
University of West Bohemia

Faculty of Applied Science

Department of Computer Science and Engineering

Diploma Thesis

Delaunay Triangulation
of Moving Points in a Plane

Pilsen, 2008 Tomáš Vomáčka

Abstract

Delaunay triangulation of moving points (also called the kinetic Delaunay triangulation)

is a time-dependent data structure intended to retain the Delaunay property despite the

movement of the underlying points. This kind of structure may be found useful in various

areas of computational geometry and computer graphics, including for instance collision

detection, path planning, terrain deformations and others.

For managing the triangulation, we use the method of continuous legalization of the tri-

angulation by computing the times of topological events (previously described by Gavrilova,

Roos, Rokne and others). In order to compute these times, polynomials of various degrees

have to be computed. We propose our own hybrid numerical-analytical method based on

Sturm sequences of polynomials.

We also propose some methods for enhancing the boundaries of the movement. We

consider the ways of exploiting the ”linear movement only” restriction in order to simulate

nonlinear movement, bounding points to clusters that share a common velocity and finally

we consider the possibilities of projecting the planar data to three dimensions.

Poděkováńı

Na tomto mı́stě bych rád poděkoval předevš́ım Doc. Dr. Ing. Ivaně Kolingerové za trpělivé

vedeńı, poskytnuté teoretické zázemı́ a cenné rady, kterými mě vedla během procesu tvorby

této diplomové práce. Neméně d̊uležité poděkováńı nálež́ı mým rodič̊um za podporu,

které se mi od nich dostávalo po celou dobu mých dosavadńıch studíı a zejména potom

mému otci, jemuž bych chtěl poděkovat za řadu velmi cenných rad a připomı́nek, které v

nezanedbatelné mı́̌re pomáhaly formovat matematickou stránku mé práce.

Declaration

I hereby declare that this diploma thesis is completely my own work and that I used only

the cited sources.

Pilsen, .

Tomáš Vomáčka, .

Contents

1 Introduction 7

2 Triangulation and Delaunay Triangulation 10

2.1 Definitions . 10

2.1.1 Triangulation . 10

2.1.2 Delaunay Triangulation . 10

2.1.3 The Incircle Test . 11

2.2 Delaunay Triangulation Construction Methods 13

2.2.1 Construction Algorithms Criteria 13

2.2.2 Local Optimization Algorithm . 14

2.2.3 Incremental Construction Algorithm 14

2.2.4 Construction via Extension to Higher Dimension 15

2.2.5 Divide and Conquer Algorithm . 15

2.2.6 Incremental Insertion Algorithm . 16

2.3 Delaunay Triangulation Construction with Incremental Insertion 16

2.3.1 Initial Simplex Construction . 16

2.3.2 Point Location . 17

2.3.3 Point Insertion and Edge Legalization 18

2.3.4 Algorithms . 20

2.4 Point Removal in Delaunay Triangulation 21

3

3 DT of Kinetic Data 23

3.1 Definitions . 23

3.1.1 Point Movement . 23

3.1.2 Priority Queue . 23

3.1.3 Topological Events . 24

3.2 Discrete Time Approach . 24

3.2.1 Basic Concept . 24

3.2.2 Practical Use . 25

3.3 Continuous Movement Approach . 26

3.3.1 Overview . 26

3.3.2 Simplex Flipping . 26

3.3.3 Postponed Event Approach . 28

3.3.4 Continually Legalized Triangulation Approach 29

3.4 Continual Legalization Algorithm . 30

3.4.1 Overall Functionality . 30

3.4.2 Explanation of the Topological Events 31

3.4.3 Obtaining the Topological Events 32

3.4.4 Lifecycle of a Topological Event . 33

3.5 Theoretical Bounds of Kinetic Delaunay Triangulations 36

4 Polynomial Solving 37

4.1 Definitions . 37

4.1.1 Polynomial . 37

4.1.2 Monic Polynomial . 37

4.1.3 Polynomial Roots and their Multiplicity 38

4.2 Important Polynomial Features . 38

4.2.1 Restricting the Root Location . 38

4.2.2 Polynomial Root Count . 38

4.2.3 Polynomial Root Decomposition . 39

4.3 Analytical Methods for Solving Polynomials 39

4.3.1 Introduction . 39

4.3.2 Analytical Formulas . 40

4.4 Numerical Methods for Solving Polynomials 42

4.4.1 General Methods for Solving Nonlinear Equations 42

4.4.2 Specialized Methods for Solving Polynomials 44

4.5 Sturm Sequences . 45

4.5.1 Definition . 45

4.5.2 Construction . 45

4.5.3 Important Features . 46

5 The Proposed Method 48

5.1 Overview . 48

5.2 Triangulation Structure and Algorithms 48

5.3 Movement Approach . 52

5.4 Polynomial Solving . 52

5.4.1 Available Methods . 52

5.4.2 The Proposed Method Concept . 53

5.5 Using Sturm Sequences to Solve Polynomials 53

5.5.1 Initial Conditions . 53

5.5.2 Polynomial Solving . 54

5.5.3 Special Point Configurations . 58

5.6 Numerical Stability . 61

5.6.1 Singularities in the Triangulation 61

5.6.2 Ordering the Events in Queue . 62

5.6.3 Safety Discs . 62

5.6.4 Randomization . 62

5.7 Other Types of Movement . 63

5.7.1 Overview . 63

5.7.2 Point Clusters . 63

5.7.3 Nonlinear Trajectories through the Linear Interpolation 64

5.7.4 Polynomial and Nonlinear Trajectories 65

6 Performance 67

6.1 Implementation Details . 67

6.2 Tests and Results for Simple Data Sets . 68

6.2.1 Overall Time Complexity . 68

6.2.2 Event Execution . 71

6.2.3 Queue Performance . 72

6.2.4 Realtime Capabilities . 75

6.3 Nonlinear Trajectories . 76

6.4 Clustered Data . 78

6.5 Nonplanar Object Simulation . 78

6.6 Performance in Other Applications . 79

7 Conclusion 80

A Screenshots of the Demonstration Applications 85

B Využit́ı prioritńı fronty pro správu Delaunayovy triangulace

nad kinetickými daty 89

C Delaunay Triangulation of Moving Points 92

6

1 Introduction

Since its invention in 1934, Delaunay triangulation (and its dual Voronoi diagram) has

been used in various fields of computer graphics and computational geometry. Examples

of its use include terrain modelling, building meshes for the finite element method, and

many others. The Delaunay triangulation is so popular because the produced triangles are

of extremely high quality. They are as close to equilateral as possible and elongated and

narrow triangles occur very rarely. From a certain point of view, Delaunay triangulation

is the optimal method for space subdivision.

Delaunay triangulation of moving points represents an extension of the static data

structure for kinetic data. This enhancement allows us to utilize various features of De-

launay triangulation for number of purposes not available in the static case. For instance,

the fact that the two nearest points in the triangulation will create an edge of a triangle

can be used for collision detection, because the edge will certainly be created before the

collision occurs (see [7]). Together with the transformation to Voronoi diagram (for details

on this data structure see for instance [1, 16, 21]), the kinetic Delaunay triangulation may

provide a good base structure for path planning algorithms in an environment with moving

objects. Even the applications that are based on nonphysical models may use kinetic De-

launay triangulations - one such example is a kinetic triangulation based video compression

(see [18]). In general, the kinetic extension of Delaunay triangulation may be found useful

in any application where the data represent moving points or objects.

Several approaches for handling the movement of points in the triangulation exist.

These approaches may be divided into two groups according to the actions performed upon

the set of points and upon the triangulation itself. The former group contains methods

that remove the moving points at their starting positions and reinserts them into the

triangulation at their target coordinates. The latter group consists of methods that alter

7

the triangulation (usually by using edge swaps) in order to modify it to the legal state.

Apart from its simplicity, the remove-reinsert approach has some significant disadvan-

tages. Besides the fact that triangle location is necessary for the point removal (see [4]),

some important events may be unwillingly skipped due to using this approach. Considering

an application for collision detection, by removing a point and reinserting it back to the

triangulation at a new position, we may accidentally miss a collision with another point.

This will happen if the new position is relatively far away from the starting coordinates

(i.e., the point is moving fast) and thus some edge swapping is missed. If one of these edges

represents a collision edge between this point and another point that is moving slowly, the

collision will be ignored. However, in applications, where this kind of errors is not possible

or is not important, the remove-reinsert based methods may be fully sufficient.

Continuous movement of the points used in the other approach requires the triangula-

tion to change as a reaction to the topological events that are caused by this movement in

order to remain legal. To be able to do this, the triangulation structure may utilize a pri-

ority queue to keep track of the topological events. When a request for the current state of

the triangulation arises, topological events are popped from the queue and processed until

the time of the next topological events is greater than the requested time. A modification

of this approach is presented in [6]. This solution divides time into small intervals and all

topological events and collisions are postponed to the end of the interval. This may cause

that collisions will be detected late and the triangulation will become illegal for most of the

duration of a time interval. However, in some cases this approach may be very efficient.

This diploma thesis presents an overview of variety of methods for handling Delaunay

triangulation of kinetic data and presents our own implementation of one such method that

use the approach with continuous point movement and utilizes a priority queue to keep

track of the topological events. Even though these approaches are relatively well known

and have been described, the mathematical apparatus needed for them is often omitted

in the papers and, besides its general idea, is left undescribed. In this thesis we present

a new algorithm for computing the times of the topological events and compare them to

some other possible computation methods.

8

Chapter 2 describes the Delaunay triangulation in general and provides insight into

the construction methods which are used most often and some other related algorithms,

such as point removal from the Delaunay triangulation. Information on kinetic data and

a general description of various approaches to kinetic Delaunay triangulation are provided

in Chapter 3. Some necessary polynomial features, methods for solving polynomials of the

fourth or lesser degree and some useful related mathematical structures are described in

Chapter 4. Our method for handling Delaunay triangulation of kinetic data is described

in Chapter 5 and its performance is documented in Chapter 6. Conclusion of the whole

thesis is provided in Chapter 7.

9

2 Triangulation and Delaunay

Triangulation

2.1 Definitions

2.1.1 Triangulation

According to [15], triangulation T (S) of a set of points S in the Euclidean plane is a set

of edges E such that

• no two edges in E intersect at a point not in S,

• the edges in E divide the convex hull of S into triangles

• the space division of the convex hull is maximal

2.1.2 Delaunay Triangulation

Delaunay triangulation DT (S) of a finite set S of n points in 2D

S = {P1, P2, ...Pn}

is the triangulation that fulfills the condition that no point is inside the circumcircle of

any triangle in DT (S). This property, known as the Delaunay condition, is a key feature

in our application and must be preserved over time despite the movement of the points.

In addition to the Delaunay condition, the Delaunay triangulation may also be de-

fined as the one triangulation, from all possible triangulations of the set of points S, with

10

the largest minimal inner angle of each triangle. This feature is often referred to as the

optimality in the sense of MaxMin angle criterion (see [10]).

Another possible definition of Delaunay triangulation is given in [13]. According to

this definition, the Delaunay triangulation DT (S) is dual structure to Voronoi diagram

V or(S). Voronoi diagram is a set of all the points that are equally distant from two or

more points in S and that do not lie closer to any other points in S. According to [12],

Voronoi diagram in d-dimensional space may be mathematically described as.

V or(S) = {x ∈ Ed : ∀pk,∃pi, pj : pi, pj, pk ∈ S; i 6= j 6= k : ‖pk− x‖ ≥ ‖pi− x‖ = ‖pj − x‖}

The mutual relationship of V or(S) and DT (S) is described in Figure 2.1. The duality

of these two structures may be used for construction algorithms that convert one of them

into the other. However, their performance is usually worse than the performance of direct

construction algorithms.

Figure 2.1: Mutual relationship between Delaunay triangulation and Voronoi diagram.

2.1.3 The Incircle Test

To determine if a triangle P1P2P3 and a point P4 satisfy the Delaunay condition of the

empty circumcircle, the incircle test must be made over the three points of the triangle and

the considered point. If Pi = [xi, yi] where xi, yi ∈ R represent the coordinates of points

11

P1, ..., P4, then we can determine the position of P4 against the circumcircle of the triangle

P1P2P3 according to the sign ot the determinant of the matrix I (for details see [10]):

det I = det

x1 y1 x2
1 + y2

1 1

x2 y2 x2
2 + y2

2 1

x3 y3 x2
3 + y2

3 1

x4 y4 x2
4 + y2

4 1

(2.1)

If the vertices of the triangle P1P2P3 are oriented counterclockwise, then the positive

sign of Eq. (2.1) means that P4 lies inside the circumcircle of P1P2P3, negative sign means

that P4 lies outside and zero always means (independently on the orientation of the vertices

of the triangle) that P4 lies on the circumcircle. Figure 2.2 shows an example of these values.

Figure 2.2: Example of some values of the incircle test.

The incircle test in 2D in fact determines whether the projection of point the P4 on the

paraboloid z = x2 + y2 (see [3]) lies above, on or below the plane defined by the projection

of P1, P2 and P3 on the same paraboloid. Explanation on a 1D example is given in Fig. 2.3.

In this case, the test computes whether the point P3 lies within the interval determined

by points P1 and P2 by determining the position of its projection P ′
3 against the line given

by the projections P ′
1 and P ′

2 of P1 and P2, respectively, on the parabola y = x2. Further

explanation of the incircle test may be found in [6].

12

Figure 2.3: 1D example of the incircle test - the test will determine the position of the
point P ′

3 against the line given by the projections P ′
1, P

′
2 of P1 and P2 on a parabola.

2.2 Delaunay Triangulation Construction Methods

2.2.1 Construction Algorithms Criteria

When evaluating a Delaunay Triangulation algorithm, several features may be considered,

each with varying significancy depending on the intended target application of the algo-

rithm. According to [2], these features include (but are not limited to):

Time and space complexity Determines the overall performance of the algorithm. Run-

time needed for the algorithm is a vital feature but a small memory consumption

also becomes necessary as the data sets grow larger.

Online Some algorithms do not need all the input data as one large package. Rather than

processing the whole dataset in one step, the data are inserted into the triangulation

one point at a time.

Extensibility to higher dimensions An algorithm may be usable only in a plane. Some

of the 2D algorithms may however be extended to three or more dimensions.

Parallelism Some algorithms may be from their nature unsuitable for parallel execution.

Others may be parallelized with a little effort.

13

The following construction methods were mostly taken from [3, 10, 12, 14], where

further description of these methods may be found. Special attention should be paid to

incremental insertion construction method, because it is essential for the proposed solution

of the described problem. It is thus described apart from other methods in Chapter 2.3.

2.2.2 Local Optimization Algorithm

This simple algorithm is based on the fact that the edges of Delaunay triangulation are

locally optimal. Thus any initial triangulation may be modified into Delaunay triangulation

by altering the edges in the sense of optimization according to the MaxMin angle criterion.

According to [10, 12], the edge e will be replaced by the edge e′ (see below) if and only if:

• e does not lie on CH(P).

• The quadruple P1P2P3P4 created by the two triangles adjacent to e is convex.

• Swapping e for the other possible inner edge e′ of P1P2P3P4 will increase the angle

of the minimum inner edge of P1P2P3P4.

This method, however simple and relatively stable, is not often used because it may

not be reliably extended to three dimensions, it is not online and it is difficult to be

parallelized. The performance of this method also depends strongly on the time complexity

of the method used to create the initial triangulation, with the worst case complexity being

O(n2) and the expected complexity O(n).

2.2.3 Incremental Construction Algorithm

Given a set of points, the incremental construction algorithm chooses one point at random

and its nearest neighbor, creating the first edge of the triangulation. For each of the edges

in the triangulation, such point Pi is found that the circumcircle of the triangle created by

the edge and Pi is minimal.

This construction method thus uses the empty circumcircle condition of Delaunay tri-

angulation (or empty circumsphere in three dimensions, where the algorithm is similar).

14

Even though the algorithm is very simple, it is not usually used, because its perfor-

mance is strongly influenced by the methods used for finding the points with the minimal

circumcircle diameter. In 2D, the expected time complexity is O(n log n), the worst case

time complexity is O(n2), the algorithm is not online, may not be parallelized and may

be extended to 3D. In three dimensions, the situation is even worse, because, according

to [12], without any acceleration, the worst time complexity in three dimensions is equal

to O(n3). Another downside of this algorithm is its lack of stability. Triangle overlaps may

occur which results in an illegal data structure (as defined in Chapter 2.1.1, no two edges

of a triangulation may intersect).

2.2.4 Construction via Extension to Higher Dimension

As described in [4], there is a well known relationship between Delaunay triangulation in

d-dimensional space and a convex hull in d+1 -dimensional space. The original points are

projected on a d+1 -dimensional paraboloid in a way very similar to the process described

in Chapter 2.1.3 and the convex hull of their projections is constructed and then projected

back into the original d-dimensional space.

