant represents 
a translating plane, which is often the case when objects just translate and do not 
deform, then Eq. 7.6 becomes: 
 

0)()( =− tt nvnq , (7.7) 
 
which is a simple linear equation. Thus, it can be seen that Eq. 7.6 does not hold only 
for deforming planes, but it can be used more generally, too. 
 

If the point or plane is static, the degree of Eq. 7.6 may be also reduced. It is described 
in Table 7.1. 
 

Point Plane Equation 
moving moving n(t)q(t)-n(t)v(t) = 0 (Eq. 7.6) 
moving static nq(t)-nv = 0 
static moving n(t)q-n(t)v(t) = 0 
static static nq – nv = 0 

Table 7.1: Forms of Eq. 7.6 for special kinds of linear motion. 

 

Note that the case of a moving point and a static plane (line 2 in Table 7.1) leads to the 
usual ray-triangle intersection. The case when both point and plane do not move (line 4 
in Table 7.1) leads to the usual point-in-plane test. 
 
Another special case which reduces the degree of the polynomial by one is the case 
when the trajectory vector of the query point is the same as a trajectory vector of some 
point of the plane. 
 
Eq. 7.6 holds for a point q(t) lying in the plane. If the point q(t) does not lie in the plane 
then Eq. 7.6 can be used for computation of a t-variant signed distance between the 
moving point and the moving plane, i.e.,  
 

)()()()()dist( ttttt vnqn −= . (7.8) 
 

Note that dist(t) does not represent the Euclidean distance, since n(t) does not have a 
unit length, but in collision detection we are interested mainly in cases when dist(t) = 0, 
then it is not necessary to have n(t) normalized.  
 
Let us also remind that Eq. 7.8 is just a degree three polynomial. Real roots of Eq. 7.6 
represent collision times, extremes of Eq. 7.8 represent extreme distances of a point q(t) 
to the plane. Analysis of extremes of Eq. 7.8 can be used as an early reject test which 
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can quickly eliminate cases, when there is no collision at all, from further computation. 
Details of the early reject test are described in Appendix C. 
 
Next we will describe continuous collision test between two moving lines which can be 
further extended to test between two moving edges. 

7.4. Moving lines test 
The key idea for the edge/edge collision detection algorithm is that we can check if 
vertex b(t) lies in a plane spanned by two vectors v1(t) and v2(t) as shown in Figure 7.2. 
In other words, lines P0(t) P1(t) and P2(t) P3(t) intersect iff P1(t) lies in the plane formed 
by P0(t), P2(t) and P3(t).  
 

 
Figure 7.2: A collision between two moving edges P0(t) P1(t) and P2(t) P3(t). Edges collide if P1(t) lies in 
the plane spanned by vectors v1(t) and v2(t). 

 
As in the previous section we can construct the general t-variant equation of the plane 
by taking n(t) = v1(t) × v2(t) and d(t) = − n(t).v(t), where v(t) is again one vertex of the 
moving plane, e.g., v(t) = a(t). So, we have to solve: 
 

0)()(-)()( 01 =tttt PnPn . (7.9) 
 

Eq. 7.9 is again a cubic equation. By solving it we compute the collision time between 
two moving lines. The contact normal is given by evaluation n(tcol), where tcol is the 
collision time.  
We can expect similar special cases as in the previous point/plane test. First, if one of 
the lines translates, then the degree of Eq. 7.9 is reduced by one. If both lines translate, 
then the degree of Eq. 7.9 is reduced by two. In some cases one of the lines (or both of 
them) may be static, then Eq. 7.9 will be as follows: 
 

Line 1 Line 2 Equation 
moving moving n(t)P1(t)-n(t)P0(t) = 0 (Eq. 7.9) 
moving static n(t)P1-n(t)P0 = 0 
static static nP1 – nP0 = 0 

Table 7.2: Forms of Eq. 7.9 for special kinds of linear motion. 

v1(t) 

v2(t) P0(t) 

P1(t) P2(t) 

P3(t) 
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7.5. Moving triangle/triangle test 
Two triangles A and B may collide in two different ways – a vertex of A with the 
triangle B and vice-versa (Figure 7.3a) and edge of A and edge of B (Figure 7.3b). 
 

  
a) b) 

Figure 7.3: Two possible types of triangle vs. triangle collision – a) vertex of one triangle collides with 
the other triangle, b) two triangles collide by edges. 

 
Thus, the low level tests are: point/triangle and an edge/edge. The test described in 
Section 7.3 can be used for continuous collision detection between a moving triangle 
T(t) and a moving point p(t). The triangle T(t) defines a plane ρρρρ(t). By solving Eq. 7.6 
we compute a collision time tcol between the plane ρρρρ(t) and the point p(t). Then, it is 
necessary to check whether p(tcol) lies inside the triangle T(tcol). 
 
Analogously, the test described in Section 7.4 can be used for continuous collision 
detection between two moving line segments lA(t) and lB(t). By solving Eq. 7.9 we 
compute a collision time tcol between infinite lines lA(t) and lB(t). Then we have to check 
whether lines segments lA(tcol) and lB(tcol) really intersect because the line collision does 
not imply the line segment collision. 
 
The continuous triangle vs. triangle intersection test can be composed of six “point vs. 
triangle tests” (each vertex of one triangle against the other triangle and vice versa) and 
nine “edge vs. edge tests” (each edge of one triangle against the edges of the other 
triangle and vice versa). Note that we have to perform all tests, since we need the 
earliest collision time.  
 
As in the static triangle intersections tests [Mol97] we can use the early reject test. The 
distance function dist(t) (Eq. 7.8) can be analyzed and if it monotonous and does not 
have a root on an investigated interval then the query vertex cannot collide with the 
plane (Appendix C). If all three vertices of one triangle cannot collide, it is not 
necessary to perform any other tests since the triangles cannot collide at all. 
 
The continuous collision detection between the triangle T0(t) (formed by vertices v0(t), 
v1(t), v2(t) and edges e0,0(t), e0,1(t), e0,2(t)) and T1(t) (formed by vertices u0(t), u1(t), u2(t) 
and edges e1,0(t), e1,1(t), e1,2(t)) is done in the following steps: 
  
 
 
 
 
 
 
 
 

A 
B 

A 

B 
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1. Perform early reject test for vertices v0(t), v1(t), v2(t) with respect to the plane ρρρρ0(t) 
(given by T0(t)). Exit computation if early reject test rejects all vertices. 

