

University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

Diploma Thesis

Dynamic Mesh Compression

With Clustering

Pilsen, 2011 Jan Rus

Empty list

ACKNOWLEDGEMENTS

First of all, I would like to thank Ing. Libor V§ġa, Ph.D. for providing kind guidance to

me throughout the development of this thesis. I would also like to thank my colleagues Ing.

OldŚich PetŚ²k and Ing. JiŚ² Sk§la who provided me with valuable advices in the area of data

clustering and appropriate implementations. Last but not least, I want to thank my parents for

their support and help. Without them I would never have come to where I am right now.

This work has been supported by the Ministry of Education, Youth and Sports of the

Czech Republic under the research program LC-06008 (Center for Computer Graphics).

I hereby declare that this diploma thesis is completely my own work and that I used

only the cited sources.

Pilsen, 16/5/ 2011

 Jan Rus

ABSTRACT

The growth of computational power of contemporary hardware causes an expansion of

technologies working with 3D-data. Examples of the use of this kind of data can be found in

geography or gaming industry. 3D-data may not only be static, but also dynamic.

One way of animated 3D-data representation is expressing them by "dynamic triangle

mesh". This kind of data representation is usually voluminous and needs to be compressed for

efficient storage and transmission. In this thesis, we are dealing with the influence of vertex

clustering on dynamic mesh compression. The mesh is divided into vertex clusters based on the

vertex movement similarity and compressed per-partes to achieve higher compression

performance. We use Coddyac as a basic compression algorithm and extend it by adding well

known clustering algorithms to demonstrate the efficiency of this approach. We also deal with

what clustering is the most appropriate for Coddyac and what number of clusters is optimal.

Keywords: 3D dynamic meshes, Data compression, Computer animation, Coddyac,

Clustering

ABSTRAKT

 Vlivem neust§l®ho rŢstu vĨpoļetn²ho vĨkonu souļasn®ho hardware se st§le v²ce

dost§vaj² do popŚed² technologie pracuj²c² s 3D daty. PŚ²klady vyuģit² tohoto druhu dat

mŢģeme nal®zt napŚ²klad v geografii nebo v hern²m prŢmyslu. 3D data nemus² bĨt pouze

statick§ (ve formŊ modelŢ), ale rovnŊģ mohou bĨt dynamick§ (3D animace).

 Jedn²m ze zpŢsobŢ reprezentace animovanĨch 3D dat je jejich vyj§dŚen² s pomoc²

Ădynamick® troj¼heln²kov® s²tŊñ. Tento druh reprezentace bĨv§ velmi objemnĨ a pro potŚeby

efektivn²ho skladov§n² a sd²len² je tŚeba data komprimovat. Tato pr§ce je zamŊŚena na vliv

shlukov§n² vrcholŢ na kompresi dynamickĨch troj¼heln²kovĨch s²t². Vrcholy troj¼heln²kov®

s²tŊ jsou rozdŊleny do shlukŢ na z§kladŊ podobnosti jejich trajektori² v prŢbŊhu animace a

kaģdĨ shluk je pak komprimov§n samostatnŊ ve snaze dos§hnout lepġ²ho kompresn²ho pomŊru.

Jako z§kladn² kompresn² algoritmus je pouģit Coddyac, rozġ²ŚenĨ o zn§m® shlukovac²

algoritmy tak, aby byla demonstrov§na efektivita tohoto pŚ²stupu. V t®to pr§ci je rovnŊģ Śeġena

ot§zka nejvhodnŊjġ²ho shlukov§n² pro Coddyac a optim§ln²ho poļtu shlukŢ.

Kl²ļov§ slova: dynamick§ troj¼heln²kov§ s²Š, komprese dat, poļ²taļov§ animace,

Coddyac, shlukov§n²

1

TABLE OF CONTENTS

1 Introduction .. 3

1.1 Models and Animations ... 3

1.2 Dynamic Triangle Mesh ... 4

1.3 Dynamic Mesh Compression ... 5

1.4 Aim of the Thesis ... 6

1.5 Organisation ... 6

1.6 Notation .. 7

2 Related Work ... 8

2.1 Quantisation ... 8

2.2 Entropy Coding .. 9

2.2.1 Huffman Coding .. 10

2.2.2 Arithmetic Coding ... 11

2.3 Principal Component Analysis ... 12

2.4 Static Mesh Compression ... 14

2.4.1 EdgeBreaker .. 15

2.4.2 Delta Coding and Prediction .. 17

2.5 Dynamic Mesh Compression ... 19

2.5.1 Dynapack ... 20

2.5.2 Shape-space Based Compression .. 22

2.5.3 D3DMC ... 24

2.5.4 FAMC .. 27

2.5.5 Coddyac ... 30

2.5.6 COBRA .. 31

2.5.7 Vertex Clustering and 3D Mesh Registration .. 32

2

2.6 Error Measurements ... 33

2.6.1 Mean Squared Error ... 33

2.6.2 KG-error .. 34

2.6.3 STED ... 34

3 Clustered Coddyac ... 37

3.1 Clustering in Coddyac .. 38

3.1.1 K-means ... 39

3.1.2 K-means initialization .. 41

3.1.3 Facility Location .. 42

3.1.4 Edge-collapse Based Clustering .. 43

3.2 Number of Basis Vectors ... 45

3.3 Compression Scheme ... 45

3.4 Raised Problems ... 47

4 Experimental Results ... 52

4.1 Influence of Clustering on Data-size .. 54

4.2 Influence of Clustering Methods .. 57

5 Conclusion and Future Work ... 64

Appendix A ï Implementation Overview ... 69

3

1 INTRODUCTION

In these days computers are widespread technology bringing information and

entertainment to many households, not just scientific institutions and societies. Hence most of

the distributed data has audiovisual entertaining character ïpeople mostly share movies, music

and computer games.

In the last few years movies, computer games and some industry sectors have one

common trend. Latest technologies in these branches of entertainment and industry tend to a

massive use of 3D data in the form of 3D models (meshes) and 3D animations (dynamic

meshes) and we expect that this trend will continue.

1.1 3D Models and Animations

Many different sources of 3D models and animations are known. Static 3D models can

be for example created by game developers, graphic designers or architects in 3D modelling

software. Real objects can be transformed to their 3D model representation using contact or

optical scanners and triangulation techniques. 3D models may be result of computer

simulations as well. These 3D models usually consist of a set of triangles defining the surface

of the model -3D triangle mesh.

Generally only information about geometry and connectivity of triangles is used to

describe a 3D triangle mesh, but normals, texture coordinates or colours can be attached to this

mesh description as well. 3D mesh geometry is defined by a set of vertices and each vertex

contains a triplet of coordinates. These coordinates are often very precisely expressed, thus

geometry constitutes the major part of 3D mesh data.

Naive connectivity describing schemes of triangle meshes contain only indices of triplets

of vertices forming the triangles separately for each triangle. However, there are more

advanced and data-saving schemes describing which vertices have triangles in common in a

mesh and which triangles are neighbouring and what way.3D triangle meshes can be dynamic

as well.

4

1.2 Dynamic Triangle Mesh

There are two basic ways how to describe a model animation, or in other words, a

dynamic triangle mesh. The first way is to describe the animation by a sequence of meshes

where each mesh represents one frame of the animation. These meshes can vary in number of

vertices or number of triangles. Disadvantage of this kind of animation description is that it has

to contain triangle connectivity description for each frame of the animation even if it does not

change.

There is another way how to describe this kind of data. If the connectivity of triangles

of animated mesh is constant in the time and just geometry is changing, we can describe the

animation by a single mesh, where for every vertex of the mesh there is a vector of values

describing its trajectory throughout the animation instead of common XYZ coordinates. Put

simply, geometry is stored for each frame, but triangle connectivity is stored just once for the

whole animation. Such dynamic mesh representation can be obtained from the one mentioned

above by preserving the first mesh of the animation set (for triangle connectivity description) in

the first step. In the second step we take coordinates of topologically corresponding vertices

from each mesh of the animation set and store them to a vector as a trajectory, figure 1.

Fig. 1 Different representations of mesh animation. Series of meshes vs. mesh with constant topology.

The single mesh representation is much more data-saving than the first one because we

do not have to store the connectivity of its triangles for each frame of animation. But it is still a

relatively large amount of data. The simplest way of connectivity representation is to represent

the corners of each triangle of the mesh by indices in the index table related with appropriate

vertex coordinates in the vertex table. This two-table representation is used to avoid re-storing

of vertex coordinates for each of multiple triangle corners, which have this vertex in common.

However, this representation still needs σὝổÌÏÇὠỖ bits to index vertices of all triangles, where

T denotes number of triangles and V denotes number of vertices of the dynamic mesh.

5

1.3 Dynamic Mesh Compression

In general data accuracy and quantity requirements are continually growing and similarly

grows the volume of data structures which contain them. Because storage capacities and

transmission speeds are limited we need to use compression algorithms to reduce data volume

and reduce hardware requirements for storage and distribution of such data.

 Unfortunately data of dynamic triangle meshes includes a lot of complex information.

Therefore it is very voluminous and needs to be compressed for efficient storage and

transmission. ZIP and RAR are popular compression algorithms but they are not primarily

intended for dynamic mesh compression. Like video or audio, this kind of data also should be

compressed by a specialized compression method to enhance efficiency of transmission and

storage.

In the case of dynamic triangle meshes we can use for example PCA-based dynamic

mesh compression algorithm called Coddyac [1], which is specialized in this kind of data

compression and belongs to the most efficient compression algorithms we know. Coddyac is

being developed at University of West Bohemia at Department of Computer Science and

Engineering.

Unlike the ZIP compression, Coddyac compression is a lossy compression algorithm, but

this may not be an obstacle due to the kind of data. Usual video compression algorithms are

also lossy to achieve better compression rates. The task of lossy compression is the reduction

of data volume by data encoding method which compresses the data by discarding (losing)

some of it. Lossy compression methods are most commonly used to compress multimedia data

and this kind of compression uses the imperfection of human perception.