Because it is rather complicated, this method of constructing Delaunay triangulation

is used very rarely and its properties are derived from the algorithm for the convex hull

creation.

2.2.5 Divide and Conquer Algorithm

Divide and conquer (D&C) represents a principle rather than a single method. This ap-

proach is widely used in computational geometry and many other (even completely unre-

lated) fields. When constructing the Delaunay triangulation, the point set is recursively

divided and the parts are triangulated separately and then connected together. The tri-

angulation itself is done by any sufficient algorithm (one of the mentioned here or some

other).

Even though the implementation of this type of algorithm is rather complicated, it

15

has been proven it is time optimal in for the worst case. Due to some complications with

sorting in higher dimensions, the extension of this algorithm to dimensions higher than

two is nontrivial (see [2]), it is not online, but it may be parallelized with relatively little

effort.

2.2.6 Incremental Insertion Algorithm

This algorithm will be described later in Chapter 2.3 in detail, this section should provide

a comparison to the other algorithms and provide a general idea of its function.

At the start of the algorithm, a sufficiently large triangle is created, which contains all

the points P1, ..., Pn. For each of these points, a triangle containing that point is located

and divided into three triangles by connecting the point to its vertices. If the point lies on

an edge, then the two adjacent triangles are split into four. The newly created edges are

then tested for the Delaunay condition and swapped if necessary. After all the points are

inserted, all the edges that contain at least one of the vertices of the large triangle added

at the start of the insertion are removed.

This construction method is online, may be parallelized and extended to 3D. Its time

and memory complexity is derived from the used point location technique (see further).

2.3 Delaunay Triangulation Construction with Incre-

mental Insertion

2.3.1 Initial Simplex Construction

In order to be able to locate the triangle containing each of the points in P , a sufficiently

large triangle must be created before the insertion starts1. This initial triangle must be

large enough to contain all the points to be inserted, but must not be too large, because

it would negatively alter the numerical stability of the algorithm. The ideal size of the

1In three dimensions, a tetrahedron will be created. In general a d-dimensional simplex is created, but
this thesis focuses on 2D case, so only the triangles will be considered.

16

triangle in 2D is considered to be (K, 0), (0, K) and (−K,−K) where K is equal to a

multiple of the size of the longer side of the rectangle containing the whole triangulation

area (see [12]). Note that different values of K may be used and will work well, the general

idea mentioned before should be kept in mind though. For instance [26] proposes the value

of K to be 10 times the size of the bounding box or even larger. Figure 2.4 illustrates the

idea of the initial bounding triangle.

Figure 2.4: A triangle that contains the whole triangulation area is added at the start of
the incremental insertion algorithm.

2.3.2 Point Location

Two general approaches to point location techniques are most widespread and the perfor-

mance of the incremental insertion algorithm strongly depends on the used point location

technique. The more complicated one uses sophisticated data structures (such as DAG2,

skip-list and others - see [3, 14]) and usually achieves better results in the field of time

complexity and overall performance (in 2D we can expect time complexity of O(log n) per

point and memory complexity of O(n) where n is the total amount of points in the trian-

gulation). On the other hand, these structures are not very well suited for time-dependent

triangulations because changes in the tree-like (or even more complicated) hierarchies are

2Directed acyclic graph

17

nontrivial. For this reason, it will not be described. Details on these data structures may

be found in [3, 12, 14] and many others.

The walking algorithms represent an easy-to-implement and very popular way of point

location. Because they do not depend on any additional data structures, the modification

of the triangulation as a result of the movement does not represent a problem. The principle

of walking algorithms is that the triangle containing the searched point is found by visiting

a random triangle at first and then searching for which of the neighbors of the currently

visited triangle is nearest to the searched point. The search may be performed in various

different ways, which may be found for instance in [14, 22]. Depending on the strategy for

searching for the first random triangle and the used walking strategy, the point location

may vary from O(n1/2) to O(n1/3) per point location in 2D case.

2.3.3 Point Insertion and Edge Legalization

When a point is inserted into the triangulation, two cases may occur in 2D. It is either

inserted into an interior of a triangle or on an edge (we will further ignore the singular case,

where two points are identical and thus the inserted point lies on a vertex of the found

triangle). Figure 2.5 shows both of these cases (with Pr being the inserted point).

Figure 2.5: Triangle splitting in the creation of Delaunay Triangulation via incremental
insertion. Case a) shows the situation when the inserted point lies on an edge common to
two triangles, case b) shows the way of splitting a single triangle that contains the inserted
point.

18

There exist more cases in 3D, which are generally more complicated to handle. These

cases include the point being inserted on an edge or face of a tetrahedron and are described

for instance in [11].

As displayed in Figure 2.5, if the point is being inserted into a single triangle, this

triangle is split into three triangles by connecting the newly inserted point to each of its

three vertices, thus creating triangles PiPjPr, PjPkPr and PkPiPr. If the point lies on an

edge adjacent to two triangles, then it is confected to their vertices which are opposite to

the edge that contains the inserted point. Note that the inserted point may never lie on an

edge of the convex hull of the triangulation structure, because the initial triangle created

at the start of the algorithm contains the whole triangulation area and is thus equal to the

convex hull of the triangulation.

The newly created edges may not be locally legal in the sense of Delaunay condition,

so a legalization step is conduced upon them, which is based on a very similar idea as the

Local optimization algorithm (see Chapter 2.2.2 above).

19

2.3.4 Algorithms

The two algorithms below show the way of creating Delaunay triangulation by incremental

insertion without the point location techniques. Alg. 2.1 shows the point insertion and

Alg. 2.2 describes the legalization of newly created edges. Algorithms were taken from [3],

where additional description may be found.

Algorithm 2.1: Creation of Delaunay triangulation with incremental insertion of
points.

Input:

• P = {P1, ..., Pn} set of n points in 2D.
• O = 〈xmin, xmax〉 × 〈ymin, ymax a subset of the Euclidean plane that contains all the

points in P .

Output: Delaunay triangulation DT (P) of the points in P

Create P−1P−2P−3 - a triangle that encapsulates the whole triangulation area O.
Initialize DT (P) as the triangulation consisting of the single triangle P−1P−2P−3.
foreach Pr ∈ P do

Find a triangle T = PiPjPk ∈ DT that contains the point Pi.
if Pr lies on a vertex of T then

Discard Pr; // Two identical points in the set.

else if Pi lies on an edge E of T then
Let E = PiPj as in Fig. 2.5a.
Let the other triangle adjacent to E be PjPiPl as in Fig. 2.5a.
Split both triangles incident to E thereby creating four new triangles.
LegalizeEdge(Pr, PiPl, DT (P))
LegalizeEdge(Pr, PlPj, DT (P))
LegalizeEdge(Pr, PjPk, DT (P))
LegalizeEdge(Pr, PkPi, DT (P))

else
Split the triangle T as in Figure 2.5b into three new triangles.
LegalizeEdge(Pr, PiPj, DT (P))
LegalizeEdge(Pr, PjPk, DT (P))
LegalizeEdge(Pr, PkPi, DT (P))

end

end
Discard P−1, P−2, and P−3 with all their incident edges from DT (P).
Return DT (P).

20

Algorithm 2.2: Edge legalization for the construction of DT.

Input:

• Pr - a point being inserted into DT (P).
• PiPj - the edge of DT (P) that may need to be flipped.
• DT (P) - current state of the Delaunay Triangulation.

if PiPj is illegal then
Let PiPjPk be the triangle adjacent to PrPiPj along PiPj.
Replace PiPj with PrPk.; // Flip PiPj

LegalizeEdge(Pr, PiPk, DT (P))
LegalizeEdge(Pr, PkPj, DT (P))

end

2.4 Point Removal in Delaunay Triangulation

Due to the fact that some of the algorithms for the kinetic Delaunay triangulation directly

use a removal of points from the triangulation, and other may take advantage of this

possibility, it will be useful to describe one version of this algorithm (proposed by Devillers

in [4]).

Figure 2.6: Removing point P from the triangulation.

Let us have Delaunay triangulation DT (P). If we want to remove the point Pr from

the triangulation, we have to remove all the triangles sharing this point as a vertex. By

removing these triangles, a hole is created in the triangulation. This hole defines a star-

shaped polygon, which has to be retriangulated (the changes in the triangulation are strictly

21

local and limited to this polygon, no other triangles in the triangulation will be affected

by the point deletion). The whole process is illustrated in Figure 2.6.

The only question is how to retriangulate the hole. Let us now define an ear of a

polygon Q = {Q1, Q2, ..., Qn}: any three consecutive vertices QiQi+1Qi+2 of Q form an ear

of Q, if the line segment QiQi+2 is inside Q. According to [4], an ear of Q will be said

Delaunay if the circumcircle of triangle QiQi+1Qi+2 does not contain any other vertices of

Q.

Devillers further assigns a priority (or power) function to each ear as in Eq. 2.2, and

shows, that by cutting the ear with the minimal priority value and adding it into the

triangulation as a new triangle, we can retriangulate the hole in Delaunay sense.

power(P,Q0, Q1, Q2) =

∞ Q0Q2Q3 is oriented clockwise

inCircle(P,Q0,Q1,Q2)
orientation(Q0,Q1,Q2))

otherwise
(2.2)

where inCircle(P,Q0, Q1, Q2) is the standard incircle test function as defined in Chap-

ter 2.1.3 and orientation(Q0, Q1, Q2)) is another determinant test function, defined as in

Eq. 2.3.

orientation(X1, X2, X3) = det

x1 y1 1

x2 y2 1

x3 y3 1

 (2.3)

Where Xi = (xi, yi), i ∈ {1, 2, 3} are the points to be tested.

Using this test, we are able to determine if the three tested points lie on a line, are

oriented clockwise or are oriented counterclockwise. Details of the test and the priority

function may be found in [4].

22

3 DT of Kinetic Data

3.1 Definitions

3.1.1 Point Movement

Given a set of points P = {P1, ..., Pn} as in Chapter 2.1.2 and Delaunay triangulation

DT (P) created from these points, let us state that the points move along linear trajectories

with constant velocity vectors:

Pi(t) = [xi(t), yi(t)] (3.1)

xi(t) = xi0 + vxi · t, yi(t) = yi0 + vyi · t (3.2)

where t ≥ 0, Pi(0) = [xi0, yi0] is the initial position of the point Pi, i.e. the coordinates at

which this point started it movement at the time t0 and vxi, vyi ∈ R are the components

of the velocity vector vi adherent to the point Pi.

Let us also define a bounding area O as a subset of the Euclidean plane:

O = 〈xmin, xmax〉 × 〈ymin, ymax〉

where xmin, xmax, ymin, ymax ∈ R. Let us further state that the initial position of each point

must lie within the bounding rectangle O and that no point may ever leave the bounding

area.

3.1.2 Priority Queue

A priority queue is an abstract data type, which provides the following operations:

23

• Push (i, p): add the item i to the queue with respect to the priority p.

• Pop: remove the item i with the highest priority from the queue and return it.

• And sometimes others, such as returning the first element in the queue without

removing it (known as the ”Head” function).

The items in the priority queue may be sorted (in this case, the Push operation usually

represents some form of the Insert Sort algorithm with time complexity O(log n) and

the Pop operation simply removes and returns the first element of the queue with time

complexity O(1)). The other common approach is to insert the items into the queue

without any form of sorting (time complexity O(1)). In this case, the Pop operation must

search the whole queue for the item with the maximum priority value (time complexity

O(n)).

3.1.3 Topological Events

Topological event is a time instant when four points that create two adjacent triangles in

Delaunay triangulation become cocircular due to their movement. Result of this special

point configuration is a topological change in the triangulation structure performed in

order to keep the structure legal. This topological change is represented by an edge swap

- replacing the two adjacent triangles with the other possible triangle configuration of the

four cocircular points.

3.2 Discrete Time Approach

3.2.1 Basic Concept

The ability of Delaunay triangulation to remove or insert the points from or into the

triangulation at request is often referred to as the fully dynamic property. As mentioned

in [16] this feature is rather used to manage time dependent datasets, where some points

are used only for a limited time duration, than to simulate point movement.

24

An obvious advantage of this approach is the fact that (when used to simulate point

movement) the time complexity is independent on the trajectories of the moving points.

The algorithms for removing points and adding points from and into the triangulation are

”unaware” of the trajectories and thus are not affected by them.

On the other hand,the main disadvantage of this approach lies in the discrete un-

derstanding of time, which makes it unsuitable for quite a large set of applications. As

illustrated in Figure 3.1, the two consecutive iterations of the discrete time algorithm may

cause that a temporal triangle configuration is missed which may lead to some errors (for

instance in a collision detection application). Figure 3.1a and 3.1c show the triangulation

before and after the remove and reinsert step, while Figure 3.1b shows the missed event

that occurred inside the discrete time step.

Figure 3.1: The discrete understanding of time may lead to missing some triangle config-
urations.

3.2.2 Practical Use

The practical use of the remove-reinsert approach is described in [16], where the general

idea may be found. According to this paper, it may be used for a shape generalization (as

in the curve smoothing) to simulate the movement of the points towards a curve. This use

is described in [24]. The mentioned paper - [16] - further states that this approach may

even be used (with some modifications) for collision detection - see [8].

25

3.3 Continuous Movement Approach

3.3.1 Overview

The ability to control Delaunay triangulation in a continuous time possesses few very

significant advantages for the price of slightly more complicated algorithms. The first and

the most important of them is the fact that the structural data are accessible for each time

instant of the program lifecycle and thus are usable for a wider variety of applications,

such as a collision detection, without any serious modifications.

The following section describes the basic ideas of the most often discussed algorithms

for managing the kinetic Delaunay triangulation structures.

3.3.2 Simplex Flipping

Even although the following algorithm (described in [21]) is originally a part of point re-

moval algorithm for Delaunay triangulation, it is based on an idea of continuous movement.

Despite the fact that it only allows the movement of one point at a time, perhaps this idea

could be evolved into such a state that would allow a full-scale continuous movement.

The basic thought of the algorithm is the following - an illegal kinetic data structure1

may be repaired as long as the movement of the points does not cause an overlapping

of the edges of this structure. A sample illustration is given in Figure 3.2 - the case a)

represent the ”maximally illegal” structure that is allowed (point P ′
4 is the furthest position

of P4 if it moves along the displayed trajectory) and the case b) shows an unallowed state

(the triangle P1P4P2 overlaps the triangle P1P2P3). Note that neither of the moved cases

displays a legal Delaunay triangulation.

The times when the triangulation reaches the maximum allowed deformation (and thus

needs to be repaired) are computed by using a modification of the orientation test (see

Eq. 2.3). Similarly to the incircle test (see Eq. 2.1), the singular case of the orientation

test is recognized by a zero value of the determinant. This singularity is represented by

1i.e., a triangulation that does not fulfill the Delaunay condition, or corresponding ”Voronoi” tesselation.

26

three colinear points in 2D (or similar configurations in higher dimensions) and defines the

maximum allowed deformation of the point structure - i.e. the maximum value of time

when the orientation of the simplex is the same (the determinant value has the same sign)

as it was at the beginning of the movement.

Figure 3.2: The maximum allowed deformation of the triangulation and the unallowed
state.

In order to find the times when the triangulation reaches the singular case, the following

equation must be computed (defined in [21])2:

0 = ν0 + λiν∆ (3.3)

where ν0 is given by Eq. 3.4 at the start of the movement, λi is the maximum allowed

duration of the movement along the trajectory defined by velocity vector stored in ν∆.

ν0 = det

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

= det

x1 − x2 x2 − x3 x2 − x4

y1 − y2 y2 − y3 y2 − y4

z1 − z2 z2 − z3 z2 − z4

 (3.4)

ν∆ = det

∆x x2 − x3 x2 − x4

∆y y2 − y3 y2 − y4

∆z z2 − z3 z2 − z4

2As mentioned before, there is only one point moving in the triangulation. Let us state that the moving
point is P1 = [x1, y1, z1] and that its velocity vector is defined as ∆ = [∆x, ∆y,∆z].

27

By solving these equations for each adjacent simplex pair and finding the shortest

legal time interval for each point, one will be able to compute the periods of triangulation

legality.

Each time the triangulation reaches the singular state, it is repaired by using the sim-

plex flips. In 2D, these flips are represented by simple edge swaps - the current triangle

configuration of four points is swapped to the other possible configuration. In higher di-

mensions, the situation becomes little more complicated and a wider variety of possible

simplex configuration exist. This problem is discussed in [21], where the details may be

found.

