University of West Bohemia
Faculty of Applied Sciences
Department of Computer Science and iaegring

Diploma Thesis

Dynamic Mesh Compression
With Clustering

Pilsen 2011 Jan Rus

Empty list

ACKNOWLEDGEMENTS

First of all, | woul d | i kpeoviding kindduidamde tol n g .
me throughout the development of this thekiaould also like to thank my colleagues Ing.
Ol dSi ch Pet $2 k wha pravided meyith valualfie2advisds & Ithe area of data
clustering and appropriatmplementationsLast but not least, | want to thank my parents for
their support and helpWithout them | would never have come to where | am right now.

This work has been supported by the Ministry of Education, Youth and Sports of the
Czech Republic under the research prograrrfDB308 (Center for Computer Graphics).

| herebydeclare that this diploma thesis is completely my own work and that | used

only the cited sources.

Pilsen, B/5/ 2011
Jan Rus

ABSTRACT

The growth of computational power of contemporary hardware causegpansion of
technologies working with 3idata. Examples of the use of this kind of data can be found in

geography or gaming industry. afata may nobnly be static, but also dynamic.

One way of animated 30ata representation is expressing them by "dynamic triangle
mesh". This kind of data representation is usually voluminous and needs to be compressed fol
efficient storage and transmission. In tthesis we are dealing with the influence of vertex
clustering on dynamic mesh compression. The mesh is divided inéx whusters based on the
vertex movement similarity and compressed -pamtes to achieve higher compression
performance. We use Coddyac as a basic compression algorithm and extend it by adding wel
known clustering algorithms to demonstrate the efficiavfcthis approach. We also deal with

what clustering is the most approprifde Coddyacand what number of clusters is optimal.

Keywords: 3D dynamic meshes, Data compression, Computer animation, Coddyac,
Clustering

ABSTRAKT

Viivem neusuig§p ®het nr2Thsot uvi konu soul asn®t
dost 8§vaj? do popSed? technol ogie pracuj?2c
mTdgne nal ®zt nap $ebkv laer nv2 mg eporgTrnayfsiliu . 3D dat
statickg8 (veefoomBRANmocehdy, bat dynami ck§ (.

Jedn2m ze zpTsobT reprezentace gmimxwval
Adynamick® troj Y%heln2kov® s2tPDA. Tento dru
efektivn2ho skl adoavt8n 2k oamps d2moerra2t .| € atli®e lpa
shl ukovgn? vrchol T na kompresi dynami ckT ch
s2thD jsou rozdNRleny do shl ukT prral bD&kl aad n
kagdl shl uk j8n psakmoksanaprnilmove snaze dos§hno
Jako z8kladn? kompr e €addyac,abg groSemti$mE es hp ou
algoritmytak,aby byl a demonstrov8nat @tfekpgrn &dit aj & or
ot Sz&javhgdmid shlukové&peti m§bnThbddypakta shl ul

Kl 2] ov&8dysnlaomiacck 8 troj Wheln2kovg§ s28§, K ¢

Coddyac, shlukovgn?

TABLE OF CONTENTS

1 Introduction 3
1.1 Models and ANIMALIONS.uuiiieiiiiiiiitieere e e e e renr e e s s e e e e e anines 3
1.2 Dynamic TrHanNgle MESH........coooii e e e e e e e e e e anad 4
1.3 DyNnamiC MeSh COMPIESSION........uuuuurirriiiiiiiiieeeteieer et e e et e e e e e e e e e e s s amme e e e e e e e e e e e e 5.
1.4 AIM OF the TRESIS.....eiiiiiiiiiiiie e 6
1.5 OrganiSALiON.cceii e e e e ee e eeee e 6
SR o] 2= Vi [0 o O PP PP PPPPPPPPPPRY

2 Related Work 8
P20 R O T T o115 o) SR 8
P2 = 01 1o)V @3 o [T o TR 9

2.2.1 HUffman CodiNg..........oooriiiiiiiiiiice et e e e e e e e e 10
2.2.2 ArhMELIC COUINGuuuuiiiiiiiiiiiiiii ettt 11
2.3 PrincipalComponent ANAIYSIS.........couuiiiiiiiiiii e 12
2.4 Static MeSh COMPIrESSION.....ccoii i i et eeee e 14
2.4.1 EAQEBIEaAKEN.......ueiiiei e 15
2.4.2 Delta Coding and PrediCtion............cccuuuuviiiiemmniiiiiiiieeeee e 17
2.5 Dynamic Mesh COMPIESSION.......cccoiiuiiiiiiiiiieaeiiiieb e e e e eeeessseee e e eeeeeeaeeas 19
2.5.1 DYNAPACK. ... i eiiiiiii e eeaeaneaaaan 20
2.5.2 Shapspace Based COMPIreSSION.......ccccuruiiieiiiiiemmreiiiis e ee e et eeeeaennas 22
2.5.3 D3DMC ... it a b —————— 24
2.5.4 FAMC ..o 27
2.5.5 COUUYAC.o i ————— 30
2.5.6 COBR A .. e enae e eee 31
2.5.7 Vertex Clustering and 3D Mesh Registration............c.oocoovvimmmreeiiienennn. 32

A I o Y [T T U =] 0 11T 01 CS TR 33

2.6.1 Mean Squared ErTQr...........coooiiiiiiiiieeee e 33

P T S C T T o PRSP 34

2.6.3 STED ..ottt ettt e e e e e et a e e e e e as 34

3 Clustered Coddyac 37
3.1 ClUStering iN COUUYAC.eeeeieiiiieieeeii ittt eeee e bbb eneas 38
.11 KIMEANS. ...t ee e ettt ee e e e e e e e e e e anana e e e eee 39

3.1.2 K-means initialization............cooouiiiiiiiiiieee e e 41

3.1.3 FACIlity LOCALIONttt ieeeiii ettt emme e e e e e e e e e 42

3.1.4 Edgeollapse Based CIUSLErNG..........coouiiiiiiiiiierme e eeeeaees 43

3.2 NUMDEr Of BASIS VECIOLS......cccciiiiiiiiiiiiiieee ittt e e sessss e e e e e aaaaaaeeeeeas 45
3.3 COMPreSSION SCNEIME........uuiiiiiiiei st s et s e e e e e e e e e e eeeeiaa s s e e e e e e e aaeeeeeeeesesrnnnsd 45
I S - ULST=To [e (0]] [T ¢ U PSPP 47

4 Experimental Results 52
4.1 Influence of Clustering 0N DaSHZE..............uuuuvuniiiiiiieeree e e ereeraa s 54
4.2 Influence of Clustering MethOdS...........couuiiiiiiiiiieeei e 57

5 Conclusion and Future Work 64
Appendix AT Implementation Overview 69

1 INTRODUCTION

In these days computers are widespread technology bringing information and
entertainment to many households, not just scientific institutions and societies. Hence most of
thedistributed data has audiovisual entertaining charégeople mostly share mas, music

and computer games.

In the last few years movies, computer games and some industry sectors have one
common trend. Latest technologies in these branches of entertainment and industryatend to
massive use of 3D data in the form of 3D models (n®gshad 3D animations (dynamic
meshes) and we expebatthis trend will continue.

1.1 3D Models and Aimations

Many different sources of 3D models and animatiaresknown Static3D modelscan
be for example created by game developers, graphic designers or architects in 3D modelling
software. Real objects can be transformed to tBBimodel representation usingontact or
optical scannersand triangulation techniques3D models may be resut of computer
simulationsas well These 3Dmodelsusually consist of set of triangles defininthe surface

of the model3D triangle mesh.

Generdly only information aboutgeometry and connectivitgf trianglesis used to
describea 3D trianglemesh, but normals, texture coordinates or colours cattédehed to this
mesh descriptioms well 3D mesh geometry is defined tayset of vertices and each vertex
containsa triplet of coordinates. These coordinates are oftery precisely expressethus

geometryconstitutes thenajor part of 3D mesh data.