2. Repeat step 1 with vertices u0(t), u1(t), u2(t) and the plane ρρρρ1(t). 
3. Compute the collision between moving points v0(t), v1(t), v2(t) and moving plane 

ρρρρ0(t) using the test described in Section 7.3. If there is a collision between a vertex 
v(t) and a plane ρρρρ(t)  in time tcol, check if the v(tcol) lies inside the triangle T(tcol). If 
v(tcol) lies inside T(tcol) add tcol in a collision list L . 

4. Repeat the step 3 with vertices u0(t), u1(t), u2(t) and the plane ρρρρ1(t). 
5. Compute the collision between each pair of moving lines (e0,i(t), e1,j(t)), i=0, 1, 2; 

j=0, 1, 2 using the test described in Section 7.4. If there is a collision between a line 
e0,i(t) and e1,j(t) in the time tcol, check if the edge e0,i(tcol) intersects e1,j(tcol). If so, add 
tcol in L . 

6. Sort L  and return the earliest collision time tfirst. 

7.6. Experiments 
We tested our equations on various configurations of moving elements (i.e., points, 
lines and planes). First, we computed a collision time tcol by solving a collision 
equation. Using the collision time we computed position of moving elements at the time 
tcol and we checked if they really intersect using a static intersection test. The static 
intersection test was in our case a point-in-plane test and a line/line intersection test. By 
this test we verified that tcol really is the time of collision. 
 
By solving the collision equation we may end up with three collisions, however, we are 
usually interested in the first time of collision (FTC), i.e., the time when two elements 
first touch. To verify that we really found the FTC by solving the collision equation we 
used a sampling approach. This approach samples the movement of elements and in 
each sample the static intersection test is computed. Of course the sampling must be 
dense enough to avoid missing or late detection of the collision. 
 
In fact the sampling approach is used in the classical (i.e., non-continuous) collision 
detection framework. The density of sampling is usually a system variable which 
influences accuracy and also time consumption. If the sampling density is high, the 
collision is detected exactly but it takes more time. If the sampling is lower, the 
computation is faster but elements may interpenetrate or the collision may be missed. 
One advantage of the Continuous Collision Detection (CCD) approach is that the 
computation (i.e., a solution of the collision equation) takes almost constant time 
whereas the time consumption of the sampling approach depends on the density of the 
sampling. It is clear that if the collision between two elements occurs at the beginning 
of the time interval (early collision) then fewer samples are processed, on the other 
hand, if the collision  occurs at the end of the time interval (late collision) then almost 
all samples of the time interval must be processed. The extreme case is when two 
elements do not collide at all, then the sampling approach has to sample whole time 
interval. This case is usually avoided by spatial subdivision or hierarchy of bounding 
volumes, but still in some cases it may appear. 
 
To show the difference between the CCD approach and the sampling approach and to 
further verify our equations we computed collisions between many configurations of 
two moving triangles. The CCD test for moving triangles involves both a point/plane 
and a line/line test. The static intersection test for the sampling approach involves a 
triangle/triangle intersection test. For the static triangle/triangle intersection test we used 
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a reference implementation of an algorithm by Akeinne-Moller [Mol97] available at 
[URL1]. The time measurement was made on an AMD Athlon XP-M, 2800+, 512 MB 
RAM; we also performed tests on different configurations to verify that the general 
trend is always the same.  
 
In the following comparison we focused on four general cases which may appear when 
computing the collision between two moving triangles – early collision (triangle collide 
in the beginning of the time interval), late collision (triangles collide in the end of the 
time interval), fast movement (one triangle moves very fast) and a case when two 
triangles do not collide at all (no collision). To show the behavior we picked for each 
case one particular instance and we measured the time complexity and accuracy. In 
Table 7.3 there are results computed by the CCD approach, it contains the first time of 
collision (FTC column) and the t time needed to compute FTC (i.e., the time needed to 
solve the collision equation). It can be seen that the time needed to compute FTC is 
approximately always the same. Let us suppose that FTC values computed by CCD 
approach are exact, i.e., exact within the representation of real numbers in case of an 
algebraical solution or within the accuracy of a numerical solution of the collision 
equation. For solution of the collision equation we used a hybrid approach described in 
Appendix C. 
 

Type of collision FTC [s] t [ms] 
Early collision  0,135952 0,032250 
Late collision 0,816131 0,035200 
Fast movement 0,474108 0,036650 
No collision - 0,034550 

Table 7.3: Results of CCD approach. 

 
In Table 7.4 we show an accuracy and a time consumption of the sampling approach. 
The accuracy ∆t is computed as ∆t = |FTCCCD – FTCS|, where FTCCCD is the exact FTC 
computed by CCD approach and FTCS is FTC computed by the sampling approach. It is 
clear that both accuracy and time consumption depends on the density of the sampling 
which is also shown in the “samples” column. The density of the sampling is 
application dependent and it is usually some system variable of the collision detection 
framework. It can be seen how ∆t fall with the growing number of samples, but of 
course the time consumption is also higher. Note that in the case of early collision only 
13% of samples were processed, in the case of late collision 81% of samples were 
processed and in the case of no collision 100% of samples were processed. For example 
if we want the FTC with ∆t < 0.0001 then the early collision case required to process 
approximately 5000 samples which took 0,260 ms while the late collision case required 
approximately 5000 samples too but it took 1,232 ms. In the case of fast movement it 
can be seen that 10 samples were not enough to capture the collision. In the extreme 
case of no collision it can be seen that the sampling 10000 which were in previous cases 
sufficient to achieve ∆t < 0.0001 took 3.605 ms which is approximately 100 times more 
than using CCD approach.  
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early collision late collision fast movement no collision 
samples ∆∆∆∆t t [ms] ∆∆∆∆t t [ms] ∆∆∆∆t t [ms] ∆∆∆∆t t [ms] 

10 0,086270 0,010 - 0,010 - 0,010 - 0,010 

100 0,005462 0,010 0,002050 0,020 0,000639 0,010 - 0,110 

500 0,000321 0,030 0,001504 0,131 0,000842 0,071 - 0,260 

1000 0,000184 0,051 0,000685 0,300 0,000366 0,130 - 0,371 

2000 0,000116 0,110 0,000277 0,501 0,000129 0,240 - 0,721 

5000 7,54E-05 0,260 3,19E-05 1,232 0,000187 0,611 - 1,803 

10000 6,18E-05 0,521 5,03E-05 2,503 3,92E-05 1,222 - 3,605 

20000 5,03E-06 1,041 9,46E-06 4,997 1,55E-05 2,443 - 7,220 

100000 9,59E-06 5,158 6,81E-06 25,126 6,56E-06 12,268 - 35,882 

Table 7.4: Time comparison of the continuous collision detection and the resampling approach. 