3.3.3 Postponed Event Approach

This approach (described in [6]) represents a special kind of a hybrid method and could be

understood as an extension of the previous Simplex Flipping algorithm (see Chapter 3.3.2).

It is based on continuous movement principles as described in [1, 7, 8] and others, but

exploits the discretization of time and allows the triangulation to reach such states that

would be normally illegal. It is strongly dependent on the intended target application and

may be unsuitable for some problems.

The postponed event approach introduces two types of events - cocircular events (as

described earlier in Chapter 3.1.3) and collision events between two spheres (the underlying

data structure is the Delaunay triangulation of spheres and the vertices thus represent these

spheres). However, these events are not executed immediately when the inner time of the

triangulation matches their time. The lifecycle of the triangulation is rather divided into

the intervals Ti:

Ti = 〈ti, ti + hi〉
ti+1 = ti + hi

where ti ∈ R is the beginning time of interval Ti and hi > 0 is so called time horizon -

28

i.e., the length of the interval Ti, with t0 being the start time of the triangulation and the

configuration of the triangulation, which is legal in the Delaunay sense at this time.

The events scheduled for execution during the current interval are stored and postponed

until the end of the interval, when they are executed using simplex flips for topological

events and velocity vector modifications for collision events. The only problem which

remains to be solved is the time division. The durations of the intervals should be as long

as possible, but - on the other hand - the triangulation must not be in an illegal state at

the end of any of them. The Delaunay condition may (and most probably will) be broken

as a result of the movement, but (similarly to the previous algorithm), overlapping of two

adjacent simplices is not allowed (see Figure 3.2).

As a result of the event postponing, some collisions may be detected later than they

occur (possibly at the end of a time interval), it is up to the application if this fact represents

some sort of a threat or a serious inconvenience. The mentioned thesis uses the kinetic

Delaunay triangulation for collision detection among the spherical metal grains. In this

case, certain small amount of imprecision is acceptable and the simulated grain overlapping

does not influence the computation too negatively to make this method unusable. However,

the time horizons must be small enough to prevent a total merging of the two colliding

grains.

3.3.4 Continually Legalized Triangulation Approach

This approach, described in [1, 7] uses a priority queue to store topological events (other

types of events may be used, but only the topological ones are necessary). These events

are sorted by their computed times and are executed as the inner time of the triangulation

reaches the precomputed event values.

Because this approach represents the base idea of our algorithm, it will be described in

detail in the following chapter.

29

3.4 Continual Legalization Algorithm

3.4.1 Overall Functionality

As described in [1, 7] the lifecycle of the algorithm may be divided into two phases (not

counting the construction of the triangulation itself, which does not differ from the static

case). The first of them - the initialization phase - determines the nearest topological event

for each pair of adjacent triangles in the triangulation by computing the time their four

points become cocircular. If the kinetic system is used for a collision detection, the collision

times are also determined, because they alter the points as well. This includes both the

point-point collision and the point-wall collision (let the boundaries of the triangulation

area be denoted as the walls). If some other time and structure dependent events are

needed for any other purposes, their times are also determined in the initialization step.

All the computed events are then placed into a priority queue with the priority defined

in such a way so that it ensures that the events taking place earlier will be popped from the

queue before the events scheduled after them. One such a priority function may be defined

as follows (assuming the definition of the priority queue as described in Chapter 3.1.2):

p = −tevent (3.5)

where tevent ∈ R is the time of the event. This priority function, along with the fact

that the item with the maximum priority value is popped from the queue first, ensure the

required functionality.

After the initialization step, the lifecycle of the algorithm consists of repeating the

iteration step each time the triangulation state has to be updated. This step consists solely

of popping the events from the top of the priority queue, executing them (thus changing

the topological structure of the triangulation or some points features) and pushing new

events into the queue. The pop-execute-push cycle is repeated until the time of the event

on the top of the queue (i.e., the nearest future event) is greater than the time of the

triangulation. The overall functionality of the algorithm is summarized in Alg. 3.1.

30

Algorithm 3.1: Overall functionality of the Continual Legalization algorithm.

Input:

• Q - Priority queue
• DT (P) - Delaunay triangulation of kinetic data

Output:

• Continually legalized Delaunay triangulation for kinetic data.

Auxiliary:

• tcurr - The current time of the triangulation
• Ev - temporary event variable

// Initialization step

foreach Adjacent triangle pair Ti, Tj in DT (P) do
Compute the next future topological event Evij at time tij
if Evij exists then

Q.push(Evij, tij)
end

end

// Iteration step

while Time of Q.head() > tcurr do
Ev ← Q.pop()
Execute Ev
Push new events into Q as required

end
/* This step is repeated as required during the whole lifecycle for

increasing values of tcurr */

3.4.2 Explanation of the Topological Events

If the triangulation contains at least one moving point with a nonzero velocity vector, its

structure will have to change in time due to the Delaunay condition. As shown in [1, 7] for

some time the moving points may move without any topological changes, but as soon as

one of them enters the circumcircle of a nearby triangle, the triangulation becomes illegal

and a topological change takes place. Example of this event is given in Figure 3.3.

In this example the triangles P1P2P3 and P1P4P2 represent a Delaunay valid configura-

tion. As the point P4 → P ′
4 → P ′′

4 moves towards the circumcircle of the triangle P1P2P3

31

and enters it, the singular case occurs. Because of the fact that both available triangle

configurations of four cocircular points are Delaunay-legal, the triangulation is formally

valid until the moving point enters the interior of the circumcircle of the triangle. At this

point the Delaunay condition becomes violated and the triangulation must be repaired by

processing the topological event.

Figure 3.3: Triggering of a topological event.

3.4.3 Obtaining the Topological Events

The topological events are caused by a time-dependent point movement and determined by

the time when four points become cocircular. In order to compute these times, a modified

incircle test has to be performed:

det I(t) = 0 (3.6)

where I(t) is time-dependent incircle test matrix (see Eq. 2.1):

I =

x1(t) y1(t) x2
1(t) + y2

1(t) 1

x2(t) y2(t) x2
2(t) + y2

2(t) 1

x3(t) y3(t) x2
3(t) + y2

3(t) 1

x4(t) y4(t) x2
4(t) + y2

4(t) 1

(3.7)

32

where xi(t), yi(t); i = 1, ..., 4 are the time-dependent coordinates of the moving points

P1, ..., P4 upon which is the test performed (see Chapter 3.1.1).

In order to compute this equation and thus obtain the times of the topological events

for the four considered points, a polynomial of the fourth or lesser degree has to be solved.

3.4.4 Lifecycle of a Topological Event

As mentioned before, the topological events are created during the initialization step of the

algorithm along with other types of events (if they are relevant). For each edge e in the

triangulation, its two vertices are tested for a mutual collision (even if the triangulation is

not intended as a data structure for collision detection - see further) and if e is shared by

two triangles, their four points are tested for future topological events. If any such events

exist for these four points, the nearest of them is added into the priority queue. Other

future topological events are discarded because the triangulation will change before their

execution. Topological events in the past (which may be a byproduct of this computation)

are also discarded for obvious reasons.

Figure 3.4: An example of queueing events of several types.

Events of all types are then stored in a single priority queue as shown in Figure 3.4. In

this figure we can see that the point P4 moves with the velocity vector v4 while all other

points are motionless. The movement of this point will cause scheduling of the events

33

displayed in the queue box of this figure. The fact that not only the nearest future events

are stored in the queue in this case may be confusing, but the figure serves only as an

example of the contents of the queue.

Note that some of the events in the figure are of special significancy. The collision

event of P4 with the boundary of the triangulation area O that takes place at the time

t4 determines the time when P4 leaves this area. A proper handling of this event and of

all the other events of this kind is necessary to keep all the points within the bounding

area. Another important instant is represented by two events - the collision event of the

points P3 and P4 and the second scheduled topological event. In this case the collision

event between two points represents a Delaunay condition singularity. When the positions

of any two points become identical, this pair of points is cocircular with any two other

points. Situations such as this one are unwanted and represent a threat to the triangulation

structure because of a high probability of numerical errors. Some proper ways of handling

of this type of singular cases exist and will be discussed later in Chapter 5.

Figure 3.5: Edge swap as a result of a topological event.

When a topological event is popped from the queue and triggered, it causes local

changes in the triangulation (the fact that the changes will be local is shown in [1, 7]). The

process of triggering a topological event of two adjacent triangles consists of swapping their

common edge as shown in Figure 3.5 and scheduling new events. The new triangles and

all their neighbors must be tested for new topological events, the vertices of the new edge

34

must be tested for a mutual collision, etc. Also removing triangles from the triangulation

makes some events in the queue invalid because at least one of the triangles of those events

does not exist. These events must either be removed from the event queue immediately or

marked in some way as invalid and discarded when popped from the queue for processing.

Alg. 3.2 shows the complete procession of a topological event.

Algorithm 3.2: Processing of a topological event

Input: Ev - the topological event on top of the priority queue; Ev.T1, Ev.T2 - the
involved triangles.

Output: Update of the topology of the triangulation and the queued events.
Auxiliary:

• Q - priority queue
• DT - Delaunay triangulation of the points P1, ..., Pn

Ev ← Q.pop()
Let Ev.T1 = P1P2P3 and Ev.T2 = P1P4P2 as in Figure 3.5

if Ev.T1 is invalid or Ev.T2 is invalid then
Discard Ev and exit.

end
Swap the common edge of Ev.T1 and Ev.T2 → Ev.T1 = P1P4P3; Ev.T2 = P2P3P4.

if a point collision Col at time tCol exists between P3 and P4

then
Q.push(Col, tCol)

end

foreach triangle N sharing a common edge with Ev.T1 do
if a nearest future topological event Ev1 at time tEv1 exists between Ev.T1 and N
then

Q.push(Ev1, tEv1)
end

end

foreach triangle N(N 6= T1) sharing a common edge with Ev.T2 do
if a nearest future topological event Ev2 at time tEv2 exists between Ev.T2 and N
then

Q.push(Ev2, tEv2)
end

end

35

3.5 Theoretical Bounds of Kinetic Delaunay Triangu-

lations

The executions of topological events and rescheduling the new ones represent the vast

majority of activities that are performed during the iteration step of the algorithm. It is

therefore logical to attempt to discover the theoretical bounds of the number of these event

executions. This work has been done and is documented in [1].

According to this paper which uses basically the same algorithm as described here,

the tests for 2D case show that the number of topological events for points moving along

linear trajectories grows with Θ(n3/2) in an average case. The paper also presents an

estimation of the worst-case bounds for both 2D case and higher dimension cases, but

the estimations are only for executed events, the scheduled but discarded events are not

considered. Additional information on this topic may be found in [1].

36

4 Polynomial Solving

4.1 Definitions

4.1.1 Polynomial

Polynomial represents a special case of nonlinear equation:

f(z) ≡ anz
n + an−1z

n−1 + ... + a1z + a0 = 0 (4.1)

where an, ..., a0 ∈ R, an 6= 0 are the real coefficients of the polynomial and z is either

complex or real variable, depending on the type of the polynomial. From now on, for our

purposes, we will consider z ∈ R, thus making the polynomial in Eq. 4.1 a real polynomial

of n-th degree.

4.1.2 Monic Polynomial

Monic polynomial fmon(z) may be created from any polynomial f(z) (defined as above) by

simply dividing all its coefficients by the value an, thus gaining:

fmon(z) = zn + a′n−1z
n−1 + ... + a′1z + a′0 = 0

where a′i = ai

an
, i = 0, ..., n− 1.

37

4.1.3 Polynomial Roots and their Multiplicity

Let f(z) be a real polynomial as defined above. A real number z0 is called a root of

multiplicity k of f(z) if there is a polynomial s(z) such that:

s(z0) 6= 0

f(z) = (z − z0)
ks(z)

If k = 1, then z0 is called a simple root.

4.2 Important Polynomial Features

4.2.1 Restricting the Root Location

As proved in [9], for each root z of a polynomial f(z) as defined above, the value of this

root may be restricted as follows:

|z| ≤
{

1,
1

|an|
n∑

i=0

|ai|
}

(4.2)

where an, ..., a0 are the coefficients of the polynomial.

This restriction may be very useful for a certain sort of numerical methods for solving

the polynomials, because it narrows the interval, which has to be searched by these methods

during an attempt to enumerate the root positions.

4.2.2 Polynomial Root Count

As a result of the fundamental theorem of algebra (see for instance [28]) applied to poly-

nomials with real coefficients, one can state that the number of the complex roots of such

a polynomial will be either zero or even.

38

4.2.3 Polynomial Root Decomposition

A consequence of Eqs. 4.2 is the fact that each polynomial p(x) may be rewritten as

p(x) =

deg p∑
i=0

(x− xi)

where xi are the roots (real or complex) of p(x).

This fact allows us to divide any polynomial with one known root x1 of multiplicity r

by a polynomial (x− x1)
r (thus decreasing its degree by the value of r) and continue with

any ongoing computational method to discover the remaining real roots of p(x) if they

exist.

4.3 Analytical Methods for Solving Polynomials

4.3.1 Introduction

Analytical methods for polynomial solving are well known and often successfully used

especially for polynomials of lower degrees (up to the second degree). They are based on

the properties and features of the solved functions. In theory, the analytical approach is

better than most of the numerical methods, because it leads to an exact result, but due to

the limited precision, the result may be quite imprecise without the ability to improve it

by using multiple iterations of the algorithm.

39

4.3.2 Analytical Formulas

Linear equation The only single root of the linear equation, which defined as

a1z + a0 = 0

may be found using the following formula:

z = −a0

a1

(4.3)

Quadratic equation A quadratic equation may have either zero or two real roots (which

may be equal, thus forming a single multiple root). The number of these roots may

be determined by the value of the discriminant D of the polynomial. If we define the

quadratic equation as:

a2z
2 + a1z + a0 = 0

then the discriminant can be enumerated by the following formula:

D = a2
1 − 4 · a0a2

After the value of the discriminant is known, the real of the equation roots may be

computed:

x1, x2 = −b±
√

D

2 · a2

(4.4)

As we can see, the sign of the discriminant determines the number and multiplicity

of the roots. If D < 0 then both of the roots are complex and the equation thus does

not have any real roots. If D = 0 then the roots are equal (thus forming one double

root). For values of D > 0, the roots are simple - two distinct real numbers.

40

Cubic Equation A general cubic equation is of the following form (written as a monic

polynomial):

z3 + a2z
2 + a1z + a0 = 0

According to the fundamental theorem of algebra, the number of real roots of this

polynomial may either be one or three (with the possibility that some of them are

equal, thus gaining two distinct roots - one of multiplicity two and the other one of

multiplicity one - or just one root of multiplicity three).

Analytical solution of this kind of equation is more complicated and, moreover, some

of the temporary subresults have to be stored as complex numbers. These facts, com-

bined with the limited computer precision, may cause that the analytically obtained

roots are relatively very far away from the real ones. They may even contain (or

lack) an imaginary part, even if the actual roots are real (or complex) numbers.

The cubic equation in the above defined form is most often analytically solved by

using the so called Cardano’s formula, which may be found in [27]. Some simpler

solution methods, such as the Vietta’s formula, only usable for solving appropriate

special cases of the equation are presented as well there.

Quartic Equation Solving the quartic equation, defined as

z4 + a3z
3 + a2z

2 + a1z + a0 = 0

is even more complicated than the case of cubic equation. One can use the Vietta’s

formulas, described for instance in [30], but the same restrictions as in the previous

case apply. The subresults again need to be stored as complex numbers (even if the

roots themselves are real), which may theoretically lead to wrong final results.

The number of real roots may be zero, two or four (as defined by the fundamental

theorem of algebra, see above). Some or all of them may, again, be equal, thus

forming roots of multiplicities greater than one.

41

4.4 Numerical Methods for Solving Polynomials

4.4.1 General Methods for Solving Nonlinear Equations

With polynomial being a special case of nonlinear equation of one variable, it can be solved

by using any suitable method (or combination of several methods) usable for solving these

equations. Such methods are often divided into two groups. The first of them contains the

methods, which converge slowly, but will converge to a root (if one exists) for any input

data (i.e., any suitable function and any initial estimation of the root value). The other

group consists of methods that are usually used to increase the precision of a previous root

estimation. These methods converge faster in general, but the initial estimation needs to

be sufficiently near the actual root, otherwise the method may fail to converge at all.

Another possible way of dividing the numerical methods into groups is the number

of initial estimations that need to be passed as input arguments to the method. Some

methods need two points that define an interval, which contains the root to be found,

other methods need just one initial estimation of the value of the root. Other possibilities

exist and may be found in the appropriate literature.