Naive connectivitydescribingscheme®f triangle mesbscontain only indices of triplets
of vertices forming the triangles separately for each trianglédowever, there are more
advancedand datesavingschemes describing which vertices have trianglesommonin a
meshandwhich triangles are neighbouring and what \8&ytriangle meshes can be dynamic

as well

1.2 Dynamic Triangle Mesh

There are two basic ways how to describe a madéehation, or in other words, a
dynamic triangle mesh. The first way is to describe the animatios d®guence of meshes
where each mesh represents one frame of the animation. These meshes can vary in number
vertices or number of triangles. Disadvarmtad this kind of animation description is that it has
to containtriangle connectivitydescription for each frame tfie animation even if it does not

change.

There is another way how to describe this kind of data. If the connectivity of triangles
of animated mesh is constant in the time and just geometry is changing, we can describe the
animation by a single mesh, where for every vertex of the mesh there is a vector of values
describing its trajectory throughout the animation instead of common XYZ inatesl Put
simply, geometry is stored for each frame, toisingle connectivitys stored just once for the
whole animation. Such dynamic mesh representation can be obtained from the one mentionec
above by preserving the first mesh of the animation setr{ngle connectivitylescription) in
the first step. In the second step we take coordinates of topologically corresponding vertices

from each mesh of the animation set and store them to a vector as a trajigetoey.

U8&

Fig. 1 Different representations of mesh animation. Series of meshegsh with constant topology.

The single mesh representation is much more-stang than the first one because we
do naot have to store the connectivity of its triangles for each frameiofation. But itis still a
relatively large amount of datdhe simplest way of connectivity representation is to represent
the corners of each triangle of the mesh by indicakearmndex table related with appropriate
vertex coordinates ithe vertex table. This twaable representation is used to avoisst@ring
of vertexcoordinatesor eachof multiple triangle cornerswhich have this vertex in common
However this representation stilees o™ | @Cbits to index verticesf all triangles where

T denotes number of triangles avidlenotes number of vertices of the dynamic mesh

1.3 Dynamic MeshCompression

In general dta accuracy and quantity requirements are continually growing and similarly
grows the volume of data structures whicbntain them. Because storage capacities and
transmission speeds are limited we need to use compression algorithms to reduce data volum

and reduce hardware requirements for storage and distribution of such data.

Unfortunately dataof dynamic triangle mémesincludes a lot of complex information.
Therefore it is very voluminous and needs to be compressed for efficient storage and
transmission. ZIP and RAR are popular compression algorithms but they are not primarily
intended for dynamic mesh compressibike video oraudiq this kind of data also should be
compressed bw specialized compression method to enhance efficiency of transmission and

storage.

In the case of dynamic triangle meshes we can use for exampleb&s@d dynamic
mesh compressn algorihm called Coddyac |1 which is specialized in this kind of data
compression and belongs to the most efficient compression algorithms we Goddyac is
being developed at University of West Bohemia at Department of Computer Science and

Engineering

Unlike the ZIP compressip@oddyac compression is a lossy compression algoyibiim
this may not be an obstacle due to the kind of data. Usual video compression algorithms are
also lossy to achieve better compression rathee.task of lossy compressionti®e redudion
of datavolume by data encoding method which compres$esdata by discarding (losing)
some of it. Lossy compression methods are most commonly used to compress multimedia dat:

and ths kind of compression uses the imperfection of hupemeption.

In the context of this thesis should be mentioned that in usual cases of dynamic mesh
compression topology of meshes is compressed &yossless compressioacheme(an
observer is likely tanotice missing parts of meshndthe geometry ofmeshes is compressed
by a lossy compressiorscheme (not notice less accurate positions of vertices)ng

guantization, entropy coding or principal component analysis.

1.4 Aim of the Thesis

This thesis is focused on improvement of RRased dynamic meshompression
algorithms byvertex clustering and it is based on tpaper[23] we have presented on the
prestigious international Conference on Articulated Motion and Deformable Obyets

choose Coddyac agepresentative of this type obmpression alyithms.

Principal ComponentAnalysis (PCA) 2] is a very important part of Coddyac algorithm
It is used to simplifythe description of vertex trajectories encompressed dynamic mesh.
Efficiency of this simplificationand thus results of the entire compression algorittiractly
depends on mesh movement complexity. More complex movement of verte@animation
means that less data can be neglected and worse compression ratios are achieved. Therefc
reduction of novement complexity seems to be a straightforward way to imp@madsyac
compression algorithm arfdlCA-based dynamic mesh compression algoritimmgeneral To
achieve this kind of complexity reduction we can use clustering of vertex trajectories.

Laterin this thesiswe deal with improvement of Coddyac (and RG#sed compression
algorithms in general) using a clustering of vertex trajectories of the dynamic triangle mesh and
with its influence on compression algorithm efficiency. We also deal with what clustering is
the most appropriate Coddyac and what number of clusters is optimal.

1.5 Organisation

The rest of thighesisis organized as follows: Sectidhgives an overview oome
frequently used compression techniques and approaches suitable for static and dygsmic
compressionand background helpful for understanding the rest of the th€siddyac
algorithm and somerelated dynamic mesh compression algorithms are introdacddkey

features and algorithmic componentgtaoriginal Coddyac algorithrare described here

In Section3 a clustering modification of Coddyais presentedalong with its brief
scheme and fundamental problems raised by this modification. One such problem is closely
related to topological decomposition tife mesh surface duto vertex clustering and its
projection to lower dimension. Possible correction of this prolaeddescription of the tested
clustering algorithmss introduced inthe samesection. Experimental results are presented in
Sectiond4 and thethesisis concluded in Sectioh

1.6 Notation

In thisthesiswe use following notation:
F - number of frames of animation
V - number of vertices each frame
T - number oftriangles of the mesh
E - number ofedges of the mesh
B - matrix of original animation, sizeF3] V
A - average trajectory vector
S- matrix of samples, contains subtractiorAdfom each column oB
C - autocorrelation matrix
D; - i-th eigenvector, made by eigenvalue decompositidb of
T - i-th trajectory
N - number ofusedeigenvectors (components of PCA)

D - basis of the PCA subspace, sifel3 N

2 RELATED WORK

This thesis is focused on compressafndynamic meshes by specialised compression
algorithis. Like most specialised algorithrdynamic mesh compression algorithms are based
on more general compression methddsthe beginning of this sectipstandard compression
methods used for general data compression are described. Then some static mesh compressi
algorithms are introducedollowed by specialised dynamic mesh compression algorithms
related to this thesisMost of them are lossy. Lossy compression methods cause data
corruption therefore end of this section deals with error measurements and sethod
evaluating compressiafficiency.

2.1 Quantisation

Quantisation isa frequently used method in multimedia compression taking advantage
of the imperfectionof human perceptiant is a process of mapping eontinuousset of input
values toa smallerdiscreteset. This methots comparable to rounding values to some unit of
precision Thus it isalossy data compression meth&r example rounding a real numbe&o

the nearest integer value forms a uniform quantizer which can be expressed as:

h (2.1)

Yo A oh (2.2)
where the functionsgri() is the signum function g is a quantization stepnd &

brackets denotes rounding to nearest lower intélger R(x) function is used to maintain the

original range of quantized values.

Geometry data oflynamic meshes are usually represented by vertex coordinates with

triplet of 32bit floats but weusually do noheedsuchaccurate data.

For example 16it integers are enough to resolves ¢ mailglie & model of a human
body, thus we can uniformly quiize each of verte coordinatesof original dynamic mesh
with 16 bits andcauseno visible corruption t@eometrydataif the mesh size antthe size of

required detadlis adequate to the mentioned scale

Quantisation doesot have to be uniform. As indicated by Choi6], mesh can be
separatedinto several regionith variable detail These regionsan bequantised with
different precisionconsidering curvaturand triangle sizes in each of thetm achieve better
compressino result Sorkine et al. 15] proposea different approach to geometry quantisation.
Geometry of compressed mesh is transformed by applying Laplacian opssdorated with
the mesh topologfirst, instead of quantising Carthesian coordinatesctly. This approach
results into lowfrequency errors which are less noticeable by humsimal system than the
high-frequency errors (humawisual system is more sensitive to norndiktortion than to

tangentialdistortion).