7.7. Summary 
For collision detection of rigid objects auxiliary data structures to speed up the collision 
detection computation are usually built. A generalization for deformable objects is not 
straightforward since the data structures must be updated more frequently and usually 
complicated algorithms are required. Also, during the object deformation, very complex 
shapes may arise, e.g., non-convex or even disconnected, which may be a problem for 
some collision detection algorithms. 
 
Therefore we described elementary tests which can be used for continuous collision 
detection between linearly deforming meshes. Our tests are not specialized only for 
linear deformation. It can be used for continuous collision detection between rigid 
objects as well; then the degree on the collision equation is lower. Our point/plane test 
can be also used for continuous collision detection of point based representation. 
 
Note that in collision detection we are usually interested in FTC which mathematically 
involves a computation of an intersection between generally nonparallel and 
nonintersecting lines (edge/edge collision) or point-in-triangle test (vertex/triangle 
collision). These computations require comparison of two floating point numbers. 
Because of a limited precision of the floating points numbers represented in the 
computer, the comparison is usually implemented using some ε-neighborhood, where ε 
must be estimated empirically. Using our CCD approach, we compute the collision by 
solving a cubic collision equation. The collision equation can be solved algebraically. 
The algebraic solution requires comparison of two real numbers too (e.g., discriminant 
computation). Therefore, we suggest to analyze the input data (i.e., the trajectory 
vectors) of the collision equation according to the detailed study of the special cases 
presented in this chapter. By analyzing the trajectory vectors we can immediately expect 
a lower degree of the collision equation. Also, we can make “almost the same” 
trajectory vectors “exactly the same” which avoid very small values of coefficient of the 
collision equation. Of course, we might discover that some trajectory vectors were 
“almost the same” by analyzing the coefficients of the collision equation. For example, 
if the cubic coefficient is very small (e.g., 1.10-8) we may guess that some trajectory 
vectors were almost the same. However, the question is, should we use an apparatus for 
solving the cubic equation or should we disregard the value of the cubic coefficient and 
solve the collision equation as a quadratic equation? What error did we cause by 
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disregarding a very small cubic coefficient? If we correct the trajectories before the 
computation of the collision equation, we know exactly how much the trajectories differ 
and how big error do we introduce by making them explicitly the same. 
 
Let us recall that the core of the collision equation is the t-variant cross product 
(Eq. 7.1)26. Therefore, the coefficients of the t-variant cross product can be used when 
rendering a mesh as well as when evaluating the collision detection. 

                                                 
26 Properties and computational aspects of the t-variant cross product are described in Section 6.2 in the 
context of normal computation of deformable meshes. 
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8. Core-increment morphing 
In this chapter we will describe a novel morphing technique for 2d polygons; it is based 
on the decomposition paradigm27 and it is motivated by the process of growing in 
nature. It is suitable for situations when some parts are expected to grow while some 
parts are expected to disappear during the shape transformation process. Our solution 
does not require correspondence computation and/or user interaction; however, different 
effects can be achieved by a change of the mutual position of the objects. Our method 
works with 2d polygons; however the description of the method can be viewed also as 
an analysis of the general technique – i.e., a growing motivated shape transformation. 
During the method development we kept in mind a possible generalization in 3d or 
perhaps a use of a different shape representation. However, the generalizations belong 
to the future work. 
 
This research was done in cooperation with Ing. Martina Málková who helped with an 
experimental verification of the proposed ideas. She now carries out an independent 
research which deals with 3d version of the core-increment morphing. 

8.1. Introduction 
The goal of morphing is to compute a shape transformation (represented by an 
animation) between two shapes. There are usually many different ways how to deform 
one shape to another. The goal is to choose such a transformation which is visually 
plausible. The visual plausibility is strongly application dependent. Sometimes we 
might want to explode the initial shape into particles and form the final shape from the 
particles; sometimes we might want a continuous transformation during which the 
volume is preserved, etc. Current algorithms are mainly designed to morph between 
similar shapes where some common features can be identified. However, in some cases 
it is not possible to find common features (e.g., a seed to palm tree morphing). 
Therefore, in this chapter we will describe an approach for morphing which has a 
“growing-like” nature, i.e., we focus on a shape transformation which mimics growing 
(or disappearing) of some parts, which is quite a common process in nature. 
  
Let us have two input shapes – a source and a target shape – which partially overlap. An 
intersection of the input shapes is computed. The intersection is called a core and it is a 
fixed part which will not change during a shape transformation. When transforming 
between the source shape and the target shape, parts of the source shape will disappear 
                                                 
27 See Section 3.2. 
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in the core (i.e., they die away) whereas parts of the target shape will grow out of the 
core. The process of disappearing can be viewed as a reversed process of growing, thus 
algorithmically we need to solve just one process.  
 
This way, we decoupled a complicated task of morphing of two polygons into several 
less complicated tasks of morphing of polygon chains. In contrast to typical morphing 
approaches, our method does not require a computation of a correspondence and/or 
some user interaction. On the other hand, a user can adjust a mutual orientation of the 
input shapes or an algorithm for growing and disappearing effects can be explicitly 
specified for each part. 

8.2. The proposed solution 

8.2.1. General idea 
A polygon P is an ordered set of vertices V i ,  i  = 1,..., n. An edge ei of polygon is a line 
segment with endpoints V i, V i+1. A simple polygon is a polygon whose consecutive 
edges ei, ei+1 intersect only in the endpoint V i+1. An unclosed sequence of edges is 
called a polygon chain. 
 
Now let us describe the idea of the core increment approach for simple polygons. The 
core C is obtained by computing an intersection of input polygons A and B, i.e., C = A 
∩ B. For simplicity, let us suppose that the core consists of one part. If the intersection 
of A and B contains multiple parts we choose one representative part as a core 
which will act as a fixed part which does not change during the shape 
transformation. Our algorithm is not designed for the case when the intersection of 
A and B does not exist, or it consists of one of the polygons A or B (one polygon is 
inside the other one), where some other algorithms should be used instead. 
 
The parts P = ∪Pi which will disappear in the core are computed as P = A-B and the 
parts Q = ∪Qj which will grow out of the core are computed as Q = B-A. Also suppose 
that P≠0 or Q≠0, i.e., one polygon is not entirely inside the other polygon. 
Algorithmically, the process of disappearing is just reversed process of growing so 
for now we will concentrate only on the disappearing of a part Pi in the core C. 
 