Bisection Is one of the simplest numerical methods, which is often used in various fields

of computer engineering (with some modifications). Given an interval 〈x1, x2〉 and a

function f = f(x) such that f is continuous at 〈x1, x2〉 and

f(x1) · f(x2) < 0 (4.5)

then, due to the law of the mean, at least one root of f lies in 〈x1, x2〉.

The method of bisection will converge to the root by splitting the given interval into

two halves and repeating the process on the half that fulfills the condition 4.5.

Bisection converges for any initial interval that fulfills the above defined conditions,

although the convergence is rather slow. In general, the root estimation is improved

by one decimal position after three iterations of the method (see [20]).

42

Regula Falsi This method is very similar to the previous method of bisection. The input

values need to fulfill the same conditions, but the interval that contains the root is

divided in a different way. Instead of splitting it in half, a line segment is constructed

between points [x1, f(x1)] and [x2, f(x2)] and its point of intersection with the x-axis

defines the division of 〈x1, x2〉. The progress of Regula falsi is illustrated in Figure 4.1.

Figure 4.1: The first few iteration of Regula falsi method.

This figure also displays the most significant disadvantage of Regula falsi method -

the fact that for convex functions (or convex on the current interval at least), only

one of the border points is affected by this method, the other one remains unchanged,

thus slowing down the convergence process. Even though this method seems more

sophisticated than the Bisection method, it has been shown that their convergence

speed is essentially the same (see [20]).

Newton-Rhapson Method Sometimes also called simply Newton’s method, this numer-

ical method uses the tangents of the computed function at the current root estimation

to improve its precision. The progress of this method is illustrated in Figure 4.2.

43

Note that Newton’s method only needs one root estimation as an input parameter

(not an interval like the previous two methods), the formula to compute the next

iteration is the following:

xi+1 = xi − f(xi)

f ′(xi)
(4.6)

Figure 4.2: The first few iteration of Newton-Rhapson method.

This method converges very quickly, especially when compared to the previous meth-

ods, but may not be used on functions that are not differentiable over their domain.

And even if this criterion is fulfilled, the method may fail to converge for a bad initial

value of the root estimation.

4.4.2 Specialized Methods for Solving Polynomials

Apart from the methods for solving general nonlinear equations, a special sort of methods

exist, which are designed to find the roots of polynomials. These methods vary by the

type of the roots which they are able to find (real or complex) and the approach they use

to do so. Some examples of such functions include (but are not limited to) Lehmer-Schur

method, Bairstow’s method, Bernoulli’s method and others. Details of these methods may

be found in literature ([17, 20]).

44

4.5 Sturm Sequences

4.5.1 Definition

As defined in [20], the sequence of polynomials

f1(x), f2(x), ..., fm(x)

will be Sturm sequence at interval 〈a, b〉 (a and b may be infinite), if:

1. fm(x) is nonzero at the whole interval 〈a, b〉

2. The two adjacent polynomials to the polynomial fk(x), k = 2, ..., m − 1 are nonzero

at zero points of this polynomial and have the opposite signs there, thus:

fk−1(x)fk+1(x) < 0

4.5.2 Construction

Sturm sequence of a polynomial f(x) may be constructed (as proved in [20]):

f1(x) = f(x)

f2(x) = f ′(x) (4.7)

fj−1(x) = qj−1(x)fj(x)− fj+1(x), j = 2, ..., m− 1

fm−1(x) = qm−1(x)fm(x)

In these relations, qj−1(x) is the quotient and fj+1(x) is the negation of the remainder of

division of the polynomial fj−1(x) by the polynomial fj(x). {fi(x)} is thus a sequence of

polynomials of a decreasing degree. The first term of the sequence is the input polyno-

mial, the second term is its derivate and each of the following terms fi(x) is obtained by

computing the remainder of the division fi−1

fi−2
and changing the sign of this remainder.

45

These facts may become easier to observe for the reader, if we rewrite the third equation

from Eqs. 4.7 to the following form:

fj−1(x)

fj(x)
= qj−1(x) + (−1) · fj+1(x)

fj(x)
(4.8)

What we see in Eq. 4.8 is a division of two polynomials, with fj−1(x) being the numerator

and fj(x) being the denominator of the division. qj−1(x) then denotes the quotient (which is

unused for the creation of the Sturm sequence) and fj+1(x) is the negation of the remainder

of the division (the multiplication of fj+1(x) by the constant −1 is necessary to make the

relation mathematically correct.

4.5.3 Important Features

Counting the Roots Let us define a function V (x) as the count of the number sign

changes in the Sturm sequence 4.7 (ignoring all zeros). This function may then be

used to count the number of distinct real roots of f(x) on any interval 〈a, b〉:

r〈a,b〉 = V (a)− V (b) (4.9)

where a, b ∈ R or either of a, b may be infinite. As proved in [20], Eq. 4.9 remains

valid even if a or b are the roots of f(x).

Root Multiplicity The last term of the Sturm sequence 4.7 may be used to distinguish

and compute the values of the multiple roots of f(x). As proved in [20], all the

multiple roots of f(x) with multiplicities decreased by one are the roots of fm(x),

which does not have any other roots. Together with the fundamental theorem of

algebra, this statement may be extended to various useful conclusions. For instance

if fm(x) is of an odd degree, then f(x) has at least one multiple root, etc. Note that,

if the initial polynomial has some multiple roots, the created sequence is no further

a Sturm sequence as defined in Chapter 4.5.1, because the second required condition

46

is not met. In this case, the sequence is called a generalized Sturm sequence and has

all the aforementioned features. The generalized Sturm sequence is formally defined

as an extension of Sturm sequence {fi(x)} by multiplying all of its terms by any

polynomial p(x), thus gaining a sequence in the form of {p(x) · fi(x)}. If a Sturm

sequence is mentioned anywhere in the following text, a generalized Sturm sequence

is meant.

47

5 The Proposed Method

5.1 Overview

The method we propose for handling the Delaunay triangulation of kinetic data is composed

of the parts described in this thesis. Several variants of algorithms were considered for each

of the subproblem and the best of them were selected, considering not only the ”local”

point of view, but also the ability to cooperate with the rest of the application without

any significant modifications.

Our goal was to implement fully dynamic (with the ability to insert and remove points

at any time during the program lifecycle) and fully kinetic (with the ability to remain

Delaunay even if the points are moving) Delaunay triangulation of moving points.

5.2 Triangulation Structure and Algorithms

We have considered all the mentioned alternatives for the triangulation data structure, their

advantages and drawbacks, with respect to the intended application, and decided to use

the incremental insertion algorithm with a walk-based triangle search. This algorithm has

several very important features. At first, it is very simple to implement, it is online (we may

insert or remove the points during the runtime, thus gaining the ability to simulate discrete

time movement) and the search algorithm allows us to change the triangulation structure

with relative ease. This last feature is especially important, because the movement of

the points will almost surely cause a large number of alternations in the triangulation.

If we used a DAG-based triangulations, we would have to perform relatively large-scale

alternations in its structure, which would be prone to errors.

48

As mentioned above, we used a walk-based triangle search. We have considered several

types of walking algorithms and finally we decided to use the Orthogonal walk algorithm

in combination with the Remembering stochastic walk (see [14, 22]) as the ideal approach,

suggested by [23]. The algorithms of these walks (introduced in the aforementioned re-

sources) follow in Alg. 5.1 for the Orthogonal walk and in Alg. 5.2 for the Remembering

stochastic walk. In the case of the Orthogonal walk, only walking in the direction of the

x-axis is covered by the algorithm, the following walk along y-axis is very similar.

The main advantage of the Orthogonal walk is the fact that it is really simple and very

numerically stable because it does not use any matrix tests to determine which triangle

will be next one to search. The remembering stochastic walk then uses a special kind of

speedup techniques to increase its performance as much as possible without the lost of

the ability to stop the walk in the target triangle. Some walk algorithms use even more

speed-up by not testing if they have already reached the target triangle. These walks are

stopped after a certain number of steps, which is precomputed based on the size of the

triangle mesh and previous experience with such walks. Some other type of walk must

then obviously follow in order to pinpoint the target triangle.

49

Algorithm 5.1: Orthogonal walk algorithm

Input:

• DT (P) - Delaunay triangulation of set of points P
• Pt - target point

Output:

• Tt - triangle containing the target point Pt

Auxiliary:

• Tcurr - the current triangle of the walk
• Tprev - the previous triangle of the walk
• E - an edge of Tcurr

• Pc - a control point
• Pstart - starting point of the search

// Initialization step

tcurr ← any triangle of DT (P)
Pc ← the point of tcurr which is nearest to Pt in x-direction
E ← the edge of tcurr which is opposite to Pc

Pstart ← the midpoint of E
Tprev ← the neighbor of tcurr over E

// Search in the x-direction.
if Pstart.x ≶ Pt.x then

while Pc.x ≶ Pt.x do
E ← the edge between Pcurr and Pprev

Pc ← the point of tcurr which is opposite to E
Pprev ← Pcurr

if Pc.y ≷ Pstart.y then
Tcurr ← the neighbor over the edge to the right from Pc

else
Tcurr ← the neighbor over the edge to the left from Pc

end

end

end

Proceed similarly for the y-direction
Continue with the Remembering Stochastic walk

50

Algorithm 5.2: Remembering stochastic walk algorithm

Input:

• DT (P) - Delaunay triangulation of set of points P
• Pt - target point

Output:

• Tt - triangle containing the target point Pt

Auxiliary:

• Tcurr - the current triangle of the walk, Tprev - the previous triangle of the walk
• E - an edge of Tcurr, Tneigh - the neighbor of Tcurr over E
• Popp - point of tcurr, opposite to E
• found - boolean variable, used as an ending flag of the algorithm

tcurr = tprev ← any triangle of DT (P)
found = false

while not found do
e ← random edge of Tcurr

Popp ← the point of Tcurr opposite to E, Tneigh ← the neighbor of Tcurr over E
if Tneigh 6= Tprev then

// Pt is on the other side of E than Popp

Tprev ← Tcurr, Tcurr ← Tneigh

else
E ← the next edge of Tcurr

Popp ← the point of Tcurr opposite to E, Tneigh ← the neighbor of Tcurr over E
if Tneigh 6= Tprev then

// Pt is on the other side of E than Popp

Tprev ← Tcurr, Tcurr ← Tneigh

else
E ← the next edge of Tcurr

Popp ← the point of Tcurr opposite to E, Tneigh ← the neighbor of Tcurr

over E
if Tneigh 6= Tprev then

// Pt is on the other side of E than Popp

Tprev ← Tcurr, Tcurr ← Tneigh

else found = true

end

end

end
// Now Tcurr contains Pt

51

5.3 Movement Approach

Even though the discrete time approach, described in the previous text, is relatively simple

to implement (and is, in fact, supported by the online feature of the triangulation and the

ability to remove the points from it), we did not use it as the main means of point move-

ment. We did so, because of its mentioned disadvantages, which represent the possibility

of missing some vital events in the lifecycle of the triangulation.

We rather chose the continuous movement approach with the continuous legalization of

the triangulation structure as described in Chapter 3.3.4. The other continuous movement

approaches also represent a possibility, but they also possess a potential source of errors

with the fact that the triangulation they manage loses and regains the Delaunay property,

which may be a kind of unwanted behavior.

As mentioned before, in the case of this movement approach, it is necessary to compute

the times of topological events by solving the time dependent incircle test matrix (see

Eq. 3.7). The determinant of this equation is in the form of a polynomial - see Eq. 2.1.

5.4 Polynomial Solving

5.4.1 Available Methods

From the polynomial solving methods, analytical methods may be dismissed, because they

do not allow the use of any inbuilt precision enhancement methods. For higher degrees of

polynomials (i.e., the third and the fourth degree in our case), the subresults are complex

numbers, which not only reduce the precision, but also may cause the shift of real roots away

from the real axis in the complex plane and vice versa. For the first and the second order

polynomials, it is possible to use the analytical solution because of its extreme simplicity.

The described numerical methods specialized on polynomial solving are also unsuitable for

our purpose because of very similar reasons as in the case of analytical methods. These

methods are either designed to search for the roots in the complex plane (which may

again cause real to complex shifts) or are unnecessarily complicated, oriented to solve

52

generic polynomials (with no upper bound on the degree of the polynomial) and thus

contain computation substeps, that are time- and precision-consuming and present no

useful information on the polynomial in the computation process.

5.4.2 The Proposed Method Concept

Instead of using one of the described methods, which did not suit our purpose well enough,

we introduced our own method for polynomial solving, based on the idea proposed by [5].

This method is based on the information that can be obtained about a polynomial from

its Sturm sequence and will be described further. Even though the Sturm sequence may

provide us with quite a valuable information about the polynomial, it does not suffice to

solve the polynomial by itself. It has to be combined with any other suitable numerical

method or methods. In this case, we propose the bisection for the initial root position

estimation and Newton’s method to enhance the precision of this estimation to the required

value. We have chosen these methods because of their simplicity in the case of bisection

and because of their extremely easy implementation and excellent expected performance

in the case of the Newton’s method.

5.5 Using Sturm Sequences to Solve Polynomials

5.5.1 Initial Conditions

Let us assume that a polynomial has been passed as an argument to the function that

should compute its roots. If the order of the polynomial is lower than three, we compute

its roots analytically. If the polynomial order is equal to three or four, we process to the

creation of its Sturm sequence, determine the count and multiplicities of its roots and then

solve it using either numeric or analytical methods, based on its recognized features.

53

Furthermore, because we want to use the polynomial to determine the times of future

topological events, we are only interested in the roots that are greater than or equal to

zero 1 (or some current time value of the triangulation).

5.5.2 Polynomial Solving

Together with the fundamental theorem of algebra, we may use the knowledge obtained

from the Sturm sequence of a polynomial to create a table of guidelines for its solving. As

said before, the last polynomial of each sequence may be used to discover all the multiple

roots of the solved polynomial. The guidelines are presented in Table 5.1:

deg f(x) fm(x) real root mult. f(x) real root mult.
3 {2} {3}
3 {1} {2, 1}
3 none {1} or {1, 1, 1}
4 {3} {4}
4 {2} {3, 1}
4 {1, 1} {2, 2}
4 {1} {2} or {2, 1, 1}
4 none {1, 1} or {1, 1, 1, 1}

Table 5.1: Features of the polynomial depending on its Sturm sequence

In this table, the first column determines the degree of the solved polynomial f(x), the

second column shows the multiplicities of the roots of the last polynomial in the Sturm

sequence constructed for the solved polynomial. The last column then shows all the possible

root multiplicity configurations for the solved polynomial. For instance, if the polynomial

f(x) is of the third degree and the last polynomial in its Sturm sequence has one simple

root, then f(x) has to have one double root and no other roots of multiplicity greater than

one. Furthermore, according to the fundamental theorem of algebra, number of complex

roots of a polynomial must be either even or zero. It may not be even, because only one

root is left to recognize, thus this remaining root must be real, leaving f(x) with only one

1In general, we may not ignore roots that are equal to zero, because the execution of some topological
events may cause scheduling of another event that takes place at the exact same time instant. A typical
example of this is the configuration of five cocircular points.

54

possible root configuration - one double real root and one single real root, as shown in

the second row of Table 5.1. Examples of all possible root configuration of a polynomial

of the third degree are shown in Figure 5.1. This figure shows examples of all the root

configurations of a polynomial, as presented in the first three rows of Table 5.1, without

the corresponding Sturm sequences.

Figure 5.1: Examples of all possible root configurations of a polynomial of the third degree.

The whole process of the polynomial solving may then be summarized into the Sturm3

algorithm (see Algorithm 5.3), also described in [25]. This algorithm shows how to solve

a polynomial of the third degree by using the proposed method. The idea for higher degree

polynomials remains the same, but the number of possible root configurations grows larger

as shown in Table 5.1. In this algorithm, we can see that the situation is quite simple for

the polynomials with any number of multiple roots. If we recognize that the p(t) has one

triple root, there are no other roots left to compute and no numerical method is necessary.

If p(t) has one double root, we use the polynomial root decomposition as described in

Chapter 4.2.3 and solve the remaining linear equation analytically. The situation is a

little more complicated for polynomials without any multiple roots - we have to use the

precomputed value of r (which denotes the total number of the roots of p(t)) and then

solve p′(t), which may be done either analytically (the derivate of a polynomial of the third

55

degree is a quadratic equation) or for instance recursively (for higher degree polynomials) by

calling the lower order versions of this algorithm. The roots of the derivate then determine

the intervals, which contain the roots of p(t). Note that the derivate p′(t) of p(t) may

have two roots, thus defining three intervals, even if p(t) has only one single root. In this

case we have to check the signs of the values of p(t) for each of the roots of the derivate

polynomial before running the numerical methods. The outer bounds of the positions of

the roots may be obtained for instance by the method shown in Chapter 4.2.1.