The quantization is very frequepte-processing step for entropy encoding, because it
can significantly reducehe original range of values and thus the entropy and positively

influencethe efficiency of entropy encoding.

2.2 Entropy Coding

Entropy is a measure of disorder (unpredictgbibnd is defined by following equation:
Ow no aémRonh (2.3)

whereX denotes discrete random variable with possible valxgs.{ %} and p denotes
probability mass function of. More ordered values in dasatX leads to lower entropy.

Large dateset of similar or the same elements withiemall range of values is easy to
compress eftiently by entropy encoding. It is because during entropy encoding the probability
of occurrence of encoded symbol is dezdcam most frequently occurringymbols are then
substituted by the shortest code.

Input data for entropy coding usuallyquantized ta specified number of bits firsThis
is oftena pre-processing step which positively influesceheefficiency of entropy coding by
reduang the original range of valuedAfter this step data is better prepared to be efficiently

encoded by some entropy encoding algorithm before storage.

Entropic encoding is quite often used for data compression, $edaus able to
substitute very long symbol by very short colast commonrentropy coding algorithms are

Huffman coding 26] and arithmetic coding?[7].

2.2.1 Huffman Coding

Huffman coding is in computer science often used for lossless data compré$sson.
coding system uses prefix cod&sefix code is code system, where neither code wora is
prefix of armother code word.Prefix codes have variable lengthased on frequency
(probability) of occurrence of symbols in coded data (shorbestode for mgt common
symbol). This coding is the best method for-fiwde generation (one substitutiagode for
each symbol of input alphabeBuffman codinguses binary treesith leavesfor each symbol
from input alphabet of coded data structured accordirtegrobability of occurrence of these
symbols.When the binary tree is built, branch&em its root to its leaveare tracedo identify
substituting prefix binary cod®r each symbol in the input datBhis binary treecan bebuilt

by following algorithm:

1) Sort probabilities of symbols in input data.
2) Createanode combining the two smallest probabilities together.
Sort theremainingprobabilitiestogethemwith created node.
3) Sefi Ofor a branch of created node,1for the rest.
4) Repeat step 2) ar8) until the created nodwobability is equal to 1.0 (root)

Example binary tree is shown in @ige 2. It shows binary tree for input data with
alphabet of 4 symbaglsvhere symbol A is the most frequently ocaugrsymbol, and therefore
it is substituted wh a code of length 1 bit (shortest possible codegneratedorefix binary
codes consist of whole bits, thtie length of the sbstitutedbit-code is not precisely adequate
to the probability of encoded symbol occurrente the coded datand the probability is
rounded up.Therefore input data are coded with more bi@thecessary and compression
ratio of Huffman coding is not as effective ascduld be. This problem is handled by

arithmetic coding.

symoo £ e
A 0.4 ! 1
B 0.35 1 . 01
cC 02 . 001
D 0.05 O 000

Fig. 2 Example obinary tree foHuffman coding

10

2.2.2 Arithmetic Coding

Arithmetic coding is able to generate codes with fractions of bits and thus achieve better
compression rat® It is used for lossless data compression simitarHuffman coding.
Arithmetic coding differs from Huffman coding in thatdbesnot separate coded data into
symbols substituting each by a bibde, but itrepresentshe whole coded dataet usinga
single real number in the range of (0;1].

This interval is iteratively split into subintervals by arithmetic coding algorithm
proportionallyto the probability of occurrence of eadymbol in the coded datet.Whenthe
whole set of symbols is encoded, the resulting interval identifies sequence of syhabols t
produced it. It is not necessary to stdre resulting intervalit is only necessary to store one
real number (fraction) lying in the range of this inten&tample of splitting suintervals by

arithmetic coding is shown in fige 3.

of oorence 0.56 0.14 022 0.08
Symbols A B C D Message
| — — A
I — H B
i C

Fig. 3 Example of splitting suintervals by arithmetic coding

Basic algorithm of arithmetic encoding can be improved by changing frequency
(probability) tables duringhe process of data compression. This changing of frequency tables
is usually based on symbeéquences occurring durinige compression and decompression
processThis modification of arithmetic coding can yield 2 or 3 times better compression ratio

and it is known as contesaptive binary arithmetic coding (CABAC){].

11

2.3 Principal Component Analysis

For the purpose of geometry compressinany dynamic triangle mesh compression
algorithns use thePrincipal ComponentAnalysis (PCA). PCA is a statistical method used to
find the directions of the largest data variaqmeéncipal componets. These directions are used
as axes of a new coordinate system and the original data are transformed”iG# method
can reduce the dimensionality of a datadletis it is quite often used fdhe purposes of
compression of digital images and models or computer face recognition, but it is also used for

example to calculatight bounding boxe§19].

Many dynamic triangle mesh compressialgorithns processinput data (dynamic
meshes) in the fornof single connectivity description ana set of vertex trajectories of
individual vertices as explained in sectibr2 Trajectory of the -th vertex is described by a
vectorT;, consisting oiXYZcoordinates of the given vertéar each frame of animatioftius
the length of the vector iFF=3For dense meshes, the trajectory vectors are not spread randomly
in the space of dimensior-3but they are located in subspace of much lower dimension. This
is becauseertex trajectories are spatially bouttdanimated mesh andtiis very probable that
neighbouring vertices will have similar trajectori€sie to this fact, first step of compression
algorithms is finding the subspace and expressing the vertices in this subspace.

To find this subspace we can use the RG& of linear algebralet B be thematrix of
size F | Yepresenting the original animati@ndthe trajectory vector associated with tk@ i
vertexis stored in the-th column of this matrixThen S is matrix of samples obtained by
subtractilg the average trajectory vectdk from each column of matriB. The eigenvalue
decomposition of theautocorrelation matrixd of size FI3F, computed by matrix
multiplication6 "YOY , is usedto obtain a set of eigenvector®;, i=1..3, and their

corresponding eigenvalues.

These eigenvectors are sorted order of their eigenvalues which specifies their
importance and themN first (most important vectors are selectedN is a userspecified
parameterBasis of the subspace we are looking for is formethbgeselected eigenvectork
is representetly a matrix D of size F 1 Nthe th column is the-th eigenvectoD;) andeach
trajectory vectocan be expressets:

Y B @0 (2.4)

12

Matrix of subspace bas3 is orthonormal Thusthe matrix of combination coefficients
o can be computed & "Y'O. To be able to restore the original masé have tostore the

average trajectory vectoh, matrix C of size V1 Nwith combination coefficientso and
subspace basis represented by mardf size F 1 NEfficient encoding of the subspace basis

(matrix of selecteceigenvectors) is describedsection 2.5.6

Basicallythe principal component analysis a simple change of bagigure 4) It does
not have any influence aheresults of linear operators. Thadservation can be exploitéar
prediction of thecombination coefficientat the decoderPrediction as a technique of static

meshcompressiond described in sectidh4.2

Put simply, by using PCA on vertex trajectories during compression, we will obtain a
new description of trajectories: vectors of PCA coefficiekt®wn as feature vector¥hese
vectors consist of linear combinatiaoefficients of principal components, which can be
ordered by how much they affect the movement of vertices during the whole animation.
Theoretically, in the case of randomly generated data, the principal components affect data

variance to the same or vesinilar extent.

However, h the case of real data processeddypressioralgorithns the first principal
component has the strongest influence on data variance and influertbe &dllowing
components rapidly decreas€&eason for such trajectory traoghation is the possibility to
ignore less important components of PCA vectors and this way reduce the amount of data

describing the original animation.

PC2

PCl1

v

Fig. 4 PCA change of basis for 2D point cloud

13

One such real case: tested animation has 200 fraimes,itstrajectorieshave 600
components. Using PCA we detected that first 20 principal components describe mesh
animation with error lower than usspecified threshold. User set this threshold toealhere
he/'shewas not able to recognisaydifference betweethe original and compressed version of
animated mesh. Thus we can neglect 95%hefdata without visible loss of movement

precision.

This part of compression algorithm is lossy, howeveatpés not affect the connectivity
of the mesh, so for example compressed animation of a running woman may lose information
about small movements like shivering of fingers or blinking, but it cannot happen that it would

lose any part of her body.