In the context of this thesis it should be mentioned that in usual cases of dynamic mesh

compression, topology of meshes is compressed by a lossless compression scheme (an

observer is likely to notice missing parts of mesh) and the geometry of meshes is compressed

by a lossy compression scheme (not notice less accurate positions of vertices) using

quantization, entropy coding or principal component analysis.

6

1.4 Aim of the Thesis

This thesis is focused on improvement of PCA-based dynamic mesh compression

algorithms by vertex clustering and it is based on the paper [23] we have presented on the

prestigious international Conference on Articulated Motion and Deformable Objects. We

choose Coddyac as a representative of this type of compression algorithms.

Principal Component Analysis (PCA) [2] is a very important part of Coddyac algorithm.

It is used to simplify the description of vertex trajectories in a compressed dynamic mesh.

Efficiency of this simplification, and thus results of the entire compression algorithm, directly

depends on mesh movement complexity. More complex movement of vertices in an animation

means that less data can be neglected and worse compression ratios are achieved. Therefore

reduction of movement complexity seems to be a straightforward way to improve Coddyac

compression algorithm and PCA-based dynamic mesh compression algorithms in general. To

achieve this kind of complexity reduction we can use clustering of vertex trajectories.

Later in this thesis we deal with improvement of Coddyac (and PCA-based compression

algorithms in general) using a clustering of vertex trajectories of the dynamic triangle mesh and

with its influence on compression algorithm efficiency. We also deal with what clustering is

the most appropriate Coddyac and what number of clusters is optimal.

1.5 Organisation

The rest of this thesis is organized as follows: Section 2 gives an overview of some

frequently used compression techniques and approaches suitable for static and dynamic mesh

compression and background helpful for understanding the rest of the thesis. Coddyac

algorithm and some related dynamic mesh compression algorithms are introduced and key

features and algorithmic components of the original Coddyac algorithm are described here.

In Section 3 a clustering modification of Coddyac is presented, along with its brief

scheme and fundamental problems raised by this modification. One such problem is closely

related to topological decomposition of the mesh surface due to vertex clustering and its

projection to lower dimension. Possible correction of this problem and description of the tested

clustering algorithms is introduced in the same section. Experimental results are presented in

Section 4 and the thesis is concluded in Section 5.

7

1.6 Notation

In this thesis we use following notation:

F - number of frames of animation

V - number of vertices in each frame

T - number of triangles of the mesh

E - number of edges of the mesh

 B - matrix of original animation, size 3FĬV

A - average trajectory vector

S - matrix of samples, contains subtraction of A from each column of B

C - autocorrelation matrix

Di - i-th eigenvector, made by eigenvalue decomposition of C

Ti - i-th trajectory

N - number of used eigenvectors (components of PCA)

D - basis of the PCA subspace, size 3FĬN

8

2 RELATED WORK

This thesis is focused on compression of dynamic meshes by specialised compression

algorithms. Like most specialised algorithms, dynamic mesh compression algorithms are based

on more general compression methods. In the beginning of this section, standard compression

methods used for general data compression are described. Then some static mesh compression

algorithms are introduced, followed by specialised dynamic mesh compression algorithms

related to this thesis. Most of them are lossy. Lossy compression methods cause data

corruption, therefore end of this section deals with error measurements and methods of

evaluating compression efficiency.

2.1 Quantisation

Quantisation is a frequently used method in multimedia compression taking advantage

of the imperfection of human perception. It is a process of mapping a continuous set of input

values to a smaller discrete set. This method is comparable to rounding values to some unit of

precision. Thus it is a lossy data compression method. For example rounding a real number x to

the nearest integer value forms a uniform quantizer which can be expressed as:

 ὗὼ ίὫὲὼϽ
ȿὼȿ

ή

ρ

ς
ȟ (2.1)

 Ὑὼ ήϽὗὼȟ (2.2)

where the function sgn() is the signum function, q is a quantization step and ỗὼỘ

brackets denotes rounding to nearest lower integer. The R(x) function is used to maintain the

original range of quantized values.

Geometry data of dynamic meshes are usually represented by vertex coordinates with

triplet of 32-bit floats, but we usually do not need such accurate data.

For example 16-bit integers are enough to resolve 15ɛm details in a model of a human

body, thus we can uniformly quantize each of vertex coordinates of original dynamic mesh

with 16 bits and cause no visible corruption to geometry data if the mesh size and the size of

required details is adequate to the mentioned scale.

9

Quantisation does not have to be uniform. As indicated by Chow [16], mesh can be

separated into several regions with variable detail. These regions can be quantised with

different precision, considering curvature and triangle sizes in each of them, to achieve better

compression result. Sorkine et al. [15] propose a different approach to geometry quantisation.

Geometry of compressed mesh is transformed by applying Laplacian operator associated with

the mesh topology first, instead of quantising Carthesian coordinates directly. This approach

results into low-frequency errors which are less noticeable by human visual system than the

high-frequency errors (human visual system is more sensitive to normal distortion than to

tangential distortion).

The quantization is very frequent pre-processing step for entropy encoding, because it

can significantly reduce the original range of values and thus the entropy and positively

influence the efficiency of entropy encoding.

2.2 Entropy Coding

Entropy is a measure of disorder (unpredictability) and is defined by following equation:

Ὄὢ ὴὼ ὰέὫὴὼȟ (2.3)

where X denotes discrete random variable with possible values {x1,..., xn} and p denotes

probability mass function of X. More ordered values in data-set X leads to lower entropy.

Large data-set of similar or the same elements within a small range of values is easy to

compress efficiently by entropy encoding. It is because during entropy encoding the probability

of occurrence of encoded symbol is detected and most frequently occurring symbols are then

substituted by the shortest code.

Input data for entropy coding is usually quantized to a specified number of bits first. This

is often a pre-processing step which positively influences the efficiency of entropy coding by

reducing the original range of values. After this step, data is better prepared to be efficiently

encoded by some entropy encoding algorithm before storage.

Entropic encoding is quite often used for data compression, because it is able to

substitute very long symbol by very short code. Most common entropy coding algorithms are

Huffman coding [26] and arithmetic coding [27].

10

2.2.1 Huffman Coding

Huffman coding is in computer science often used for lossless data compression. This

coding system uses prefix codes. Prefix code is code system, where neither code word is a

prefix of another code word. Prefix codes have variable length based on frequency

(probability) of occurrence of symbols in coded data (shortest bit-code for most common

symbol). This coding is the best method for fix-code generation (one substituting a code for

each symbol of input alphabet). Huffman coding uses binary trees with leaves for each symbol

from input alphabet of coded data structured according to the probability of occurrence of these

symbols. When the binary tree is built, branches from its root to its leaves are traced to identify

substituting prefix binary code for each symbol in the input data. This binary tree can be built

by following algorithm:

1) Sort probabilities of symbols in input data.

2) Create a node combining the two smallest probabilities together.

Sort the remaining probabilities together with created node.

3) Setñ0ò for a branch of created node, ñ1ò for the rest.

4) Repeat step 2) and 3) until the created node probability is equal to 1.0 (root)

Example binary tree is shown in figure 2. It shows binary tree for input data with

alphabet of 4 symbols, where symbol A is the most frequently occurring symbol, and therefore

it is substituted with a code of length 1 bit (shortest possible code). Generated prefix binary

codes consist of whole bits, thus the length of the substituted bit-code is not precisely adequate

to the probability of encoded symbol occurrence in the coded data and the probability is

rounded up. Therefore input data are coded with more bits than necessary and compression

ratio of Huffman coding is not as effective as it could be. This problem is handled by

arithmetic coding.

Fig. 2 Example of binary tree for Huffman coding

11

2.2.2 Arithmetic Coding

 Arithmetic coding is able to generate codes with fractions of bits and thus achieve better

compression ratios. It is used for lossless data compression similar to Huffman coding.

Arithmetic coding differs from Huffman coding in that it does not separate coded data into

symbols, substituting each by a bit-code, but it represents the whole coded data-set using a

single real number in the range of (0;1].

This interval is iteratively split into sub-intervals by arithmetic coding algorithm,

proportionally to the probability of occurrence of each symbol in the coded data-set. When the

whole set of symbols is encoded, the resulting interval identifies sequence of symbols that

produced it. It is not necessary to store the resulting interval, it is only necessary to store one

real number (fraction) lying in the range of this interval. Example of splitting sub-intervals by

arithmetic coding is shown in figure 3.

Fig. 3 Example of splitting sub-intervals by arithmetic coding

Basic algorithm of arithmetic encoding can be improved by changing frequency

(probability) tables during the process of data compression. This changing of frequency tables

is usually based on symbol sequences occurring during the compression and decompression

process. This modification of arithmetic coding can yield 2 or 3 times better compression ratio

and it is known as context-adaptive binary arithmetic coding (CABAC) [18].

12

2.3 Principal Component Analysis

For the purpose of geometry compression many dynamic triangle mesh compression

algorithms use the Principal Component Analysis (PCA). PCA is a statistical method used to

find the directions of the largest data variance -principal components. These directions are used

as axes of a new coordinate system and the original data are transformed into it. PCA method

can reduce the dimensionality of a dataset, thus it is quite often used for the purposes of

compression of digital images and models or computer face recognition, but it is also used for

example to calculate tight bounding boxes [19].

Many dynamic triangle mesh compression algorithms process input data (dynamic

meshes) in the form of single connectivity description and a set of vertex trajectories of

individual vertices as explained in section 1.2. Trajectory of the i-th vertex is described by a

vector Ti, consisting of XYZ coordinates of the given vertex for each frame of animation, thus

the length of the vector is 3F. For dense meshes, the trajectory vectors are not spread randomly

in the space of dimension 3F, but they are located in subspace of much lower dimension. This

is because vertex trajectories are spatially bound to animated mesh and it is very probable that

neighbouring vertices will have similar trajectories. Due to this fact, first step of compression

algorithms is finding the subspace and expressing the vertices in this subspace.