56

Algorithm 5.3: Sturm3 Algorithm

Input:

• p(t) =
∑3

i=0 ai· ti = 0 - a polynomial of the third degree

Output:

• A sequence {ti}r
i=1 of the real roots of p(t) = 0, r ≤ 3.

• Or an empty sequence, if no real roots exist.

Auxiliary:

• Sturm sequence f1(t), ..., fm(t) of the polynomial p(t) - see Eqs. (4.7), note that
f1(t) = p(t).

• Rm = {rmi}rmult
i=1 - a sequence of all the multiple roots of p(t). Each multiple root

rmi is contained mi − 1 times, where mi is its multiplicity.

// Create the Sturm sequence

f1(t), ..., fm(t) ← Sturm sequence of p(t) = f1(t)
r ← (V (−∞)− V (∞))// See Eqn. 4.9

if r = 0 then
// p(t) has no real roots

// This situation may not occur for the polynomials of the third

degree, but is possible for the polynomials of even degree.

Return empty sequence {} of roots.
end

// Obtain the multiple roots of p(t)
Rm ← sequence of rmult roots of fm(t)
if ‖Rm‖ = 2 then

Return {rm1, rm1, rm1}// One triple root

else if ‖Rm‖ = 1 then
// p(t) has a double and a single root (see Tab. 5.1)

rs ← the only single root of p(t)
(t−rm1)2

= 0

Return {rm1, rm1, rs}// A double and a single root

else
// No multiple roots, solve p(t), using a suitable numerical method

Return {ri}r
i=1 ... sequence of r ∈ {1, 3} distinctive roots.

end

57

5.5.3 Special Point Configurations

Sometimes it is useful (and in some cases it is even necessary) to know some special point

configurations, because they may relatively significantly influence the computations in

progress. As told before, the complexity of the polynomial (i.e., its degree and the count

and multiplicities of its roots) is strongly affected by the mutual position and velocity

vectors of the four points which define the polynomial in question. It is thus logical that

certain configuration lead to degenerate cases of the polynomials.

Figure 5.2: Four cocircular points moving away from the center of their circumcircle.

Figure 5.2 shows the first sort of special point configurations. If the displayed points

P1, P2, P3 and P4 are cocircular and moving with velocity vectors v1,v2,v3 and v4 as

shown in the figure - with C being the center of their circumcircle and the only point

of intersection of all their four trajectories, then the following two cases may occur (also

described in [25]):

1. v1 = v2 = v3 = v4 = 0

In this case, all the points are cocircular and not moving. Eq. 2.1 then degenerates

into 0 = 0 and cannot be solved. No edge swaps are required, because the points are

static and both available triangular configurations for four cocircular points are legal

for the planar Delaunay triangulation.

58

2. ‖v1‖ = ‖v2‖ = ‖v3‖ = ‖v4‖ 6= 0

The points move away from their circumcenter equally fast. This means that there

will be a topological event for each t ∈ R as the circumcircle will grow. We may

discard all of the obtained topological events because both possible triangle config-

urations are legal due to all four points lying on the same circle and thus no edge

swapping is necessary. A similar situation arises when the points are all moving

towards their circumcenter.

Figure 5.3: Tangential movement of P4.

Another, and even more important, special point configuration is shown in Figure 5.3.

Point P4 moves tangentially to the circumcircle defined by triangle P1P2P3. As we can see,

only one of the two triangle configurations is legal for each time, except for the one time

instant, where the four points become cocircular. At this single instant, both the available

configurations are legal. According to these facts, no edge swap is necessary and these

events may be ignored. In the case of this one and similar point configurations, the solved

polynomial will have roots of multiplicity greater than one, that determine their times. We

may then state the following hypothesis:

59

Hypothesis 5.5.1. The real roots of polynomial (2.1) may be divided into two groups as

follows:

i All roots of even multiplicity may be ignored when determining the times of topological

events.

ii All roots of odd multiplicity determine the time of a single topological event.

The simplest case, when all the roots are of multiplicity equal to one is self evident -

in this case, each of the roots specifies the time when the determinant of I = I(t) is equal

to zero and thus the four points lies on a circle. Now, let us consider the following case:

• Let p(t) = 0 be a polynomial as defined in Eq. 4.1

• Let t1, t2 ∈ R be two distinct real roots of p(t) of multiplicity one such that no other

root t3 lies between them:

∃t1, t2 ∈ R, t1 < t2 : p(t1) = 0 ∧ p(t2) = 0 ⇒ ∀t3 ∈ (t1, t2) : p(t3) 6= 0

Each of these roots denotes an edge swap in the triangle pair as a result of triggering

a topological event (see Chapter 3.4.4). Only two triangular configurations are possible

and to process a topological event means to switch between them. Let us mark τ 1 the

configuration that is legal during time intervals (t1 − ε1, t1〉 and 〈t2, t2 + ε2)
2 and τ 2 the

configuration legal during 〈t1, t2〉. Note that both τ 1 and τ 2 are legal for t ∈ {t1, t2}
Now let us alter the positions P1, ..., P4 and velocity vectors v1, ...,v4 of all the points

by adding ∆P1, ..., ∆P4 and ∆v1, ..., ∆v4, respectively, to their values in such a way that

only the position of root t1 is altered by ∆t1 (let t1 < t1 + ∆t1 < t2) and the positions of

all other roots t2, ..., tn of polynomial p(t) = 0 remain unchanged (let us assume without a

proof that such a new values of the point coordinates and the velocity vectors do exist).

2Let ε1, ε2 be such small that these intervals contain no other roots of p(t) = 0

60

Let us mark the original point position and velocity configuration by vector ξ0 and

the changes of this configuration by ∆ξ0. Let {ξi}∞i=0 be a sequence of such vectors that

ξi+1 = ξi + ∆ξi and that, if ti1 is the value of the root t1 for the configuration ξi, then

∀i : ti+1
1 > ti1. There is a limit ξ̂ to this sequence which represents such a vector of point

positions and their corresponding velocity vectors, where t1 = t2 is one double root of

p(t) = 0.

lim
i→∞

{ξi} = ξ̂

lim
i→∞

‖ti1 − ti2‖ = 0

As we can see, the length of the interval 〈t1, t2〉 where τ 2 is a legal triangle configuration

converges to zero. This means that in the limit case the τ 2 is legal only for time t1 = t2

which is the double root of p(t) = 0. According to this fact, a single edge swap is an

option only if the triangulation is about to remain in the singular case, but it is not

necessary because the other triangle configuration τ 1 is legal during the whole interval

(t1 − ε1, t1〉 ∩ 〈t2, t2 + ε2) = (t1 − ε1, t2 + ε2) as defined before.

The approach is essentially very similar for the roots of multiplicities greater than two.

5.6 Numerical Stability

5.6.1 Singularities in the Triangulation

As described earlier in Chapter 3.4.4, the movement of points may lead to an occurrence of

a singular case in the triangulation. Besides the tangential movement, there is a possibility

of two point collisions. As previously described in [25], this situation leads to the two points

being cocircular with any other two points in the triangulation, which is most unwanted

because of the way of obtaining the topological events. Large number of nonexistent

events may be scheduled at the time of such singularities and they may then destroy the

triangulation structure.

61

5.6.2 Ordering the Events in Queue

If the points represent some physical objects and thus are subject to some forces as a result

of their mutual affection, it is possible to order the events in the queue in such a way that

if two events of different kinds (e.g., a collision event and a cocircular event) should occur

at the same time, the collision event will be processed first. This precaution will cause

that one of the two colliding points will be deflected from the other by the reactive forces,

which may help to stabilize the singular situation. The remaining topological events may

then be removed from the queue and replaced by new events, which take into account the

new velocity vectors of the two colliding points.

5.6.3 Safety Discs

Safety discs may be added to each of the points in the triangulation to prevent any two of

them to become too close. These discs represent an area around a point, which may not be

entered by any of the other points. A minimal distance between points is then introduced,

which is equal to the diameter of the discs (if all the discs have the same diameter). This

minimal distance between points ensures that the singularities will not occur and may be

very well combined with the previous method of ordering the events in the queue.

5.6.4 Randomization

It is sometimes impossible to introduce any of the aforementioned methods, but the singular

cases must be dealt with. In some of these cases the randomization may be used. By

altering the positions or velocity vectors (or even both of them) by adding a small random

value, very good results may be obtained. The random factor helps to separate the events

which would otherwise take place at the same time and thus prevents the singularities.

Due to the limited precision of the floating point numbers in computer arithmetics, the

randomization of the position of points is likely to prevent vast majority of collisions

between points.

62

5.7 Other Types of Movement

5.7.1 Overview

Even though the restrictions we made on the type of point movement may seem very

serious, the available resources may still be sufficient for more complex types of movement.

The following chapter provides information about two such methods - the first of them

binds several points to point clusters, which share a common velocity of the points and

thus their mutual positions are stable and the second one provides a simple way to simulate

nonlinear movement only by using the tools and techniques described before. Finally, a

movement along polynomial trajectories is considered and some propositions are made on

the construction of the required mathematical apparatus.

5.7.2 Point Clusters

From the practical point of view, the point clusters may represent a simplification of some

complex objects, or some unification of points that share some common feature. Figure 5.4

shows a simple example of clustered data.

Figure 5.4: A simple example of triangulation of a set of clustered data.

Let us define a point cluster as a set of n points C = {PC
1 , ..., PC

n } that move along

colinear trajectories with identical velocity vectors vC
1 = ... = vC

n . Then the described

methods for handling Delaunay triangulation of kinetic data suffice fully for managing

point clusters if some method of simultaneous velocity vector alternation is introduced,

63

meaning that if the velocity vector vC
j of a point PC

j changes to vC
j
′
, then the velocity

vectors of all the remaining points in the cluster are changed to the exact same values

immediately. This may be done for instance by scheduling collision events (or some other

type of events, which cause some changes of the velocity vectors) for all the points in a

cluster, but upon the execution of the first of them, all of the events are executed in the

same fashion. For instance, if the whole cluster is moving in the direction of x axis and

the rightmost point in the cluster collides with the right wall of the bounding are, then all

the velocity vectors of the clustered points are changed as if these points collided with the

wall themselves.

5.7.3 Nonlinear Trajectories through the Linear Interpolation

If given a parametric equation of a nonlinear function f = f(t), we are able to divide the

range of the parameter t into small intervals 〈ti, ti+1〉 and replace f(t) by line segment on

each of these intervals, as shown in Figure 5.5. The size of the intervals may be selected

in any suitable way, depending on the used nonlinear function, previous experience or

maximum allowed error of the interpolation. The intervals may even vary in size.

In order to force a point P ′ to move along the nonlinear trajectory, its velocity vector

must be modified at each time instant ti. The velocity vector vi for each ti, i < n will then

be computed as follows:

vi =
1

‖〈ti, ti+1〉‖(Pi+1 − Pi) (5.1)

where Pi, i ≤ n are the positions of the moving point at ti, we can compute their coordinates

simply by using the parametrization of f(t):

Pi = [fx(ti), fy(ti)] (5.2)

where fx(t) and fy(t) are the parameterizations of f(t) for the x and y axes.

The maximum error of such an interpolation may be then bound by the value E(t) as

64

Figure 5.5: Linear interpolation of a circular trajectory.

follows in Eq. 5.3, if certain conditions on the interpolated function are met, see below the

equation.

|E(t)| ≤ M

(n + 1)!
|en(t)| ≤ M

(n + 1)!
max
t∈〈a,b〉

|en(t)| (5.3)

where n is the order of the interpolation polynomial (in the case of a linear interpolation

n = 1), M is a constant (see below), en(t) is the interpolation function on 〈a, b〉.
As stated above, Eq. 5.3 may only be used under certain conditions, these conditions

are:

• f(t) must be continuous on 〈a, b〉.

• n + 1 derivations of f(t) must exist on 〈a, b〉

• Such constant M must exist that M ≥ |f (n+1)(t)| for each t ∈ 〈a, b〉

For more details on the linear interpolation method and its error, see [19].

5.7.4 Polynomial and Nonlinear Trajectories

Considering the fact, how the trajectories of the moving points affect the equation, which

has to be computed in order to obtain the times of topological events (see Eqs. 3.7 and 2.1),

it is obvious, that increasing the order of the polynomials that create the trajectories of

the points will not change the nature of these equations.

65

If the points move along trajectories determined by the polynomials px(t), py(t) of degree

up to n (both in x and y coordinates), the determinant of Eq. 3.7 will be a polynomial

of degree 4n (considering 2D case only, for higher dimensions, the polynomial degree will

grow even more).

However, the described mathematical methods may be generalized, with some effort,

for these high degree polynomial cases, but the number of possible root configurations will

grow, for instance even the fifth degree polynomial has 11 available root configurations (as

in the fashion of Table 5.1).

General nonlinear trajectories without any form of aforementioned simplification rep-

resent even more complex problem. They require solving of nonlinear equations without

any known parameters (considering the case, where the user is free to insert any nonlinear

function as a trajectory). This kind of movement is beyond the reach of the proposed

method and must be handled in a completely different way. The shown mathematic re-

lations still hold, but the equation that describes the time dependent determinant of the

incircle test matrix (see Eq. 3.7) will be of general nonlinear nature and thus cannot be

solved by using the method based on Sturm sequences of polynomials. The simplest way

to handle these points may be the discretization of time, thus using the dynamic, rather

than kinetic, property of the triangulation, with all the consecutive drawbacks of such an

approach.

66

6 Performance

6.1 Implementation Details

All the mentioned test results were obtained by running our implementation of the kinetic

data structure in C#, compiled with Microsoft Visual Studio 2005 on a PC with the

following HW/SW configuration:

Operation System: Microsoft Windows XP, SP 2

Framework Version: Microsoft .NET Framework 2.0.50727 SP 1

DirectX Version: Microsoft DirectX 9.0c (March 2008)

CPU: Intel Pentium M Processor 1.73 GHz

RAM: 512 MB

Video Adapter: ATI Mobility Radeon X700, 128 MB RAM

The application, which demonstrates our implementation of Delaunay kinetic triangu-

lation may be found on the enclosed CD. Figure A.1 in Appendix A shows some screenshots

of its user interface. The application allows user to insert and remove points into and from

a triangulation, lets him assign them the velocity vectors or nonlinear trajectories and

allows the binding of points into clusters. When the time of the triangulation is increased,

the displayed structure is updated by using the method we proposed in this text.

As the test set, we used 100x100 units bounding area, additional details such as the

count and positions of points used during a test are added to each of the test results. Each

test was performed 10 times and the presented results represent average values from these

experiments.

67

6.2 Tests and Results for Simple Data Sets

6.2.1 Overall Time Complexity

The simple data tests were performed on randomized data - 100 random points with safety

disc of 1 unit radius were inserted into the triangulation, certain percentage of them were

assigned a random 1 constant velocity vector with both its coordinates being a random

number in interval 〈 − 5, 5〉, and each of the configurations was measured for 10 seconds

of the inner time of the triangulation. The measured values include the insertion of points

into the triangulation, the initialization phase at the start of the movement and then the

movement itself.

Figure 6.1: Total runtime needed for the test with constant total amount of points.

The graph in Figure 6.1 demonstrates the dependency of the total time required for the

test on the percentage of the moving points (the total amount of point remains unchanged).

According to the measured values, we may assume, that there is an upper bound of O(n)

1Each random variable in the tests was generated by using a random number generator with uniform
distribution of probability.

68

and lower bound of O(log n) on the runtime needed if the total amount of points remains

unchanged and n represents only the moving point percentage.

Figure 6.2: Number of polynomials of different degrees computed during the test.

The graph in Figure 6.2 shows the number of polynomials of the degree from two to four

that had to be computed during the test. It is obvious that the average degree grows with

the growing percentage of moving points. This fact is a consequence of the dependencies

shown earlier in Chapter 5.5.3, approving the fact that the velocity vectors of the four

points in the two triangle configuration strongly affect the degree of the solved polynomial.

The consequences of this behavior are that the performance of the entire kinetic part of the

application will be strongly affected by the performance of the method used to compute the

relevant polynomials. And because we used a method, which solves the polynomials of the

third and the fourth degree by using iterative methods (the bisection and the Newton’s

method), we may expect significant performance loss for higher percentages of moving

points.

69

Figure 6.3: Runtime percentage consumed by different parts of the application.

The graph shown in Figure 6.3 displays the percentage of runtime consumed by different

parts of the application. The displayed values correspond perfectly to the results shown in

the previous graph in Figure 6.2. We may see that for any number of moving points in the

triangulation, the iterative methods for computing the polynomials of degree greater than

two consume an inconsiderable amount of total runtime percentage. It is thus obvious that

any further runtime improvements will have to start by either reducing the total number

of counted polynomials or improving the overall performance of these methods.