The more complex the movements of an animateghare, the less movement can be
considered negligible and thus the length of thature vectors will have to be higher
(decreasing compression rati®jze of the compressed data depends especially oatthefr
compression of these vectors, so more principal components decrease the compression ratic
Therefore, one possible way to improve the compression ratio is to reduce the movement
complexity, which could be locally achieved by clustering the meslicesrby similarity of

their trajectories.

24 Static Mesh Compression

Static and dynamieneshes can be stored in files in textual formats (for example
WRML) or more effectively in the form of binary bstreams. What both thefmats have in
common is that theysually represent triangle meshes using $eparate table¥ertex table
contains geometry information (vertices, normajsand another tabléconnectivity table)

contains information abowbnnectivityusing indics to vertex table for vertices of triangles.

Using vertex table and connectivity table 1:6 compression catiobe achievetbr
dense regular meshes without using any other compression mb#uadise each vertex is
shared by 6 triangles in averadgit there are more sophisticated and moreiefit methods
of compression of static meshdecused on connectivity compression and geometry

compression

14

2.41 EdgeBreaker

EdgeBreaker is usetb compress triangle connectivity of the mesh. EdgeBreaker is
primarily intended fotriangle connectivitcompression of statimeshes, but if the topology of
achosen dynamic mesh éenstanthroughout the time of animation(whole animation consists
of a ®ries of meshes but can be expressed as only one mesh, with vertices defined by

trajectories instead of space coordinates) we can use this compression algorithm as well.

EdgeBreaker uses simple data structure for topology description-prquessing .
This structure is called CornerTable and consists of two vectors. First Wcmontains
ordered triplets of indices for each triangle and each entry of this triplet indexes vertex
coordinates in vertex buffer corresponding with appropriate triacagieer. This vector isT3
long. If we have 2 triangles with one common edge, we can create them using 4 vertices in
vertex buffer and 6 entries (one for each triangle corner) inviheector of CornerTable.
Entries in CornerTable are ordered (0,1,2 fa finst triangle, 3,4,5 for the second) thus we
can simply determine to which triangéeselected corner belongs by dividing the corner index
by 3.

The second CornerTable vectOf contains indices obppositecorners. If we have 2
triangles witha common edgepppositecorners are those 2 corners, which areinoident
with the common edge.d€h corner in the second vector has oppositecorner index from
the first vector. In the case of missiogpositecorner we can use index value-tfindicating a

topological hole in the described mesh.

This topology describing structure can be built with time complexit@@) using a
hash functionCornerTable structure is depicted in figbre

Vertex Buffer . CornerTable
V: O
0: 0 | 3|
1111
22
33| 30
| 42| 4-1)
51

Fig. 5 CornerTable structure for mesh with 2 triangles.

15

During the compression itself, EdgeBreaker traverses the triangles of triangle mesh and
maiks visited triangles and vertices to recognigaich part of the mesh is already compressed
and which triangle should be compressed nétie EdgeBreaker initial tingle is selected
randomly and then one by one neighbouring triangles are visited. EdgeBreaker stores some
information about currently visited triangle and then the triangle is left over one of its edges.
Thus, the triangles are passed by crossing ttweirmon edges. That is why this algorithm is

called EdgeBreaker.

During the traversal of the mesh 5 basic situations may arise. These situations are
labelled by letters C, L, E, Rind Sand depicted in figre 6. Ocairring situations are noted
into the CLERS string andthey precisely describéhe desired mesleonnectivity, because we
know which triangles are neighbouring and what wa@pmpressed mesh connectivity is
completely described just usinpe CLERS string. More information about EdgeBreaker

compresion can be found irg].

VAANWAVANVAYAN
£ N\ A

w® A

E

Fig. 6 Situations coded by EdgeBreaker into CLERS string. Light blue triangles are still not visited, arrows show

directions of the next EdgeBreaker step. V is vertex belonging to actually proopgsmsitecorner.

Describedmethod handles only simple meshesich aretopologically identical with
sphere. This is inconvenient restriction and thus some modificationspregesed In final
form the EdgeBreaker algorithm is able to handle meshes with topological holes (missing
triangles), meshes consisting of more than one topologically closed component (individual

objects) and meshes with positive genus value.

The simplest mesh we know #stetrahedron and more complex mesh with topology
identical with sphere can be created frimtntahedron by simple operations. One such operation
involves adding one vertexand removing one triangle from mesh surfagbich is replaced

by 3 new triangles with common vertex

One operation results in 1 new vertex, 2 new triangles and 3edges see figire 7.

Hence we have following equation:
® Y O ¢ O (2.5)
whereG is genusandV, T andE are numbers of vertices, triangles and edgessimple

mesh with topology identical with sphe@=0.Me s hes whi ¢ h chave paiiva f h

genus For exampleéorushas G=1 and spectaclesvb&=2.

AN

Fig. 7 Tetrahedron operation for genus value explanation.

For the efficient function of the EdgeBreaker algorithm we need the triangles to be in
compact areastriangles must touch their neighbours by edges, not just by vertices. Otherwise
the EdgeBreaker is stopped and started again for still unvisited tSaagtihis leads toa
growth of theamount of data. The worst kind of data for EdgeBreaker compression is a set of

separated triangles.

2.4.2 Delta Coding andPrediction

The entropy coding,ften used and very effective compressiechniquejs mentioned
above. To increasihe efficiency of this technique the entropy of coded data should be as low
as possible. Due to this claim delta codamgl linear predictiomethods were proposed.

In dense meshes most edges are short with respect of the simlahd distances
between vertices are shortwasll. Traditionally vertex coordinates are related todhgin of
the coordinate system and vertex coordinates lie in wide range of values. If the range of values
is reduced vertex coordinates could berapressed more @tfently using quantization and

entropy coding.

Delta coding is based on coding differences between values instead of values

themselvesThis difference is called delt®rder of values in the coded sequence has to be

17

known because eactalue is delta coded as a difference between its original value and
decompressedalue of its predecessor (we obtain one value from the othéng differences

in these pairs of valuese small, delta coding greatly reduces data redundancy.

The difference in the pair of equivalent valussequal to 0 and good delta coding
should have all deltas minimal (as close to 0 as possible). In combination with quantization
delta coding results in datet with very small range of valueResulted deltasre ideally

close to zero and after quantization gain just few very similar values.

Vertices of static mesh have to be ordereduse delta coding for static mesh
compressionTo order them the EdgeBreaker (or other similar connectivity compressor) can be
used. Connectivity compressor traverses the mesh and creates strip of processed triangle
adding one adjacent vertex (triangle) at a time. Each new vertex can be delta coded accordin
to the last coded veex and resultinglelta will be probably close to medue to topological
dependencepgir of vertices belongs to one triangté pairs ofsuccessive vertices.

This approach can be further improved using prediction of vertex position according to
surrounding vertices. Arery common prediction method is ledson the parallelogram rule
[11], see figure 8 The mesh is traversedsing connectivity compressor or analyzer and
vertices are processed as described above. Coordinates of each new vertex are not delta cod
directly, butpredicted to lie at the top qfrojected parallelograrfirst. This parallelogram is
formed by corner vertices of last processed triangle Viight and voase The X, Y and Z

coordinate ofhepredicted vertexareexpressed as:

0 0 0 V) (2.6)
0 0 0 0 (2.7)
0 0 0 0 (2.8)

The dgorithm traverses the mesh, processing one triangle and related vertex at a time
using the prediction equation and transmits differences between original and predicted
coordinates of vertices. This differenisecalled residuum, not delta, but principle it is delta

coding.

18

(@ ()

Fig. 8 Parallelogram prediction b), original stored data a). Transmitiktbsarerepresented by blue lines

Methods were described using topology (connectivity) driven traversing of compressed

triangle mesh, but the traversal can be driven by geompaiperties of the mesls avell

25 Dynamic Mesh Compression

Types of 3D animations can be divided into two groapasrdingto their connectivity.
First group contains animations with constanhnectivity; the second contains animations
with varying connectivity or varying number of vertices. Animations with constant
connectivity can be compressedore effciently than the othersand they are known as
dynamic triangle meshes, because they can be represented by single triangle mesh with verte
positiors varying in time {ertextrajectories). Because of this animation representatiamy
methods 6dynamic mesh compression ube same or very similar approaches as methods of
static mesh compressionypical compression scheme consists of separate essipn of the
mesh connectivity and geometry compressimished by quantization and entropy coding.

