
University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

Morphing of geometrical objects
in boundary representation
The State of the Art and the Concept of Ph.D. Thesis

Martina Málková
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Chapter 1

Introduction

From a general point of view, morphing can be described as a process when one object is
continuously transformed into another. But morphing is not only the whole process (anima-
tion), it can be also a way to achieve new shapes or patterns from the old ones. When more
than two objects are used as the input, we usually talk about multimorphing.

Morphing and multimorphing have wide practical use in computer graphics, animation, mod-
eling, design and compression. Multimorphing is also often used in data visualization [36].

The existing morphing methods can be classified into the following groups - the traditional vol-
ume and image morphing and boundary-based morphing. In our work we focus on boundary-
based morphing methods, namely methods for triangular meshes. Triangular meshes are
widely used, since they are easy to store, modify and render.

In the first part of our work, we concentrate on a morphing problem for general triangular
meshes (without further knowledge about the input). The algorithms designed in this area
concentrate on morphing similar shapes, where some common features can be identified.
However, in some cases it is not possible to align all the main features of the input shapes
(e.g. a head with and without horns). A natural morph usually means growth of the non-
aligned part from its aligned neighbor. However, the traditional algorithms usually produce
something completely different in such a case. Therefore, we concentrated on this problem
and designed a new approach for morphing with this ”growth-like” nature. After designing
the method for simple polygons, we extended it also to 3D for morphing triangle meshes.

In the following work, we decided to concentrate on a particular type of objects, since an
algorithm can usually be enhanced if we know something about the input. As our area of
interest, we chose human faces. Human faces play an important role in modeling figures for
movies, computer games and applications with human-computer interaction. We started to
cooperate with Věra Pivoňková from the Faculty of Humanities, Charles University in Prague,
who works in the area of face perception.

Based on the needs of the researches from the Faculty of Humanities, we created a method
for computing an average face from an arbitrary number of input facial scans (in the form of
triangle meshes with texture). Average faces are important for the face perception research,
because the average covers the differences between individual faces while the common traits
remain unchanged.
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Chapter 1. Introduction

1.1 Previous work

This work continues in the research first done by J. Parus [40]. Later we started to work
together on the multimorphing problem. We tested several approaches of combining multiple
objects together, along with providing the users intuitive interface capable of creating static
combinations as well as animations. Based on this work and his own investigations, we
published an article Multimorphing: A tool for shape synthesis and analysis [41].

After multimorphing, we continued in our cooperation on designing a new polygon morphing
technique, which we called core-based morphing. This work was based on J. Parus idea
that a growth-like morphing could be established by first computing the intersection of the
two objects, and than letting the rest of the first object disappear in the intersection, while
the rest of the second object is growing out. With his help, I designed and tested methods
realizing the growth process. Based on this work, we published an article An intuitive polygon
morphing [35].

During my work on diploma thesis, we extended the polygon morphing technique to 3D
for triangle meshes. We later published this work on a conference as Core-based morphing
algorithm for triangle meshes [33].

During my Ph.D. studies, I started to cooperate with V. Pivoňková1, who proposed us a
morphing problem interesting for the psychologists - creating a composite (morph) from
several human faces for perception tests. We started to work together on this problem, where
she provides the psychological part of the research, while we can concentrate on geometrical
challenges. We have already discussed a possible future work in this area (see Section 8).

I also started to cooperate with B. Beneš2. He offered interesting ideas what to improve in
our approach, and we worked together on the article [35]. During my ten-days stay at Purdue
University3 we discussed our possible future work concerning facial morphing (see Section 8).

1.2 Organization of the text

The text of this technical report is organized as follows. Chapter 2 contains definitions and
description of common terms used in the text. Chapters 3-4 concentrate on morphing in
general. The former describes the related work in both 2D and 3D, the latter presents our
new core-based morphing algorithm.

Chapters 5-7 deal with morphing faces. The former offers an introduction to facial models,
their creation, parametrization and morphing. The latter describes our work done in the
cooperation with V. Pivoňková.

Chapter 8 summarizes the approaches presented and suggests a possible future work, concen-
trating on facial morphing. Appendix B shows the results from our core-based algorithm in
2D and 3D. Appendix C contains a table of sixteen personality factors defined by Catell. Ap-
pendix D shows the results of a remeshing algorithm used for multimorphing in my bachelor
work.

1Faculty of Humanities, Charles University, Prague
2Purdue University,USA
3project Kontakt: ME09051
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Chapter 2

Related terms

A polygon is an ordered set of vertices vi, i = 0, . . . , n − 1. An edge ei of polygon is a line
segment with endpoints vi, vi+1. A simple polygon is a polygon whose consecutive edges ei,
ei+1 intersect only in the endpoint vi+1. An unclosed sequence of edges is called a polygon
chain. A closed polygonal chain is a polygonal chain, where also p0 and pn−1 are connected
by a line segment. δP denotes the border of a polygon P , δP = {vi, ei, i = 0, . . . , n− 1}.

A polytope is a generalization of polygon into two dimensions or polyhedron in three dimen-
sions. A convex polytope is defined as the intersection of half-spaces.

A topological distance d(vi, vj) between vertices vi and vj in nD is the number of edges in the
shortest path from vi to vj .

An objectO is convex, when a line segment connecting its two arbitrary vertices lies completely
inside or on O. An object P is star-shaped, when at least one point p inside P exists such
that a line segment connecting p with an arbitrary vertex of P lies completely inside or on P .

According to [4], a topology of an object refers to the vertex/edge/face network. An object is
Euler-valid if its topology fulfills the formula V − E + F = 2− 2G, where V are the vertices
of the object, E edges, F faces and G is the number of passages through the object (genus).

2.1 2D Voronoi diagram

Voronoi diagram was first introduced in [51]. In the plane, the Voronoi diagram of a set of
points S is the partition of the plane which associates a region V (p) with each point p from
S in such a way that all points in V (p) are closer to p than to any other point in S.

The region V (p) is the interior of a (in some cases unbounded) convex polytope called the
Voronoi cell for p. The Voronoi diagram is then the set of such polytopes, which subdivides
the whole plane. An example of a Voronoi diagram is in Figure 2.1.

Figure 2.1: Voronoi diagram of a point set in 2D
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Chapter 3

Morphing in general

Digital warping and morphing have a long tradition in computer graphics, and the full de-
scription is out of the scope of this report. We refer reader to [18] for a detailed description.
Here we will describe the work related to polygon and mesh morphing. Most of the approaches
described were already discussed in our previous work in this area [33, 35].

Morphing algorithms are usually correspondence-based, meaning they first find a correspon-
dence between vertices of the source and the target polygon. They usually need to add vertices
to both source and target polygon to make the best correspondence (according to their re-
quirements). When the correspondence is established, the trajectories between corresponding
vertices need to be found. This step can be very complicated, however, most solutions use a
simple linear interpolation here. As is discussed in [18], this simple choice has some disadvan-
tages when computing rotational morphing. The problem is shown in Figure 3.1 on morphing
between two line segments, both of them of the same length, but one of them rotated. If we
use the linear interpolation for computing the trajectory of corresponding vertices, the line
segments shorten during the morphing process, which is something we do not expect.

(a) (b)

Figure 3.1: An expected morphing sequence (a) and (b) a morphing sequence using linear interpo-
lation, from [18]

Unlike for morphing images, there are no rules how to measure the quality of the resulting
morph for meshes. The criteria are dependent on the expectations of the user. However,
there are some non-written criteria that the authors of the presented articles probably tried
to follow. First, the in-between shapes should not contain self-intersecting edges. Second, the
common features of the input objects (e.g. a head, legs, a tail) should not change during the
morphing process and no other features should be introduced (no one expects a rib growing
out of a dog’s back when morphing it to a horse).
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Chapter 3. Morphing in general

3.1 Polygon morphing

Polygon morphing computation can be divided into two parts (1) defining the vertex to vertex
correspondence in the source and the destination polygons and (2) defining the transitions.
Point out that the source and the destination polygons are not required to have the same
number of vertices.

The problem of vertex to vertex correspondence was addressed by Sederberg et al. in [44] by
using a physical model. The polygon edges are modeled as elastic connections and the shape
transformation involves the calculation of a physical response by minimizing the energy of
the system. This algorithm is efficient for similar input polygons and it can also handle cases
when the initial shapes are rotated or translated. The algorithm does not address highly
dissimilar shapes and self-intersections.

A computation of trajectories was described by Sederberg et al. in [43], where edge lengths or
internal angles are interpolated instead of the vertex positions. The polygons are converted
to the so-called edge-angle representation [18] that is invariant to rigid transformations. This
interpolation scheme avoids edge collapsing and non-monotonic angle changes. This tech-
nique was used to generate in-betweens for animation based on keyframes. The concept of
interpolation of intrinsic parameters was also further used for morphing of planar triangula-
tions in [47, 48]. The intrinsic interpolation avoids local self-intersections. However, it does
not solve the problem of global self-intersections which may occur for highly dissimilar and
complicated shapes.

Shapira and Rappoport [45] introduced a method that first decomposes the source and the
destination polygons into star-shaped polygons. The skeleton is a planar graph which joins
star-points of neighboring star-shaped polygons. The skeletons are interpolated and the
intermediate shapes are reconstructed from the interpolated skeletons. The difference between
this approach and methods described in [43, 44] is that this approach also considers the interior
of the polygon and not only the boundary. The problem with this approach is that it relies
on isomorphic star-shaped decomposition which might be difficult to compute, especially in
the case of dissimilar shapes.

Alexa et al. introduced as-rigid-as-possible shape interpolation in [5]. They compute a com-
patible triangulation of the input polygons. The compatible triangulation is a dissection of
the source and the destination polygons so that the triangulations are isomorphic, i.e., there
is one-to-one correspondence between triangles in the source and in the destination. Then, an
affine transformation which transforms a source triangle to the destination triangle is com-
puted. Interpolation of the affine transformation defines the morphing. Adjacent triangles
are also considered in the interpolation. Similar approaches were also described by Surazhsky
and Gotsman in [47, 48]. The principal problem of these methods is the computation of
the isomorphic triangulation of the input shapes, as its quality influences the quality of the
morphing.

Gomez et al. introduced 2D merging [18], which is a 2D application of the algorithm that
was originally developed for 3D meshes (see for example [3, 27]).First, the input polygons are
mapped to a unit disc, then both mappings are merged. The vertices of the first polygon
are mapped on the second polygon and vice versa using inverse mapping. This results in
polygons with the same number of vertices. A linear interpolation is used to obtain the
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Chapter 3. Morphing in general

resulting morphing transition. This technique is suitable for convex, star-shaped or slightly
non-convex polygons. This algorithm is not suitable for highly non-convex polygons, as it
produces self-intersections during the morphing transition.

Carmel and Cohen-Or [9] showed an algorithm which combines a 2D merging and a polygon
evolution. A user first specifies anchor points that define the correspondence between poly-
gons. Using the anchor points, a warp function is computed that warps the source polygon to
the destination polygon. Once the source polygon is warped a polygon evolution technique is
used to evolve the source and the destination polygon to a convex shape.