70

6.2.2 Event Execution

The graph in Figure 6.4 shows the counts of executed events of different kinds and the

number of discarded cocircular events. The measured values show that there is an upper

bound of O(n) and a lower bound of O(log n) to both the number of executed and discarded

cocircular events. The other types of events represent only a minor part of the total event

count.

Figure 6.4: Number of executed and discarded events of various types.

Values in this graph show that approximately half of the events that are popped from the

queue for execution is discarded because they are no more valid at that time. Because these

events have to be computed, but are not used, they represent a kind of a wasted runtime.

As stated before, one of the further optimization possibilities lies in the reduction of the

amount of polynomials which have to be solved. Byproduct of this optimization technique

would also be the reduction of discarded cocircular events.

71

6.2.3 Queue Performance

Because the whole algorithm, and thus even the encapsulating application, is based on a pri-

ority queue, its performance should be observed. The following graphs in Figures 6.5, 6.6 and 6.7

show the amount of events of different times stored in the queue during the whole test for

10, 50 and 100 moving points respectively (the total amount of points in the triangulation

is 100 for all the three tests).

Figure 6.5: Number of events stored in the queue (10 moving points).

72

Figure 6.6: Number of events stored in the queue (50 moving points).

Figure 6.7: Number of events stored in the queue (100 moving points).

73

Values in the three aforementioned graphs show that there is obviously an upper bound

of O(n) and lower bound of O(log n) on the cocircular events in the queue and the number

of the other types of events is approximately constant. We may notice that the count

of the queue events grows for some short period of time (in all the displayed cases) and

then, after reaching certain value, which is different for each of these graphs, seems to be

approximately constant. This behavior is probably caused by the fact, that events are not

removed from the queue after they become invalid, so after some time the queue contains

number of events, that are relatively far in the future but will never be executed. Based on

the measured values, we may assume that these events are distributed in such a fashion that

the execution of legal topological events and the resulting scheduling of new topological

roughly compensates the count of events discarded from the queue because of being invalid.

This theory also explains the discrepancy between the limits of the numbers of the queued

topological events in these graphs and the counts of the discarded and executed topological

events as shown in the graph in Figure 6.4, because it allows us to determine the number

of different topological events that were queued during the time of the test. Let us for

instance consider the case for 10 moving points. From the values in Figure 6.4, we can see

that approximately 200 topological events were executed and roughly the same amount of

this type of events were discarded, additionally, the graph in Figure 6.5 shows that at the

end of the test, approximately 120 events were queued. These values let us compute that

roughly 520 different events were pushed into the queue during this test.

The values in the graphs in Figures 6.5, 6.6 and 6.7 may not be used to estimate the

values in the graph in Figure 6.4 and vice versa, because they are in fact independent to

a certain degree (some dependency is present and shown in the following graph). The sole

number of queued events at a time instant does not allow us to presume anything about

how many of them will be discarded and how many of them will be executed.

74

Figure 6.8: Number of events stored in the queue after 5s of the movement.

The graph in Figure 6.8 shows the dependency of the number of the different types

of events in the queue on the moving point percentage in the test. The values were

obtained by measuring after 5 seconds of the test. The values in the graph show that

the approximate limit value of the queued events shown in the previous three graphs

(in Figures 6.5, 6.6 and 6.7), depends on the percentage of the moving points in the

triangulation with lower bound of O(log n) and upper bound of O(n).

6.2.4 Realtime Capabilities

The tests in this chapter were performed in order to pinpoint the current realtime capabil-

ities of the application. Their purpose was to determine how many points may be inserted

into the triangulation if the test should consume lower amount of runtime than the inner

time of the triangulation at the end of the test. The triangulation, HW and SW settings

remained unchanged for these tests, but the number of total points inserted and the moving

point percentage was changed (the details are provided for each test separately).

75

Figure 6.9: Total runtime needed for the test with 100% moving points.

In this test, all the point in the triangulation were moving and the total number of

inserted points was being increased from 100 to 1000 as shown in the graph in Figure 6.9.

The measured curve is a relatively very good approximation of a parabola, which shows

that the time complexity of the runtime needed is of O(n2) order if n represents the total

amount of points in the test and if all of these points are moving (note the difference -

unlike the previous tests, n denotes the total number of points in the triangulation). From

the measured values, we may state that the current maximum realtime capabilities for the

described configuration are somewhere around 500 moving points in the triangulation, but

the situation may differ quite significantly for a larger (or smaller) triangulation area or a

different scale of the movement vectors or a different radius of safety discs.

6.3 Nonlinear Trajectories

The tests of on points with nonlinear trajectories were performed on the same point sets

as the previous cases, but the safety discs around points were not present. The nonstatic

76

Figure 6.10: Total runtime needed for the test with constant total amount of points with
elliptic trajectories.

points were moving along elliptic trajectories (which were obtained in the way described

in Chapter 5.7.3) with radii in both axes being the lower of two numbers - 1 or half the

distance from the point to the boundary of the triangulation area and with identical phase

values. Both these precautions were taken with an intension to minimize the number of

collision events of both kinds (we do not want the trajectories of the moving points to be

altered by any other events than the linear interpolation) and to increase the numerical

stability of the tests.

The result of the introduction of such nonlinear trajectories through linear interpolation

was a relatively very drastic dropdown of the overall speed of the application. This is caused

by several factors, the first of them is the addition of a new group of events that change

the velocity vectors of the points according to their nonlinear trajectories. Additionally,

due to the extremely short intervals of linear movement, a very large number of computed

events has to be discarded and recomputed (basically repeating the initialization step).

The graph in Figure 6.10 shows the overall runtime length of the test for nonlinear point

trajectories, note the total amount of time consumed by the test, which is approximately

77

3.5 times larget than in the linear movement case.

The probably most interesting feature of this graph is the change of the monotony of the

displayed curve for the highest percentages of the moving points. This change may possibly

be caused by the fact, that the identical phase values force the point moves collinearly for

each linear interpolation interval, thus eliminating all the cocircular events, then the vast

majority of the runtime would be consumed by the recomputing of the velocity vectors,

which may eventually become lower than the runtime consumed by point configuration

with slightly lower percentage of the moving points.

6.4 Clustered Data

The concept of clustered data as presented in Chapter 5.7.2 has been implemented with

a certain point of success - the cluster movement concept is valid and works as a general

idea, however, the computation is weighted by a large amount of numerical imprecision

and thus no measurement is possible. These problems are probably caused by the fact

that if two moving clusters share some common space, there will be generated fairly large

amount of cocircular events in a special kind of singular environment (two sets of points

with common velocity vectors). The impact of these drawbacks may be possibly reduced

in the future, by introducing some kind of physical model that would prevent the clusters

from overlapping.

6.5 Nonplanar Object Simulation

For the following test, we have created a semi-uniform grid of 50×20 points in the bounding

are of 100 × 50 units in size. The points in the triangulation were distributed uniformly

except that the x-coordinate of each point that was not inserted into the first row was

altered by a random value from interval 〈 − 0.5, 0.5〉 (uniformly distributed). Then the

points in the first row (the points with the minimum value of the x-coordinate) were set to

move in the direction of the x-axis with the velocity of 5 units per second. All the points in

78

the triangulation were then assigned a height value determined by the Gaussian function

as follows:

f(x) = ae−
(x−b)2

2c2 (6.1)

where a > 0 is a real constant that determines the height of the wave (in the case of

our application a = 10), b is the position of the center of the wave on the x-axis (the

x-coordinate of the row of the moving points) and c is a parameter that controls the width

of the wave, in our case c is equal to 5. Additional details on the Gaussian function may

be found for instance in [29]. A screenshot of the nonplanar object simulation may be seen

in Figure A.2 in Appendix A.

6.6 Performance in Other Applications

Together with Petr Puncman (see [18]), we have successfully used our implementation of a

library for kinetic Delaunay triangulation as a part of a video compression application. Our

library provides the application with tools for interpolating the movement of the points

between two frames, where the old triangulation is discarded and a new one is created.

The results (presented in the mentioned thesis) show that our method is suitable for this

kind of problem, however, the handling of kinetic data must be as fast as possible, which

required to speed up our library. The bottleneck of the performance for video compression

method lies, quite unexpectedly, in the initialization part of the algorithm (not ain all the

cases, because it is dependant on the number of moving points), because it is not unusual

to have videos with thousands of points of which only tens are moving. In this case, a very

large number of polynomials has to be constructed, but only a certain small part of them

will be of a degree greater than zero and thus will have to be solved.

A screenshot from the video compression application may be seen in Figure A.3 in

Appendix A. This application uses our implementation of kinetic Delaunay triangulations

for compressing video files. The performance of this method is described in [18].

79

7 Conclusion

The described algorithm provides a suitable way of managing the kinetic Delaunay trian-

gulation in two dimensions. By using the generalized Sturm sequences in combination with

the fundamental theorem of algebra, we are able to estimate the locations and multiplic-

ities of all the roots of a polynomial and then, by using the combination of bisection and

Newton method, solve the polynomial.

Practical testing showed that the algorithm in its current form is capable of providing

a sufficient moving point support for certain applications (the video compression method

by Petr Puncman), but the overall performance, even although it has been significantly

improved since the last version (see [25]), is insufficient. The current capabilities of realtime

performance lies somewhere in the order of hundreds of points.

Two possibilities of other types of movement have been considered - a linear interpo-

lation of nonlinear trajectories and the clustered data - but the results obtained from the

tests are relatively bad. The numerical errors which accompany the increased number of

events in both the mentioned cases, causes instability of the whole triangulation structure.

Even though the concept of these types of movement is theoretically sound, the implemen-

tation details will need to be worked out. As proved by the nonplanar simulation test, the

method is usable for a special sort of pseudo 3D applications.

Tests showed us that the computation of polynomial roots is the most suitable area for

further optimization (especially in the case of the polynomials of the fourth degree). The

number of the computed and discarded topological events should also be lowered in order

to improve the performance.

80

Bibliography

[1] Gerhard Albers, Leonidas J. Guibas, Joseph S. B. Mitchell, and Thomas Roos. Voronoi

diagrams of moving points. International Journal of Computational Geometry and

Applications, 8(3):365–380, 1998.

[2] Paolo Cignoni, Claudio Montani, and Roberto Scopigno. Dewall: A fast divide and

conquer Delaunay triangulation algorithm in Ed. Computer-Aided Design, 30(5):333–

341, 1998.

[3] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Com-

putational geometry, algorithms and applications. Berlin Heidelberg: Springer, 1997.

[4] Olivier Devillers. On deletion in delaunay triangulations. In Symposium on Compu-

tational Geometry, pages 181–188, 1999.

[5] Andrej Ferko. Personal communication, 2007.

[6] Jean-Albert Ferrez. Dynamic Triangulations for Efficient 3D Simulation of Granular

Materials. PhD thesis, École Polytechnique Fédérale De Lausanne, 2001.

[7] Marina Gavrilova, Jon Rokne, and Dmitri Gavrilov. Dynamic collision detection in

computational geometry. In 12th European Workshop on Computational Geometry,

pages 103–106, Munster, Germany, 1996.

[8] Christopher M. Gold and Alfonso R. Condal. A spatial data structure integrating GIS

and simulation in a marine environment. Marine Geodesy, 18:213–228, 1995.

81

[9] Holly P. Hirst and Wade T. Macey. Bounding the roots of polynomials. The College

Mathematics Journal, 28(4):292–295, 1997.

[10] Øyvind Hjelle and Morten Dæhlen. Triangulations and Applications. Berlin Heidel-

berg: Springer, 2006.

[11] Barry Joe. Construction of three-dimensional delaunay triangulations using local

transformations. Comput. Aided Geom. Des., 8(2):123–142, 1991.

[12] Josef Kohout. Parallel Delaunay triangulation in 2D and 3D, Diplomová práce. Uni-

versity of West Bohemia, Pilsen, Czech Republic, 2002.

[13] Ivana Kolingerová. Rovinné triangulace, Habilitačńı práce. University of West Bo-

hemia, Pilsen, Czech Republic, 1999.

[14] Ivana Kolingerová. A small improvement in the walking algorithm for point location

in a triangulation. In 22nd European Workshop on Computational Geometry, pages

221–224, March 2006.

[15] Ivana Kolingerová and Borut Žalik. Improvements to randomized incremental delau-

nay insertion. Computers and Graphics, 26(3):477–490, 2002.

[16] Mir Abolfazl Mostafavi, Christopher Gold, and Maciej Dakowicz. Delete and in-

sert operations in Voronoi/Delaunay methods and applications. Comput. Geosci.,

29(4):523–530, 2003.

[17] Victor Y. Pan. Solving a polynomial equation: Some history and recent progress.

SIAM Review, 39(2):187–220, 1997.

[18] Petr Puncman. Použit́ı triangulaćı pro reprezentaci videa, Diplomová práce. University

of West Bohemia, Pilsen, Czech Republic, 2008.

[19] Petr Přikryl. Numerické metody matematické analýzy. Praha: SNTL, 1985.

82

[20] Anthony Ralston. A First Course in Numerical Analysis. McGraw-Hill, Inc.: New

York, 1965.

[21] G. Schaller and M. Meyer-Hermann. Kinetic and dynamic Delaunay tetrahedraliza-

tions in three dimensions. Computer Physics Communications, 162:9–23, September

2004.

[22] Roman Soukal. Aplikace algoritmu procházky v poč́ıtačové grafice, Diplomová práce.

University of West Bohemia, Pilsen, Czech Republic, 2008.

[23] Roman Soukal. Personal communication, 2008.

[24] David Thibault and Christopher M. Gold. Terrain reconstruction from contours by

skeleton construction. Geoinformatica, 4(4):349–373, 2000.

[25] Tomáš Vomáčka. Delaunay triangulation of moving points. In Proceedings of the 12th

Central European Seminar on Computer Graphics, pages 67–74, 2008.

[26] Borut Žalik and Ivana Kolingerová. An incremental construction algorithm for Delau-

nay triangulation using the nearest-point paradigm. Int.J. Geographical Information

Science, 17(2):119–138, 2003.

[27] Eric W. Weisstein. Cubic equation. From MathWorld - A Wolfram Web Resource.

http://mathworld.wolfram.com/CubicEquation.html, 2004.

[28] Eric W. Weisstein. Fundamental theorem of algebra. From MathWorld - A Wolfram

Web Resource. http://mathworld.wolfram.com/QuarticEquation.html, 2004.

[29] Eric W. Weisstein. Gaussian function. From MathWorld - A Wolfram Web Resource.

http://mathworld.wolfram.com/GaussianFunction.html, 2004.

[30] Eric W. Weisstein. Quartic equation. From MathWorld - A Wolfram Web Resource.

http://mathworld.wolfram.com/QuarticEquation.html, 2004.

Appendices

Appendix A

Screenshots of the Demonstration

Applications

85

Figure A.1: Managing the kinetic Delaunay triangulation with our demonstration appli-
cation. Demo application is available on the enclosed CD.

Figure A.2: Simulation of nonplanar object with planar kinetic Delaunay triangulation.
Demo application is available on the enclosed CD.

Figure A.3: Screenshots from the video compression application by Petr Puncman, details
may be found in [18].

Appendix B

Využit́ı prioritńı fronty pro správu

Delaunayovy triangulace

nad kinetickými daty

Studentská vědecká konference, 2007

Pilsen, Czech Republic

89

VYUŽITÍ PRIORITNÍ FRONTY PRO SPRÁVU DELAUNAYOVY
TRIANGULACE NAD POHYBLIVÝMI DATY

Tomáš VOMÁČKA1, Ivana KOLINGEROVÁ2

1 ÚVOD
Jak ukázala Gavrilova et al. (1996), Delaunayova triangulace představuje díky svým

vlastnostem vhodnou datovou strukturu pro detekci kolizí nad pohyblivými daty. Její použití
výrazně snižuje algoritmickou složitost problému. Je však třeba zajistit, aby vlivem pohybu
bodů nedošlo k tomu, že triangulace přestane být Delaunayovská. Toho lze docílit např.
s využitím prioritní fronty pro zpracování topologických událostí, které se v triangulaci
vyskytnou. Tato práce zkoumá detekce událostí porušujících triangulaci a jejich zpracování.

2 TOPOLOGICKÉ UDÁLOSTI OVLIVŇUJÍCÍ TRIANGULACI
Vlivem pohybu bodů dochází k porušení Delaunayova kritéria původní triangulace (tj. do

kružnice opsané některémtu trojúhelníku vstoupí další bod). Příklad na obr. 1 ukazuje situaci,
kdy bod D vstupuje do kružnice opsané trojúhelníku ABC. Moment, kdy se body ABCD
vyskytnou na jedné kružnici, nazýváme topologickou událostí.