To find this subspace we can use the PCA tool of linear algebra. Let B be the matrix of

size 3FĬV representing the original animation, and the trajectory vector associated with the i-th

vertex is stored in the i-th column of this matrix. Then S is matrix of samples obtained by

subtracting the average trajectory vector A from each column of matrix B. The eigenvalue

decomposition of the autocorrelation matrix ὅ of size 3FĬ3F, computed by matrix

multiplicationὅ ὛϽὛ , is used to obtain a set of eigenvectors Di, i=1..3F, and their

corresponding eigenvalues.

These eigenvectors are sorted in order of their eigenvalues which specifies their

importance and then N first (most important) vectors are selected. N is a user-specified

parameter. Basis of the subspace we are looking for is formed by these selected eigenvectors. It

is represented by a matrix D of size 3FĬN (the i-th column is the i-th eigenvector Di) and each

trajectory vector can be expressed as:

Ὕ ὃ ὧὈ (2.4)

13

Matrix of subspace basis D is orthonormal. Thus the matrix of combination coefficients

ὧcan be computed as ὅ ὛὈ. To be able to restore the original mesh we have to store the

average trajectory vector A, matrix C of size VĬN with combination coefficients ὧ and

subspace basis represented by matrix D of size 3FĬN. Efficient encoding of the subspace basis

(matrix of selected eigenvectors) is described in section 2.5.6.

Basically the principal component analysis is a simple change of basis (figure 4). It does

not have any influence on the results of linear operators. This observation can be exploited for

prediction of the combination coefficients at the decoder. Prediction as a technique of static

mesh compression is described in section 2.4.2.

Put simply, by using PCA on vertex trajectories during compression, we will obtain a

new description of trajectories: vectors of PCA coefficients, known as feature vectors. These

vectors consist of linear combination coefficients of principal components, which can be

ordered by how much they affect the movement of vertices during the whole animation.

Theoretically, in the case of randomly generated data, the principal components affect data

variance to the same or very similar extent.

However, in the case of real data processed by compression algorithms the first principal

component has the strongest influence on data variance and influence of the following

components rapidly decreases. Reason for such trajectory transformation is the possibility to

ignore less important components of PCA vectors and this way reduce the amount of data

describing the original animation.

Fig. 4 PCA change of basis for 2D point cloud

14

 One such real case: tested animation has 200 frames, thus its trajectories have 600

components. Using PCA we detected that first 20 principal components describe mesh

animation with error lower than user-specified threshold. User set this threshold to value where

he/she was not able to recognise any difference between the original and compressed version of

animated mesh. Thus we can neglect 95% of the data without visible loss of movement

precision.

 This part of compression algorithm is lossy, however, it does not affect the connectivity

of the mesh, so for example compressed animation of a running woman may lose information

about small movements like shivering of fingers or blinking, but it cannot happen that it would

lose any part of her body.

The more complex the movements of an animated mesh are, the less movement can be

considered negligible and thus the length of the feature vectors will have to be higher

(decreasing compression ratio). Size of the compressed data depends especially on the rate of

compression of these vectors, so more principal components decrease the compression ratio.

Therefore, one possible way to improve the compression ratio is to reduce the movement

complexity, which could be locally achieved by clustering the mesh vertices by similarity of

their trajectories.

2.4 Static Mesh Compression

Static and dynamic meshes can be stored in files in textual formats (for example

WRML) or more effectively in the form of binary bit-streams. What both these formats have in

common is that they usually represent triangle meshes using two separate tables. Vertex table

contains geometry information (vertices, normals,...) and another table (connectivity table)

contains information about connectivity using indices to vertex table for vertices of triangles.

Using vertex table and connectivity table 1:6 compression ratio can be achieved for

dense regular meshes without using any other compression method, because each vertex is

shared by 6 triangles in average. But there are more sophisticated and more efficient methods

of compression of static meshes focused on connectivity compression and geometry

compression.

15

2.4.1 EdgeBreaker

EdgeBreaker is used to compress triangle connectivity of the mesh. EdgeBreaker is

primarily intended for triangle connectivity compression of static meshes, but if the topology of

a chosen dynamic mesh is constant throughout the time of animation(whole animation consists

of a series of meshes but can be expressed as only one mesh, with vertices defined by

trajectories instead of space coordinates) we can use this compression algorithm as well.

EdgeBreaker uses simple data structure for topology description in pre-processing step.

This structure is called CornerTable and consists of two vectors. First vector VT contains

ordered triplets of indices for each triangle and each entry of this triplet indexes vertex

coordinates in vertex buffer corresponding with appropriate triangle corner. This vector is 3T

long. If we have 2 triangles with one common edge, we can create them using 4 vertices in

vertex buffer and 6 entries (one for each triangle corner) in the VT vector of CornerTable.

Entries in CornerTable are ordered (0,1,2 for the first triangle, 3,4,5 for the second) thus we

can simply determine to which triangle a selected corner belongs by dividing the corner index

by 3.

The second CornerTable vector OT contains indices of opposite corners. If we have 2

triangles with a common edge, opposite corners are those 2 corners, which are not incident

with the common edge. Each corner in the second vector has one opposite corner index from

the first vector. In the case of missing opposite corner we can use index value of -1 indicating a

topological hole in the described mesh.

This topology describing structure can be built with time complexity of O(N) using a

hash function. CornerTable structure is depicted in figure 5.

Fig. 5 CornerTable structure for mesh with 2 triangles.

16

During the compression itself, EdgeBreaker traverses the triangles of triangle mesh and

marks visited triangles and vertices to recognise which part of the mesh is already compressed

and which triangle should be compressed next. The EdgeBreaker initial triangle is selected

randomly and then one by one neighbouring triangles are visited. EdgeBreaker stores some

information about currently visited triangle and then the triangle is left over one of its edges.

Thus, the triangles are passed by crossing their common edges. That is why this algorithm is

called EdgeBreaker.

During the traversal of the mesh 5 basic situations may arise. These situations are

labelled by letters C, L, E, R, and S and depicted in figure 6. Occurring situations are noted

into the CLERS string, and they precisely describe the desired mesh connectivity, because we

know which triangles are neighbouring and what way. Compressed mesh connectivity is

completely described just using the CLERS string. More information about EdgeBreaker

compression can be found in [3].

Fig. 6 Situations coded by EdgeBreaker into CLERS string. Light blue triangles are still not visited, arrows show

directions of the next EdgeBreaker step. V is vertex belonging to actually processed opposite corner.

Described method handles only simple meshes, which are topologically identical with

sphere. This is inconvenient restriction and thus some modifications were proposed. In final

form the EdgeBreaker algorithm is able to handle meshes with topological holes (missing

triangles), meshes consisting of more than one topologically closed component (individual

objects) and meshes with positive genus value.

The simplest mesh we know is a tetrahedron and more complex mesh with topology

identical with sphere can be created from tetrahedron by simple operations. One such operation

involves adding one vertex v and removing one triangle from mesh surface, which is replaced

by 3 new triangles with common vertex v.

17

One operation results in 1 new vertex, 2 new triangles and 3 new edges, see figure 7.

Hence we have following equation:

 ὠ Ὕ Ὁ ς Ὃȟ (2.5)

where G is genus and V, T and E are numbers of vertices, triangles and edges. For simple

mesh with topology identical with sphere G=0. Meshes which contain ñhandlesò have positive

genus. For example torus has G=1 and spectacles have G=2.

Fig. 7 Tetrahedron operation for genus value explanation.

For the efficient function of the EdgeBreaker algorithm we need the triangles to be in

compact areas - triangles must touch their neighbours by edges, not just by vertices. Otherwise

the EdgeBreaker is stopped and started again for still unvisited triangles and this leads to a

growth of the amount of data. The worst kind of data for EdgeBreaker compression is a set of

separated triangles.

2.4.2 Delta Coding and Prediction

The entropy coding, often used and very effective compression technique, is mentioned

above. To increase the efficiency of this technique the entropy of coded data should be as low

as possible. Due to this claim delta coding and linear prediction methods were proposed.

In dense meshes most edges are short with respect of the model size and distances

between vertices are short as well. Traditionally vertex coordinates are related to the origin of

the coordinate system and vertex coordinates lie in wide range of values. If the range of values

is reduced, vertex coordinates could be compressed more efficiently using quantization and

entropy coding.

Delta coding is based on coding differences between values instead of values

themselves. This difference is called delta. Order of values in the coded sequence has to be

18

known because each value is delta coded as a difference between its original value and

decompressed value of its predecessor (we obtain one value from the other). If the differences

in these pairs of values are small, delta coding greatly reduces data redundancy.

The difference in the pair of equivalent values is equal to 0 and good delta coding

should have all deltas minimal (as close to 0 as possible). In combination with quantization

delta coding results in data-set with very small range of values. Resulted deltas are ideally

close to zero and after quantization gain just few very similar values.

Vertices of static mesh have to be ordered to use delta coding for static mesh

compression. To order them the EdgeBreaker (or other similar connectivity compressor) can be

used. Connectivity compressor traverses the mesh and creates strip of processed triangles

adding one adjacent vertex (triangle) at a time. Each new vertex can be delta coded according

to the last coded vertex and resulting delta will be probably close to zero due to topological

dependence (pair of vertices belongs to one triangle) of pairs of successive vertices.

This approach can be further improved using prediction of vertex position according to

surrounding vertices. A very common prediction method is based on the parallelogram rule

[11], see figure 8. The mesh is traversed using connectivity compressor or analyzer and

vertices are processed as described above. Coordinates of each new vertex are not delta coded

directly, but predicted to lie at the top of projected parallelogram first. This parallelogram is

formed by corner vertices of last processed triangle vleft, vright and vbase. The X, Y and Z

coordinate of the predicted vertex are expressed as:

 ὺ ὺ ὺ ὺ (2.6)

 ὺ ὺ ὺ ὺ (2.7)

 ὺ ὺ ὺ ὺ (2.8)

The algorithm traverses the mesh, processing one triangle and related vertex at a time

using the prediction equation and transmits differences between original and predicted

coordinates of vertices. This difference is called residuum, not delta, but in principle it is delta

coding.