Johnstone and Wu [23] described an alternative approach to merging polygons by morphing.
The 2-to-1 morphing is a fundamental case in the morphing between different numbers of
polygons. The basic idea is to merge the two polygons into one and then use the one-to-
one polygon morphing technique to morph between the merged polygon and a destination
polygon. During the merging the two polygons are morphed toward each other until they meet
at a point. Then a curve evolution technique is used to morph the two polygons connected at
some point into a more natural shape which is later morphed toward the destination shape.

3.2 Mesh morphing

In the terminology of Spanier [46], a mesh M is described by a pair (K,V ), where V =
(v1, ..., vn) describes the geometric positions of the vertices in d-dimensional space (in our
case d = 3), and K is an abstract complex that represents the connectivity of vertices, edges
and faces.

The mesh morphing problem is described in [4]: Two input objects - meshes M0 =
(K0, V0),M1 = (K1, V1) are given, and the goal is to generate a family of meshes M(t) =
(K,V (t)), t ∈ 〈0, 1〉). Most of the morphing methods work in three following steps:

1. Establish a correspondence between the meshes. Decide which vertex of the
mesh M0 corresponds to which one of the mesh M1. This is usually the crucial step of
the whole process.

2. Generating a supermesh. A supermesh is a mesh that represents both M0 and M1.

3. Creating paths V (t), t ∈ 〈0, 1〉 for the vertices. Usually the algorithms use an
interpolation of corresponding vertices, mostly a simple linear interpolation.

Kent et al. propose in Shape transformation for polyhedral objects [27] an algorithm
that uses both the topology and the geometry of the input objects. First, both objects are
projected onto a unit sphere. The vertex to vertex correspondence is established by merging
the topologies of the input objects. The merging process is done by clipping the projected
faces of one model to the projected faces of the other. The paths for the corresponding vertices
are created by either a linear interpolation, or using a Hermite spline with its tangent vectors
equal to the vertex normals.

The main problem discussed in their article is the projection onto the unit sphere. Several
methods for the projection were proposed, depending on the type of the input objects. For
the star-shaped objects, the center point (arbitrary point from the kernel of the object) of the
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Chapter 3. Morphing in general

object is found and then the vertices are moved to the surface of the sphere in the direction
of a vector defined by their position and the position of the center point. The convex objects
are projected in the same manner, only the center point is an arbitrary interior point of the
object. Another type of objects are so-called objects of revolution. Such objects consist of
a set of planar contours arranged at angular increments around an axis (axis of revolution),
e.g., a glass constructed by rotating a curve around its axis. The contours are projected onto
a longitudinal arc of the sphere by several methods, where among the best is the method of
Ekoule [16]. Next type of objects, extruded objects, are created by moving a planar polygon
along the straight line. The ends of the object are capped by two copies of the polygon.
Projecting such object is done by mapping the two caps to its convex hull by Ekoule’s method
and then projecting the resulting object in the same way as were the convex objects.

Another approach for the projection was to treat the surface model as a flexible object, and
inflate the object with air until it is convex. To ensure that the simulation will produce the
convex model, the vertices already lying on the convex hull were fixed. The convex model
was again projected to the sphere.

The methods of projection are discussed for the most of the genus-0 objects, the authors only
suggest how to project other types of objects (replacing a sphere by a representative manifold,
or cutting the objects).

Alexa uses the idea of Kent et al. and presents another correspondence-based algorithm for
morphing polyhedra in his Merging polyhedral shapes with scattered features [3]. First,
the polyhedron is triangulated. Then the approximation of the smallest enclosing sphere (a
circumsphere) of the model is computed, the model is transformed such that the circumsphere
is transformed to a unit sphere. Then the spherical projection is examined. Because the
method is designed for all genus-0 meshes, there can be overlapping edges (foldovers) in the
projected result. To remove the foldovers, the relaxation process is introduced. The relaxation
works iteratively, moving in each step each vertex to the center of its neighbor’s positions in
the previous step. Some vertices on the sphere need to be fixed to avoid the vertices converge
to one position. Such vertices are called anchors. At least four anchors are needed (in case
of three anchors the vertices would converge into the triangle, as is shown in Figure 3.2a).
Even with four anchors the embedding might collapse (see Figure 3.2b). Also, because the

(a) (b) (c)

Figure 3.2: Problems of the sphere embedding: (a) collapsed embedding fixed with three vertices
(b) collapsed embedding fixed with four vertices (c) foldovers (from [3])

anchors have fixed positions, they can cause the foldovers themselves. Their solution is
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Chapter 3. Morphing in general

simple: As anchor vertices, they choose a random regular tetrahedron with vertices on the
unit sphere. Then they perform the relaxation until the largest movement of any vertex in
one step is smaller than a predefined constant. If the relaxation collapsed, they move back to
the original mesh and choose a different tetrahedron. If not, they fix the vertices diametric to
the tetrahedron used and relax again to remove the possible foldovers made by the original
tetrahedron’s vertices. They switch those two tetrahedra and perform relaxation until there
are no foldovers.

If the user has specified any vertex correspondence, the embeddings are deformed so that the
corresponding vertices have the same position on the sphere.

The resulting embeddings are merged. All edge intersections are found (edges are here the
shortest path between two points on the sphere), new vertices are inserted at their positions
and the corresponding edges are cut. The result of this process is a merged mesh (a super-
mesh), which is not necessarily a triangle mesh, there can be non-triangle (but still convex)
faces. Also, it is not guaranteed that more than three points lie on the same plane, so the
supermesh needs to be triangulated after the merging.

The supermesh is deformed to have the shape of the source (and equivalently target) mesh
by setting its vertex positions. The vertices of the source mesh remain the same, but as the
vertices of the target mesh do not exist on the source mesh, their positions are computed by
using the barycentric coordinates - the barycentric coordinates of the vertex v in the triangle
v′1, v

′
2, v
′
3 in the supermesh are computed and used to find the position of v in the triangle

v1, v2, v3 in the original object. Also we need to compute the position of the vertices that were
created due to the edge intersection. Each such vertex lied at the intersection of two edges
- one of the source and one of the target mesh. When deforming the supermesh to have the
shape of the source mesh, we use the source edge, and compute the barycentric coordinates
with respect to the vertices defining this edge. And again, the barycentric coordinates are
used to find the position of the vertex in the source mesh.

Ahn et al. try to enhance the correspondence-based morphing by decreasing the number of
vertices of the supermesh in Connectivity transformation for mesh metamorphosis [2].
They use a spherical embedding from Alexa’s approach [3] to find the correspondence between
M0 and M1. both M0 and M1 are mapped onto the unit sphere. M ′0 (and similarly M ′1) is
constructed by incrementally mapping each vertex v1 of M1 onto the surface of M0: first,
we find the face f0 that contains the mapped position of v1. Then, v1 is added to M0

and connected to the three vertices of f0 (see Figure 3.3b). Then they swap some of the
created edges (not the original meshes of M0) to reduce the difference between M ′0 and M1

(Figure 3.3c).

Then, the sequence of connectivity transformations between M ′0 and M ′1 is computed by using
an adaptation of Hanke and Ottmann’s algorithm [19]: For each edge of M ′0 and M ′1, they
check if there exist the corresponding edge on the opposite mesh, and if not, they compute
an error (based on Euclidean distance) that occurs if they swap the edge to get the correct
position. In such a way, they build the priority queue of edge swaps, sorted according to the
computed errors. Because some edge swaps are dependent on the other ones, they construct
the transformation dependency graph to perform all swaps in the shortest possible time.
After the dependency graph construction, they compute the exact time portions for each
swap. The resulting in-between meshes are constructed by transforming the vertices of the
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Chapter 3. Morphing in general

(a) (b) (c)

Figure 3.3: Mapping the target vertices onto the source mesh: (a) original configuration of target
vertices mapped onto the source triangle (b) result of simple embedding (c) enhanced result after edge
swaps (from [2])

supermesh according to the vertex-to-vertex correspondence established at the beginning,
and incrementally swapping the edges according to the plan established by the dependency
graph. Each swap is realized by a geomorph [20] to make it smooth: A vertex is inserted
at the intersection of the two edge positions, and it moves toward one of the vertices of the
target edges. When it reaches the vertex’s position, it is removed.

Because of the used spherical embedding, the approach can be used only for genus-0 objects.
Another disadvantage is the need of computations during the creation of the in-between
meshes, which slows down the resulting animation. On the other side, the resulting meshes
contain much smaller number of vertices in comparison to other approaches using a fixed
connectivity. The visual results are claimed to be similar to Alexa’s approach.

Cohen-Or et al. describe a non-correspondence based approach in their Three-
dimensional distance field metamorphosis [12]. Their method needs the user to define
corresponding control points (anchor points) on the input objects first (their number depends
on their complexity). Then they use the corresponding points to define such warp function
{Wt}t=[0,1] that W1(M0) approximates M1 as well as possible. The warp function consists of
a rigid (rotation, translation) and elastic transformation of M0. Then it generates a signed
3D distance field by rasterizing the warped object into a binary discrete volumetric represen-
tation and converting it into a distance field by a method presented in [31]. Both M0 and
M1 are represented as discrete distance field (DF) volumes, and the intermediate object (su-
permesh) is constructed by generating its DF-volume and extracting its surface. The quality
of the resulting morph highly depends on a proper warp - if the corresponding points of the
two objects are correctly aligned by the warp, it produces the expected results. Otherwise,
it may produce results that are far away from the expected ones, sometimes containing parts
that unexpectedly disappear and reappear. Also the creation of volumetric representation
can consume a large storage space for meshes with a large number of triangles. Then the
method requires the object to be simplified before it is converted into a distance field. The
main benefit of this method is that it does not require the input objects to be of the same
topological genus.
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Chapter 4

Core increment morphing

In this chapter we will describe our new morphing approach. The approach in 2D and 3D
was already published in [33, 34, 35]. This chapter will provide a basic overview over the
algorithm, we refer the reader to [34] for a complete description.

The main motivation for designing the algorithm were results from testing available methods
[44, 9]. It showed up that the methods concentrate on morphing similar shapes, where some
common features can be identified. They try to preserve the common features and morph
between them, which is also a behavior expected by the user. However, in some cases it is
not possible to align all main features of the input shapes (e.g. a head with and without
horns). In such a case, the methods usually fail, mostly when the shape of the non-aligned
part is highly curved. The resulting morphs contain lots of self-intersections (an example of
such morph is on Figure 4.1). In this case, the non-aligned part should probably continuously
grow from or disappear in the rest. We decided to create a new method dealing with this
problem.

Figure 4.1: Morphing methods have problems with curved, non-aligned parts (Sedergerg and Green-
wood algorithm)

During our research, we first concentrated on solving the problem in two dimensions - between
arbitrary polygons. After designing and testing the algorithm for polygons in 2D, we extended
the methods for triangle meshes in 3D.

In Section 4.1, we will describe the general structure of our algorithm independently on the
dimension. Sections 4.2 and 4.3 contain short description of the 2D and 3D versions of the
algorithm.

4.1 The algorithm in general

To stay independent on space, let us denote a simple polygon in 2D and a triangle mesh in
3D as an object.