A part Pi consists of two polygon chains C0, C1, where C0 is a common polygon chain 
of the core C and the part Pi , C1 is the other part of the polygon Pi which remains 
after removing C0 from Pi. The polygon chains C0, C1 are separated by intersection 
vertices vI0, vI1 (Figure 8.1). An intersection vertex lies in the intersection of the 
input polygons A  and B. If Pi  ≠ A  and Pi ≠ B then Pi has two intersection vertices. 
By morphing the polygon chain C1 to the polygon chain C0 we achieve the effect 
of disappearing of the part Pi in the core C. Hereby, we decompose the polygon 
morphing problem into several polygon chain morphing problems. 
 



 99 

 

Figure 8.1: A highly nonconvex part Pi emerges from the core C (the hatched part). The vertices are 
labeled according to the topological distance from the intersection vertices V I0, V I1. The part Pi will grow 
out of the core C by morphing the polygon chain C0 to C1. 

The morphing between a polygon chain C0 and C1 will be described using a vertex 
path for each vertex of the polygon chain C1 excluding the intersection vertices. The 
vertex path of a vertex V i  is a list of tuples (t j , Pj ), where t j  is a time and Pj  is 
a position of the vertex V i  at the time t j . A vertex path is usually defined on a 
canonical time interval <0; 1>. The vertex path has at least two elements, i.e., the 
initial position of the vertex at the time t=0.0 and a final position of the vertex at 
the time t=1.0. A movement of a vertex is obtained by computing intermediate 
positions of a vertex. The intermediate positions are computed by interpolating the 
position values Pk within the vertex path. We can use an arbitrary interpolation 
technique, e.g., a piecewise linear interpolation or cubic spline interpolation. Once 
a vertex path representing the growing process is computed, it can be interpreted in 
a reversed order to represent the disappearing process. 
 
A vertex path is computed using a concept of a topological distance. The topological 
distance d(V i,V j) between vertices V i and V j is the minimal number of edges on the 
polygon between V i and V j. We compute the topological distance with respect to the 
intersection vertices. Because there are always two intersection vertices, we use the 
minimal topological distance dmin(V i) = min(d(V i, V I0), d(V i, V I1)). Intuitively, the 
topological distance establishes an order in which the vertices will grow in order to 
form the whole part. The vertices with a smaller topological distance will finish 
earlier than vertices with larger topological distance. This avoids self-intersections 
during the growing process. To distinguish between topological distances of vertices 
lying on the polygon chains C0 and C1, we add the negative sign to the vertices lying 
on the polygon chain C0. Then dmin, dmax are minimal and maximal topological 
distances of the part Pi . 
 
In the following text we will describe three methods how to compute the vertex 
paths to be able to morph between polygon chains C0, C1 and simulate a process of 
disappearing of part Pi in this way. By simultaneous growing and disappearing of all 
parts we will achieve the effect of morphing between two simple polygons. 

8.2.2. Perimeter growing 
The first method to be described is called Perimeter growing, because all the vertices 
V i lying on C1 travel along the perimeter of the part Pi, i.e., their vertex path 
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contains only vertices of Pi. The problem is to determine at which vertex V j with the 
topological distance dj is the specific vertex path supposed to end. Vertex path of a 
vertex V i with the topological distance di contains vertices with topological distances 
(di-1, di-2, ..., d0, d-1,..., dj) (Figure 8.2). There are two rules concerning the last vertex 
of the vertex path, vertex V j . First, it must belong to the polygon chain C0. Second, 
we need at least one vertex path to end at each vertex that belongs to the polygon chain 
C0 (to form the shape of the other polygon). Therefore we use the following approach: 
the vertex path of the vertex with dmax always ends at the vertex with dmin. The vertex 
path of the vertex with dmax-1 should end at the vertex with dmin+1. Generally, a vertex 
path of the vertex with dmax-i should end at the vertex with dmin+i (Figure 8.2). 

 

 
a) b) c) 

Figure 8.2: Vertex paths (dmax = 3, dmin = -2): a) vertex path for the vertex with d=dmax ends at the vertex 
with d = dmin, b) for the vertex with d = dmax-1 it ends at the vertex with d = dmin+1, c) and so on. 

However, such a vertex does not always lie on C0. If we denote n0, n1 the number of 
vertices of C0, C1 respectively, we can distinguish the following three cases: 
 

• n0 = n1 (Figure 8.3a), each vertex of C1 ends its path at one vertex of C0, 
• n0 > n1 (Figure 8.3b), there are some vertices of C0 that do not belong to any 

vertex path. It means that some of the vertices of C1 need to be duplicated, in 
such a case, we use such vertices of C1 that have the topological distance equal 
to one and duplicate them as many times as is necessary to cover all the vertices 
of C0 that are left, 

• n0 < n1 (Figure 8.3c), some vertices of C1 cannot end their paths at the 
supposed vertex, in such a case their vertex paths end at the intersection 
vertices. 

 
Because the vertex path computed by this method follows the perimeter of the 
part, the results always seem as if something was really growing from the core. Two 
things are ruining the nice effect. The former thing is the top of the growing part, 
which is always a straight line connecting the vertices with the same topological 
distance. This causes that the method is not suitable for parts, where some vertices 
with the same topological distance are wide apart (Figure 8.4a). On the other hand, 
it has really good results for the parts that are narrow and/or highly non-convex, 
like parts of a spiral or curly type or long and straight parts (Figure 8.4c,d). The 
latter thing is that following the shape of the part is not always what we wanted - 
for example if we have a part as in Figure 8.4b), the part will first grow from the 
core and then come back a little, and until that it will continue growing. But that 
coming back is something we do not expect. 
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 a) b) c)  

Figure 8.3: Three possible inputs for computing vertex paths: a) n0 = n1, b) n0 > n1, c) n0 < n1 (dark grey: 
core, grey: selected part, a full line: the first polygon, a dashed line: the second polygon, light grey: a part 
of the core, grey arrows: vertex paths). 

a) 

b) 

c) 

d) 

 
Figure 8.4: a), b) examples when not to use the Perimeter growing, c), d) examples when the Perimeter 
growing is suitable (dark gray: part of the core, light gray: part growing out, black: input polygons). 