19

Fig. 8 Parallelogram prediction b), original stored data a). Transmitted values are represented by blue lines.

Methods were described using topology (connectivity) driven traversing of compressed

triangle mesh, but the traversal can be driven by geometry properties of the mesh as well.

2.5 Dynamic Mesh Compression

Types of 3D animations can be divided into two groups acording to their connectivity.

First group contains animations with constant connectivity; the second contains animations

with varying connectivity or varying number of vertices. Animations with constant

connectivity can be compressed more efficiently than the others and they are known as

dynamic triangle meshes, because they can be represented by single triangle mesh with vertex

positions varying in time (vertex trajectories). Because of this animation representation, many

methods of dynamic mesh compression use the same or very similar approaches as methods of

static mesh compression. Typical compression scheme consists of separate compression of the

mesh connectivity and geometry compression, finished by quantization and entropy coding.

Geometry of dynamic mesh is sometimes transformed into the form of vertex trajectory

for each vertex of the triangle mesh instead of set of vertex positions for each frame of

animation. Geometry is then analysed and compressed in the space of vertex trajectories but

there are some algorithms that use for example shape-space PCA instead of trajectory-space

PCA during geometry compression.

Most of dynamic mesh compression algorithms are lossy, but do not affect the

connectivity of triangles of the compressed mesh. Thus these compression methods only lose

geometric precision of animationôs vertex trajectories.

20

2.5.1 Dynapack

Dynapack compression scheme [20] is based on spatiotemporal prediction schemes

ELP and Replica. Dynapack uses EdgeBreaker to traverse the compressed mesh (its triangles)

and when new (not visited) vertex is reached, its coordinates are predicted by Dynapack and

the obtained residuum is encoded using entropy coder. ELP and Replica are extrapolation

predictors, because they extrapolate known coordinates of vertex in previous frame using

neighbouring vertices to predict its coordinates in currently processed frame. These space-time

extrapolating predictors need only two consecutive frames for prediction, but they cannot be

used for the first frame of animation and for the first few vertices of each frame, because we

need few neighbouring vertices and previous frame for prediction.

In the first frame of the animation space-only prediction, known as parallelogram

prediction, is used (described in section 2.4.2). In following frames of the animation the first

few vertices are predicted using time-only predictor. This predictor uses vertex coordinates in

the last frame as a prediction of vertex coordinates in the currently processed frame.

Extended Lorenzo Predictor (ELP) is space-time predictor perfect for pure translation

prediction and for prediction of more general deformations. It is similar to parallelogram

prediction. ELP prediction is defined as:

 ὺ ὺ ὺ ὺ ὺ ὺ ὺ ὺ Ȣ (2.9)

Put simply, it is parallelogram prediction of the vertex v coordinates in the frame f

corrected using residue between predicted and original vertex coordinates in the frame f-1.

Unlike ELP the space-time Replica predictor is capable of predicting rigid motions and

uniform scaling transformations. It expresses coordinates of vertex ὺ as in a coordinate

system derived from the neighbouring triangle (last reached by EdgeBreaker) first:

ὃ ὺ ὺ ȟ (2.10)

ὄ ὺ ὺ ȟ (2.11)

ὅ
ὃ ὄ

ᴁὃ ὄᴁ
ȟ (2.12)

ὺ ὺ ὥὃ ὦὄ ὧὅȟ (2.13)

21

 where coefficients (new coordinates) a, b and c are computed using following

equations:

 Ὀ ὺ ὺ ȟ (2.14)

ὥ
ὃϽὈ ὄzϽὄ ὄϽὈ ὃzϽὄ

ὃϽὃ ὄzϽὄ ὃϽὄ ὃzϽὄ
ȟ (2.15)

ὦ
ὃϽὈ ὃzϽὄ ὄϽὈ ὃzϽὃ

ὃϽὄ ὃzϽὄ ὄϽὄ ὃzϽὃ
ȟ (2.16)

ὧ ὈϽ

ὃ ὄ

ᴁὃ ὄᴁ
Ȣ (2.17)

 Finally, vertex ὺ is predicted by replication of this construction on frame f:

 ὃᴂ ὺ ὺ ȟ (2.18)

 ὄᴂ ὺ ὺ ȟ (2.19)

ὅᴂ

ὃᴂ ὄᴂ

ᴁὃᴂ ὄᴂᴁ
ȟ (2.20)

 ὺ ὺ ὥὃ ὦὄ ὧὅȢ (2.21)

 This construction is relative to the neighbouring triangle, and thus it perfectly predicts

coordinates of vertices in rigidly transformed parts of the mesh. Meaning of the Replicaôs

coefficients is depicted on the figure 9.

Fig. 9 Replica predictor. Last frame on the left, currently processed frame on the right.

22

2.5.2 Shape-space Based Compression

Another approach to the compression of dynamic meshes proposed by Alexa and

Muller in [13] is based on using shape-space PCA instead of trajectory-space PCA during

geometry compression. Shape-spaces describe families of shapes as a linear space.

An isomorphic vertex-edge topology for each frame of animation is expected in this

approach as well and only a subset of Fkey frames (key-frames) of original animation to

represent the original animation is used. Key-frames of animation are separately described by

the set of shape vectors Bi and it is assumed that all key frames (base shapes) have vectors of

the same length. Then the mesh geometry A(t) in the time t of the key-frame animation can be

expressed by interpolation between two consecutive key-frames:

ὃὸ ὥὸϽὄȢ (2.22)

Function ai(t) provides vector of weights describing the key-frame interpolation in the

time t:

ὥὸ πȟȣȟπȟ

ὸ ὸ

ὸ ὸ
ȟ
ὸ ὸ

ὸ ὸ
ȟπȟȣȟπȟ (2.23)

where ti is the time stamp of the i-th key-frame. However, Alexaôs approach separates

geometry from animation, thus an alternative animation representation is used:

ὃὸ ὥὸϽὄȟ (2.24)

where ὄ denotes the average static shape vector and the rest of ὄ vectors represent

linear deviations from the average shape vector. These vectors are ordered with decreasing

importance with respect to the animation reconstruction. Bi vectors cannot include

transformations such as rotation, and therefore the animation is decomposed into rigid body

motion and an elastic part first and transformation matrix T(ti) from B0 to Bi with the centre of

mass shifted to the origin of the coordinate system is computed for each geometry shape (key-

frame).

23

We obtain new animation representation, which decouples animation part and geometry

part:

ὃὸ Ὕ ὸϽ ὥὸϽὄȢ (2.25)

The geometry is described mainly by B0 and the animation is described by Ti and ai. PCA

is used to compute basis vectors Bi and the compression is achieved by using only the first few

ὄ vectors for animation representation see figure 10. The shape-space PCA is used in this

dynamic mesh compression approach, thus it is possible to replace original geometry by new

geometry while maintaining the original animation of the geometry. For example, if we have

3D animation of running horse, we can represent it the way mentioned above and replace the

horse geometry by the elephant geometry to obtain animation of the running elephant.

The disadvantage of this approach is especially the size of the autocorrelation matrix C

we are using during PCA to find the shape-space basis. If we use trajectory-space PCA, the

autocorrelation matrix C has size 3FĬ3F, where F is number of frames, but if we use shape-

space PCA, the autocorrelation matrix C has size 3VĬ3V, where V is number of vertices.

Typical compressed animation has hundreds of frames and thousands or tens of thousands of

vertices, thus the PCA autocorrelation matrix can be more than two orders of magnitude larger

if we use shape-space instead of trajectory space.

These disadvantages are usually handled by using small set of key-frames instead of all

frames of compressed animation and by the mesh simplification.

Fig. 10 Space-shape based compression figure from [13]. Frames of original animation in the first row, animation

compressed using only 3 basis vectors in the second row.

24

2.5.3 D3DMC

3D mesh coding (3DMC) is currently part of MPEG-4 Visual standard used for static 3D

mesh compression and Muller et al. proposed its extension, Differential 3DMC, in [22].

Differential 3D mesh coding scheme (D3DMC) is a prediction based approach, which uses an

octree data structure for spatial subdivision (clustering) of 3D mesh animation with constant

connectivity.

D3DMC uses animation description similar to usual video compression schemes. Frames

of animation are represented as sets of subsequent meshes called Groups of Meshes (GOM)

consisting of intra meshes (I mesh) and predicted differential meshes (P mesh). I meshes are

compressed as a static meshes using 3DMC and following P meshes are coded as follows:

1) Previously decoded mesh is subtracted from the current mesh and only difference

vectors are further processed

2) Octree motion segmentation (spatial clustering) of difference vectors by Zhang and

Owen [21] is performed

3) Resulting information is quantized and encoded using CABAC

I meshes are typically used in the first frame of compressed animation sequence or when

the prediction in D3DMC becomes too large. Diagram of the encoder is shown in figure 11.

Fig. 11 Differential 3DMC compression scheme.

The octree motion segmentation is the key point of this compression method. Octree

structure is used in this scheme to represent motion of vertices within the space. First, we

subtract previously decoded mesh (frame) from the currently processed mesh and obtain

difference motion vectors Ўὺ ὺȟὺȟὺ describing motion between two consecutive frames

of 3D animation.

25

We start the octree motion segmentation with minimum bounding box as a topmost cell

of the octree structure, which includes all V vertices within. Eight motion vectors άȟȣȟά

approximating the motion of all vertices enclosed within the octree cell are associated with the

cell, one motion vector for each cell corner. If the motion of vertices is not approximated well,

using motion vertices, then the cell is repeatedly split into eight octants until the approximation

reaches user defined accuracy.