The algorithm takes as input two simple objects (see Fig. 4.2), the source object A and
the destination object B which must spatially overlap, A

⋂
B 6= ∅. No further condition

on the objects is imposed. However, it is beneficial if their vertices are distributed equidis-
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tantly. Therefore, an optional preprocessing step is to resample A,B so that their vertices
are equidistantly distributed.

The overlapping area of A and B is called the core of the morph and it is denoted by C = A∩B.
Without loss of generality, we suppose that the core C consists of a single object.

The area of A that is clipped out is denoted by P = A−B and analogously the area of B that
is clipped out is denoted by Q = B−A. Note that P and Q are not necessarily single objects.
They can be a set of objects so that P =

⋃
i
Pi and Q =

⋃
j
Qj . We suppose that P 6= ∅ or

Q 6= ∅. During the morphing process, the parts Qj grow out from the core, while the parts
Pi are absorbed into the core. All parts grow and are absorbed simultaneously, which results
in the effect of morphing. Algorithmically, the process of absorption is an inverse process of
growing, so for now we will concentrate only on the description of the absorption of one part
Pi.

Only the boundary of the core and the parts are computed: C = (VC , EC), Pi = (VPi, EPi).
We can divide the vertices and edges of Pi into two sets Cin, Cout, where Cin consists of vertices
and edges common for the core C and the part Pi (VCin = VC ∩ VPi, ECin = EC ∩ EPi),
Cout is the part of Pi which remains after removing Cin from Pi (VCout = VPi\VCin, ECout =
EPi\ECin). Intersection vertices vIi are such vertices of Cin that lie at its ”edge”, meaning at
least one of their neighbors belongs to Cout. By morphing Cout to Cin we achieve the effect of
disappearing of the part Pi in the core C. Figure 4.2 shows the discussed terms, note that the
fill is used to distinguish between the terms, not to denote volumetric objects. Also notice
that in 2D, there are two intersection vertices, but in 3D, there are n intersection vertices.
Therefore we introduce an intersection chain I = (VI , EI), which is a closed polygonal chain,
whose vertices are the intersection vertices and its edges are such edges of Cin that connect
the intersection vertices. Part of the intersection chain is sketched in Figure 4.2b by a solid
black line between vI0 and vIm.

(a) 2D (b) 3D

Figure 4.2: General terms: Core C, part Pi = Cout ∪ Cin, intersection vertices vIi.

The morphing between Cout and Cin can be described in terms of a vertex path. The vertex
path of a vertex vi is a list of coordinates that the vertex passes through during the morphing
sequence. The vertex path is computed for each vertex of Cout excluding the intersection
vertices. It has at least two elements, i.e., the initial position of the vertex at the time t = 0
and the final position of the vertex at the time t = 1. A set of vertex transformations is
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obtained by computing intermediate positions of a vertex. The intermediate positions are
computed by interpolating the position values pk along the vertex path. Any interpolation
technique such as a piecewise linear interpolation, a cubic spline interpolation or some other
interpolation form can be used.

The computation of a vertex path depends on the specific method of our algorithm. Most of
the methods use a concept of a topological distance, which is computed with respect to the
intersection vertices. The concrete computation of the topological distance depends on the
space, so it will be discussed later.

As already told, the vertex paths are computed only for the vertices of Cout. That is because
the final object (superpolygon/supermesh) will contain only the vertices of Cout of each part,
the intersection vertices and some parts of the core. Formally, the superpolygon/supermesh
can be denoted as S = (VS , ES), S = (

⋃
Cout ∪ (C \

⋃
Cin) ∪

⋃
I), where

⋃
Cout denotes the

union of all Cout from P,Q,
⋃
Cin and

⋃
I analogically.

The reason why we cannot just take the whole parts and the core and produce the final
morphing sequence is that the vertices of Cin rest at their positions during the time, while
the vertices of Cout change their positions (travel toward their corresponding vertices in Cin).
During this change, some vertices of Cout can cross an edge of Cin - and at that time, the
vertices and edges that were inside and so were not visible, are now visible producing self-
intersections (see Figure 4.3).

Figure 4.3: Not removing Cin may result in unwanted self-intersections: Cin (gray), Cout (black)

The merging process is shown in Figure 4.4. The final object consists of vertices of only
Cout from each part and the intersection vertices. Sometimes it can contain parts of the
core - it happens when the input objects A and B share some edges and vertices. The
merging algorithm is also dependent on the space dimension, so it will be described in the
corresponding sections.

The pseudocode of the algorithm can be seen in Fig. 4.5. In step 4 of the algorithm, we
use three different methods for computing the vertex paths to morph Cin and Cout and to
simulate a process of absorption of Pi; the Perimeter growing, the Midpoint growing and the
Projection growing. These methods will be described in the further text.

4.2 2D solution

In 2D, the input objects A,B are simple polygons. A part Pi consists of two polygon chains
Cin, Cout (described in the previous section). The polygon chains Cin, Cout are separated by
intersection vertices vI0, vI1 (Figure 4.2a). An intersection vertex lies in the intersection of
the input polygons A and B. If Pi 6= A and Pi 6= B then Pi has two intersection vertices. By
morphing the polygon chain Cout to the polygon chain Cin we achieve the effect of disappearing
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(a) 2D (b) 3D

Figure 4.4: Merging (top: the input objects, bottom: the merged result)

Input: Two partially overlapping polygons/meshes A,B (Optional: Resample the input
objects so that their vertices are equidistantly distributed).

Output: Polygon/mesh R = A ∪ B, where each vertex of δR either contains a vertex path
determining its behavior over time, or belongs to A ∩B.

The algorithm:

1. Compute the core C = A ∩B.

2. Compute the polygon/mesh sets P = A−B =
⋃
i

Pi, Q = B −A =
⋃
i

Qi.

3. ∀vi ∈ δP and ∀vi ∈ δQ: compute its topological distance di .

4. Using a user-selected method (Perimeter, Midpoint, or Projection growing), compute
the vertex path of each vertex vi.

5. Merge the polygon/mesh C and the polygon/mesh sets P,Q to get the resulting poly-
gon/mesh R .

Figure 4.5: Pseudocode of the algorithm.

of the part Pi in the core C. Hereby, we decompose the polygon morphing problem into several
polygon chain morphing problems.

The morphing between polygonal chains Cin and Cout is realized by computing a vertex path
for each vertex of Cout (see previous section). We designed three different methods for the
vertex path computation: the Perimeter growing, the Midpoint growing and the Projection
growing. These methods will be described below.

4.2.1 Vertex path computation

We designed three different methods for the vertex path computation: the Perimeter grow-
ing, the Midpoint growing and the Projection growing. The methods for the vertex path
computation use the concept of topological distance. From the definition from Section 2,
the topological distance should be positive only, but we use also negative sign to distinguish
the vertices lying on the polygonal chain Cin. dmin, dmax are then minimal and maximal
topological distances of the vertices from δPi.
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Perimeter growing The vertices vi ∈ Cout travel along the perimeter of the polygon Pi,
meaning that their vertex paths contain only positions of the vertices of δPi. The vertex
path of a vertex vi with the topological distance di contains vertices with topological
distances (di−1, di−2, ..., d0, d−1, ..., dj) The vertex path of the vertex with dmax−i should
end at the vertex with dmin+i (see Fig. 4.6).

Midpoint growing This method uses the midpoints of the line segments defined by the
vertices of the same polygonal chain Cout or Cin with the same topological distance
(Fig. 4.7) as the vertices in the vertex paths. If mi is the midpoint of the line segment
vivj where di = dj , then the vertex path of a vertex vi with the topological distance
di contains vertices (mi−1, mi−2,. . . , m0,. . . , mj−1 , vj). As for the Perimeter growing
method, the vertex path of the vertex with dmax−i should end at the vertex with dmin+i.

Projection growing Here, all vertices of Cout have the same number of elements in their
vertex paths. First, the vertices of Cout are mapped (projected) onto the line segment li
defined by the intersection vertices (i.e., the vertices with a zero topological distance),
using an equidistant mapping. The line segment li is divided into nout + 1 parts, where
nout is the number of the vertices of Cout. We assign the vertices of Cout sequentially to
the new vertices on the line segment (Fig. 4.8a). The next step is to map the vertices
of Cin in a similar way (Fig. 4.8b). The last step (Fig. 4.8c) is to sort the projected
vertices of Cin and Cout into an ordered list in the order in which they appear on li.
We denote the list vI0 = a0, a1, a2, . . . , an−1 = vI1, where ai is a mapped vertex that
originally belongs either to Cin or to Cout. Then we traverse this list as follows:

1. Start at vI0. Go through the list until a vertex of Cin is reached. Add it into the
vertex paths of all the vertices of Cout that are located before this vertex.

2. Continue traversing the list. Each time the vertex Cout is reached, add the recent
vertex of Cin to its vertex path.

3. The traversal is completed when vI1 is reached.

(a) (b) (c)

Figure 4.6: Vertex paths (dmax = 3, dmin = −2): (a) the vertex path for the vertex with d = dmax

ends at the vertex with d = dmin (b) for the vertex with d = dmax−1 it ends at the vertex with
d = dmin+1 (c) and so on

Merging

As has been already figured in the general description, after we handle separately each part,
we want to merge them, so that the result is one polygon with a vertex path for each vertex.
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Figure 4.7: Midpoints m0,m1,m2 connecting the vertices with the same topological distance (and
of the same polygonal chain)

(a) (b) (c)

Figure 4.8: Computing the vertex paths in the Projection growing method (a) mapping the vertices
of Cout onto the line segment between the intersection vertices (b) the vertices of Cin onto the same
line segment (c) choosing the vertices of Cin for the vertex paths of the vertices of Cout(the mapping
is marked by a dashed line, the vertex paths are outlined by thin lines)

Also remember that vertex paths of the growing parts must be reverted because we considered
only the disappearing.

The merging process in 2D is motivated by Weiler-Atherton algorithm for polygons intersec-
tion [54]. The merging algorithm sequentially processes all parts from P,Q, copying vertices
with positive topological distance to the new list of vertices. It skips between the adjacent
parts at the intersection vertices. The new list of vertices forms the new polygon. The details
of the merging algorithm are shown in Figure 4.9.

4.3 3D solution

In 3D, the input objects A,B are triangle meshes. A part Pi consists of two surfaces Cin, Cout

(shown in Figure 4.2). The surfaces Cin, Cout are separated by polylines, called intersection
chains. Unlike in 2D, there are not always two intersection chains - the number of the
intersection chains can vary from one to infinity (see Figure 4.10). By morphing the surface
Cout to the surface Cin we achieve the effect of disappearing of the part Pi in the core C.

In 3D, we compute the topological distance with respect to the vertices lying on the intersec-
tion chains and separately for Cin and Cout. We also use the negative topological distances
for Cin as we did in 2D. The topological distance of a vertex vi is computed by the Breadth-
first search algorithm, where the search begins at the intersection chain(s). The topological
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Input: List of parts R = P,Q =
⋃
Ri, lists of vertices of each part li = (v0, . . . , vn−1), list of

vertices of the core C = (c0, . . . , cm−1). The lists li and C are circular (so the next vertex to
vn−1 is v0 and the previous vertex to v0 is vn−1). Each part has a different number of vertices
in its list, but each part shares exactly two vertices with two other parts (the intersection
vertices) or with the core.