8.2.3. Half-line growing 
The method called Half-line growing is similar to the Perimeter growing with a slight 
variance. Instead of using the vertices of C1 as the elements of the vertex paths, we use 
the midpoints of line segments defined by the vertices with the same topological 
distance (Figure 8.5a). Let us denote M i a midpoint of the line segment V iV j where di = 
dj. Then, the vertex path of a vertex V i with the topological distance di contains vertices 
(M i-1, M i-2, ...,M0, ...,M j-1, V j). The vertex V j is computed according to the rules 
described in Section 8.2.2. The results for all three cases with a different relation 
between n0, n1 are shown in Figure 8.5b), c), d). When n0 = n1 (Figure 8.5b), each vertex 
of C1 ends its path at one vertex of C0. If n0 > n1 (Figure 8.5c), some of the vertices of 
C1 need to be duplicated (those with the topological distance equal to one). If n0 < n1 
(Figure 8.5d), some vertices of C1 cannot end their paths at the supposed vertex (so they 
end at the intersection vertices). 
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a) b) c) d) 

Figure 8.5: Midpoints (black): points in the middle of the line segment (dashed) connecting the vertices 
with the same topological distance.  

The Half-line growing method is suitable for similar cases as was the Perimeter 
growing, with the slight difference that the top line of the growing part is not straight, 
but it is in the shape of a spire. This can result in better outputs for growing prickles or 
anything that is sharp, because the spire is there from the beginning, showing the 
future shape of the part (Figure 8.6). 
 

 
Figure 8.6: When to use the Half-line growing (dark gray: part of the core, light gray: part growing out, 
black: input polygons). 

8.2.4. Projection growing 
The last method to be described is the Projection growing. Its first difference from the 
previous methods is that all vertices of C1 have the same number of elements in 
their vertex paths. We call “one step projection” such a method, where there are only 
two elements in each vertex path of a vertex – the vertex itself and its destination. 
The “two step projection” represents a method, where the vertex path has also one 
element in the middle. Both of them work in the same way. First, the vertices of 
C1 are mapped (projected) onto the line segment defined by the intersection vertices 
(vertices with zero topological distance). An equidistant mapping is used – the line 
segment is divided into n+1 parts, where n is the number of the vertices of C1. We 
assign the vertices of C1 chronologically to the new vertices on the line segment 
(Figure 8.7a). The next step is to map the vertices of C0 in the same way (Figure 
8.7b). Then we sort the projected vertices of C0 and C1 into one sorted list in the 
order in which they appear on the line segment defined by the intersection 
vertices. The last step is to go through this sorted list as follows (Figure 8.7c): 
 

1. Go through the list until a vertex of C0 is reached. All the vertices of C1 
that are before this vertex will have it in their vertex path. 

2. Until the next vertex of C0 is reached, all the vertices of C1 will have the 
recent vertex of C0 in their vertex path. 

3. Repeat step 2 until the end of the list is reached. 
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 a) b) c)  

Figure 8.7: Computing vertex paths in the Projection growing: a) mapping the vertices of C1 onto the line 
segment between the intersection vertices, b) the same mapping of the vertices of C0, c) choosing the 
vertices of C0 for the vertex paths of the vertices of C1 (dashed: mapped vertices, thin lines: vertex paths). 

For the Two step projection method, the vertex into which the vertex vi was mapped 
also belongs to the vertex path of vi. For the One step projection method, only the vertex 
vi itself and the assigned vertex of C0 are in the vertex path of vi (Figure 8.8). 
 

 
 a) b)  

Figure 8.8: Vertex paths (grey) for a) Two step projection b) One step projection. 

The projection growing is a method that provides its outputs somewhere between 
the Perimeter (or Half-line) growing and typical algorithms based on the 
correspondence. There is still dependence of the outputs on the core, however, the 
parts do not follow any shapes of the original polygons, they grow directly from the 
core. That results in its usability when the shape of the part is convex or when it is 
non-convex, but not curled or spiral (Figure 8.9). 
 

a) 

b) 

c) 

 
Figure 8.9: Where not to use (a) and where to use (b,c) the Projection growing (dark gray: part of the 
core, light gray: the part growing out, black: input polygons). 

8.2.5. Merging 
Until now each part of the polygon was handled separately. Now we have to merge all 
parts so that the result is one polygon with a vertex path for each vertex. Also 
remember that vertex paths of the growing parts must be reverted because we 
considered only the disappearing. The merging process is motivated by Weiler-
Atherton algorithm for polygons intersection [Wei77]. It processes part by part by 
copying vertices with positive topological distance to the new list of vertices. It skips 
between the adjacent parts at the intersection vertices. The new list of vertices forms 
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the new polygon. The complete core increment morphing algorithm can be seen in 
Figure 8.10 and the details of the merging process are in Figure 8.11. 
 
Input : Two polygons A, B (both represented by a list of vertices) which partially 
overlap. 
 
Output : Polygon C (represented by a list of vertices), where each vertex contains a 
vertex path determining its behavior during the time. 
 
The algorithm: 

1. Compute the core C = A ∩ B. Compute the parts P = A-B, Q = B-A. 
2. Compute the topological distance di of each vertex V i of each part 

in P, Q. First, compute di0, di1 as the minimal number of edges on 
the part between the vertex V i and the two intersection vertices. Then 
di = min(di0, di1). 

3. Use a specific method (the Perimeter, Half-line or Projection growing) 
to compute vertex path of each vertex vi where di > 0. 

4. Merge the parts P, Q (see in detail in Figure 8.11). 

Figure 8.10: The whole algorithm. 

 
 
Input:  List of parts R = ∪Ri, lists of vertices of each part l i = (V1, ... , Vn). The lists l i 
are circular (so the next vertex to Vn is V0 and the previous vertex to V0 is Vn). Each 
part has a different number of vertices in its list, but each part shares exactly two 
vertices with two other parts (the intersection vertices). 
 
Output : One list of vertices containing such vertices V j from the lists l i that have dj > 
0. 
 
The merging algorithm: 

1. Choose an arbitrary part Ri from the list of input parts (for example the first 
one). Start from the first vertex in Ri. Go through l i until the first intersection 
vertex V j is found. Add V j to the resulting list (which now contains only V j). 

2. Check the vertex V j+1 if its topological distance is positive. If so, continue 
forward, otherwise backward in l i. Add each visited vertex to the resulting list 
until the next intersection vertex Vk is added. Delete the part Ri from the list of 
parts. 

3. Because Vk was the intersection vertex, either one of the parts in the list 
contains it (in such a case use this part and continue by 2), or the list of parts is 
empty (Vk is the intersection vertex from step 1). In such a case, the algorithm 
is finished. 