Geometry of dynamic mesh semetimegransformed into the form of vertex trajegtor
for each vertex of the triangle mesgtstead of set of vertex pasihs for each frame of
animation. Geometry is then analysed and compressed in the space of vertex trajectories bu
there are somalgorithmsthat usefor exampleshapespacePCA instead of trajectorgpace

PCA during geometry compression.

Most of dynamicmesh compression algorithms alessy, but do not affect the
connectivity of triangle®f the compressed mesh. Thusstheompression methadnly lose

geometric pr ec seeites tnajeddiesani mati ono

19

2.5.1 Dynapack

Dynapack compression scherfi20] is based on spatiotemporal prediction schemes
ELP and ReplicaDynapack uses EdgeBreaker to traverse the compressed mesh (its triangles)
and wlen new (not visited) vertex is reached, its coordinates are predicted by Dynapack and
the obtained residuum isneoded using entropy coder. ELP and Replica are extrapolation
predictos, because thegxtrapolateknown coordinatesof vertex in previous frameising
neighbouring vertice® predictits coordinates in currently procesdrame These spacéme
extrapolding predictors need only two consecutive frames for prediction, but they cannot be
used for the first frame of animation and the first few vertices of each frame, because we

need few neighbouring vertices and previous frame for prediction.

In the firg frame of the animation spacenly predicton, known as parallelogram
prediction is used(described in sectio.4.2) In following frames ofthe animation the first
few vertices are predicted using tioely predictor. This predictor uses vertex cooadas in
the last frame as a prediction of vertex coordinates in the currently processed frame.

Extended Lorenzo Predictor (ELP) is spdioee predictor perfector pure translation
prediction and for prediction of more general deformations. It is similar to parallelogram

prediction. ELP prediction is defined as:
0 0 0 0 0 v 0 v 8 (2.9)
Put simply, it is parallelogram predictionf the vertexv coordinates in the framé

corrected using residue between predicted and original vertex coordinates in thelframe

Unlike ELP the spacéme Replica predictor is capable of predicting rigid motions and
uniform scaling transformations. It expresses coordinates of wertexas in a coordinate

system derived frorthe neighbouring triangle (last reached by EdgeBredikst)

6 0 O h (2.10)
6 U o h (2.11)
6 6 .
6 ——=h (2.12)
AD OFA
0 O GO ©6 Gh (2.13)

20

where coefficients (new coordinateg) b and ¢ are computedusing following

equations:

O 0 L h (2.14)
030286B 6Dz20D.

® TH 6B BB (2.15)
& 00020 63020,
5H206D B6BHB0D (2.16)
© O 3—6 0 8
B oF (2-47)
Finally, vertexv is predicted by replication of this construction on frédme
be U O h (2.18)
0 U O h (2.19)
. O 6eeﬁ
B b (2.20)
0 U W a8 (2.21)

This construction is relative to theighbouring triangle, and thus it perfectly predicts
coordinates of vertices in rigidly transformed parts of the mbsb.ani ng of t he

coefficients is depicted on the figude

-1 @ »
V base A v aA
right

Fig. 9 Replica predictor. Last frame on the left, curreiptigcessed frame on the right.

21

2.5.2 Shapespace Based Compression

Another approach to the compression of dynamic meshes proposed by Alexa and
Muller in [13] is based on usinghapespace PCA instead of trajectespace PCA during

geometry compression. Shageaces describe families of shapes as a linear space.

An isomorphic vertexedge topologyfor each frame of animatiois expectedn this
approach as weland onlya subsetof Fye, frames (key-frames)of original animation to
represent the original animatias used Key-frames of animation are separately described by
the set of shape vectoBs and it is assumed that all key frames (base shapes) have vectors of
the same lengtiThenthe mesh geometr&(t) in thetime t of the key-frame animation can be

expressed by interpolat between two consecutive kéames:

o0 o M8 (2.22)

Functiong;(t) providesvector of weights describing the kéyame interpolationn the

timet:
50 B Rt RO B it h
W o 5 5 5 (2.23)
wheret; is the time stamp of theth keyframe.Ho we v er , Al esema@ates a p

geometry from animation, thus an alternative animation representation is used:

60 %o Bh (2.24)

where0 denotes the averagsatic shape vectoand the rest ofd vectors represent
linear deviations fim the averagshape vector. These vectors are ordev@tl decreasing
importance with respect tdhe animation reconstructionB; vectors cannot include
transformationsuchas rotation and therefore the animation is decomposed into rigid body
motion and an elastic pdirst and transformation maxriT (t) from By to B; with the centre of
massshifted to the origin ofhe coordinate systens computed for each geometry shape (key

frame).

22

We obtain new animation representafiarich decouples animation part ageometry

part
50 Y 00 HoP8 (2.25)

The geometry is described mainly Byand the animation is described Byanda;. PCA
is used tacompute basis vectoB andthe compression is achieved by using only the first few
0 vectors for animatiomepresentatiorsee figurel0. The shapespace PCAs usedin this
dynamic mesh compression approdtiusit is possibleto replace original geometry by new
geometry whilemaintainingthe original animation of the geometry. For exéangf we have
3D animation of running horse, we can represeftitatway mentioned abowand replace the

horse geometry bihe elephant geometry to obtain animatiothefrunning elephant.

The disadvantage of this approachespeciallythe size of the autocorrelation matfx
we are using during PC# find the shapspace basis. If we use trajectayace PCA, the
autocorrelatiormatrix C has size3FI &, whereF is number of framesbut if we use shape
space PCA, thautocorrelationmatrix C has size3VI ¥, whereV is number of vertices.
Typical compressed animationsiaundreds of frames and thousamidgens of thousandsf
vertices, thus the PCA autocorrelation matrix camioee thartwo orders of magnitude larger

if we use shapspace instead of trajectory space.

These disadvantages are usually handled by using small set-fshkes instead of all

frames of compressed animation and by the mesh simplification.
- -) %}h ﬁ

Fig. 10 Spaceshape based compressitgure from [L3]. Frames obriginal animation in the first row, animation

=

compressed using only 3 basis vectors in the second row.

23

2.5.3 D3DMC

3D mesh coding3DMC) is currentlypart of MPEG4 Visual standard used for static 3D
mesh compression and Muller et al. proposedektension Differential 3DMC, in [22].
Differential 3D mesh cding scheméD3DMC) is a prediction based approaalhich uses an
octree data structure for spatial subdivision (clustering) ofr&3h animation with constant

connectivity

D3DMC usesanimationdescriptionsimilar tousual video compression schemes. Frames
of animation are represented as sets of subsequent meshes called Groups of Meshes (GON
consisting of intra meshes (I mesh) and predicted differential meshes (P mesh). | meshes ar
compresseds a static meshes using 3DMC and following P mesheodesl afollows:

1) Previously decoded mesh is subtracted from the current mesh and only difference
vectors are further processed

2) Octree motion segmentation (spatial clusteriofylifference vectordy Zhang and
Owen R1] is performed

3) Resulting information igjuantized anéncoded using CABAC

| meshes are typically used in the first frame of compressed animation sequence or when

theprediction in D3DMC becomes too larg&iagram of the encoder is sho in figurell.
| MPEG-4

3DMC
m |~ d0 | Octree }ﬂ, Scal/ }_%, Arithmet. M

. K - Clustering Quant. Coding

m(t-1)

Reconstr./
Inv Scal.

l o)

Octree
o«— 0 Reconstr.

.)
‘O\(”_{ Memory FM

Fmie-1)

Fig. 11 Differential 3DMC compression scheme.

The octree motion segmentatiaa the key point of this compression meth@ttree
structure is used in this schertee represent motiowf verticeswithin the spaceFirst, we
subtract previously decoded mesh (frame) from the currently processed mesh and obtain
difference motion vector¥d 0) fb describing motion between two consecutive frames

of 3D animation.