Output: One list of vertices containing such vertices vj from the lists li that have dj ≥ 0.

The merging algorithm:

1. Choose an arbitrary part Ri from the list of input parts (for example the first one).
Start from the first vertex in Ri. Go through li until the first intersection vertex vj is
found. Add vj to the resulting list (which now contains only vj).

2. Check the vertex vj+1 if its topological distance is positive. If so, continue forward,
otherwise backward, in li. Add each visited vertex to the resulting list until the next
intersection vertex vk is added. Delete the part Ri from the list of parts.

3. Because vk was the intersection vertex, there are three possibilities:

– One of the parts in the list contains it - in such a case use this part and continue
by 2.

– The list of parts is empty (vk is the intersection vertex from step 1). In such a
case, the algorithm is finished.

– The input polygons A and B shared some vertices and edges, and therefore no
part in the list contains vk. In such a case, we find vk in the core list C - let us
denote the found vk as cj to know that it is in the list C. We check the vertex
cj+1 if it belongs to li of the part where vk was. If so, go backward, otherwise
forward, in the list C. Add each visited vertex to the resulting list until the next
intersection vertex ck is added. Denote ck as vk and continue by step 3.

Figure 4.9: The merging algorithm.

(a) one intersection chain (b) two intersection chains

Figure 4.10: There can be an arbitrary number of the part’s intersection chains: a cone and a
cylinder (light blue represents the input objects, dark blue indicates the current part being processed,
intersection chains are marked by orange lines).

distances are computed separately for Cin and Cout of each part (we could search the whole
part together, but we want to assign negative topological distances to Cin). An example of
computed topological distances can be seen in Figure 4.11.

4.3.1 Vertex path computation

From the 2D methods for the vertex path computation, we decided to extend only the Perime-
ter and the Projection growing methods, as the Midpoint growing method produced almost
similar results to the Perimeter growing. The methods are shortly described below (full
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(a) (b)

Figure 4.11: An example of topological distances in 3D (a) side view of the part (blue), the intersec-
tion chain (black) (b) top view - computed topological distances: - intersection points (di = 0, black),
di = 1 (blue), di = 2 (yellow).

description can be found in [34]).

Perimeter growing The vertex paths are set during the computation of the topological
distance. When a vertex vi assigns the topological distance di + 1 to a vertex vj , its
vertex path and the vertex itself is copied to the vertex path of the vertex vj . The
correspondence problem cannot be solved as easily as in 2D, which resulted in the
following extension. The vertex paths are computed for both vertices from Cin and
Cout and the final morphing animation is done as follows. In the first part, (0, t−δ), the
outside of the part (vertices with d > 0) is morphing toward the intersection vertices.
At t − δ, the resulting morph appears to contain only the intersection vertices (but
there are also the vertices of the outside part, which are at the same positions as the
intersection vertices), connected by edges defined by the outside part. Let us call it S0.
In the last part, (t+ δ, 0) the inside of the part (vertices with d < 0) is morphing from
the intersection vertices toward their positions. At t + δ, the resulting morph appears
to have only the intersection vertices, connected by edges defined by the inside part.
Let us call it S1. During the time (t− δ, t+ δ), we need to morph from S0 to S1, which
are two triangular meshes with the same vertices, but a different connectivity. This can
be done using a method from [2]. The process is shown in Figure 4.12.

(a) (b) (c)

Figure 4.12: The resulting morphing sequence consists of three parts: (a) the outside part morphs to-
ward the intersection vertices, (b) connectivity change, (c) the inside part morphs from the intersection
vertices.
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Projection growing The vertices from Cout and Cin are projected (using orthogonal pro-
jection) on a plane p defined by three vertices from the intersection chain. The corre-
spondence problem is solved using Voronoi diagram on p. The Voronoi diagram is set
for the vertices from Cout, and each vertex travels toward such a vertex from Cin that
lies in its cell. In the case of more vertices, the vertex is duplicated, and in the case of no
vertices in the cell, the neighborhood cells are searched to find the nearest vertex from
Cin to travel to. Figure 4.13 shows several examples of the projected parts and resulting
Voronoi diagrams. Bottom left corner shows the original part (blue) with its projection
on the plane (red). Note that the plane’s orientation depends on the intersection chain.
On the plane, a 2D Voronoi diagram is constructed (top), defined by the vertices from
Cout (blue).

(a) (b) (c)

Figure 4.13: Voronoi diagrams of the projected parts
(bottom left corner: a part (blue), projected part (red); top - diagram of the part: vertices from Cout,
forming the diagram (blue), vertices from Cin (green))

Figure 4.14 shows an example of the complete computation together with selected frames
from the resulting animation.

4.4 Summary

Results from the methods are shown in B. It can be seen, that we succeeded in creating
growth-like animation, which resulted in better results for the non-common features between
the shapes. However, our methods are not built to align the common features of the shapes.
The user should decide which method to use according to the concrete input shapes.

20



Chapter 4. Core increment morphing

(a) (b) (c)

(d)

Figure 4.14: An example of the vertex path computation by the Projection growing method (a) input
objects, (b) core (black filled with gray) and one part (blue) projected onto the plane (red), (c) Voronoi
diagram of the part: vertices outside the core (blue), vertices on the core (green), corresponding vertices
connected by gray lines, (d) examples of the resulting morph the part (red), the core (black)
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Chapter 5

Facial models and face morphing

The rest of this report concentrates on facial models and face morphing. This chapter poses
as an introduction to this area, showing several methods, how to obtain a face model, and
some best-known parameterizations used for model animation.

5.1 Capturing and creation of a face model

Real face data can be captured by laser scanners (Section 5.1.1), which capture the geometry
of the model as well as the color information. However, the laser scans capture only the
”visible” parts of the face, the other parts have to be approximated.

Digitizers (Section 5.1.2) may be a solution for capturing the whole surface, however, the
process takes quite a long time and the subject has to remain still the whole time. Therefore,
digitizers are used mainly for capturing faces that were first sculpted from clay.

A cheap, but not very precise way of capturing the data is generating a model from pho-
tographs (Section 5.1.3). Much work has been done in this area, as it does not require any
expensive equipment. With less or more manual effort, contemporary methods can produce
models from one, two or more photographs.

When we do not require a model of a particular face, we only want to generate a model with
specific characteristic or only any plausible face model, we can either use methods generating
models according to the data measured on real faces (Section 5.1.4), or methods using a set
of real faces and creating new faces as a combination of the real ones (Section 5.1.5).

5.1.1 Laser Scanning Systems

The laser scanners are able to capture static surface data. The surface is sampled at regular
intervals, producing an unorganized set of surface points in cylindrical coordinate system,
which need to be processed to create a usable face model. Some scanners are also able to
capture color information, in other case the photograph of the face is taken and needs to be
mapped onto the model.

For capturing the whole head, a scanning apparatus is moved around the object (see Fig-
ure 5.1). Regular mesh in a cylindrical coordinate system is created.

The main problem in creating models from laser scanned data is that some points may be
missing - for example in the eye pupils, hair, under the chin or in the nose. Such data needs
to be computed, for example by iteratively using nearest neighbor values [30], or by using
methods processing images [56].
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Also, the data from the laser scanners may be noisy, so some data smoothing needs to be ap-
plied [56]. Also, the surface normals computed for the polygonal meshes should be smoothed,
as the common methods for the computation are too local.

(a) (b)

Figure 5.1: Examples of head scanners from the Cyberware Laboratory [22]

5.1.2 Digitizers

Digitizers measure the location of each surface points, where the surface points may be the
polygonal vertices or control points for parametric surfaces. The positions are measured
sequentially in a specific order. The types of digitizers differ in their physical measurement
technique.

Mechanical digitizers have a mechanical stylus attached to a mechanical arm or an orthogonal
set of mechanical tracks. A disadvantage of such a solution is that some points on the surface
may be unreachable. Acoustic digitizers measure the time of flight of sound pulses to multiple
sound sensors. The sound source is usually located at the measuring stylus. Electromagnetic
digitizers generate orthogonal electromagnetic fields. Field sensors are attached to the stylus
and provide signals which can be converted to the stylus location and orientation. The
principle of this method excludes the use of materials that can block or distort electromagnetic
fields.

Examples of digitized models, created by fitting a smooth parametric surface to the digitized
data points are Billy from a short Pixar film Tin Toy and Gollum from The Lord of the Rings.
Both models were first sculpted from clay, on which identifying marks were positioned.

A process of digitizing a human head by a MicroScribe digitizer is shown in Figure 5.2.

5.1.3 Photogrammetric Measurement

Generating model from photographs is the cheapest way of obtaining the data, as no expensive
equipment is needed. The head is photographed from several views. To ensure that the head

23



Chapter 5. Facial models and face morphing

Figure 5.2: Digitizing a head using MicroScribe digitizer (from [1])

is at exactly the same position, mirrors are often used. Also, the methods usually assume a
face symmetry, so they construct only one half of the face.

The photogrammetric methods usually need several points marked to set up the correspon-
dence between the photographs [21, 52].

An impressive approach creating a model from a single photograph was proposed by Blanz and
Vetter in [7]. Their approach uses a PCA-based statistical head model, whose parameters can
be adjusted to resemble the input image. The method adjusts the parameters automatically,
however, the initial camera parameters must be supplied with the image. Figure 5.3 shows an
example of the process: in the input image (top left), the user adjusts the provided 3D model,
so that the gaze and size of the object corresponds to the photograph (top right). Then an
automatic, iterative comparison and object’s parameter change is done.

5.1.4 Creating the models from general measurements

Physical anthropologists have been measuring various aspects of human heads and faces. The
data from a specific age and gender have been collected and analyzed, and average values and
ranges have been computed (the main anthropometric landmarks are shown in Figure 5.4).
There exist three ways of using the measured values: designing a method that automatically
generates plausible faces, as a clue in designing new models manually, or evaluating models
generated by other methods. The general guidelines are nicely summarized in [39], and
describe the plausible shape of the head, distance between the eyes, position of the nose,
mouth, ears and the shape of the eyes, nose, lips and ears. Differences between male, female
and a child are also discussed.

The approach using anthropometric measurements from [17] to automatically generate plau-
sible face geometries is described in [14]. Their face geometry is represented as a B-spline
surface, the mesh is a tube with openings at the mouth and neck.

Their algorithm works as follows. First, a random set of values is generated according to the
face anthropometry. These values are then treated as constraints on a parameterized surface.
The best surface satisfying the constraints is constructed using variational modeling [55].
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Figure 5.3: Steps for reconstruction 3D shape and texture from a single image (from [7])

Figure 5.4: The main anthropometric landmarks (from [17])

Along with the anthropometric measures, they use a measure of fairness, which formalizes
how much the surface bends and stretches away from the prototype face shape. The prototype
had to be manually constructed and it is shown in Figure 5.5. Two examples of faces, one
male and one female, generated by the algorithm are shown in Figure 5.6.
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Figure 5.5: The prototype face model from [14]

Figure 5.6: An automatically generated male and female face from [14]

5.1.5 Creating new faces from the existing ones

We can also create new faces from the existing ones by using interpolation or morphing
techniques, or by using deformation.