Figure 8.11: The merging algorithm. 

8.2.6. Improvements 
Both Perimeter and Half-line algorithm do not take into account lengths of edges of the 
polyline they morph, they compute only with the topological distance of the points. That 
results in a different behavior for the same-shaped polygons with a different number of 
vertices. A solution is to include a preprocessing part to this algorithm, when the 
polygons are "resampled", so that all their edges are of the same length. If we include 
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such resampling into our algorithm, the result is even better. Not only it results in a 
smoother and controlled movement of each part, but also the segments that are about the 
same length have approximately the same number of vertices. 
 
Another improvement comes from the fact that each part Pi is computed separately. It 
means that the parts do not have to be computed by the same method, the methods can 
be arbitrarily combined. As each method is suitable for a different kind of shapes (as is 
discussed in Section 8.3), combining the methods can result in a more interesting 
output. 

8.3. Experiments 
The results of our algorithm were compared with the Sedeberg's and Greenwood's28 
algorithm [Sed93a] and with the Carmel's and Cohen-Or's29 algorithm [Car97], well-
known correspondence-based algorithms. 
 
In the following examples we will demonstrate a behavior of different methods of 
vertex path computation of our algorithm for different shapes. Although it is possible to 
morph each part of a shape independently, in our examples we will morph all parts 
using only one method, so that we can clearly demonstrate its suitability for the given 
shape and the given type of effect. 
 
As already mentioned, our algorithm is completely suitable for the cases when one 
would expect some parts of the polygon B to grow out of the polygon A (or some parts 
of A disappearing in B). Those parts can be horns, prickles, fingers or tails, usually in 
situations when the user wants them to appear (grow out), or disappear in something. 
However, our algorithm is not suitable for similar polygons which are only transformed 
(e.g., moved, rotated, scaled), where the user expects the polygon only to move 
according to the transformation, not to change its shape. 
 
Examples in sections 8.3.1 and 8.3.2 show the case where the user expects some parts of 
the polygon to grow or to disappear, the example in Section 8.3.3 shows morphing of 
completely different polygons. 

8.3.1. Parts of a spiral type 
For the shape of a spiral type, the Perimeter (Figure 8.12) or the Half-line growing are 
better then the Projection (Figure 8.13), where the result contains many self-
intersections. 

                                                 
28 An implementation by P. Celba, Charles University, Faculty of Mathematics and Physics, Prague, 
Czech Republic, http://iason.zcu.cz/~kolinger/AVG/Metamorfoza_Celba.zip. 
29 An implementation obtained from http://w3.impa.br/~morph/software/softw-2d-morphing.html. 
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Figure 8.12: The perimeter growing. 

Although the Projection growing is not producing results we would expect when we 
want something of a spiral type to grow out of the core, it can sometimes give 
interesting esthetical results when we fill the polygons by some color (because the 
overlapping parts have the color of the background). 
 

 
Figure 8.13: The projection growing. 

Carmel's and Cohen-Or's algorithm (Figure 8.14a) and Sedeberg's and Greenwood's 
algorithm (Figure 8.14b) give results containing many self-intersections here. 
 

a) b) 

Figure 8.14: a) the Carmel's and Cohen-Or's algorithm, b) the Sedeberg's and Greenwood's algorithm. 

8.3.2. Convex Parts 
For parts which are convex or nearly convex the Projection growing (Figure 8.15a) is 
more suitable then the Perimeter or Half-line growing (Figure 8.15b). 
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a) b) 

Figure 8.15: a) the Projection growing, b) the Half-line growing. 

In the example of a butterfly and an alien, the body of the butterfly is similar to the 
alien, so one would probably expect the wings of the butterfly to disappear in the body 
of the alien, and the eyes (at the end of the antenna) to grow out from the antenna of the 
butterfly. 
 
Both Carmel's and Cohen-Or's algorithm (Figure 8.16a) and Sedeberg's and 
Greenwood's algorithm (Figure 8.16b) result in many self-intersections in this case. 
 

  
a) b) 

Figure 8.16: a) The Carmel’s and Cohen-Or’s algorithm, b) the Sedeberg’s and Greenwood’s algorithm. 

8.3.3. Long and more or less straight parts 
When the shape of the parts is long and more or less straight, the Projection (Figure 
8.17a), Perimeter and Half-line (Figure 8.17b) growing have results of a similar quality. 
In this example, such a case appears at octopus' fingers. For the other parts, the 
Projection growing appears to be more suitable. 
 
The case shown in this particular example is not the case, where one would naturally 
expect the growing behavior, because the octopus and the shark do not have any similar 
part. However, growing of the octopus' fingers is probably the only way how to morph 
from the shark's stomach into them without an intersection. 

  
a) b) 

Figure 8.17: a) the Half-line growing, b) the Projection growing. 
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The result Carmel's and Cohen-Or's algorithm (Figure 8.18a) is quite similar as our 
growing algorithm for the case of octopus' fingers. The Sedeberg's and Greenwood's 
algorithm (Figure 8.18b) experiences a few intersections here. 
 

  
a) b) 

Figure 8.18: a) the Carmel’s and Cohen-Or’s algorithm, b) the Sedeberg’s and Greenwood’s algorithm. 

In the previous three examples we showed that our algorithm produces expected results 
for the case when some parts of one polygon are supposed to grow out of the other 
polygon or disappear in it. However, as we can see in the last example, the algorithm 
can be also used in some cases where growing is not expected and still produce 
acceptable results. On the other hand, it is not very suitable for the polygons that are 
similar or nearly similar with dissimilarities of non-growing type (like faces with 
different expressions, bent and straight finger etc.). 

8.4. Conclusion and future work 
In this chapter we presented an algorithm for computing morphing between two simple 
polygons that partially overlap. Our algorithm does not compute the correspondence 
between the two polygons, which results in a completely different behavior than the 
correspondence-based methods have. It also does not require user interaction; however, 
the user can adjust the mutual position of the polygons or specify a different growing 
method for each part. 
 
We compared the results of our algorithm with two other correspondence-based 
methods. The experiments confirmed that our algorithm is completely suitable for the 
cases, where user expects some parts of the polygon to grow out from the intersection or 
disappear in it. Our algorithm can be suitable also for some other than grow-like cases, 
but it is not useful for the polygons that are of the same shape and they are only 
transformed (rotated, translated etc.). 
 