Obr. 1: Legalizace porušené trojúhelníkové sítě

Detekce tohoto typu topologických událostí probíhá pomocí upravené matice pro test, zda
bod leží uvnitř kružnice opsané trojúhelníku.Pro rovnoměrný, přímočarý pohyb bodů,

 (1)

2 2
0 0 0 0

2 2
0 0 0 0

2 2
0 0 0 0

2 2
0 0 0 0

() () 1
() () 1

det 0
() () 1
() () 1

a a a a a a a a

b b b b b b b b

c c c c c c c c

d d d d d d d d

x t x y t y x t x y t y
x t x y t y x t x y t y
x t x y t y x t x y t y
x t x y t y x t x y t y

⎡ ⎤+ ⋅∆ + ⋅∆ + ⋅∆ + + ⋅∆
⎢ ⎥+ ⋅∆ + ⋅∆ + ⋅∆ + + ⋅∆⎢ ⎥ =
⎢ ⎥+ ⋅∆ + ⋅∆ + ⋅∆ + + ⋅∆
⎢ ⎥

+ ⋅∆ + ⋅∆ + ⋅∆ + + ⋅∆⎢ ⎥⎣ ⎦

Kde bod se pohybuje po přímce 0 0[;a aA x y=])a0 0(,a a ax t x y t y+ ⋅∆ + ⋅∆ atd. pro body B, C, D.

Protože rovnice (1) nabývá tvaru polynomu až 4. stupně, je možné pro její řešení využít
analytické metody, Gavrilovou (2003) navrhovanou Newtonovu metodu, metodu
dichotomického dělení, popř. pro odhad polohy kořenů i Ralstonem (1973) popsané Sturmovy
posloupnosti, nebo kombinaci uvedených metod.

1 Tomáš Vomáčka, student navazujícího studijního programu Aplikované vědy a informatika, obor
Počítačová grafika a výpočetní systémy, e-mail: tvomacka@students.zcu.cz

2 Doc. Dr. Ing. Ivana Kolingerová, ZČU v Plzni, FAV, Katedra Informatiky a výpočetní techniky, Univerzitní
22, 306 14 Plzeň, tel.: +420 377632433, e-mail: kolinger@kiv.zcu.cz (vedoucí práce)

T. Vomáčka, I. Kolingerová

3 ZPRACOVÁNÍ UDÁLOSTÍ PRIORITNÍ FRONTOU
Po obdržení požadavku na aktuální stav triangulace je potřeba zpracovávat události

z vrcholu fronty, dokud neplatí, že čas výskytu první události ve frontě je větší, než aktuální
čas triangulace.

Zpracováním události vznikají dva nové trojúhelníky, které je potřeba se všemi jejich
sousedy otestovat na nové topologické události. Nové události jsou přidány do fronty na
základě polohy a vlastností kořenů rovnice (1). V případě, že získáme kořeny sudé
násobnosti, jsou ignorovány, protože značí sudý počet prohození hran, příklad je ilustrován na
obr. 2a (dvojitý kořen) a obr. 2b (dva jednoduché kořeny). V případě lichých násobností
kořenů určuje nejmenší kořen větší než aktuální hodnota času čas nové topologické události.

Obr. 2: Geometrický význam násobnosti kořenů: (a) dvojitý kořen, (b) dva jedn. kořeny

Mezi nově vznikajícími topologickými událostmi je třeba detekovat tři speciální případy.
Trojúhelníky vzniklé prohozením hran jsou testovány na topologické události i vůči sobě
navzájem, automaticky tedy získáme informace o nové události v aktuálním čase (právě
zpracovávaná událost). Tuto událost je třeba ignorovat a zpracovávat až události následující.
Další případy tvoří tzv. zmeškané a falešné události. Zmeškané události představují ty
topologické události, které měly být zpracovány, ale buď byly z fronty vyřazeny před svým
zpracováním, nebo do ní nebyly vůbec vloženy. Falešné události jsou naopak takové, které
byly zpracovány, ačkoliv k tomu nemělo dojít. Společným důsledkem obou těchto jevů je
destrukce trojúhelníkové sítě.

4 ZÁVĚR
V rámci řešení dané úlohy bylo třeba prozkoumat metody řešení polynomu 4. stupně.

Vzhledem k nízké počáteční informaci o existenci a poloze kořenů se jako optimální ukázala
kombinace analytického přístupu a dichotomického dělení.

Důsledkem numerických nepřesností vznikajících během výpočtu v aritmetice s plovoucí
řádovou čárkou je degradace prioritní fronty a následná destrukce trojúhelníkové sítě. Při
správě triangulace hrají klíčovou roli zmeškané a falešné topologické události, jejichž vzniku
je bezpodmínečně nutné zabránit. To bude předmětem další práce.

Poděkování: Děkujeme za poskytnuté informace dr. M. Gavrilové, doc. A. Ferkovi, dr. A.
Kolcunovi a prof. S. Míkovi.

LITERATURA

Gavrilova, M., Rokne, J. and Gavrilov, D., 1996. Dynamic collision detection algorithms in
computational geometry. In Proceedings of the 12th European Workshop on
Computational Geometry, Munster, Germany. pp 103-106.

Gavrilova, M., 2003. An Explicit Solution for Computing the Euclidean d-dimensional
Voronoi Diagram of Spheres in a Floating-Point Arithmetic. Computational Science and
Its Applications 2669 (3). pp 827-835.

Ralston, A., 1973. Základy numerické matematiky. Academia, Praha.

Appendix C

Delaunay Triangulation

of Moving Points

Central European Seminar on Computer Graphics, 2008

Budmerice, Slovakia

92

Delaunay Triangulation of Moving Points

Tomáš Vomáčka∗†

Institute of Computer Graphics
University of West Bohemia

Pilsen / Czech Republic

Abstract

Delaunay triangulation and its dual structure - Voronoi di-
agram represent a multi-purpose data structures which are
widely used in computational geometry. Using these struc-
tures for sets of moving data is also relatively well-known
and the general approaches have already been discovered.
This paper focuses on the rarely discussed problem - com-
puting of the topological events - e.g. the exact times of
structural changes in the data structures. Our algorithm
uses the Sturm sequences of polynomials to quickly dis-
cover the roots, with a possibility to compute only those
roots, which are necessary and will most probably be use-
ful.

Keywords: Delaunay Triangulation, Kinetic Data, Com-
putational Geometry

1 Introduction

According to [6], Delaunay triangulation of moving points
represents an efficient way of collision detection. It is so
because a point has to be checked for collision only against
its neighbors in the triangulation (e.g., with all the points
to which it is connected) and only when a new edge con-
taining this point as a vertex is added to the triangulation.

Even though the collision detection is the most straight-
forward (and most often discussed) application of the De-
launay triangulation of moving points, it is by far not the
only one. Together with the transformation to Voronoi dia-
gram it may provide a base data structure for path planning
in an environment with moving objects (especially when
extended to three dimensional space). Some triangulation-
based methods for video compression may take advantage
of the triangulation that changes its structure according to
the movement of the points. Other use of similar data
structures may be easily found anywhere the data repre-
sent moving points.

There are two main approaches to moving the points in
a triangulation. The first of them (and the simpler one) is
to remove each moving point and then reinsert it back to
the triangulation at new coordinates. This approach has

∗tvomacka@students.zcu.cz
†This work was supported by Ministry of Education - project No.

LC06008

a significant disadvantage when we want to use it for a
collision detection - when a point moves relatively fast, its
new position may be so far from the original one that some
edge insertion and removal may be skipped. If this edge
represents a collision edge (e.g., this fast moving point col-
lides with the other vertex of this edge), a collision will be
missed.

The other approach models continuous movement and
utilizes a priority queue to keep track of scheduled topo-
logical events. When a request is made to acquire the cur-
rent state of the triangulation, events from the queue are
popped and processed until the inner time of the triangu-
lation matches the requested one. This procedure ensures
that the triangulation structure will only be altered when
the movement of the points causes a topological change.

This paper focuses only on points moving with constant
velocity vector. This limitation may seem too serious, but
the mathematical relations described in this paper may be
(with some effort) modified for movement along polyno-
mial curves. Other types of trajectories cannot be gener-
ally solved in the same way and are beyond the focus of
this paper.

Known and described techniques of solving the problem
are described in Section 2. Section 3 of this paper provides
some basic definitions. Inner structural changes of the tri-
angulation as a result of the movement of the points are
described in Section 4. Section 5 describes several ways
of obtaining the topological events and outlines geometri-
cal meaning of the solved equations with an emphasis on
the count and multiplicity of their roots. Section 6 docu-
ments results of our work so far. Summary of the project
and further work proposals are given in Section 7.

2 State of the Art

Even though various papers on similar subject propose
the technique discussed in this paper (see [6, 7]), almost
nothing has been written about obtaining the topological
events from the mathematical description of the movement
of the points. However the principle of this approach, as
well as the general iteration algorithms for maintaining the
structure of kinetic Delaunay triangulations or Voronoi di-
agrams, is well known and described together with the
theoretical bounds of number of the processed topologi-
cal events in [1]. Even non-Euclidian metrics such as the

power and Manhattan metrics have been considered for
this problem, see [5], where those metrics are applied on a
set of moving discs and line segments.

Each of the mentioned articles describes the process
of obtaining the topological events (discussed later) as a
problem of finding real roots of the 4-th order polynomial.
This polynomial cannot be in practice solved analytically
(although the relations are known), so numerical solutions
are suggested (with almost no details on which numerical
methods should be used and why).

Although some online software libraries for polynomial
solving exist (for instance the GSL library - see [3]), the
implemented algorithms used for polynomial solving are
usually based on the analytical approach or optimized for
finding the complex roots of polynomials. Both of these
options are unsuitable for our work.

We propose a new algorithm which determines the
amount, approximate location and multiplicity of the roots
and which allows us to simply discard some of the roots
and enumerate the others.

3 Definitions

3.1 Triangulation

Triangulation T (S) of a set of points S in the Euclidean
plane is a set of edges E such that

• no two edges in E intersect at a point not in S,

• the edges in E divide the convex hull of S into trian-
gles

Delaunay triangulation DT (S) over a finite set S of n
points in 2D

S = {P1,P2, ...Pn}
is the triangulation that fulfills the condition that no point
is inside the circumcircle of any triangle in DT (S). This
property, known as the Delaunay condition, is a key fea-
ture in our application and must be preserved over time
despite the movement of the points.

To determine if a triangle P1P2P3 and a point P4 satisfy
the Delaunay condition, the incircle test must be made
over the three points of the triangle and the considered
point. If Pi = [xi,yi] where xi,yi ∈ R represent the coor-
dinates of points P1, ...,P4, then we can determine the po-
sition of P4 against the circumcircle of the triangle P1P2P3
according to the sign ot the determinant of the matrix I (for
details see [8]):

detI = det

x1 y1 x2
1 + y2

1 1
x2 y2 x2

2 + y2
2 1

x3 y3 x2
3 + y2

3 1
x4 y4 x2

4 + y2
4 1

 (1)

If the vertices of the triangle P1P2P3 are oriented
counter-clockwise, then the positive sign of Eq. (1) means
that P4 lies inside the circumcircle of P1P2P3, negative sign

means that P4 lies outside and zero always means (inde-
pendently on the orientation of the vertices of the triangle)
that P4 lies exactly on the circumcircle.

3.2 Point Movement

Points P1, ...,Pn are moving at a constant velocity and their
coordinates must be thus defined as linear functions of
time:

Pi(t) = [xi(t),yi(t)] (2)
xi(t) = xi0 +∆xi · t,yi(t) = yi0 +∆yi · t (3)

where t ≥ 0, Pi(0) = [xi0,yi0] is the initial position of the
point Pi, e.g. the position of its insertion and ∆xi,∆yi ∈ R
represent velocity coordinates of Pi. We require the initial
positions of the points to be inside a triangulation area - a
rectangle in E2 defined as:

O =< xmin;xmax >×< ymin;ymax >

and state that no point may ever leave this rectangular area.
If a point is to move outside the given bounds, a collision
event will occur and (as described in Section 3) change the
velocity of the point in such a fashion to keep it inside the
boundaries.

3.3 Priority Queue

A priority queue is an abstract data type, which provides
the following operations:

• Push (i, t): add the item i to the queue with respect to
the priority t.

• Pop: remove item i with the highest priority from the
queue and return it.

• And sometimes others, such as returning the first ele-
ment in the queue without removing it (known as the
”Head” function).

4 Triangulation Behavior

4.1 Overall Functionality

Functionality of the algorithm (also described in [1, 5])
may be divided in two steps - the preprocessing and the it-
eration. In the preprocessing step, the Delaunay triangula-
tion of the points in their initial positions is created (in our
case by using the Incremental Insertion algorithm - see [2])
and the first topological event is computed for each pair
of adjacent triangles by determining the nearest time their
four points become cocircular (see further). In addition to
those events, the collision times are computed for each pair
of points connected with an edge, forming point-point col-
lision events, and the collision times for each point with
the boundaries of the triangulation area (let the edges of

the bounding rectangle be known as the walls), forming
point-wall collision events.

All the computed events are then placed into the priority
queue with the priority defined as:

p = tcurr− tevent

where tevent ∈ R is the time of the execution of the event
and tcurr ∈ R is the current time of the triangulation
(tevent ≥ tcurr).

The iteration step is repeated each time a request for the
triangulation state is received. If the current time of the
triangulation is lower than the current time, the event from
the head of the queue is popped and executed (this may
lead to adding some new events to the queue as well as
removing some of the events in the queue) and the current
time of the triangulation is set to the time of the executed
event. This step is repeated until the current time of the
triangulation matches the requested time.

4.2 Explanation of Topological Events

When the triangulation contains at least one point with a
nonzero velocity vector, its structure will have change in
time due to the Delaunay condition. As shown in [6, 1],
moving points may change their position without struc-
tural changes in the triangulation until a topological event
occurs (see Figure 1). As shown in the figure, the topologi-

Figure 1: Triggering of the topological event

cal event occurs when four points become cocircular and it
is thus determined by the time a point (point P4 →P′4 →P′′4
here) enters a circumcircle of a triangle P1P2P3. At this
point the triangulation becomes non-Delaunay. At this
time, the Delaunay condition is violated and the triangula-
tion must be repaired by processing the topological event.

4.3 Creating the Topological Events

When all points are added into the triangulation and move-
ment starts, topological events are scheduled for each edge
in triangulation. For each edge e we test its vertices for
mutual collision and collision with the walls of the bound-
ing rectangle and then, if e is shared by two triangles, we
compute the nearest topological event for their four points
in the future (events in the past may be byproduct of the
computation and are discarded for obvious reasons).

If any of the performed computations result in a pos-
itive event time greater than the current time of the tri-
angulation, we store it in the priority queue. This means
that point-point and point-wall collisions are stored in the
queue along with topological events and are processed
similarly (see further). Figure 2 shows a simple example
of queueing the events. As we can see, the point P4 moves
with the velocity vector v4 and this movement will cause
at least four events displayed in the Queue box of Figure 2.

Figure 2: Scheduling the events for P4

Note that the collision event in the time t4 determines
the time when P4 will leave the area O. Proper handling of
this type of events will ensure that all points will remain
inside the boundary. Also note the fact that collisions be-
tween points represent singular cases and are always time
identical with cocircular events. These singular cases may
be handled in various ways. For instance safety disc may
be added around each point or the events. The safety discs
only serve for computing collision times - they make two
points collide when they come close enough, creating col-
lision events in situations where they would not otherwise
occur. They also force the points to collide earlier than
they would without them if the collision would occur any-
way and thus eliminate the singularities. Another way to
handle the singular cases is to order events in the priority
queue in such way that if two events of a different kinds are
scheduled to the same time, then a collision event should
be executed before any cocircular event. This precau-
tion helps in situations where one point is deflected away
from another one by reactive forces (these forces are of
course dependent on implemented physical model), with-
out changing the topology of the triangulation. For any
other time near the collision, there is only one legal con-
figuration and it is the original one, so the edge swap is not
necessary.

4.4 Processing the Topological Events

When a topological event is triggered, the triangulation
structure changes. As mentioned in [6, 1], the changes will
be local - to process a topological event means to swap the
common edge (see Figure 3) of the two triangles involved
in the event and schedule new topological events.

Figure 3: Edge swap as a result of a topological event

Along with scheduling topological events, vertices of
the new edge (generated by the edge swap) must be tested
for mutual collision. Removing triangles from the trian-
gulation (which is a result of swapping the edges) makes
some events in the queue invalid, because the considered
triangle do not exist anymore. This fact must be consid-
ered and the invalid events must either be removed from
the queue immediately or discarded when popped. Al-
gorithm in Figure 4 shows the complete procession of a
topological event.