In the simplest face, when all input faces have the same topology and the same number of
vertices, we can use interpolation techniques to create new faces. For the parametric surfaces,
we can use the same method to process the data with the same type of surface, the same
number of patches and the same number of control points.

If the input faces do not have the same topology, we may use some of the morphing techniques.
These techniques usually create so-called supermesh, which shares the topology of all the input
objects, and may be deformed to form any of the objects. Each vertex of such supermesh
then contains information about its position for each mesh, and the resulting object is created
by interpolation between these positions.

PCA (Principal Component Analysis) [24] can be also used for the generation of new models.
PCA describes a face model as a weighted sum of an orthogonal basis of 3D shapes (principal
components). The construction of the basis requires a huge amount of models that are placed
in mutual correspondence. Each basis weights produce different models, however, it is not
defined, which weights produce plausible models and which not. Also, the resulting models
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are highly dependent on the models from which the principal components were constructed.
Some models that are outside the example set may not be approximated well.

Based on PCA is an algorithm developed by Blanz and Vetter [7]. They started with laser
scans of 200 heads of young adults. Then they established the correspondence between the
scans using a gradient-based optic flow algorithm [6], modified for the 3D scans [50]. This
way, they created m corresponding shapes Si and textures Ti, from which a new model S
with a texture T could be created as a linear combination of the input models:

S =
m∑

i=1

aiSi

T =
m∑

i=1

biTi,
m∑

i=1

ai

m∑
i=1

bi = 1

The parameters a and b need to be generated in a specific way to create only plausible
faces. The average shape S and texture T are computed, along with covariance matrices
computed over the shape and texture differences. PCA is used to transform the data to an
orthogonal coordinate system formed by the eigenvectors si and ti of the covariance matrices
(in descending order according to their eigenvalues).

This way, the new face was always a combination of the whole base faces. They decided to
get more freedom in producing new shapes by segmenting the morphable model and creating
the new model independently from the segments. The independent segments were eyes, nose,
mouth and a surrounding region (see Figure 5.7). After the new segments were created, they
blended them at the borders as it is done in the algorithm for images [8].

5.2 Facial animation

Creating a facial animation deals with two problems: defining a control parameterization and
developing a technique and model based on this parameterization.

Face parameterization should be done according to facial primitive actions. As the animator
controls the animation only by a manipulation of the parameters, the set of the parameters
should be as small as possible, with independent effects, and the effect of each parameter
should be intuitive. Also, the animator should be able to generate common, important or
interesting motions by manipulating only one or few parameters.

Parameterizing faces is useful also for encoding and decoding face animation for teleconfer-
encing. On one end, the camera captures images of a face and face parameters need to be
extracted. Those parameters are then compressed and transmitted, so that on the other end,
a visual surrogate can be displayed.

Three main schemes of parameterization for facial animation will be discussed in the following
text: interpolation (Section 5.2.1), Facial Action Coding System (FACS) (Section 5.2.2) and
Facial Animation Parameters (FAP) (Section 5.2.3).

There are many facial deformation models, varying from the simplest working only with the
geometry to complex models considering physical and structural laws. Those models will be
discussed along with the parameterizations that they use.
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Figure 5.7: Dividing a morphable model into segments and creating a new face from a prototype
and an average model (from [7])

5.2.1 Shape Interpolation

The simplest approach of face animation is using interpolation techniques to smoothly animate
between two key poses. At each time step from a normalized time interval, interpolation
function updates the positions of the face mesh vertices. Usually, a linear interpolation is
used for its simplicity.

Interpolation technique can be used when the vertex correspondence of the input models has
been already computed. This can be done using one of the morphing techniques. After the
correspondence is set up, we can either interpolate between the positions of corresponding
vertices between the pairs of key poses, or we can use multimorphing to generate facial poses
not directly represented by the keys. In multimorphing, we describe key positions in the
animation not by the key poses themselves, but by a set of their weights. The result is then
computed by the weighted sum of the key poses, and the animation is done by interpolation
between the pairs of weight vectors.

The shape interpolation approach is quite restrictive, as the animator cannot control parts
of the face separately and the visual impact of changing the contribution of a key pose might
be difficult to predict for the animator. Also, the animation is restricted to poses that can
be represented as a linear combination of the key poses. To generate a significant range of
expressions, there need to be a huge amount of key poses in the database.
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The approach of Joshi et al. [25] presents a way to reduce the negatives of shape interpola-
tion by (automatically) segmenting the face into regions. To create the expression, the user
manipulates the regions separately - changing one region does not effect anything else. Seg-
menting the face has a positive impact on the number of expressions as well - a wider range of
expressions can be expressed by the same number of key poses. The automatic segmentation
is done for a specified key poses. A deformation map is computed for the model, containing
the maximum amount of local deformation across all expressions for each vertex. Using a
selected threshold, the model is split into regions with low and high deformation. The last
step is to clean the regions by absorbing isolated regions into larger ones and minimizing the
concavity of the regions. Example of the process is shown in Figure 5.8. The input models
for the process must have the same number of vertices and connectivity, with known vertex-
to-vertex correspondence. The created regions overlap by exactly one vertex all around their
boundary. The texture of the resulting model is computed by blending all input textures,
however, the parts of the texture that should not vary among expressions, such as hair, neck
and ears, are not blended, but used from the model with neutral expression.

(a) (b) (c)

Figure 5.8: Automatically generated regions on the face: (a) deformation map (b) segmentation for
a low threshold, (c) segmentation for a high threshold (From [25]).

5.2.2 Facial Action Coding System (FACS)

Facial Action Coding System (FACS) is a system for describing facial expressions, based on
a research of facial anatomy done by the psychologists Paul Ekman and Wallace Friesen in
1976 ([15]). Their goal was to describe all possible visually distinguishable facial movements.
The expressions are defined as a set of basic facial movements, which they called Action Units
(AU). Their system contains 46 AUs, where each AU represent a contraction or relaxation
of one or more muscles. Among AUs are for example brow raiser, cheek raiser, lid tightener,
chin raiser, mouth stretch, eyes closed or eyelid slit (see Tables 5.1,5.2). Two different action
units can be associated with one muscle, i.e., an inner brow and an outer brow. Some AUs
even do not involve any of the facial muscles, i.e. tongue out, neck tightener, lip bite or cheek
puff.

A facial movement may involve only one AU, but sometimes more AUs need to be combined.
Not all AUs can be combined together, as some involve opposite actions. Also some actions
can conceal the presence of others, which are no longer needed to be involved in the action.

FACs can reliably distinguish actions of the upper part of the face, however, it does not
include all visible actions of the lower part of the face, especially movements for forming
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AU FACS name
1 Inner Brow Raiser
2 Outer Bow Raiser
4 Brow Lower
6 Check Raiser
9 Nose Wrinkler
12 Lid Corner Puller
14 Dimpler
15 Lip Corner Depressor
17 Chin Raiser
23 Lip Tightener

Table 5.1: Sample Action Units

Expression Involved AUs
Happiness AU1, 6, 12, 14
Sadness AU1, 4, 15, 23
Disgust AU2, 4, 9, 15, 17

Table 5.2: Simple Expressions in FACS

phonemes. In addition, it does not include the head movements.

Although FACs was not intended to be used in computer animation, it has been widely
used as a basis for expression control in many facial animation systems. Originally, FACs was
designed only to describe facial movements, but in the animation systems, it is used to control
facial movement by specifying the muscle actions needed to achieve the desired expression
changes. Also, most of muscle models for animating face use FACS to relate expressions to
muscle activation.

5.2.3 Facial Animation Parameters

SNHC (Synthetic Natural Hybrid Coding), a subgroup of MPEG-4, designed a coding method
for facial models and compressed transmission of their animation parameters ([37]) for pur-
poses of video teleconferencing.

The standard defines 84 Feature Points (FPs). The model defined by FPs can be animated by
an associated set of Facial Animation Parameters (FAPs). There are 68 FAPs, categorized into
10 groups related to parts of the face. The parameter set contains two high-level parameters,
which represent visemes (visual part of phonemes in speech) and facial expression. Every
low-level FAP corresponds to a FP and defines deformations (on a vertex level) applicable to
it. (Figure 5.9(a)) shows MPEG-4 feature points. All displayed feature points can be used
for calibrating the face, but only the ones filled by black color can be used for animation.
Feature points are numbered according to a group they belong to.

As FAPs are universal parameters (independent on the geometry of the model), they have to
be calibrated before using them for an animation on a particular model. For this purpose,
there exist Facial Animation Parameter Units (FAPUs) and the FAP values are defined in
this units. FAPUs are computed as fractions of distances between key features on the face in
its neutral state. As the animation is defined by FAPs in FAPUs, we can easily replace the
model in the animation by replacing FAPUs.
Figure 5.9(b) shows FAPUs specified by the standard: IRISDO (iris diameter - distance
between upper and lower eyelid), ESO (eye separation), ENSO (eye - nose separation), MNSO
(mouth - nose separation) and MWO (mouth-width).

30



Chapter 5. Facial models and face morphing

(a) (b)

Figure 5.9: MPEG-4 Feature Points (a) and FAPUs (b) (from [37])

The neutral state, needed for the calibration, is defined as follows:

• the coordinate system is right handed; head axes are parallel to the world axes

• gaze is in direction of Z axis

• eyelids are tangent to the iris

• the pupil diameter is one third of IRISDO

• lips are in contact; the line of the inner lips is horizontal and at the same height of lip
corners

• the tongue is flat, horizontal, with the tip of the tongue touching the boundary between
upper and lower teeth

The standard does not specify any particular way of achieving facial mesh deformation for a
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given FAP. It only specifies a Facial Animation Table (FAT) to determine which vertices are
affected by each FAP and how.

[Pelachaud et al., 2001, Dalong et al., 2002, Pelachaud, 2002, Kshirsagar et al., 2000].

5.3 Parke facial model

Parke facial model [39] is a model for animating symmetrical, polygonal face mesh, where
edges of the polygons are aligned to facial feature lines. The movement of the groups of
vertices is defined by five basic operations:

Procedural construction According to given parameters, such as iris size or eye position,
the eyes are defined.

Deformation Each part undergoing deformation (such as forehead, cheek, neck or neck) has
two extreme shapes defined and the resulting position is computed as an interpolation
between these positions according to a given parameter.

Rotation Rotation is used for moving the jaw.

Scale Scaling modifies the size of basic face parts, such as nose, mouth or jaw.

Translation Translation modifies the length of the nose, width of the mouth or elevation of
the upper lip.

The parameters for face animation can be divided into two groups: expression parameters, i.e.,
eye position, iris size, jaw rotation, width of the mouth, head orientation, and conformational
parameters, i.e., shape (relative position of assigned vertices) of the neck, chin, cheek, forehead
and cheekbones, position of the eyes, size of eyelids, jaw width, length of the nose, color of
the skin, eyebrows, lips and iris. The conformational parameter set is to distinguish between
different individuals, however, the expression parameters provide the animation itself. The
parameter set is shown in Figure 5.10.