Motion of vertices within each cell (difference vectors) is approximated using tri-linear

interpolation of the motion vectors. First, the tri-linear ratio ” ”ȟ”ȟ” is computed for

each vertex v and corner of the cell with minimum x, y, z ὦ ὦȟὦȟὦ as follows:

”

ὺ ὦ

ί
 ”

ὺ ὦ

ί
 ”

ὺ ὦ

ί
ȟ (2.26)

where s denotes size of the cell. Then weights of motion vectors ύȟȣȟύ for the

processed vertex v are computed and finally, the vertex motion Ўὺ is computed using tri-linear

interpolation of these motion vectors:

 ύ ρ ” ”” (2.27)

 ύ ρ ” ρ ” ” (2.28)

 ύ ” ρ ” ” (2.29)

 ύ ””” (2.30)

 ύ ρ ” ρ ” ρ ” (2.31)

 ύ ” ρ ” ρ ” (2.32)

 ύ ”” ρ ” (2.33)

 ύ ρ ” ” ρ ” (2.34)

Ўὺ ύάȢ (2.35)

26

Each cell of the octree segmentation structure approximates the motion of vertices within

this cell and the computation of the eight motion vectors of the cell is the final step of the

animation representation process.

Let A be the matrix of size 3VĬ24, V is number of vertices within the processed cell and

ύ is the weight of the i-th motion vector of the j-th vertex and b is vector of length 3V in the

following form:

ὃ

ở

Ở
Ở
Ở
Ở
Ở
Ở
Ở
Ở
ờ

ύ π π

π ύ π

π π ύ

Ễ

ύ π π

π ύ π

π π ύ

ύ π π

π ύ π

π π ύ
ể

Ệ

ύ π π

π ύ π

π π ύ
ể

ύ π π

π ύ π

π π ύ

Ễ

ύ π π

π ύ π

π π ύ Ợ

ỡ
ỡ
ỡ
ỡ
ỡ
ỡ
ỡ
ỡ
Ỡ

 ὦ

ở

Ở
Ở
Ở
Ở
Ở
Ở
Ở
Ở
ờ

Ўὺ

Ўὺ

Ўὺ

Ўὺ

Ўὺ

Ўὺ
ể
Ўὺ

Ўὺ

ЎὺỢ

ỡ
ỡ
ỡ
ỡ
ỡ
ỡ
ỡ
ỡ
Ỡ

 (2.36)

 Then we obtain desired set of eight motion vectors, which provide the best estimation of

the motion of the vertices in the currently processed cell, by using the least square estimation

of x in the equation Ax = b, where x is vector of length 24 containing x,y,z triplets for each of

the eight motion vectors.

Obtained motion vectors are evaluated according to accuracy of estimation of vertex

motion inside the cell. If the motion is not well predicted, then the cell is subdivided into eight

octants and the segmentation process is repeated while the estimation error is larger than

specified threshold. Finally the motion vectors are uniformly quantized to reduce compressed

data entropy and thus enhance the CABAC compression ratio. Only the set of motion vectors

and the octree structure are stored.

27

2.5.4 FAMC

Frame-based Animated Mesh Compression (FAMC) method proposed in [5] by Mamou,

Zaharia and Pr°teux is also segmenting the mesh with respect to motion and it has been

adopted by MPEG as a new standard for dynamic mesh compression. FAMC is constructed for

compression of the dynamic 3D meshes with constant connectivity and time-varying geometry

as compression methods mentioned above. It is based on a skinning model-based motion

compensation strategy. Scheme of FAMC compression is depicted in figure 12.

Fig. 12 Frame-based animated mesh compression scheme.

First, the animated mesh with F frames and V vertices is segmented into vertex clusters.

This segmentation is performed with respect to the motion of mesh vertices, such that motion

of each segment can be accurately described by a single affine transformation. This

transformation is calculated for each cluster and each frame of the animation and it describes

transformation of vertices from the first frame of the animation to the desired frame of the

animation. The first frame of the animation is compressed by an arbitrary compression

algorithm designed for compression of static meshes.

The segmentation process determines a partition ɩ “ ȟȣȟ of the mesh, defining

N clusters such that each cluster can be accurately described by a single affine transformation if

the partition is optimal.

28

The optimality criterion is defined in FAMC as the mean square motion compensation

errorὉɩ:

Ὁɩ ὃ ὼ ὼ ȟ (2.37)

where ὼ is position of vertex ὺ in the frame f described in homogeneous coordinates and

ὃ represents the affine transformation from the first frame to the frame f. The function ὲὺ

returns the index ὲ of the cluster to which the vertex ὺ belongs. The affine transformation is

given by:

ὃ ὥὶὫÍÉÎ ὃὼ ὼ Ȣ (2.38)

Goal of the algorithm is to determine such a partition ɩᶻ of the input dynamic mesh that

with a minimal number of clusters the motion compensation error satisfies the bound of user

defined error threshold Ὁɩᶻ Ὁ . The FAMC algorithm is based on a hierarchical

simplification strategy depending on topological conditions: two neighbouring vertices ὺ and

ύ are merged into single one by using the half-edge collapse operator denoted by ὬὩὧέὰὺȟύ

if their affine motion is similar. This operator removes one of these vertices and connects its

incident edges to the remaining vertex. To each remaining ὺ list of ancestor vertices ὺᶻ is

assigned. In the initial state the list ὺᶻ is empty and after each half-edge collapse ὬὩὧέὰὺȟύ it

is updated as follows:

 ὺᶻᴺὺᶻ᷾ύᶻ᷾ύȢ (2.39)

The decimation process is driven by cost of collapsing edges such that the edge with the

minimal cost is collapsed in each decimation step. The cost of the edge collapse is determined

by an objective error function ὅὺȟύ :

ὅὺȟύ ὃȟὼ ὼ

ȟ

ȟ (2.40)

where ύȟὺ ὺᶻ᷾ύᶻ᷾ὺȟύ , and

29

ὃȟ ὥὶὫÍÉÎ ὃὼ ὼ

ȟ

Ȣ (2.41)

The clustering process starts with partition consisting of V clusters, one cluster for each

vertex, and it iteratively decreases the number of cluster by edge collapses, until the global

motion compensation error exceeds the user specified error threshold Ὁ. Modification of this

kind of clustering is described in section 3.1.4.

Unfortunately, vertices near the borders of vertex clusters are not described accurately

enough and significant distortion on the borders between neighbouring clusters may appear.

This behaviour is handled by using the skinning-based motion compensation model, which

expresses vertex motion as a weighted linear combination of the motion of cluster the vertex

belongs to and motions of its neighbouring clusters. Thus the predicted position ὼ of the

vertex ὺ in the frame f is obtained by following equation:

ὼ ύ ὃὼȟ (2.42)

where ύ is the animation weight. Animation weight is real value coefficient, which is

controlling the influence of cluster n on the vertex v. The vector of all animation weights of the

clusters influencing the vector v is called animation weight vector ύ and it is defined as:

ύ ÁÒÇÍÉÎ ὃὼ ὼ ȟ (2.43)

This equation is solved only for the cluster which contains the vertex v and for the set of

neighbouring clusters and all other clusters influences the vertex with π. Finally, for each

frame, the algorithm calculates correction vectors between predicted positions of vertices and

their original positions. Thus the compressed animation data contains the first frame mesh with

the connectivity description, the clustering information, the set of affine transformation

matrices, and the set of weight vectors and correction vectors.

30

2.5.5 Coddyac

The Coddyac is a compression algorithm, which is specialized in dynamic triangle

mesh compression and uses dynamic meshes with constant triangle connectivity as input data.

Coddyac contains two well-known algorithms, Rossignac's EdgeBreaker and principal

component analysis, as described in sections 2.4.1 and 2.3. In Coddyac, EdgeBreaker is used

for compression of triangle connectivity (topology) of the mesh. As mentioned above,

EdgeBreaker is primarily intended for triangle connectivity compression of static meshes, but

if the triangle connectivity of chosen dynamic mesh is consistent throughout the time of

animation we can use this compression algorithm as well.

Geometry of the compressed dynamic mesh can be compressed at the same time as

triangle connectivity. Geometry information of dynamic mesh is transformed into the form of a

set of vertex trajectories and processed by principal component analysis first, as described in

section 2.3.The size of compressed data depends especially on the rate of compression of these

trajectories. The PCA basis matrix E and the means vector A are stored and vertex trajectories

are replaced by feature vectors in the structure of dynamic triangle mesh. Finally, combination

coefficients in feature vectors are quantized.

 During triangle connectivity compression all three feature vectors c of EdgeBreakerôs

initial triangle (one for each triangle corner) are stored without any further modifications. The

mesh is then traversed by EdgeBreaker and each new feature vector is predicted from already

compressed vectors using parallelogram prediction:

 ὧ ὧ ὧ ὧ ȟ Ὦ πȟρȟȣȟὔ ρ ȟ (2.44)

where N is user defined number of basis vectors, equal to the length of compressed

vectors. After parallelogram prediction the residue vector between original and predicted

feature vector is stored.

At the end of compression algorithm resulting CLERS string and residue vectors are

encoded using arithmetic coder. Finally, matrix of PCA basis is compressed by specialised

algorithm COBRA [8].

31

2.5.6 COBRA

Compression of the Basis for PCA Represented Animations (COBRA) is highly

efficient extension of dynamic mesh compression techniques based on PCA. While volume of

connectivity data is usually negligible, volume of PCA basis is large, when we use PCA-based

dynamic mesh compression algorithm. COBRA can reduce the size of the PCA basis by 90%

with respect to direct encoding and thus achieve approximately 25% increase of performance

of the compression algorithm without any significant loss of accuracy.