There is already an ongoing research carried out by Ing. Martina Málková who deals 
with a generalization of the core-increment technique in 3d dimensions. She used the 2d 
version of the core-increment technique as an analysis of the problem. Challenging 
problems of the 3d version are: generalization of the topological distance and a 
generalization of the growing technique (i.e., perimeter growing, half-line growing or 
projection growing). 
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9. Conclusion 
In this thesis we dealt with morphing of geometrical objects in boundary representation. 
It is a very wide topic and there are many ways how to do research in this area. Our 
research can be roughly divided into two groups – extensions of existing solutions and 
new techniques. The extensions improve some well established techniques to operate 
faster, to produce better results, etc. The new techniques are derived from some existing 
approaches as well, but the novelty is considerably bigger than in the case of extensions. 
From this perspective, the extensions are: 
 

• improvements of the topology merging technique – we extended the topology 
merging technique so that it takes into account surface attributes and we also 
described some ways how to improve a quality of meshes, 

• computation of normal vectors – since the computation of normal vectors is an 
every day task a fast computation is needed, therefore we showed some methods 
how to compute it for triangular meshes under a linear motion, 

• elementary predicates for continuous collision detection – we described a 
derivation of a collision equation based on t-variant cross product and we 
identified singular cases which lead to a simplification of the collision equation. 

 
As new techniques, the following contribution can be considered: 
 

• multimorphing – a space of shapes is considered as an affine space where we 
defined an inner product and an orthogonal projection; we also showed some 
new ways how to produce new shapes and animations, 

• core-increment morphing – a new technique which is motivated by the process 
of growing. 

 
Another possible contribution of this thesis is a “refactoring” of existing approaches 
(Chapter 3), i.e., we identified some recurring “design patterns” which are common in 
various approaches. It is useful for study and understanding of existing approaches. For 
instance, in the Chapter 3 we showed that the topology merging technique is closely 
related with parametrization. However, the first paper [Ken92] where the topology 
merging appears, does not mention this relation. Instead it develops an ad hoc approach 
which leads to a limitation of the technique so that it worked with star-shaped meshes 
only. Therefore, an ability to identify the design patterns in an existing approach is 
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important for assessing the approach, for instance, when considering it for a practical 
use. 
 
Another possible division of the contributions presented in this thesis is how far the 
given contribution can be used in practice. Clearly, some ideas are more practically 
oriented, while some ideas belong more to a fundamental research, i.e., they show some 
potential but a practical use is still an open question. The practically oriented 
contributions are tuned for a specific application (i.e., triangular meshes, linear motion, 
etc.) while the fundamental research related contributions have possibly a wider 
application domain (not only in the field of the computer graphics). From this 
perspective, we consider the following contribution to be oriented more practically: 
  

• extension of the topology merging technique, especially the handling of 
attributes, 

• vertex normal computation based on the t-variant cross product, 
• elementary predicates for continuous collision detection. 

 
On the other hand, the following contributions belong more to the area of the 
fundamental research and we believe that they can be used as a theoretical basis or an 
inspiration for a future research: 
 

• multimorphing – some fundamental analogies were outlined, the apparatus was 
tested on artificial examples, however, a use in real world applications must be 
considered, 

• face normal computation of deforming meshes – some ways how to interpolate 
the normal vectors were suggested, however a use a specific technique must be 
considered with respect to the application domain and available resources, 

• core-increment technique – since our main interest was the 3d version of the 
algorithm, we used the 2d version as an analysis of the problem so that we were 
able to identify the main difficulties. 

 
Let us recall that the shape interpolation is not well defined, there are many different 
ways how to interpolate between two shapes. Clearly, there are some constrains which 
eliminate some morphs, but still a huge number of possibilities remains. In this case, it 
is important that the user of the morphing has a possibility to control the shape 
transformation. Ideally, the user should be allowed to change the morphing, however 
the technique should work without the user input as well. We try to pursue this goal in 
the Bézier morphing and in the core increment morphing.  The Bézier morphing works 
without the user input, it generates an animation which approximates the control shapes 
in the same way as the Bézier curve approximates the control vertices. However, the 
Bézier animation can be adjusted by increasing multiplicity of some shape. It causes 
that the animation approximates closer the multiplied shape. Additionally the Bézier 
morphing can be extended to Rational Bézier morphing where the user has yet more 
control over the resulting animation because it is possible to adjust weights of the 
individual control shapes. The advantage of the core-increment morphing is that it is 
able to morph complicated shapes without user interaction. But still, it is possible to 
adjust the animation by changing a mutual position of the input shapes. 
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9.1. Summarization of the future work 
Although directions for a further research were given in each chapter containing our 
contribution, let us briefly summarize it in the following list: 
  

• validation of improvements of quality of meshes originating from the topology 
merging process (Section 4.4), 

• sketch of an algorithm which generalizes the topology merging for multiple 
meshes (Section 4.5), 

• practical use of the apparatus related to the multimorphing (Chapter 5), 
• quaternion SLERP method (Section 6.3.5) – a derivation of rules for the best 

frame configuration, 
• verification and validation of quaternion correction (Section 6.5), 
• extension of the core-increment technique into 3d (Section 8.4). 

9.2. Ongoing work 
The core-increment approach was researched in cooperation with Ing. Martina 
Málková. Even though the 2d version of the core-increment technique was researched 
mainly to analyze the problem and to identify the pitfalls, the implementation showed 
some interesting results. Therefore it was presented as a standalone technique in 
[Mal07]. Moreover, Ing. Martina Málková defended a master degree thesis [Mal08a] 
which deals with an extension of 2d core-increment morphing technique into 3d. 
Results of the thesis together with some extensions were also published in [Mal08b]. 
Briefly, conclusions drawn by this work are following: 
 

• it is possible to generalize core-increment technique into 3d, 
• the technique is suitable for 3d shape transformation where it is expected that 

some parts will grow or disappear in a common core (e.g., tentacles, leafs, etc.), 
• the main obstacle is that for the interpolation, the parts which grow or disappear 

must be represented as isomorphic meshes. 
 

An example of 3d core-increment morphing is shown in Figure 9.1. Even though the 
research of core-increment technique showed some interesting results, it seems that the 
boundary representation limits the potential of the technique. While it was relatively 
easy to solve it in 2d, it appeared to be more problematic in 3d. Therefore, in the future 
research it would be good to abstract away from the underlying data representation and 
formulate the core-increment morphing in the terms of differential geometry.  
 