5.3.1 Muscle models

Parameterizations defining the movement of the vertices directly may sometimes lead into
creating an expression that is physiologically impossible. Muscle models try to eliminate
these results by incorporating a muscle layer into the model. The muscle layer included is
usually based on FACs (see Section 5.2.2), which describes which muscles have a visual effect
on the face and what type of effect it is. To create more realistic face, the model usually
consists of three layers: a surface layer, a muscle layer and a bone layer. Each layer is
represented as a triangle mesh, and all layers are connected by edges. Each vertex contains
information about its position, velocity, weight, and force affecting it. Each edge contains
information about its elasticity.

Muscle models also include forces to avoid penetrating the scull during the muscle contraction,
and include volume preservation in their calculations.
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Figure 5.10: Structure of the parametrized model (from [38])

Waters muscle model

Waters [53] presents a muscle facial model based on FACs , where muscles are represented
as muscle vectors, which describe the effect of muscle contraction on the geometry of the
skin surface - which vertices will be affected by the muscle, and how it will affect them. The
model approximates the work of linear muscles, one sheet muscle (frontalis - forehead muscle)
and one sphincter (orbicularis oris - muscle around the mouth). The muscles are scatched in
Figure 5.11(a).

Linear muscles are composed of a point of attachment and direction (Figure 5.11(b), sheet
muscle from a line of attachment and direction and sphincter is composed of a center point
and two semi-axes defining an ellipse. Each muscle affects the adjacent tissue (geometry) in
a predefined radius (Rf ), attracting the nodes toward its origin.

(a) (b)

Figure 5.11: Waters muscle model: (a) used muscles on the face (b) muscle vector model for the
linear muscle (2D version) (from [53])
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The approach needs the mesh to be as regular as possible, otherwise polygonal intersections
may occur during the animation.

Figure 5.12: Fear (left) and anger (right) emotions produced using the Waters muscle
model(from [53])

The child’s face in the Pixar’s ”Tin Toy” (1998) was animated using the Waters model (see
Figure 5.13). Tin Toy was the first character that was animated digitally.

(a) (b)

Figure 5.13: Pixar’s Tin Toy: (a) clay model for scanning purposes (b) example expression

Kähler’s muscle model

Kähler et al. [26] presents a muscle model using three layers: a skin, muscle and bone layer.
Their muscle model contains linear, sheet, curved and sphincter muscles (see Figure 5.14(a)).
The muscles are represented by control polygons P = {pi}, where each segment is assigned
an ellipsoidal shape. The contraction of a muscle is defined by a contraction value c ∈ [0, 1],
where c = 0 means no contraction and c = 1 full contraction. The contraction of a linear
muscle is computed by shrinking the segments and mapping them to the original polygon,
the segments in sphincter muscles are contracted toward a center point (see Figure 5.14(b)).
During the contraction, the real muscles get thicker - this behavior is achieved by scaling the
height of each muscle segment according to its position in the control polygon: the center
parts get thicker than the edge parts.
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(a) (b)

Figure 5.14: (a) types of muscles used in Kähler’s muscle model and a muscle fiber with control
polygon P = {pi} and (b) muscle contraction of a linear and sphincter muscle fiber (from [26]).

The muscles can cross each other, and also be attached to each other. Attached muscles
are stored in so-called constraint groups. After the computation of muscle contractions, the
control points of attached muscles are moved to maintain the original distances.

No muscle model is used to define the muscles, the definition is done manually by the user.
The user specifies at least four points on the grid, and a center point for sphincter muscles.
The muscle grid is automatically refined to fit the geometry of the model.

The skin and tissue simulation is done using a spring mesh, with a surface nodes attached
either to the bone layer or to the muscle fiber.

5.3.2 Data-driven parametrization

Data-driven parametrization does not define the parameters explicitly or manually (such as
the shape interpolation), but derive the parametrization using statistical methods applied to
some large amount of input data. The most often statistical method is principal component
analysis (PCA). The input data for PCA may be for example motion capture data. PCA
extracts parameters common to the input set of faces (i.e., one face with different expressions).
The principle components become the ”conformational” parameters that specify a concrete
face expression. This type of parametrization is used in Blanz and Vetter work [7] that has
already been discussed in 5.1.5.
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Personality factors

Since our work concentrates on modeling faces for personality perception research, this chapter
provides a brief introduction to the psychological part of the work.

There has been a lot of psychological research concerning human personality, its measuring
and description. The goal of this chapter is not to give a complete overview in this area,
however, several interesting topics concerning our work will be mentioned.

In 1940s, R. Cattell’s research [10] showed that human personality can be described by sixteen
major factors. The presence or lack of each factor is expressed by certain personality fea-
tures, called high and low range descriptors (table listing the factors along with high and low
range descriptors can be found in Appendix C). To evaluate a person’s personality factors,
Catell developed so-called 16PF Personality Questionnaire (16PF stands for ”16 personality
factors”). Catell’s questionnaire is still internationally used in schools and colleges, clinical
and counseling settings, in career counseling and employee selection and development, as well
as in basic personality research.

The test was revised several times (mostly to simplify and update the language), its most
recent edition is from 1993. Its fifth edition contains 185 multiple-choice items which are
written at a reading level of an average fifth-grader. Each item has a three-choice answer
format with the middle choice being a question mark. Its content asks simple questions
about daily behavior, interests, and opinions, asks question on concrete situations, does not
want the test-taker to self-assess himself. An example questions from the questionnaire are
shown below (from [11]):

• When I find myself in a boring situation, I usually ”tune out” and daydream about
other things. (a. true; b. ?; c. false)

• In talking to a friend, I tend to: (a. let my feelings show; b. ?; c. keep my feelings to
myself)

The test provides scores on 16 primary personality scales and five global personality scales,
all of which are bi-polar (meaning that both ends of each scale have a distinct, meaningful
definition). The 16PF test was designed for adults of at least age 16 and older, but there
are also parallel tests for various younger age ranges (e.g., the 16PF Adolescent Personality
Questionnaire [42]).

In 1961, E. Tupes and R. Christal [49] discovered five global (second-order) personality factors
by analyzing the factors described by Catell. These factors were later called the Big Five
factors. The Catell’s questionnaire can be used to find out the primary and the secondary
personality factors of the given person as well.
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The Big Five personality factors are:

Openness An open person is inventive and curious, emotional, has appreciation for art and
sense of adventure. A person lacking openness is cautious and conservative.

Conscientiousness A conscientious person is self-disciplined, organized and has a planned
behavior. A conscienceless person is easy-going and careless.

Extroversion An extrovert is outgoing, full of energy, positive emotions, with a tendency
to seek stimulation in the company of others. An introvert is shy and withdrawn.

Agreeableness An agreeable person is friendly and compassionate, however an averse person
is competitive and suspicious.

Neuroticism A neurotic is sensitive and nervous, lack of neuroticism leads to being secure
and confident.
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Morphing for face averaging

This section describes our work done in cooperation with V. Pivoňková from the Faculty of
Humanities, Charles University in Prague, on a project concerning human faces. The aim of
the project is to study human perception of 3D face composites. Our task in the project was
to compute average faces of given sets of scanned data.

The background of the project will be described in Section 7.1, and our solution for the face
average computation will be described in Section 7.2.

7.1 Composite faces for face perception research

In the first part of their research [28], Věra Pivoňková and her team worked with photographs
of human faces. They concentrated on face perception in neutral state, i.e., they did not
include expressions in their research. In their test, they selected only several factors from the
Catell’s 16 personality factors: warmth, reasoning, emotional stability, dominance, liveliness,
social boldness, abstractedness and privateness.

In the first step, they took photographs of 138 females and 80 males aged 19-29. They used
Catell’s 16PF questionnaire (see Section 6) to determine the personality factors of the persons.
Images of 15 men and women scoring highest and lowest on each factor were selected and
morphed into one, composite image. Composite images were used to study if the personality
ratings in the composites were more accurate then in the original photographs. The results
were positive, confirming the presumptions that the composite images contain all the physical
traits common to the individuals, however, the individual facial characteristics are minimized.
Therefore, they can be used to separate the physical traits common to the personality factor
being tested.

In the next part of the research, they wanted to repeat the process with 3D models. About
the same number of the same age group was scanned, producing an amount of dense triangle
meshes (each mesh had about 40,000 vertices). The faces were scanned only from one direc-
tion, which resulted in open meshes, containing only the face (without hair and ears). The
texture was in the form of a simple photograph. They continued with the same process as
with the photographs. First, they evaluated the perception of the original data and chosed
15 men and women scoring highest and lowest on each factor. They asked us to create a
composite from each group. How we handled this task is described in the following section.
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(a) (b) (c)

Figure 7.1: Input data for computation: (a) a face mesh with texture (b) detail of the face mesh (c)
texture is in the form of a photograph.

7.2 Average face computation

As was described in the previous section, the input data for the face average computation
are 15 open meshes of about 40,000 vertices, with a photograph as a texture (see Figure 7.1).
The goal is to compute an average face mesh with an average texture. Computing an average
of two faces can be defined as computing a face morph at a time t

2 . Therefore, traditional
morphing techniques may be used for such a problem. Computation of an average face R of
n faces M =

⋃
iMi, i = {0, . . . , n− 1} is in fact a multimorphing problem, where the weights

of the base meshes the same:

R =
∑n−1

i=0 wiMi
∑n−1

i=0 wi = 1 wi = wj ∀(i, j)

Therefore, traditional multimorphing techniques may be used for our problem. However,
since we have some knowledge about the input data, we can simplify the techniques used or
adjust them to perform better for our type of data.

Solving a multimorphing problem usually means to:

• compute the vertex-to-vertex correspondence between the meshes

• compute the target mesh by computed the weighted sum of the corresponding vertices.

The crucial part in the process is the correspondence computation. To be able to compute a
vertex-to-vertex correspondence, we need to refine input meshes so that they have the same
number of vertices and the same connectivity. We already tested two techniques for such a
refinement in my bachelor thesis [32]: Alexa topology merging technique [3] and a remeshing
technique of Kraewoy and Scheffer [29]. Both methods not only refine meshes to have the
same topology, but also compute the vertex-to-vertex correspondence.

The topology merging method showed unsuitable for a larger number of input objects. To dis-
cuss the reasons, let us recall how the method works (see Section 3.2. The method establishes
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the correspondence between two meshes by inserting vertices and edges into both of them.
As a result, the two meshes have the same topology. To ensure this property for all meshes,
this process has to be done incrementally by twos. After merging two objects with n1 and n2

vertices, the resulting object has n1 + n2 vertices. Merging m objects, where the i-th object
has ni vertices, the resulting object has

∑m
i=0 ni vertices. It can be seen that the method as

it is has a severe problem with increasing number of vertices, and so it is not very suitable
for a larger number of input objects. Some kind of mesh decimation could be included in
intermediate steps, however, there would be problems with preserving the topology among
the objects.