Standard way of PCA basis compression is a simple quantization, but COBRA is based

on non-uniform quantization and uses non-least-squares optimal linear prediction to increase

the compression ratio. Non-uniform quantization was already mentioned in section 2.1. Key

observation for COBRA is, that basis vectors have character of trajectories. Each basis vector

can be interpreted as a trajectory of a moving point, which moves smoothly. Therefore

COBRA predicts these basis vectors using linear movement predictors such as:

 ὴὶὩὨὺ ὺ ὺ ὺ ςὺ ὺ ȟ (2.45)

where vf is vertex position in frame f. There are two more possible predictors using the

speed estimation s, the acceleration a, and the change in acceleration c:

 ί ὺ ὺ ȟ (2.46)

 Á Ö Ö Ö Ö (2.47)

 ὺ ςὺ ὺ ȟ (2.48)

 ὧ ὺ ὺ ὺ ὺ (2.49)

 ὺ ὺ ὺ ὺ Ƞ (2.50)

 ὴὶὩὨὺ ὺ ί ὥȠ (2.51)

 ὴὶὩὨὺ ὺ ί ὥ ὧȠ (2.52)

 Predicted basis vectors are compared with the original basis vectors and obtained

residues are quantized and encoded by the entropy coder. COBRA uses non-uniform

quantization in this step. Each vertex trajectory of the compressed dynamic mesh is expressed

by linear combination of basis vectors depending on combination coefficients in the

32

appropriate feature vector. The size of the coefficients varies very significantly, but this

variance can be predicted well. Size of the coefficients corresponds with its order in the feature

vector (first coefficient is the biggest and the appropriate basis vector is the most important),

which is caused by the nature of PCA. This behaviour is used by non-uniform quantization.

COBRA uses finer quantization for the more important basis vectors. For more details see the

original source [8].

2.5.7 Vertex clustering and 3D mesh registration

It should be mentioned that there is a paper dealing with the topic similar to the topic of

this thesis. Various techniques of vertex clustering are described and compared in the Impact of

vertex clustering on registration-based 3D dynamic mesh coding [33] by Ramanathan, Kassim

and Tan. Three different vertex clustering techniques are considered: multilevel k-way graph

partitioning [30] for topology-based clustering, Lloydôs k-means clustering [31] for geometry-

based clustering and spectral clustering [32] for semantic mesh decomposition and it is derived

from the experiments that the compression obtained through the semantic clustering achieves

the best compression ratio.

New Iterative Closest Point (ICP) [34] based 3D dynamic geometry compression

scheme is presented in this paper. Whole mesh is segmented according to the mesh motion by

this compression algorithm and for each segment of the current mesh the appropriate segment

in the temporal reference is detected using ICP. Finally, the motion of all vertices in each

cluster of the mesh is described by affine transformations and the set of correction vectors.

While the mesh is segmented and the affine transformations are calculated, reconstruction error

for each couple of clusters is determined. Subsequently the segmentation algorithm groups the

vertices into three sets according to their error.

The first set of vertices contains clusters of vertices, which can be expressed accurately

by affine transformations. The second set of vertices consists of clusters of vertices, which can

be accurately described only if we use both affine transformations and correction vectors and

the third set of vertices is consisting of vertices, which cannot be expressed efficiently using

affine transformations and the DPCM-based techniques are used to encode them.

Vertices of the mesh are divided this way to achieve better compression ratios due to

the fact, that vertices in the first two sets (70% of all vertices) can be described using a few

33

affine transformations and correction vectors. However, come clusters can be reconstructed

with very high reconstruction error. These clusters are identified during the compression

process and reclustered to decrease the reconstruction error and the ICP registration is

performed again for these clusters. Finally, conclusion of this paper is that it is possible to

achieve about 10% better compression ratio over the Lloydôs k-means and k-way clustering if

the spectral mesh decomposition is used.

2.6 Error Measurements

Many different algorithms for dynamic mesh compression are known. To compare

efficiency of these compression algorithms RD curves are mostly used. RD is abbreviated form

of rate-distortion. RD curve is a function, typically expressed as a graph, showing the

relationship between the bit-rate and distortion. Distortion is the amount of damage of

animated mesh caused by compression algorithm (difference between original and

decompressed data) and bit-rate indicates the amount of compressed data.

In the case of dynamic mesh bit-rate is measured in bpfv ïbits per vertex and frame. Bpfv

shows how many bits in average do we need to represent one vertex in one frame. Present-day

compression algorithms are able to compress dynamic meshes with bpfv lower than 1 bit, while

distortion remains almost undetectable. Distortion of decompressed mesh is measured with

respect to its original for each frame of animation sometimes. It is measured separately for each

frame of the animation or summed or averaged for the whole animation.

2.6.1 Mean Squared Error

Mean squared error (MSE) is widely used method of error measurement, not only for

dynamic mesh decompression distortion. MSE is averaged sum of squared distances or

deviations between original values (vertices) ὺ and their corresponding distorted versionsὺ:

Ὡ
ρ

ὠ
ᴁὺ ὺӶᴁȢ (2.53)

However, there are more sophisticated error measures.

34

2.6.2 KG-error

To compare errors resulting from compression of 3D animated meshes KG-error measure

is often used. Karni and Gotsman presented this measure in [7] and defined it as:

Ὡ ρππϽ

ὄ ὄ

ᴁὄ Ὑὄᴁ
ȟ (2.54)

Where B is matrix containing original dynamic mesh description and ὄ is a matrix

containing description of the dynamic mesh after the compression and decompression

steps(distorted animation).B and ὄare matrices of sizeσὠ Ὂ. Each column coli of matrix

representing the dynamic mesh contains positions of all vertices of the dynamic mesh in i-th

frame of the animation and each element of this column contains one coordinate of one vertex

of dynamic mesh.

R(B) is average matrix which contains average spatial value of vertices for each frame of

animation. In this formula Frobenius norm is used denoted byᴁὼᴁ. Resulting error value is

expressed in percents and it is invariant to uniform scaling.

2.6.3 STED

Spatiotemporal edge difference (STED) is a novel (2011) error measure derived from

results of subjective testing of mesh distortion perception presented in [17]. It provides better

correlation with human perception of quality loss between original and processed (compressed)

dynamic meshes than any other. STED combines measurement of spatial and temporal

deviation of edge lengths caused by processing the mesh. This measure is focused on local

changes of error, therefore distortion is evaluated only for close neighbourhood of each vertex

and these values are summed to obtain the overall error.

Relative edge difference of spatial edge eij connecting i-th and j-th vertex is defined as:

ὩὨὩȟὪ

ὩὰὩȟὪ ὩὰὩȟὪ

ὩὰὩȟὪ
ȟ (2.55)

where el function provides length of edge eij in the frame f and overline denotes the

distorted version of this length. Relative edge length difference is used to increase sensitivity to

distortion in densely sampled areas of the mesh.

35

For each vertex of the original and distorted mesh local standard deviation of ὩὨ is

computed. It is computed for given vertex and a set of its topological neighbours (connected by

edges) in user specified topological distance d (vertex is maximally d edges distant from the

given vertex). Set of edges incident with given i-th vertex and any of its neighbours is denoted

NE(i, d). Edges in this set may significantly vary in length; therefore we further use weighted

average instead of arithmetic average of this set of edges:

ὥὺὫὩὨὭȟὪȟὨ

В ὩὨὩȟὪὩὰὩȟὪᶰ ȟ

В ὩὰὩȟὪᶰ ȟ
Ȣ (2.56)

Local deviation around i-th vertex in frame f and for distance d is then given by:

ὨὩὺὭȟὪȟὨ
В ὩὨὩȟὪ ὥὺὫὩὨὭȟὪȟὨ ὩὰὩȟὪᶰ ȟ

В ὩὰὩȟὪᶰ ȟ
Ȣ (2.57)

The scale-independent spatial part of STED error for given distance (radius) d is

defined as average of this local deviation over all vertices and frames of animation:

ὛὝὉὈὨ
ρ

ὠὊ
ὨὩὺὭȟὨȟὪȢ (2.58)

In temporal error computation the average speed of the i-th vertex in a frame f and

temporal window of width w around this frame is calculated first. To do so, we have to know

temporal edge length tel (Ö denotes coordinate x of i-th vertex in the frame f):

ὰὨάὥὼȣ ȟ ȣ ὺ ὺ ȟ (2.59)

ὨὼὭȟὪ

ὺ ὺ

ὰὨ
ȟ (2.60)

ὨώὭȟὪ

ὺ ὺ

ὰὨ
ȟ (2.61)

ὨᾀὭȟὪ

ὺ ὺ

ὰὨ
ȟ (2.62)

ὸὩὰÉȟÆȟὨὸ ὨὼὭȟὪ ὨώὭȟὪ ὨᾀὭȟὪ ὨὸȢ (2.63)

36

The value dt (distance in time) is the temporal distance between consecutive frames and

it is used to handle possible infinity values caused by processing static vertices. Using relative

temporal edge length instead of absolute length the metric sensitivity in areas of a very slow

motion increases. Now, we can define the average spatiotemporal speed of the i-th vertex in the

f-th frame using temporal window w as:

ίὭȟὪȟύȟὨὸ
В ὸὩὰὭȟὰὪȟὨὸ

ȟ
ȟ

ÍÉÎὊȟὪ ύ ÍÁØρȟὪ ύ
Ȣ (2.64)

Next, the relative temporal edge difference can be defined:

ὸὩὨὭȟὪȟύȟὨὸ

ὸὩὰὭȟὪȟὨὸ ὸὩὰὭȟὪȟὨὸ

ίὭȟὪȟύȟὨὸ
Ȣ (2.65)

By putting previous formulas together we can construct formula of the overall temporal

error averaged over all vertices and frames:

ὛὝὉὈύȟὨὸ
ρ

ὠὊ ρ
ὸὩὨὭȟὪȟύȟὨὸȟ (2.66)

where F-1 is used because of tel function, which is not defined in the last frame of

animation.

To obtain overall spatiotemporal error, formulas of STEDs and STEDt are combined

into the form of hypotenuse of weighted spatial and temporal error:

 ὛὝὉὈὨȟύȟὨὸȟὧ ὛὝὉὈὨ ὧϽὛὝὉὈύȟὨὸȢ (2.67)

Parameter c is a weighting coefficient.