5 Computing the Topological Events

5.1 Basic Relationships

To determine time of a topological event, we have to com-
pute the time, when four points become cocircular. This
can be done by solving the Eq. (4), where I denotes the
incirlce-test matrix from relation (1), with point coordi-
nates defined as in (2) and (3). This equation is a modified
version of the incircle test which is normally used for con-
structing Delaunay triangulations.

detI = 0 (4)

In this equation, coordinates [x1,y1], ..., [x4,y4] represent
time dependent coordinates of points P1, P2, P3 and P4 as
defined in Section 3.2. If the coordinates of the points are
linear functions of time, then solving this equation means
to solve a polynomial of the fourth or lower degree.

The determinant of I(t) will not change if we substract
the first row of I(t) from all its rows. This transformation
means we set the first point to be identical with the origin.
Using this technique, we transform the fourth row of I(t)
to [0,0,0,1], but the maximum order of the solved polyno-
mial remains unchanged and equal to four.

Due to the fact that we are only interested in topological
events taking place in the future, we do not have to search
for all the roots of the equation. We just have to obtain the
roots which are greater than or equal to the current time of
the triangulation.

Input:

• Ev - the topological event on top of the priority
queue; Ev.T1, Ev.T2 - the involved triangles

• Let Ev.T1 = P1P2P3 and Ev.T2 = P1P4P2 as in Figure 3

Output:

• Update of the topological structure of the triangula-
tion and events in the priority queue.

Auxiliary:

• Q – priority queue
• DT – Delaunay triangulation of the points P1, ...,Pn

Algorithm:

• Ev← Q.pop()
• if (Ev.T1 is invalid or Ev.T2 is invalid)

– discard Ev and exit

• Swap the common edge of Ev.T1 and Ev.T2 →
Ev.T1 = P1P4P3 and Ev.T2 = P2P3P4

• Test P3 and P4 for point collision Col at time tCol

– Q.push(Col, tCol)

• For each triangle N sharing a common edge with
Ev.T1

– Test Ev.T1 and N for the nearest future topolog-
ical event Ev1 at time tEv1

∗ Q.push(Ev1, tEv1)

• For each neighbor N (N 6= Ev.T1) of Ev.T2

– Test Ev.T2 and N for nearest future topological
event Ev2 at time tEv2

∗ Q.push(Ev2, tEv2)

Figure 4: Processing of a topological event

5.2 Polynomial Root Dependency on Nature
of Topological Events

As told before, count and multiplicity of roots of equation
(1) depends on which points are moving and how. For in-
stance, when only one point (of the four considered points)
moves, there is no possibility that the polynomial will have
more than two roots (or one double root). This is because
the velocity vector of this moving point and its current po-
sition define a line and the three other points define a cir-
cle. By solving the given equation, we are looking for the
points of intersection of the line and the circle. The fol-
lowing figures show some of the basic examples of root
dependency on the positions and velocities of the involved
points.

Figure 5 shows the situation when a point P4 moves tan-
gentially to the circumcircle of the triangle P1P2P3. In this

Figure 5: Tangential movement of the point P4

case we will obtain one double root by solving Eq. (4).
This fact means that two edge swaps are taking place at the
same time. By swapping the edge even times (i.e. twice
or four times in our case) we return the two triangles to
their original state. This means that when we search for
topological events, we can ignore all roots of even degree.

Figure 6: Points moving away from the center of their cir-
cumcircle

When the four points P1, P2, P3 and P4 are cocircular and
moving with velocity vectors v1, v2, v3 and v4 as shown in
Figure 6 (the center of their circumcircle C lies on all four
of their movements’ trajectories), then two singular cases
may occur:

1. v1 = v2 = v3 = v4 = 0
In this case, all the points are cocircular and not mov-
ing. The equation (1) degenerates into 0 = 0 and can-
not be solved.

2. ‖v1‖= ‖v2‖= ‖v3‖= ‖v4‖ 6= 0
The points move away from their circumcenter
equally fast. This means that there will be a topologi-
cal event for each t ∈R as the circumcircle will grow.
We may discard all of the obtained topological events
because both possible triangle configuration are legal
due to all four points lying on the same circle and
thus no edge swapping is necessary. Similar situation
arises when the points are all moving towards their
circumcenter.

Other special point configurations may exist, but the
ones mentioned in Figures 5 and 6 are highly valuable
for solving the topological event equation.

5.3 Approaches to solving of the equation

As mentioned before, in order to obtain the topological
events, we need to solve a polynomial of the fourth or
lower degree. Let us define the solved polynomial as in
Eq. (4). We can enumerate the coefficients of p(t) by
transforming Eq. (1) to more suitable form (detI(t) ≡
p(t)).

p(t) =
4

∑
i=0

ai· t i = 0 (5)

where ai ∈ R.
Theoretically, the given polynomial may be solved an-

alytically using Vieta’s and Cardano’s formulas (see [11]
for solving quartic equations and [10] for solving cubic
equations). However, the limited floating point precision
and subresults being complex numbers make this approach
inadvisable. These features result in both unprecise results
and an incorrect number of roots (including their multi-
plicity). Quadratic and linear equations may be solved an-
alytically with sufficiently precise results.

Various numerical methods represent another option for
finding the roots of the polynomial, Newton’s method does
not represent a good option because small values of the
solved polynomial derivation may cause the method to
find next iteration very far from the current one and pos-
sibly converge to a different root. Another downside of
the Newton’s method presented in [9] is the fact that it has
problems in finding roots of multiplicity greater than one.
A better method proposed by [4] and described in [9] is
called Sturm Sequences.

f1(x) = f (x)
f2(x) = f ′(x) (6)

f j−1(x) = q j−1(x) f j(x)− f j+1(x), j = 2, ...,m−1
fm−1(x) = qm−1(x) fm(x)

As proved in [9], a sequence of polynomials in Eqs. (6)
is Sturm sequence. Eqs. (6) also show the way of construc-
tion of Sturm sequence from a polynomial f (x). In these
relations q j−1(x) is the quotient and f j+1(x) is the negation
of the remainder of division of the polynomial f j−1(x) by
the polynomial f j(x). { fi(x)} is thus a sequence of poly-
nomials of a decreasing degree (in our case this sequence
will have no more than four terms). The most important
feature of Sturm sequence of polynomials in our case is
the fact that it allows us to easily determine the count of
real roots in any interval 〈a;b〉 (a or b may be even infi-
nite) and determine their multiplicities. Note that only the
remainders of each division have to be counted, the quo-
tients are not needed in further steps of the construction of
the sequence.

To obtain the root values, we only have to count V (a)−
V (b) where the function V (x),x∈ (R) determines the num-
ber of signum changes between successive polynomials
in the sequence (zeros are ignored). Multiplicities of the
roots may be easily determined by solving the last polyno-
mial in the sequence. As proved in [9], each multiple root

of f1(x) = f (x) with the multiplicity r > 1 is also a root
of fN(x) with multiplicity equal to r−1. Here, m denotes
the count of polynomials in the sequence. Considering the
fact that in our case fm(x) is a polynomial of the third or
lower degree and that the total count of complex roots of
any polynomial with real coefficients must be even, we
can formulate the guidelines to solving the polynomial1 as
presented in Table 1.

deg f (x) fm(x) real root mult. f (x) real root mult.
3 {2} {3}
3 {1} {2, 1}
3 none {1} or {1, 1, 1}
4 {3} {4}
4 {2} {3, 1}
4 {1, 1} {2, 2}
4 {1} {2} or {2, 1, 1}
4 none {1, 1} or {1, 1, 1, 1}

Table 1: Features of the polynomial depending on its
Sturm sequence

Input:

• p(t) = ∑n
i=0 ai· t i = 0 ... a polynomial of degree n

Output:

• Sequence {ti}r
i=1 of the real roots of p(t) = 0, r ≤

n−1. Or empty sequence, if no real roots exist.

Algorithm:

• if(n≤ 2)

– Compute analytically, return the sequence of
roots {r0, ...,rn}.

• if(n = 3)

– Solve using the Sturm3 algorithm - see Figure 8

• if(n = 4)

– Solve using an extension to the fourth degree of
polynomials of the Sturm3 algorithm from Fig-
ure 8. It is not listed in this paper, because the
idea is the same as in the third order algorithm.

Figure 7: Computing the roots of a polynomial

If a polynomial f (x) has at least one multiple root xi of
multiplicity r, we can divide it by polynomial (x−xi)r and
thus decrease its order. The result of this division may then
be solved analytically, because in the worst case the orig-
inal polynomial f (x) is of the fourth degree and the root

1We only consider cases where degree of f (x) is greater than two,
because linear and quadratic equation may be solved analytically as told
before. Also if the polynomial has no roots, we do not attempt to solve
it.

xi of multiplicity two. By dividing a quartic polynomial
by a quadratic one, we get another quadratic polynomial
as a result. If degree of f (x) is three or four and it has
no multiple roots, we solve its derivate (processing recur-
sively for the third order polynomial as a derivate of the
fourth order polynomial) and thus obtain all the local ex-
tremes of f (x). Local extremes then define intervals that
bound roots of f (x). From these intervals we may enumer-
ate the roots using some iteration method (such as - in the
simplest case - bisection). The whole procedure is shown
by the algorithm in Figure 7.

Input:

• p(t) = ∑3
i=0 ai· t i = 0 - a third order polynomial

Output:

• Sequence {ti}r
i=1 of the real roots of p(t) = 0, r ≤ 3.

Or empty sequence, if no real roots exist.

Auxiliary:

• Sturm sequence f1(t), ..., fm(t) of the polynomial
p(t) - see Eqs. (6), note that f1(t) = p(t).

Algorithm:

• Create Sturm sequence for p(t).
• rcount ← (V (−∞)−V (∞))

V (x), x ∈ (R) determines the number of signum
changes between successive polynomials in the se-
quence (zeros are ignored)

• if(rcount = 0)

– Return empty sequence of roots {}
• Rm = {rmi}rmult

i=1 ← sequence of rmult roots of fm(t)
(e.g. the multiple roots of p(t))

• if(‖Rm‖= 2)

– Return {rm1,rm1,rm1} (one triple root)

• if(‖Rm‖= 1)

– p(t) has a double and a single root (see Tab. 1).
– rs ← the only single root of p(t)

(t−rm1)2 = 0
– Return {rm1,rm1,rs} (a double and a single root)

• else

– Solve p(t), using a suitable numerical method.
– Return {ri}r

i=1 ... sequence of r ≤ 3 distinctive
roots.

Figure 8: Sturm3 algorithm

6 Performance

Presented results were obtained from a C# implementation
of the discussed algorithms. Our primary goal is the cre-
ation of a robust and stable program, speed optimization
has not been introduced yet. All presented results were
obtained for a random configuration of 100 points with a
safety discs of 1 unit diameter in 1000×1000 units rect-
angle. Certain percentage of the points was moving in a
random direction and velocity. Program performance was
observed during a 10 second interval and the final results
represent average values for three different sets of points.

Figure 9: Total runtime needed for the test.

The graph in Figure 9 shows the dependency of the to-
tal runtime needed for the execution of the whole test on
the percentage of the moving points. Assuming from the
measured values, the needed runtime has time complexity
with upper bound of O(n2) and with lower bound of O(n).

Figure 10: Number of polynomials solved during the pro-
gram life cycle

Figure 10 presents the dependency of the number of
polynomials of different orders solved during the whole
life cycle of the program. As we can see from this graph,
the number of the fourth degree polynomials grows with

the percentage of the points that are moving. The number
of third order polynomials has a global maximum for 50%
moving points ratio and is at near-zero value for 0% and
100% moving points ratio. The second order polynomials
form the majority for low percentages of moving points
but their number decreases for higher moving points ratios.
This behavior is caused by the fact that the degree of poly-
nomial in Eq. (4) generally grows for increasing number
of non-static points in the configuration of two adjacent
triangles. It is less likely to count topological events for
triangle pairs with three or four moving points in the con-
figurations with the lower percentages of moving points.

Figure 11: Numbers of executed and discarded events of
various kinds during the life cycle of the program

Algorithm in Figure 4 shows that some of the topologi-
cal events are discarded due to the topological changes in
the triangulation structure. Graph in Figure 11 shows the
numbers of executed and discarded topological events, as
well as the numbers of executed events of the other types.
We can see that the count of topological events (both exe-
cuted and discarded) is much greater than the counts of
the events of the other types. Another remarkable fact
is that the number of discarded topological events is al-
ways greater than the number of the executed topological
events. There seems to be an upper bound of O(n) and a
lower bound of O(logn) on the number of both executed
and discarded topological events.

Another consequence of the behavior demonstrated by
the graph in Figure 10 is shown in the graph in Figure 12
- runtime spent on solving of the polynomials (of both the
third and the fourth degree) represents a vast majority of
time spent during the life cycle of the program. The other
parts of the program consume less than 10% of the runtime
for approximately 30% and greater moving point percent-
ages. This is caused solely by the increasing number of
solved polynomials because runtime needed to solve one
polynomial remains constant. Most of the time consumed
by solving polynomials in the current version of the pro-
gram is needed to numerically enumerate the roots.

Figure 12: Runtime needed for the main parts of the pro-
gram - the 4th order polynomial solving, the 3rd order
polynomial solving, insertion of the points into the trian-
gulation, the initialization step of the movement and total
time spent on the event execution

7 Conclusion and Future Work

We presented a new algorithm for determining the time
of the topological events. Our algorithm provides a hy-
brid numerical-analytical way of solving the polynomials
of the fourth or lesser degree with sufficient precision.

Future improvement of the performance of the algo-
rithm is possible. Results obtained by the tests determine
the polynomial solving part of the algorithm as the most
suitable area for further optimization (for example by ini-
tiating some highly sophisticated numerical method). An-
other possibility of speeding up the performance lies in
the minimization of the number of discarded topological
events. If the redundant events were successfully recog-
nized, the corresponding polynomials would not have to
be solved at all.

Our algorithm is currently being used as a part of
a triangulation-based video compression program devel-
oped at the Institute of Computer Graphics of the Uni-
versity of West Bohemia. Future usage of our algorithm
involves path planning and collision detection applica-
tions. Extension to 3D and considering other types of point
movement represent another possibilities of further devel-
opment.

Acknowledgement

This work would not be created without the advice and pa-
tient guidance of Dr. I. Kolingerová from the University of
West Bohemia, Pilsen, Czech Republic, to whom I would
like to thank. My thanks also belong to Mr. A. Kolcun
from the Academy of Sciences of the Czech Republic, to
Dr. A. Ferko from Comenius University, Bratislava, Slo-
vakia and to Dr. M. Gavrilova from the University of Cal-
gary, Calgary, Canada for their insight into the problem

and helpful ideas.

References

[1] Gerhard Albers, Leonidas J. Guibas, Joseph S. B.
Mitchell, and Thomas Roos. Voronoi diagrams of
moving points. International Journal of Compu-
tational Geometry and Applications, 8(3):365–380,
1998.

[2] Mark de Berg, Marc van Kreveld, Mark Overmars,
and Otfried Schwarzkopf. Computational geome-
try, algorithms and applications. Berlin Heidelberg:
Springer, 1997.

[3] M. Galassi et al. Gnu scientific library reference
manual (2nd ed.). From GSL - GNU Scientific Li-
brary. http://www.gnu.org/software/gsl/.

[4] Andrej Ferko. Personal communication, 2007.

[5] Marina Gavrilova and Jon Rokne. Swap conditions
for dynamic voronoi diagrams for circles and line
segments. Comput. Aided Geom. Des., 16(2):89–
106, 1999.

[6] Marina Gavrilova, Jon Rokne, and Dmitri Gavrilov.
Dynamic collision detection in computational geom-
etry. In 12th European Workshop on Computational
Geometry, pages 103–106, Munster, Germany, 1996.

[7] Ignacy R. Goralski and Christopher M. Gold. Main-
taining the spatial relationships of marine vessels us-
ing the kinetic voronoi diagram. In ISVD, pages 84–
90. IEEE Computer Society, 2007.

[8] Øyvind Hjelle and Morten Dæhlen. Triangulations
and Applications. Berlin Heidelberg: Springer, 2006.

[9] Anthony Ralston. A first course in numerical analy-
sis. McGraw-Hill, Inc.: New York, 1965.

[10] Eric W. Weisstein. Cubic equation. From
MathWorld - A Wolfram Web Resource.
http://mathworld.wolfram.com/CubicEquation.html,
2004.

[11] Eric W. Weisstein. Quartic equation. From
MathWorld - A Wolfram Web Resource.
http://mathworld.wolfram.com/QuarticEquation.html,
2004.

	dp
	SVK2007
	cescg_final2