The remeshing method might seem as a solution here. The number of vertices and edges of
the resulting objects does not depend on the input objects, but on a so-called supermesh.
The idea is to use an arbitrary object as a supermesh, and remesh all input objects so that
they have the same topology as the supermesh. The process can be imagined as deforming
the supermesh so that its shape approximates the input object. As all the input objects are
approximated by the same object (supermesh), the mutual correspondence is given by the
supermesh vertices: the corresponding vertices have the same origin in the supermesh. For a
detailed description of the process and a discussion about the quality of the approximation,
see Section 7.2.1.

The whole algorithm is sketched in Figure 7.2. In the first step, the meshes are projected
onto the common parametric domain, in this case a plane (step 1). Since the data are only
of a height map character (2D data + height information at each vertex), the projection
is realized by simply omitting the height information. A simple feature correspondence is
done by using user-selected correspondence points on each face (step 2) and the warping
method on the projection plane (step 3, more in Section 7.2.2). After the warping, we use the
remeshing method to refine the meshes to have the same topology and to compute the vertex-
to-vertex correspondence among the meshes (step 4, more in 7.2.1). When the corresponding
vertices are known, a new mesh is computed, having the same topology as the others, and
its vertices are computed as an average positions of the corresponding vertices of the input
meshes (step 5). The texture is handled separately, using warping with the same user-selected
correspondence points and blending (step 6-7, more in Section 7.2.2).

Input: input meshes M =
⋃

i Mi, i = {0, . . . , n− 1} , n photographs (textures) m =
⋃

i mi

Output: the average mesh S and its average texture s

The algorithm:

1. Project each mesh from M on the plane - obtain M2D =
⋃

i M
2D
i .

2. Obtain the correspondence of feature points (by the user/from the file).

3. Warp M2D
i , i = {1, . . . , n− 1} using the feature point correspondence information.

4. Remesh each mesh Mi using a position information from M2D
i (more in Section 7.2.1)

- obtain remeshed meshes R =
⋃

i Ri.

5. Compute S, sharing the topology with Ri,∀i. Compute each vertex of S as an average
of corresponding vertices of all meshes from R.

6. Warp m using the feature point correspondence information.

7. Compute s as a blend (average) of m.

Figure 7.2: Pseudocode of the algorithm.
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7.2.1 Remeshing

Remeshing method is a way to refine arbitrary number of input meshes so that they have the
same topology, and to set up the vertex-to-vertex correspondence between the meshes. This
section describes the method in detail along with its particular use for our application.

The main idea of remeshing is to create a mesh (called supermesh) and deform it to the shape
of the input mesh. The deformed supermesh is then considered as the remeshed input. If we
use the same supermesh to remesh more input meshes, they will have the same number of
vertices and the same connectivity. What more, the vertex-to-vertex correspondence will be
established, since we know the exact location of each vertex of the supermesh in all remeshed
meshes.

The remeshing algorithm is sketched in Figure 7.3. The process consists of several steps. In
the first step, the supermesh S is created. The supermesh may be an arbitrary mesh, however,
it should be chosen to have its shape as close as possible to the source mesh M . In the second
step, the source mesh M and the supermesh S are projected to a common parametric domain.
From [4], a typical parametric domain is a unit sphere for closed meshes and a unit disk for
open meshes (see Figure 7.4). In our application, we used projection to a plane along with
warping method (see Section 7.2.2) to include user-defined feature correspondence.

As the next step, for each vertex from S, we locate the triangle from M in which the vertex is
located, and using barycentric coordinates (Section 2) compute its position on the boundary
of M . This way, we deform the whole shape of S to the shape of M , while the connectivity
remains the same. An example process is shown in Figure 7.5, where a sphere is taken as a
supermesh and a cone as an input mesh.

Input: input mesh M , supermesh S

Output: mesh S deformed to the shape of M

The algorithm:

1. Project M,S to the common parametric domain → M ′, S′.

2. For each vertex v of S′:

– Find in which (spheric) triangle t′ of M ′ it lies.

– Compute barycentric coordinates α, β, γ of v in t′.

– Using α, β, γ, compute the position of v in the original triangle t.

Figure 7.3: Remeshing algorithm.

Generally, the remeshing method only approximates the source mesh by the supermesh. The
quality of the approximation depends on the shape and the number of the vertices of the su-
permesh. Obviously, the best object for remeshing would be the one with the same shape and
topology. The more differences in shape or topology are between the two objects, the worse
the approximation is. Appendix D shows several remeshing outputs when an approximated
unit sphere is taken as a supermesh. It can be seen that remeshing has problems with sharp
edges, such as the bottom edge of the cone (Figure D.2). More information about remeshing
can be found in our previous work [32].

Despite its bad results for sharp edges, remeshing can be used in our application dealing with
scanned faces without any remarkable defects, since the faces do not contain any sharp edge.
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(a) sphere for closed meshes: input mesh
(green), projected mesh (pink)

(b) unit disk for open meshes (from [4])

Figure 7.4: Typical parametric domains.

(a) source mesh (b) supermesh (blue) (c) source mesh
parametrization
(pink)

(d) resulting mesh
along with the orig-
inal

(e) resulting mesh

Figure 7.5: The remeshing process.
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Figure 7.6: Remeshing a face mesh by another face mesh (detail): original (red), remeshed (blue).

Moreover, as the faces were scanned with the same density, they have very similar topology
and number of vertices. Therefore, the best supermesh for remeshing is one of the faces
themselves. Figure 7.6 shows an example of remeshing of one face by another one.

In the context of our application, the remeshing method has one drawback. As the meshes
are projected on the plane and not on a unit disk, there are vertices of S which are not in any
triangle of M . To have the same number of vertices for all meshes that will be remeshed by
S, we cannot simply delete such vertices from S. We solved this problem by computing the
position of such vertex v from its neighbors. For each neighboring vertex of v, its translation
vector is computed from its previous and current position. An average vector is computed
and used to move v.

Figure 7.7 shows a remeshed face (blue) along with those vertices, whose positions had to
be computed from their neighbors. The original mesh (red) is not approximated completely,
there are several triangles which are ”deleted”, because they do not contain any vertex from
S.
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Figure 7.7: Remeshing a face mesh by another face mesh: problem with the borders; original (red),
remeshed (blue).
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7.2.2 Warping

For aligning the predefined feature correspondences on the texture and also on the mesh, we
used the morphing technique based on image warping and color interpolation. Image warping
uses geometric transformations to align predefined features, while color interpolation blends
the colors at each pixel.

Wolberg in his book [57] shows two basic warping methods used for morphing images: mesh
warping and feature-based warping. Mesh warping uses control mesh laid over the image.
The user defines the positions of the mesh nodes in each image, and the result is computed
as an interpolation between the nodes positions. Feature-based warping uses line segments
instead of the control mesh. User defines corresponding line segments in each image, and the
result is computed as if the line segments were magnets attracting the surrounding points.

Since feature based-warping needs only a definition of key features, not of the whole feature
mesh as the mesh warping, it is more intuitive for the user. Therefore, we decided to use the
feature-based warping in our approach. The following text describes this technique in detail.

There are two ways of computing a warped image: a forward mapping and a reverse mapping.
The former scans through the source image pixels and copies them to the appropriate place
in the destination image, the latter does the opposite: for each pixel in the target (warped)
image, it finds a correct pixel in the source image. An important feature of the reverse
mapping is that every pixel of the warped image is set to something appropriate, however,
after a forward mapping, interpolation methods have to be used for the unset pixels.

The feature-based warping uses the reverse mapping technique. The next sections will show
how the method computes the appropriate origin of a pixel in the target image. First, we will
consider only one pair of corresponding line segments, and then an extension for an arbitrary
number of corresponding line segments will be shown.

Feature-based warping for a pair of corresponding line segments

Let us denote (see Figure 7.8):
A . . . the source image
B . . . the target (warped) image
P ′Q′ . . . the user-defined line segment in A
PQ . . . the user-defined line segment in B
Xi . . . a pixel in B
X ′i . . . a pixel in A (origin of X)

The following is done for each pixel Xi from B. Its position u along PQ and its distance from
PQ is computed:

u =
(Xi − P )(Q− P )
||Q− P | |2

v =
(Xi − P )(Q− P )⊥

||Q− P | |
The position X ′i of the vertex Xi in the original image A is computed as:

X ′i = P ′ + u(Q′ − P ′) +
v(Q′ − P ′)⊥
||Q′ − P ′| |
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(a) A (b) B

Figure 7.8: Line segments for feature-based image warping (from [57]).

The color from this position is set as the color of the vertex Xi.

Feature-based warping for a multiple corresponding line segments

In the case of n predefined line segments, we compute ui, vi, X
′
i for each of them, and according

to the values computed, we get n translation vectors:

D→i = X ′i −Xi

The result is computed as a weighted average of D→i :

X ′i = Xi +
∑n

i=1D
→
i wi∑n

i=1wi

where

wi =
(
|Q′i − P ′i |

p

(a+ dist)

)b

The values a, b, p are constants which were according to [57] obtained from a number of
performance tests.

Use of feature-based warping in our approach

In our approach, we use five line segments defined by the user, aligning eyebrows, eyes, nose
and mouth (see Figure 7.9(a),7.9(b)). Since we have n images as the input, we use one of them
as a reference image and warp the others to align all predefined line segments. The resulting
average image is computed by simply averaging all images pixel by pixel. An example of the
whole process for two images is shown in Figure 7.9.

We use image warping also for aligning the corresponding feature points in the projected
meshes. The use is analogical, with a simple difference. The image warping used reverse
mapping to avoid unset pixels in the warped image. However, such a mapping is inconvenient
for meshes, where we need to modify the position of the vertices, and not the color information.
Therefore, we use forward mapping for the meshes. The new position of each vertex is
computed in the same way as was described in Section 7.2.2.
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(a) input image A (b) input image B (c) warped B (d) average

Figure 7.9: Averaging face images using feature-based warping (red dots mark corresponding points
defined by the user, red line segments mark the resulting line segments used by warping).

7.2.3 Summary

This section showed a typical use of a multimorphing technique - creating a new model from
several existing ones. In our case the new model (a face) was computed as an average of
fifteen input faces, selected by V. Pivoňková from the scanned data, which they provided
us for research purposes. Several face averages from the scanned data were created, an
example of average man and woman (both made from 15 scans) is shown in Figure 7.10.
V. Pivoňková was satisfied with the output, however, in our opinion, the method has one
significant drawback. It does not deal with the geometry of the face in a way distinguishing
the face features. It uses the corresponding points defined by the user, but this way, it only
aligns the 2D position of the corresponding parts. A better way would have been to use some
method using PCA (i.e. [7]).
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(a) an average man

(b) an average woman

Figure 7.10: Average man and woman computed by our algorithm.
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Conclusion and Future work

In the first part of our work, we created a new polygon morphing algorithm with a growth-like
behavior. This algorithm is simple, easy to implement and intuitive to use by an animator.
The algorithm is suitable for objects, where the animator expects some growth-like animation.
It is not appropriate for animating translation, rotation or a scale of an object, or for morphing
similar objects, where some features need to be preserved during the animation.