37

3 CLUSTERED CODDYAC

As a basic compression algorithm Coddyac is chosen due to its high efficiency. Coddyac

is PCA based dynamic mesh compression algorithm, thus it compresses vertex trajectories

using principal component analysis. The more complex the set of trajectories is, the less

information about this set can be considered negligible and the compression ratio decreases.

Because geometry takes the major part of the dynamic mesh, size of the final compressed data

depends especially on the rate of compression of the feature vectors (contain PCA combination

coefficients). Length of these vectors is equal to number of selected principal components

(basis vectors), so less principal components means shorter vectors and thus better compression

ratio.

As noted, the efficiency of the Coddyac compression algorithm directly depends on the

complexity of movements of the animated mesh. By movement complexity of a set of vertices

we mean differences of their trajectories. The trajectories can be very complex, but they have

to be similar to each other to decrease movement complexity of the set of vertices. It follows

that if different parts of the mesh move in a relatively simple manner, but differently, the global

movement of the mesh will be complex. Therefore, after application of PCA, all trajectories are

described by vectors longer than necessary ïwe are using combination of more principal

components in feature vectors than we need.

For example to describe the movement of the torso of the chicken in figure 13 on the left,

principal components describing movement of his wings are also used, even though this

movement almost does not affect the torso.

Fig. 13 Chicken dynamic mesh movement simplification. Three important movements for each vertex of chicken

mesh on the left. On the right clustered chicken mesh with only one important movement for torso and each wing.

38

To reduce the length of the feature vectors, we must select those vertices of the mesh,

whose trajectories are similar each other and include them in a common group ï a cluster. This

way the movement complexity in individual clusters is reduced and so is the necessary number

of principal components. That leads to shorter PCA vectors and better compression ratio.

Simply put, one possible way to improve the compression ratio of Coddyac and PCA

based dynamic mesh compression algorithms in general is to reduce the movement complexity

of dynamic mesh, which could be locally achieved by clustering the mesh vertices by similarity

of their trajectories.

3.1 Clustering in Coddyac

Many algorithms have been proposed for dynamic mesh compression. There are also

known various algorithms of mesh division into smaller parts (clusters) depending on the

topology or geometry criteria. Our method combines the compression algorithm and division

of the mesh to increase compression ratio.

Clustering algorithms divide the given set of data into subsets according to specified

criteria, so that data in the same cluster are similar in some sense. Two basic types of clustering

are hierarchical clustering and partitional clustering. Hierarchical clustering builds

progressively clusters using already specified clusters and final hierarchy may be represented

in a tree structure. Partitional clustering builds all clusters by dividing given data set at once.

In the context of dynamic mesh compression three ways of mesh division can be

considered: geometry-driven division, topology-driven (connectivity-driven) division and

division into logical parts. Division into logical parts (for example, finding the limbs, head and

torso on a human model) can be efficiently used for compression of meshes with rigid motions

or setting different level of quantisation for specific areas of mesh (face more accurately

quantized than chest). Topology-driven division scheme is used if vertex-edge incidence or

triangle connectivity is found to be good criteria for mesh division. Most frequently used way

of division is geometry-driven division, which divides the mesh on the basis of geometrical

properties such as vertex positions or trajectories.

In this thesis we want to divide meshes according to their movement complexity and

similarity. Movement is a geometrical property of dynamic mesh, thus niether strictly

39

topology-driven nor logical division is not considered further. For example front legs of a

running horse model could be divided into separate parts using dividing into logical parts, but

they will probably move in a very similar way, thus it is better to join them into one cluster

using geometry-driven approach according to PCA compression efficiency.

Geometry-driven division of dynamic meshes can be performed by clustering of vertices

using their trajectories. We have tested several methods of vertex clustering, whose functions

and modifications are described below.

3.1.1 K-means

K-means [4] is one of the partitional clustering algorithms. The clusters are iteratively

refined according to the specified distribution criteria. Each k-means cluster is represented by

its centre and the data points are usually assigned to clusters based on their distance to the

centres of clusters. Cluster centres are usually calculated as an average of all values in the

cluster, so the centres do not have to correspond with data-points in the input data-set.

Algorithm consists of the following steps:

Initialization: Choose the k elements of the data as initial centres of clusters for the next step

1) Assign each point to nearest centre

2) Calculate new centre of each cluster as average of all elements in the cluster

3) Classify the data into k clusters specified by their distance from the centres of

previous clusters

4) If the contents of clusters changed, go to step 2)

Algorithm consists of two phases, which are repeated. These are classification stage,

when the data are divided into individual clusters, and the phase of learning, where we control

reassignment of data into individual clusters and calculate their new centres. The shortest

Euclidean distance between the centres of cluster and the selected element from the specified

set of data is most often chosen as a distribution criterion. Cluster centres are then calculated as

the arithmetic average of all values within the cluster. The initial values of centres of clusters

are randomly selected elements from the specified set of data.

40

To run the K-means algorithm we need to know in advance how many classes (clusters)

will be used, i.e. the value k. The k value varies according to the purpose of using k-means

algorithm or input data. In the case of vertex trajectory clustering the k value varies in

dependence on the input data.

The calculation of distance of trajectory vectors can be modified in clustering algorithms

and in addition to Euclidean distance (L2norm) we have experimented with calculation of the

distance using any norm Lp by the following formula:

ὒ ȿὼȿ ȟ (3.1)

where xi denotes difference between i-th components of two vectors. Furthermore, we

have experimented with clustering of trajectories, which have been adjusted, as depicted in

figure 14.

First, trajectories shifted into the origin of the coordinate system using origin of

trajectory and average trajectory position were tested. Origin of trajectory is position of the

corresponding vertex in the space of the first frame of animation and average trajectory

position is calculated as the arithmetic average of corresponding vertex positions in all frames

of the animation.

Second, trajectories were rigidly transformed to the average trajectory. Average

trajectory is calculated as the arithmetic average of position of all vertices for each trajectory

component. Trajectories were adjusted this way to maximally increase influence of their shapes

during clustering step of compression algorithm, but neglecting of this information led to

unpredictable (and negative) results.

Fig. 14 Tested trajectory adjustments, red dotted shape represents average trajectory for rigid transformation.

41

 We tried to neglect trajectory distribution using these adjustments to strengthen

influence of trajectory shape and thus construct clusters with trajectories as similar as possible.

Unfortunately the additional adjustment of trajectories suppresses original distribution and

direction of trajectories and this leads to more distorted results of clustering.

 Due to our observations and close relation between clustering and topology

compression, original trajectories without any adjustment are used in the rest of this thesis.

3.1.2 K-means initialization

K-means provide different clustering with randomly chosen initial clusters and better

results of k-means clustering are obtained only when initial clustering is close to the final

solution. Thus the initial selection of cluster centres is extremely important. From experimental

observations it is known, that if random initial clustering is used, some patterns (trajectories in

the case of this thesis) have the same cluster membership for each run of the k-means

algorithm. This observation was exploited by Khan and Ahmad in [28]. They proposed a novel

cluster centres initialization algorithm CCIA for k-means clustering.

In CCIA, clusters are computed for each individual attribute of the input set of patterns

in the first step of the k-means initialization. Initial centres are chosen with maximum distance

between them and they are chosen from the input data-set from which outliers are removed. It

is assumed, that each pattern attribute is normally distributed in the space of patterns. For

specified number of clusters ὑ the normal distribution curve is split into ὑ intervals such that

we obtain ὑ areas with the same size and the midpoint of this interval is set as a cluster centre.

This is performed to eliminate the outliers and to keep maximum distance between cluster

centres. Thus each value of this attribute is associated with one of the ὑ clusters.

Then k-means is used on the input data-set to obtain cluster label for each pattern and

this process is repeated for each attribute. Vector of this labels assigned to single pattern is

called pattern string. At the end of this process we obtained ὑᴂ distinct pattern strings

representing ὑᴂ clusters. Next, we calculate centres of these clusters and if ὑᴂ=ὑ, we use this

centers as initialization centers for k-mens. If ὑ ὑ, we merge similar clusters together

until ὑᴂ=ὑ. The merging of clusters is provided by density-based multiscale data condensation

method (DBMSDC) proposed by Mitra et al. [29].

42

We are using much simpler cluster initialization in this thesis. We are clustering

vertices using their movement to separate vertices with different trajectories, thus we are using

initial cluster centres with maximum distance while these centres (trajectories) describing

animated mesh movement with maximum accuracy. To find such trajectories we transform

vertex trajectories using PCA as indicated in section 2.3. Obtained vectors of transformed

trajectories (patterns) include combination coefficients (attributes) of principal components,

which are ordered according to their influence on the animated mesh motion. We find attribute

related with the most important principal component for each pattern and pattern with largest

absolute value of this attribute is set as an initial center of the cluster. This process is repeated

for the first ὑ most important principal components.

3.1.3 Facility Location

Facility location [6] algorithm is similar to the k-means algorithm mentioned above. The

main difference is that the centres of clusters (called facilities) are always chosen from the set

of input data. The algorithm tries to find a placement and number of facilities, to which it

connects the other elements of the initial set. Each connection of element to facility is

evaluated by implementation specific cost. For example Euclidean distance between element

and facility is a common choice of evaluation. Algorithm selects such locations of facilities to

make the price of the connection of all elements minimal (for example sum of Euclidean

distances of the elements from their respective cluster centres). One cluster contains all

elements connected to a common facility and the facility itself, thus the number of resulting

clusters depends on the number of facilities.

Such an algorithm would open a facility in each element of the input data-set and make

that way the total cost equal to 0 (each element will be facility). That is why facility location

uses the so called facility cost. Facility cost is the opening price for the facility.

Each facility needs to pay a constant opening price, which is one of the inputs of the

algorithm and reduces the number of facilities. The aim of the algorithm is to find a balance

between the number of clusters and their sizes. Number of created clusters is thus dependent

only on the specified facility cost and the input data-set. Like the k-means algorithm, Facility

location is also iterative. Clusters are created and removed while there is a better overall price

for the allocation of clusters.