24

We start the octree motion segmentation witmimium bounding box as a topmost cell
of the octree structure, which includes ¥lvertices within.Eight motion vectorst 8 h
approximating the motion of all vertices enclosed within the octree cell are associated with the
cell, one motion vector fagach cell corner. If the motion of vertices is not approximated well
using motion verticeghenthe cell is repeatedly split into eight octants until the approximation

reaclesuser defined accuracy.

Motion of vertices within each cell (difference vec)osapproximated using ttinear

interpolation of the motion vectors. First, theltnear ratio” " B i is computedfor

eachvertexv and corner of the cell with minimum x, yoz & f fo as follows:

C
€
C
8_.
C
€

” i ” i ” i FI (2 . 26)

where s denotes size of the celllhen weights of motion vectors 8 by for the
processed vertexare computed and finally, the vertex motbdinis computed using tinear

interpolation of these motion vectors:

0 p" " (2.27)
0 P p "7 (2.28)
o " p " (2.29)
o " (2.30)
v PP P (2.31)
b " p " p 7 (2.32)
R (2.33)
v PP (2.34)

YU 0d& 8 (2.35)

25

Each cell of the octree segmentation structure approximates the motion of vertices within
this cell and the computation of the eight motion vectors of the cell is the final step of the

animation representation process.

Let A be thematrix of size ¥1 2, % is number of verticewithin the processed cell and
0 is the weight of the-th motion vector of the-th vertex and is vector of length B in the

following form:

0 m T 0 m T Y0
T 0 mE m 0 mng Y0 &
o I | SV mn om oA Yy &
" T T 0 n on? AT
I8 & N, &

« AT U T g T 0 T & s AYL &
0 E ARAR C B (2.36)

Yn m 0 m T 0P yy &

Yy P ~ ~ Y = v

~, € € &~ A& &

2 m T 0 m Tla YU

= I o TR o

T U nm E T U T Yu
dm 1 0 n m 0O oyu O

Then we obtain desired set of eight motion vectatsch provide the best estimation of
the motion of the verticem the currently processed cdbly using the least square estimation
of x in theequationAx = b, wherex is vector of length 24 containing X,y,z triplets for each of

the eight motion vectors.

Obtained motion vectors are evaluatectordingto accuracy ofestimation of vertex
motion inside the cellf the motion is not well predictethenthe cell is subdivided into eight
octantsand the segmentation process is repeated while the estimation error is langer th
specified thresholdrinally the motionvectors are uniformly quantizéd reduce compressed
data entropy and thus enhance the CAB&thpression raticOnly the set of motion vectors

and the octree structure are stored.

26

2.5.4 FAMC

Framebased Animated Mesh Compression (FAMC) methaxposedn [5] by Mamou,
Zaharia and Pr °t ethexmeshswitharésgeot tosmotgppmand it has dgpeen
adopted by MPEG as a new standard for dynamic mesh comprds&MQ. is constructed for
compression of the dynamic 3D meshes with constant conneetndtyimevarying geometry
as compression methods mentioned abdivés based on a skinning modehsed motion

compensation strateggcheme of FAMC compression is depiciedigure 12.

__
! |

I
' Input I FAMC encoder ! Conpressed stream;,
: |: :' :
I I
| r |—> Static encoder } > Compressed Frame, |
I I 1! 1
1 I 1! 1
| N — — — — ! |
1 1, o Prediction &€ |
, Frame, I o errors § 5 :I :
! N 0] 7 = i Compressed X
! '| Bc & N [residual errors 1
| : £ 2 =l E | |
1 o)) (] ® O I I
: :: E .g Affine | ('-_) ij g :: :
| (Frame,) 1, _ E B [transforms A < N X
| i, > & O | |
: :I Animation R |: I
X | weights " Compressed ;
: Iy Motion-based Partition R N skinning model X
| ! segmentation > " |
I I |
I
I

Fig. 12 Framebased animated mesh compression scheme.

First, the animated meshvith F frames and/ verticesis segmentednto vertexclustes.
This segmentations performedwith respect tdhe motion of mesh verticesuch that motion
of each segmentcan be accurately described fay single affine transformationThis
transformation is calculated for each cluster and each frdrie animation and it describes
transformation of vertices from the first frame tbe animation to thedesiredframe of the
animation. The first frame ofthe animation is compressed by arbitrary compression

algorithm designed for compression of static meshes.

The segmentation process deterraiaepartitiont “ whn Of the meshdefining
N clusters such that each cluster can be accurately described by a single affine transfdrmati

the partition is optimal.

27

The optimality criterion is defineth FAMC as the mean square motion compensation

errorO
O 6 ® & h (2.37)

wherew is position ofvertexu in the framef describedn homogeneous coordinates and

0 represents the affine transformatioom the first frame to thsamef. Thefunction¢ ©

returnsthe index¢ of the cluster to which the vertéxbelongs. The affine transformation is

given by
o oid ET 6w w 8 (2.38)

Goal of the algorithm is to determine such a partitiérof the input dynamic mesh that
with a minimal number of clusters the motion compensation error satisfies the bound of user
defined error threshol®®1*® 'O . The FAMC algorithm is based on a hierarchical
simplification strategy depending on topologiaanditions two neighbouring vertices and
0 are merged into single oy using the hatedge collapse operator denoted @y &
if their affine motion is similarThis operator removes one of thageticesand connects its
incident edges to the remainingrtex To each remaining list of ancestor vertice§® is
assigned. In the initial statke listd’ is empty and after ea halfedge collaps&n & &M it

is updated as follows:

O°N O 0" 0 8 (2.39)

The decimation process is driven by cost of collapsing edges such that the edge with the
minimal cost is collapseitth each decimation steffhe cost of the edgmllapse is determined

by an objective error functioh UMD :
& O 8" o h (2.40)

wherg 0h) 0*° 0 Ll ,and

28

oM oI foET o ® 8 (2.41)

The clustering process starts with partition consistiny ofusters, one cluster for each
vertex andit iteratively decreass thenumber of cluster by edge collapsestil the global
motion compensation error exceeds the user specified error thr&hdddification of this

kind of clustering is described in secti8ri.4

Unfortunately, vertices near the bordersveftex clusters are not described accurately

enough and significant distortion on the borders between neighbouring clusters may appear.

This behaviour is handled by usitige skinningbased motion compensation model, which

expresses vertex motion as a weighted linear combination of the motion of cluster the vertex

belongs to and motions of its neighbouring clusters. Thus the predicted pasitibrthe

vertexu in the framef is obtained by following equation

W O 0 wh (2.42)

wherel is theanimation weightAnimation weighis real value coefficient, which is
controlling the influence of clusteron the vertex. Thevectorof all animationweightsof the

clusters influencing the vectaiis calledanimation weight vectab and it is defined as:

v AQICET | 6w & h (2.43)

This equation is solved only for the cluster which contains the verdexi for the set of

neighbouring clusterandall other clusters influences the vertexh | 1. Finally, for each

frame, the algorithm calculates correction vectors between predicted positions of vertices and

their original positions Thus the compreed animation data contains the first frame mesh with

the connectivity description, the clustering information, the set of affine transformation

matrices, anthe set of weight vectors and correction vectors.

29

2.5.5 Coddyac

The Coddyac is a compression algorithm, which is specialized in dynamic triangle

mesh compression and uses dynamic meshes with cottgtagte connectivityas input data.

Coddyac contains two welkinown algorithms, Rossignac's EdgeBreaker puttipal
componentanalysis as described in sectis.4.1 and 2.3In Coddyac, EdgeBreaker is used
for compres®n of triangle connectivity (topology) of the mesiAs mentioned above,
EdgeBreaker is primarily intended forangle connectivit)compression of static meshémt
if the triangle connectivityof chosen dynamic mesh is consistent throughout the time of

animationwe can use this compression algorithm as well.

Geometry of the compressed dynamic meah be compressed at the same tase
triangle connectivityGeometry information of dynamic mesh is transformed into the foran of
set ofvertex trajectoriesand processedy principal component analysis firsts describedn
section2.3.The size of compressed data depends especially on the rate of compression of these
trajectories.The PCA basismatrix E andthe means vectoA are stored and viex trajectories
are replaced bfeature vectorin the structure of dynamic triangle mesimally, combination

coefficientsin feature vectorare quantized.