 
Figure 9.1: An example of 3d core-increment morphing technique (taken from [Mal08a]). 
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Appendix A Spherical geometry 
A.1. Point in Spherical Triangle 
To test if a point lies in a spherical triangle we adapted a standard point-in-triangle test. 
An edge of a spherical triangle is replaced by a plane formed by two edge endpoints and 
the center of the sphere. The point-in-triangle test then turns to checking whether the 
query point Q is oriented in the same way with respect to all three planes formed by 
triangle edges and the center of the sphere, i.e.: 
 

((V0 × V1).Q ≥ 0) ∧ ((V0 × V1).Q ≥ 0) ∧ ((V0 × V1).Q ≥ 0), (A.1) 
 
where V0, V1, V2 are the vertices of the triangle and Q is the query point. The term 
(V0 × V1).Q is the orientation test of the query point Q and the plane which is given by 
vertices V0, V1 and the center of the sphere. In fact it is a dot product between the 
normal of the plane and the vector formed by the query point Q and the center of the 
sphere. 

A.2. Spherical Barycentric Coordinates 
To compute barycentric coordinates of a point Q (which lies on a unit sphere) with 
respect to a spherical triangle V0, V1, V2 we first compute barycentric coordinates of Q 
with respect to the planar triangle V0, V1, V2. It results in values t, u, w. Since the point 
Q does not lie in the planar triangle V0, V1, V2, we normalize the barycentric 
coordinates as follows: 
 

t’ = t / (t + u + v), u’ = u / (t + u + v), w’ = w / (t + u + v) (A.2) 

A.3. Arc-Arc intersection 
In this section we will describe a computation of arc-arc intersection where the arcs are 
parts of great circles of a sphere with a center C. Denote P1, P2 the endpoints of the first 
arc and Q1, Q2 the endpoints of the other arc. As the arcs are parts of great circles, we 
first investigate an intersection of great circles and then check whether the intersection 
is a common point of both arcs. The endpoints P1, P2 together with a central point C 
form a plane. So the intersection of two great circles lies on the intersections of planes 
formed by P1, P2, C and Q1, Q2, C. The intersection of planes is a line with a vector r : 
 

r  = ±(P1 × P2) × (Q1 × Q2) , (A.3) 
 
where (P1 × P2), (Q1 × Q2), respectively, gives the perpendicular vectors to the plane P1, 
P2, C and Q1, Q2, C, respectively. By normalizing the vector r  we have two 
intersections of great circles and one of them could be the desired intersection of arcs. 
To check whether the intersection lies on both arcs, we solve the system: 
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−+=

st

st
, (A.4) 

 
where tp, tq and sp, sq are unknowns. The intersection is a common point of two arcs if 
sp, sq ∈ <0; 1> and tp, tq > 0. 
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Appendix B Quaternions 
In this appendix we will briefly review quaternions and their use for representation of 
rotations. Quaternions were introduced to computer graphics community by Shoemake 
[Sho85] but they date back to 1843 when they were first described by Hamilton as an 
extension of complex numbers. A comprehensive description of quaternions can be 
found in [Ebe04]. 
 
A quaternion is a tuple (a, s), where a is a vector and s is a scalar. Quaternions are used 
in computer graphics to represent 3d rotations. An arbitrary rotation can be described by 
a quaternion q as: 
 

q = cos(s/2) + asin(s/2) , (B.1) 
 
where a is the axis of the rotation, s is the angle of rotation around the axis a. In the 
same way as rotation matrices are compounded using the matrix multiplication, the 
rotations represented by quaternions can be compounded by quaternion multiplication. 
The multiplication of quaternions q0 = (v0, s0), q1 = (v1, s1) is described as: 
 

q0q1 = (s0s1 – v0v1, s0v1 + s1v0 + v0 × v1). (B.2) 
 
A rotation of a vector v using a quaternion q is expressed as: 
 

v’  = qvq* , (B.3) 
 
where q* is the conjugate quaternion defined as q* = (-a, s) and v is considered as a 
quaternion with a zero real part, i.e., v = (vx, vy, vz, 0). 
 
Note that the rotation represented by quaternions requires 4 values whereas the rotation 
represented by a rotation matrix requires 9 values. Therefore, the quaternion 
representation is more economical. Also, it is less vulnerable to the error accumulation 
when many rotations are compound. 
 
Quaternions are also useful for an interpolation of orientation. A quaternion spherical 
linear interpolation (QSLERP) is used to smoothly interpolate between two quaternions. 
QSLERP between quaternions q0=(v0, s0), q1=(v1, s1) is defined as: 
 

α
αα

sin

)sin())1sin((
)( 10 qq

q
tt

t
+−

= , (B.4) 

 
where α = v0v1 + s0s1 (i.e., the dot product of quaternions q0, q1) and t is the 
interpolation parameter. 
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Appendix C Hybrid approach for 
cubic equation solution 

In this appendix we will describe a hybrid approach for finding real roots of a cubic 
polynomial P(t): 
 

P(t) = at3 + bt2 + ct + d. (C.1) 
 
It can be solved algebraically by Cardano’s formulas but it involves computations with 
complex numbers. In the solution of the collision equation (Section 7.3) we are 
interested in real roots only since they represent the time of the collision between a 
point and a plane. Furthermore we are interested only in real roots within a certain 
interval. Here, without loss of generality, let us consider a canonical interval <0; 1>. 
 
Local extremes of P(t) are computed as: 
 

a

acbb
e

3

32

2,1
−±−=  , (C.2) 

 
where e1 is a local maximum and e2 is a local minimum. Denote D = b2 − 3ac. There are 
three possible cases: 
 

• D < 0, P(t) is monotonous and it has one real root and two complex roots. 
• D = 0, P(t) has one real triple root. 
• D > 0, P(t) has at least one real root. 

 
Since the cubic polynomial with real coefficients has at least one real root, we suggest 
to find one real root r0 numerically by the Newton method. Then, the original cubic 
polynomial P(t) is divided by the term (t-r0). The division can be done by the Horner 
scheme. It results in a quadratic polynomial. Roots of the quadratic polynomial can be 
computed algebraically. 
 
The case when D < 0 is used as an early reject test. If D < 0 there is only one real root of 
P(t). Since we are interested only in real roots within interval <0; 1> we can check if 
sgn(P(0)) ≠ sgn(P(1)), which means that there is a real root of P(t) on the interval <0; 
1>, otherwise there is no real root on the interval <0; 1> and thus there can be no 
collision. Hence, if D < 0 and sgn(d) = sgn(a+b+c+d) then we can skip the computation 
of real roots on the interval <0; 1>. 
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