43

Such an overall cost P is calculated as:

ὖ ὅ ὪὭȟὮ ȟ (3.2)

where NF is number of facilities, Ni is number of elements connected to i-th facility and

CF is constant opening price for each facility. Cost function fc(i, j) calculates the cost of

connection between i-th facility and j-th element of clustered data-set.

In our case there is not a big difference between k-means and facility location. If we use

facility location algorithm with some facility cost and use the number of clusters as input k in

k-means, then the location and size of clusters should be the same or very similar for both

algorithms. Basically k-means is a variation of facility location algorithm, where we are

finding minimal sum of costs of k facilities instead of minimal number of facilities. In this case

facility cost is not set as an input of clustering algorithm.

3.1.4 Edge-collapse Based Clustering

Unlike previous methods, which were only dependent on the geometry of the animation,

this method is also influenced by the connectivity of the animated mesh using hierarchical

decimation strategy. The clustering algorithm uses a priority queue, from which an edge of the

mesh is selected that has the best (lowest) evaluation. Evaluation of edge may for example

correspond to its length, or similarity of trajectories of vertices that are connected by the edge.

Lowest cost edge is picked from the queue and collapsed into one vertex. Edges adjacent

to this point are re-evaluated according to the changes caused by the collapse. This process is

repeated until the desired number of remaining vertices is reached. The final number of clusters

corresponds to the number of vertices resulting from collapsing the edges. Each final vertex

has a tree of its collapsed ancestors and clusters are defined by leaves of this tree. This

clustering method in combination with FAMC cost function is used by Mamouôs skinning

method.

In original Mamouôs FAMC clustering algorithm original mesh is simplified while global

mean square motion compensation error remains lower than the predefined threshold.

44

Cost of collapsing the edge is defined in section 2.5.4 and exact description of this

algorithm can be found in [5].

This algorithm was also tested in combination with modified feature vectors. The

similarity of trajectories is no longer assessed on the basis of Euclidean distance of vectors, but

by the number of important components of the vectors, which they have in common. The

components which are zero after quantization may be neglected by the compression algorithm.

Therefore the similarity of trajectories is assessed by the number of zeros in specific common

components. In this case we do not want to cluster trajectories which are as similar as possible,

but those that allow us to maximize what can be neglected, see figure 15. Trajectories were

modified as follows:

0-trajectories: A threshold is given. Values in feature vectors, which are smaller than the

threshold are rewritten to 0, the others are rewritten to 1. Parts of vectors with 0 are those parts

which we want to discard. These vectors, that have the most of common 0, are therefore joined

to the common cluster.

Cost function fc(a,b) for thresholded vectors a and b is defined as:

Ὢὥȟὦ ρ ὥ ρ ὦ (3.5)

Clusters should therefore be designed so that it can be neglected as much of the vectors

as possible, achieving a reduction of the resulting data stream.

Fig. 15 Non-zero components of vectors are black, zero components are white. Modified vectors (left) are

clustered by their common zero-components (middle). Zero-components common for all cluster (white between

grey dotted lines) are moved to the end of the vectors. Sequences of zeros on the end of these vectors common for

one cluster can be neglected (hatched area).

45

3.2 Number of Basis Vectors

In Coddyac, setting the number of basis vectors was used to influence the quality of the

output. Number of basis vectors was a user specified integer N and its higher or lower values

led to increase and decrease of compressed mesh size and caused adequate error. When we use

clustering as a way to improve efficiency of Coddyac compression, we have to change the

approach to setting the number of basis vectors.

The aim of clustering in the context of dynamic mesh compression is to identify areas of

mesh where the vertices are moving with low entropy (similarly), join them into the one

common cluster and use it to express their movement by a lower number of basis vectors,

while maintaining the same accuracy. The entropy of vertex movement (similarity of vertex

trajectories) might vary significantly between clusters; therefore different number of basis

vectors for each cluster should be selected.

In our modification of Coddyac a single scalar value of tolerable PCA-introduced error

has to be specified by the user, and the algorithm calculates the appropriate number of basis

vectors automatically for each cluster.

We can express the average amount of PCA-introduced error using N basis vectors as:

Ў
ρ

ὠ

ρ

σὊ

Ὕ Ὕ

ὰ
ȟ (3.6)

where l is the average edge length of the animation, Ὕ is the i-th component of the j-th

original trajectory and Ὕ is the i-th component of the j-th trajectory reconstructed using N

basis vectors. In order to select the number of basis vectors for a specific cluster, we select the

smallest possible N for which this average PCA-introduced error falls below a user-specified

value.

3.3 Compression Scheme

Before the compression algorithm starts, the input set of meshes representing frames of

animation is transformed into the form of single mesh and set of trajectories (one trajectory for

each vertex). Then the single mesh is clustered according to vertex trajectories and cluster

index is assigned to each vertex.

46

In our scheme, the full mesh (figure 16a) connectivity is compressed first and it is stored

in a file together with the indices of clusters (figure 16b) for each vertex. As the number of

clusters is relatively small (small variance of values), and their indices are often repeated, the

set of indices can be efficiently compressed for example by arithmetic encoding. Connectivity

is compressed by EdgeBreaker.

Before the next phase we remove those triangles, whose vertices belong to more than one

cluster (figure 16c), and so the dynamic mesh is topologically and geometrically divided into

smaller components (figure 16d) corresponding to chosen clustering of vertices. Each cluster is

represented by a stand-alone object now.

Fig. 16 Topology of full mesh (a) is clustered (b) and stored. Triangles between clusters (c) are removed, and the

mesh is divided into components (d).

The second phase is used only for compression of geometry, not connectivity.

Compressed mesh is processed by EdgeBreaker algorithm again, but it is executed for each

component individually and resulting connectivity description is not stored. Geometry of the

components is compressed by PCA and COBRA separately by the Coddyac algorithm. Every

time a new vertex is reached by EdgeBreaker, this event is handled by geometry compressor.

Geometry compressor predicts trajectory of this vertex, residuum between predicted and

original trajectory is quantised and encoded using arithmetic coder. Simple scheme of this

compression is depicted in figure 17.

Clustering compression results in one set of cluster indices for whole mesh, one CLERS

string with connectivity description of whole mesh and number of sets of compressed geometry

data (basis, means vector and feature vectors), one set for each cluster.

47

Fig. 17 Simple scheme of clustered Coddyac compression.

3.4 Raised Problems

After applying a clustering algorithm on the vertices and PCA on the input data-set we

obtain an index for each vertex of the triangle mesh (and the corresponding trajectory) that

determines to which cluster the vertex belongs. For reasons of topology compression, as

indicated in section 2.5.5 (for the description of connectivity the EdgeBreaker algorithm is

used), it is necessary that the clusters are topologically compact. This means that the vertices

belonging to one cluster are not topologically separated by vertices of another cluster. Each

cluster should consists of triangles which are touching their neighbours by edges, not just by

corners, to enable EdgeBreaker to traverse the cluster topology by crossing edges of

neighbouring triangles.

 It is actually a projection from an n-dimensional space, in which the algorithm performs

the clustering of the vertices of the mesh, on to the 2-dimensional space of the surface of an

animated mesh. Unfortunately, after such projection individual clusters may overlap (figure

18). If we use simplification clustering, as in edge-collapse based clustering mentioned above,

48

where clustering is processed by mesh simplification (edge collapses) directly on the surface of

the mesh, we obtain clusters without overlapping areas. But if we use clustering method

without dependency on the mesh connectivity, it is necessary to correct the clusters on the

surface of the animated mesh to create areas of triangles as connectivity-compact as possible.

Fig. 18 Clusters separated in for example 3D space (xyz) can overlap after projection onto 2D surface (xz). This

situation can be hard to solve for EdgeBreaker compression.

This inconvenient characteristic of projection of high-dimensional clustering into lower

dimensions may cause malfunction of EdgeBreaker and has to be solved. EdgeBreaker

algorithm is built to traverse mesh by crossing its edges. It should behave the same way while

traversing smaller separate parts of the mesh defined by clustering of mesh vertices. Therefore

our compression algorithm has to take into account the connectivity of the vertices in common

cluster by employing a correction algorithm.

Due to this observation the smallest possible cluster of vertices or its separate part has to

contain at least 3 vertices. If there are only one or two separate vertices, it is not possible to

accept them by EdgeBreaker as individual cluster. Therefore when this situation occurs these

vertices have to be reassigned into the surrounding cluster. If the cluster or cluster part contains

3 or more vertices it is acceptable by our compression algorithm, but if the number of vertices

is small (for example 10 vertices), it will negatively affect final compression ratio because each

such cluster needs its own initialisation data, as described further in this section.

There are two ways to resolve the situation of small cluster, see figure 19. The first

option is to connect the remote cluster parts by a "bridge", the second option is to "drown" the

remote cluster part. Both of these options lead to a situation when some vertices of a cluster are

reassigned to a different cluster. This creates an error in the original assignment of vertices into

clusters and leads to a reduction in the efficiency of compression algorithms.

49

Fig.19 Correction of overlapped clusters. Small cluster part a) could be drown b). Large cluster part c) is better to

connect to the rest of cluster by bridge d).

If there is a separate part of a cluster on the surface of the mesh and it is sufficiently

small, it is possible "drown" it. This means that all vertices of the small separate part of the

cluster are connected to the cluster, which is adjacent or surrounding it. The greater the

drowned part of this cluster is, the greater the error of its "drowning" arises. If the cluster is

large enough, it is better to build a "bridge" between the two specific parts of the cluster by

reassigning vertices between them. The farther away these parts are, the larger number of

vertices has to be reassigned in building a "bridge", and the greater error occurs. Building a

"bridge" raises a number of inconveniences: way to do so, how long it will be and what if the

number of vertices for building the bridge is greater than the number of vertices of the distant

part of the cluster and several situations which are difficult to solve. One such situation is

presented in figure 20.

Fig.20 Bridges between clusters. a) creation of blue bridge splits red cluster into two parts, b) creation of red

bridge splits blue cluster into two parts and we need both bridges to solve this situation correctly.