During triangle connectivit)compressiorall threefeaturevectorsc of EdgeBreakds
initial triangle (one for eactriangle cornerare stored without any further modificatiof$he
mesh is then traversed by EdgeBreaker and eachfeatnrevector is predicted from already

compressed vectors using parallelogram prediction

@ A A o h Q nmpBR ph (2.44)
whereN is user defined number of basis vectaggqual to the length of compressed
vectors. After parallelogram predictiorthe residue vector between original and predicted

featurevector is stored.

At the end of compression algorithm regut CLERS stringand residuevectorsare
encoded using arithmetic codéfinally, matrix of PCA basis is compressed by specialised
algorithm COBRA[8].

30

2.5.6 COBRA

Compression of the Basis for PCA Represented Animations (COBRA) is highly
efficient extengin of dynamic mesh compression techniques based on R@#Ae volume of
connectivity data is usually negligible, volume of PCA basis is large, when we uséd¥ed4
dynamic mesh compression algorithm. COBRA can reduce the size of the PCA basis by 90%
with respect to direct encoding and thus achieve approximately 25% increase of performance

of the compression algorithm without any significant loss of accuracy.

Standard way of PCA basis compression is a simple quantization, but COBRA is based
on nonuniform quantizationand uses noeteastsquares optimal linear prediction to increase
the compression ratio. Namiform quantization was already mentioned in section 2.1. Key
observation for COBRA is, that basis vectbesecharacter of trajectories. Each basistoec
can be interpreted as a trajectory of a moving point, which moves smoothly. Therefore

COBRA predicts these basis vectors using linear movement predictors such as:
ni Qw 0 0 0 qL O h (2.45)

wherev; is vertex position in framg There are two more possible predictors using the

speed estimatios, the acceleration, and the change in acceleration

i 0 O h (2.46)
A O o) O O (2.47)
0 Q) O h (2.48)

&) 0 0 v v (2.49)
0 0 0 0 n (2.50)

nt Qe o i an (2.51)
Aitoe 0 i O (2.52)

Predicted basis vectors are compared witik original basis vectors andbtained
residues arequantized and encoded e entropy coder. COBRA uses noniform
guantization in this step. Each vertex trajectoryhefcompressed dynamic mesh is expressed

by linear combination of basis vectors depending on combination coefficients in the

31

appropriatefeature vector. The size of the coefficients varies very significantly, but this
variance can be predicted well. Size of the coefficients corresponds with its order in the feature
vector (first coefficient is the biggeahd the appropriate basis vectsrthhe most importajt

which is caused by the nature of PCRis behaviour is used by namiform quantization.
COBRA uses finer quantization for the more important basis vectors. For more details see the

original sourcd8].

2.5.7 Vertex clustering and3D mesh registration

It should be mentioned that there is a paper dealing with the topic similar to the topic of
this thesis. Various techniques of vertex clustering are described and compared in the Impact o
vertex clustering on registratidvased 3D dyamic mesh coding [33] by Ramanathan, Kassim
and Tan. Three different vertex clustering technicaresconsideredmultilevel kway graph
partitioning [30] for topologybased clustering, Lim 6 smedans clustering [31] for geometry
based clustering argpectral clustering [32] for semantic mesh decomposémahit is derived
from the experiments that the compression obtained through the semantic clustering achieve:
the best compression ratio.

New Iterative Closest Point (ICP) [34] based 3D dynamic géymeompression
scheme is presenteéd this paper Whole mesh is segmentadcording tahe mesh motion by
this compression algorithm and for each segment of the current mesh the appropriate segmer
in the temporal reference is detected using ICP. Finttlly motion of all vertices in each
cluster of the mesh is described by affine transformations and the set of correction vectors.
While the mesh is segmented and the affine transformations are calculated, reconstruction erro
for each couple of clusters determined. Subsequently the segmentation algorithm groups the

vertices into three se&cordingo their error.

The first set of vertices contains clusters of vertices, which can be expressed accurately
by affine transformations. The second set ofigest consists of clusters of vertices, which can
be accurately described only if we use both affine transformations and correction vectors and
the third set of vertices is consisting of vertices, which cannot be expressezh#yf using

affine transformations and the DPCMased techniques are used to encode them.

Vertices of the mesh are divided this way to achieve better compression ratios due to

the fact, that vertices in the first two sets (70% of all vertices) can be described using a few

32

affine trarsformations and correction vectotdowever, come clusters can be reconstructed
with very high reconstruction error. These clusters are identified during the compression
process and reclustered to decrease the reconstruction error and the ICP registration
performed again for these clusteRnally, conclusion of this paper is théatis possible to
achieveabout10% bettercompression ratio over the LIdyd smedas and kvay clustering if

the spectral mesh decomposition is used.

2.6 Error Measurements

Many different algorithms for dynamic mesh compression are known. To compare
efficiency of these compression algorithRB curvesare mostly usedRD is abbreviated form
of ratedistortion. RD curveis a function, typically expressed as a graphpwing the
relationship between the hitite and distortion. Distortion ithe amount of damage of
animated mesh caused by compression algorithm (difference between original and

decompressed data) and-tate indicatesheamount of compressed data.

In the case oflynamic mesh bitateis measured ifbpfvi bits per vertex and fram8pfv
shows how many bits in average do we need to represent one vertex in oné>fesaptday
compression algorithms are able to compress dynamic meshdspivitwer than 1 bit while
distortion remainsalmost undetectabléistortion of decompressed mesh is measwrét
respecto its original for each frame of animatisometimeslt is measured separately for each

frame oftheanimation or sutmedor averaged fothe whole anmation.

2.6.1 Mean Squared Error

Mean square error (MSE) is widely used method of error measurement, not only for
dynamic mesh decompression distortidiSE is averaged sum of squared distances or

deviations betweeariginal value (vertice§ 0 and theircorresponding distorted vers&n:
~ P N
Q o 2 u[£ 8 (2.53)

However there arenore sophisticated error measures.

33

2.62 KG-error

To compare errors resulting from compression of 3D animated meshesr&Gneasure

is oftenused Karni and Gotsmapresentedhis measure in7] and defined ias
Q ° © h
P D Yo A (2.54)

Where B is matrix containingoriginal dynamic meshdescription and is a matrix
containing description of the dynamic meshafter the compression and decompression
stepgdistorted animation andd are matrices of sizeo "Q Each columncol, of matrix
representing theynamic mesh contairpositions of all vertices ahe dynamic mesh in-th

frame ofthe animation and eacklement of this column contains one coordinate of one vertex

of dynamic mesh.

R(B)is average matrix which contains average spatial \@lwerticesfor each frame of
animation.In this formulaFrobenius norms useddenoted by Resuling error value $

expressed in percents aihds invariant to uniform scaling.

2.63 STED

Spatiotemporal edge difference (STEB)a novel (201) error measure derived from
results of subjective testimgf mesh distortion perception presentedii][It provides better
correlation with human perception of quality loss between original and processed (com)pressed
dynamic meshes #h any other.STED combines measurement of spatial and temporal
deviation of edge lengths caused by processing the niésh.measure is focusexh local
changes of errotherefore distortion is evaluateahly for close neighbourhood of each vertex

and these values are summed to obtain the overall error.
Relative edge difference of spatial edgeonnecting-th andj-th vertex isdefined as

0@ fo QNI QN Fi‘Qr]
00 o - (2.55)

whereel function provides length of edge; in the framef and overline denotethe
distorted version of this lengtRelative edge lengttiifferenceis used to increase sensitivity to

distortion in densely sampled areas of the mesh.