In the following work, we decided to concentrate on morphing faces. We started to cooperate
with V. Pivoňková, from the Faculty of Humanities, Charles University in Prague, who pro-
vided us a number of face scans for research purposes. We designed an algorithm computing
an average face from an arbitrary number of input objects.

During our ten-days stay at Purdue University, we discussed the possibilities of our future
cooperation with B. Beneš. Together, we decided to concentrate on morphing and deformation
of facial models and came up with several ideas, which will be discussed in the following text.

Although there is lot of research done in the area of facial model animation and new models
creation using multimorphing, there are still some challenges. The first challenge is as follows.
In Section 5, we discussed Blanz and Vetter approach [7] for modeling new faces from the old
ones, where PCA was used to define parameters intuitive for the user, such as width of the
nose, skin color or age. The new model was created as a weighted average of the basis input
models, where the parameter values posed as weights. However, we have not found any work
trying to parametrize the model according to the human personality factors and not only the
physical appearance.

As was discussed in Section 6, one’s personality can be fully described by fifteen distinct
personality factors. What is more, people can distinguish the personality traits from the
person’s face. Therefore, with our approach, we can offer the users to create a new models
perceived as they were having the desired personality.

However, such an approach would lead to a parameterized model, where each parameter would
represent a weight of some input model(s). In Section 5.2.1, we discussed that creating a new
model by weighting the input models as a whole does not allow the user to simply modify
only selected features of the face, since rising the weight of a model having this feature can
influence other features which the user wanted to remain consistent. To obtain the desired
behavior, the model was split into several regions. We decided to follow this idea also in our
work, to bring more flexibility to the user, allowing him to create more complex, but still
easily perceivable personality.

When the face is cut into pieces, the parts can be perceived differently than they were as a
whole. Therefore, new questionnaires need to be created to evaluate the perception of the
parts. To preserve the personality information, the parts need to be selected carefully, which
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Chapter 8. Conclusion and Future work

will be realized by the psychologists from V. Pivoňková’s team.

The part selection and the questionnaires will lead into the creation of a set of parts, where
each personality factor will have two parts describing both extremes (the presence and the
lack of the factor). In our parameter set, each parameter will influence the proportion of the
two extremes of its assigned personality factor.

The parts will partially overlap, so the creation of a morph from weighted, overlapping parts
will be a challenge as well. Also, we would like to create a model, where the user has the
possibility to adjust the parameters of the parts, having an immediate response. So morphing
of a part overlapping with a static surroundings will need to be solved.

Our work is interesting for the psychologists, since the research on facial parts perception is at
its beginning, and such a method would allow various tests to be done in this area. Therefore,
we expect to cooperate with the psychologists during our research.
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Professional activities

Publications

Reviewed publications

[1] M Málková, I Kolingerová, and J Parus, Core-based morphing algorithm for triangle
meshes, SIGRAD, 34:39-46, 2008, Stockholm.

[2] J Parus, I Kolingerová, and M Málková, Multimorphing: A tool for shape synthesis and
analysis, Advances in Engineering Software, Elsevier, 40(5):323-33, 2009. Impact factor
for the year 2008: 1,188.

[3] M Málková, J Parus, I Kolingerová, and B Beneš, An intuitive polygon morphing, The
Visual Computer, Springer Verlag, 26(3):205-215, 2010. Impact factor for the year 2008:
1,061.

Student publications

[1] M Málková. Morphing of geometrical objects in boundary representation. Bachelor thesis,
University of West Bohemia in Pilsen, 2006.

[2] M Málková. Morphing of geometrical objects in boundary representation. Diploma thesis,
University of West Bohemia in Pilsen, 2008.

[3] M Málková. A new core-based morphing algorithm for polygons. Proceedings of the 11th
Central European Seminar on Computer Graphics, pp. 39-46, 2007, Budměrice.

Stays abroad

• University of Bath, UK, February-June 2006

• University of Maribor, Slovenia, November 9-16, 2008

• Purdue University, Indiana, USA, October 19-29, 2009
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Related talks

• M Málková: A new approach to morphing objects in boundary representation, Univer-
sity of Maribor, Slovenia, November 2008

• M Málková: Using Morphing for Averaging of Faces, University of West Bohemia in
Pilsen, Czech Republic, April 2009

• M Málková: Dva pohledy do problematiky morphingu, VŠB Ostrava, Czech Republic,
November 2009

• M Málková: Face Models, University of West Bohemia in Pilsen, Czech Republic, April
2010

Participation on scientific projects

• Triangulated Models for Haptic and Virtual Reality. Project leader Ivana Kolingerová.
Funded by The Czech Science Foundation (GACR), project code 201/09/0097.

• Bilateral Cooperation in Computational Geometry Research for Visualization. Project
leader Josef Kohout. Funded by The Ministry of Education, Youth and Sports (MSMT),
project code KONTAKT 5/2005-06.

• CPG Center of Computer Graphics National Network of Fundamental Research Cen-
ters. Project leader Václav Skala. Funded by The Ministry of Education, Youth and
Sports (MSMT), project code LC 06008.

• Modeling Natural Phenomena Using Computational Geometry. Project leader Ivana
Kolingerová. Funded by The Ministry of Education, Youth and Sports (MSMT), project
code KONTAKT 5076/2009-32.

Other scientific or academic activities

• Tool for computing average faces. Authorized software made freely available to the
public. http://www.kiv.zcu.cz/vyzkum/software/detail.html?id=58
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Core increment morphing - results

B.1 2D methods

An animation showing the behavior of our algorithm is available at
http://graphics.zcu.cz/media/videos/malkova/2D-core.avi.

(a) Carmel and Cohen-Or algorithm
(animation is available at http://graphics.zcu.cz/media/videos/malkova/alien-cohen.avi)

(b) Sederberg and Greenwood algorithm
(animation is available at http://graphics.zcu.cz/media/videos/malkova/alien-sed.avi)

(c) Midpoint growing method
(animation is available at http://graphics.zcu.cz/media/videos/malkova/alien-mid.avi)

(d) Projection growing method
(animation is available at http://graphics.zcu.cz/media/videos/malkova/alien-proj.avi)

Figure B.1: Morphing between a butterfly and an alien
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(a) Carmel and Cohen-Or algorithm
(animation is available at http://graphics.zcu.cz/media/videos/malkova/snail-cohen.avi)

(b) Sederberg and Greenwood algorithm
(animation is available at http://graphics.zcu.cz/media/videos/malkova/snail-sed.avi)

(c) Perimeter growing method
(animation is available at http://graphics.zcu.cz/media/videos/malkova/snail-per.avi)

Figure B.2: Morphing between a snail and a slug

B.2 3D methods

(a) Perimeter growing method
(animation is available at http://graphics.zcu.cz/media/videos/malkova/knot-perimeter.avi)

(b) Projection growing method
(animation is available at http://graphics.zcu.cz/media/videos/malkova/knot-proj.avi)

Figure B.3: Morphing - growing knot
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Figure B.4: Morphing - a head with and without horns (Perimeter growing method)
(animation is available at http://graphics.zcu.cz/media/videos/malkova/moufflon-perimeter.avi)

Figure B.5: Growing tree (Perimeter growing method)
(animation is available at http://graphics.zcu.cz/media/videos/malkova/tree-perimeter.avi)
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Chapter C

Catell’s 16 Personality Factors

Descriptors of Low Range Primary Factor Descriptors of High Range

Impersonal, distant, cool, reserved, de-
tached, formal, aloof

Warmth Warm, outgoing, attentive to others,
kindly, easy-going, participating, likes peo-
ple

Concrete thinking, lower general mental
capacity, less intelligent, unable to handle
abstract problems

Reasoning Abstract-thinking, more intelligent,
bright, higher general mental capacity,
fast learner

Reactive emotionally, changeable, affected
by feelings, emotionally less stable, easily
upset

Emotional Stability Emotionally stable, adaptive, mature,
faces reality calmly

Deferential, cooperative, avoids conflict,
submissive, humble, obedient, easily led,
docile, accommodating

Dominance Dominant, forceful, assertive, aggressive,
competitive, stubborn, bossy

Serious, restrained, prudent, taciturn, in-
trospective, silent

Liveliness Lively, animated, spontaneous, enthusias-
tic, happy go lucky, cheerful, expressive,
impulsive

Expedient, nonconforming, disregards
rules, self indulgent

Rule-Consciousness Rule-conscious, dutiful, conscientious, con-
forming, moralistic, staid, rule bound

Shy, threat-sensitive, timid, hesitant, in-
timidated

Social Boldness Socially bold, venturesome, thick skinned,
uninhibited

Utilitarian, objective, unsentimental,
tough minded, self-reliant, no-nonsense,
rough

Sensitivity Sensitive, aesthetic, sentimental, tender
minded, intuitive, refined

Trusting, unsuspecting, accepting, uncon-
ditional, easy

Vigilance Vigilant, suspicious, skeptical, distrustful,
oppositional

Grounded, practical, prosaic, solution ori-
ented, steady, conventional

Abstractedness Abstract, imaginative, absent minded, im-
practical, absorbed in ideas

Forthright, genuine, artless, open, guile-
less, naive, unpretentious, involved

Privateness Private, discreet, nondisclosing, shrewd,
polished, worldly, astute, diplomatic

Self-Assured, unworried, complacent, se-
cure, free of guilt, confident, self satisfied

Apprehension Apprehensive, self doubting, worried, guilt
prone, insecure, worrying, self blaming

Traditional, attached to familiar, conserva-
tive, respecting traditional ideas

Openness to Change Open to change, experimental, liberal, an-
alytical, critical, free thinking, flexibility

Group-oriented, affiliative, a joiner and fol-
lower dependent

Self-Reliance Self-reliant, solitary, resourceful, individu-
alistic, self sufficient

Tolerates disorder, unexacting, flexible,
undisciplined, lax, self-conflict, impulsive,
careless of social rules, uncontrolled

Perfectionism Perfectionistic, organized, compulsive,
self-disciplined, socially precise, exacting
will power, control, self-sentimental

Relaxed, placid, tranquil, torpid, patient,
composed low drive

Tension Tense, high energy, impatient, driven, frus-
trated, over wrought, time driven.

Table C.1: Primary factors and descriptors in Cattell’s 16 Personality Factor Model (from [13])
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Chapter D

Remeshing - results

The results from the remeshing method described in Section 7.2.1. The supermesh is a sphere
approximated with a selected number of vertices. Figures D.1, D.2 are from our previous
work [32].

(a) original (b) 30 (c) 110 (d) 420 (e) 930

Figure D.1: Remeshing a capsule with a sphere with a given number of vertices: original (green),
remeshed object (red).

(a) original (b) 30 (c) 110 (d) 420 (e) 2550

Figure D.2: Remeshing a cone with a sphere with a given number of vertices: original (green),
remeshed object (red). Note that the method has problems with sharp edges.

(a) original (b) 30 (c) 110 (d) 420 (e) 2550

Figure D.3: Remeshing a screw driver with a sphere with a given number of vertices: original (green),
remeshed object (red).
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