34

For each vertex ofthe original and distorted mesh local standard deviatbi® (s
computed. It is computed for given vertex and a set of its topological neighbonnge¢ted by
edges) in user specified topological distanogettex is maximally d edges distant from the
given vertex) Set of edges incident with givesth vertex and any of its neighbours is denoted
NE(, d). Edges in this set may significantly varylength; therefore we further use weighted
average instead of arithmetic average of this set of edges:

B. {5 QQHQQ (‘fﬁ"Qs
B. Q&nQ (2.56)

%0 QU0

Local deviation aroundth vertex in frame f and for distance dh&n given by:

By § QQIQ OO QWO QAHQ
B. § QdahQ

Q'Q DO 8 (2.57)

The scalandependent spatial part of STED error for given distance (radius)

defined as average of this local deviation over all vertices and frames of animation:

"Y'YO' @ Q'Q HNQ8 (2.58)

8—|-o

"0

In temporal error computation the average speed of-thevertex in a framd and
temporal windowof width w around this frame is calculated fir§to do so, we have to know

temporal edge lengtiel (O denotescoordinatex of i-th vertex in the fram#:

d Q d (I)(b 8 h 8 0] U (259)
Q JAQ v 0 h 2.60
) ECEER (2.60)
Q SHQ o v h 2.61
@ aa (2.61)
Qo — el (2.62)
‘ aqQ :
OO0 QAQ QWHQ QaAQ Qo8 (2.63)

35

The \aluedt (distance in time) is the temporal distance betwemsecutive frames and
it is used to handlpossible infinity values caused by processing static vertidg®ag relative
temporal edge length instead of absolute letigghmetricsensitivity in areas of a very slow
motionincreasesNow, we can define the average spatiotemporal speed bftihertex in the
f-th frame using temporal window as:

h o Q@ M0 o

B i
h
TETG0 O T Agha 0 ° (2:64)

i Ae Qo

Next, the relative temporal edge difference can be defined:

0 QABQ o o TEWQ o
i @@ Qo

0 Q@AM MO (2.65)

By puttingprevious formulas togeth&re canconstructformula ofthe overall temporal

error averaged over all vertices and frames:

ey 1 T 3 p o o o 3
Y'YOORQ O %0 p 0 Q@M hQ oh (2.66)
whereF-1 is used because ol function, which is not defined in the last frame of
animation.

To obtain overall spatiotemporal errdormulas of STER and STED are combined

into the form of hypotenuse of weighted spatial and temporal error:

YYOWD QB TY'YO@ @ JY'YOOHQ o 8 (2.67)

Parametec is aweighting coefficient.

36

3 CLUSTERED CODDYAC

As abasic compression algorithm Coddyac is chosen due to its high efficiency. Coddyac
is PCA based dynamic mesh compression algoritifmns it compresss vertex trajectories
using principal component analysiShe more complexhe set of trajectories is, the less
information about this set can be considered negligible and the compression ratio decreases
Becausegeometry takes the major paitthe dynamic mesh, size of the final compressed data
depends especially on the rate of compressidhefeaturevectors(contain PCAcombination
coefficienty. Length of tkese vectors is equal to number of seleci@ahcipal components
(basis vectors), so less principal components means shorter vectors and thus better compressic

ratio.

As noted the efficiency of the Coddyac compression algorithm directly dependbhen
complexity of movements of the animated mesh. By enment complexity o set of vertices
we mean differences of their trajectories. The trajectoriedearery complexbut they have
to be similarto each other to decrease movement complexity of the set of vertices. It follows
that if different parts of the mesh move in a relatively senmhnner, but differently, the global
movement of the mesh will be complex. Therefore, after application of PAgjattories are
described by vectors longer than necesdawg are usingcombination ofmore principal

components ifieature vectorthan we need.

For example to descriibe movemet of the torso of the chickan figure 13 on the left,
principal compaoents describing movement of his wingee also usedeven thoughthis
movement almost doe®t affect the torso.

/)"l ((3
! S 4
Ol

~ o VAR

Fig. 13 Chicken dynamic mesh movement simplification. Three important movements for each vertex of chicken

mesh on the left. On the right clustered chicken mesh with only one important movement for torso and each wing.

37

To reducethe length of théeaturevectors we must select those vertices of the mesh,
whose trajectories are similaach otheand include them in a common groug cluster.This
way the movement complexity in individual clusters is reduced and so is the necessary number

of principalcomponents. That leads to shorter PCA vectors and better compression ratio.

Simply put,one possible way to improve the compression rati€oddyac and PCA
based dynamic mesh compression algorithms in geiset@ireduce the movement complexity
of dynamt meshwhich could be locally achieved by clustering the mesh vertices by similarity

of their trajectories.

3.1 Clustering in Coddyac

Many algorithms have been proposed for dynamic mesh compression. There are also
known various algorithms of mesh divisianto smaller parts (clusters) depending on the
topology or geometry criteridDur method combines the compression algorithm and division

of the mesh to increase compression ratio.

Clusteringalgorithns divide the given set of data insubsetsaccordingto specified
criteria, so that data in the same cluster are similar in some semsdasic types of clustering
are hierarchical clustering and partitional clustering. Hierarchical clustering builds
progressivelyclusters using already specified clustangl final hierarchy may be represented

in a tree structurdPartitional clustering builds all clusters by dividing given data set at once.

In the context of dynamic mesh compression three ways of mesh division can be
considered: geometrydriven division, topologydriven (connectivitydriven) division and
division into logical parts. Division into logical paif®r examplefinding the limbs, head and
torso on a human modeatan be eftiently used for compression of meshes witfid motions
or setting different level of quantisation for specific aredsmesh (facemore accurately
quantized than chestYopologydriven division scheme is used if vertedge incidene or
triangle connectivitys found to be good criteria for meslivision. Most frequently used way
of division is geometrgriven division, which divides the mesh on theibad geometrical

propertiessuchas vertex positions or trajectories.

In this thesis we want to divide meshes according to their movecoemplexity and

similarity. Movement isa geometrical property of dynamic mesh, thomether strictly

38

topologydriven nor logical division is not considered further. For example front lega of
running horse modedould be divided into separate parts usaigiding into logical parts, but
they will probably moven avery similar way, thus it is better to join them into one cluster

using geometrygriven approach according to PCA compression efficiency.

Geomety-drivendivision of dynamic meshes can be perf@d by clustering of vertices
using their trajectoriedVe have tested several methods of vertex clustering, whose functions

and modifications are described below.

3.1.1 K-means

K-means 4] is one of thepartitional clustering algorithmsThe clusters aréeratively
refined according to the specified distribution criteria. Eacheans cluster is represented by
its centre and the data points are usually assigned to clusters based on their distance to th
centres of clusterCluster centres are usuallylaalated asan average of all values in the
cluster, so the centres dot have to correspond with dap@ints intheinput dataset.

Algorithm consists of the following steps:

Initialization: Choose thk elements of the data as initial centres of clsster the next step

1) Assign each point to nearest centre

2) Calculatenewcentre of each clustess average of all elements in the cluster

3) Classify the data intdk clusters specified by their distance from the centres of
previous clusters

4) If the contents of clusters changed, go to 2fep

Algorithm consists of two phases, which are repeated. These are classification stage,
when the data are divided into individual clusters, and the phase of learning, where we control
reassignment of datatm individual clusters and calculate their new centiidse shortest
Euclidean distance between the centres of cluster and the selected element from the specifie
set of datas most often chosen as a distribution criteriGtuster centres are then cabeld as
the arithmetic average of all values within the cluster. The initial values of centres of clusters

are randomly selected elements from the specified set of data.

39

To run the kmeans algorithm we need to know in advance how many classes (clusters)
will be used, i.e. the valde Thek value varies according to thpurposeof using kmeans
algorithm or input data.ln the case of vertex trajectory clustering thevalue varies in

dependence on the input data.

The calculation of distance of trajectorgctorscan be modifiedn clustering algorithms
and in addition to Euclidean distander{orm) we have experimented with calculation of the

distance using any norhy by the following formula:

0 WS h (3.1)

wherex; denotes difference betweeth components of two vectorBurthermore, we
have experimented with clustering of trajectories, which have been adjastetkpicted in

figure 14.

First, trajectoriesshifted into the origin of the coordinate systeaming origin of
trajectoryand average trajectory position were testedgin of trajectory is position of the
corresponding vertex in the space of the first frame of animation and average trajectory
position is calculated as the arithmetic average afesponding vertex positions in all frames
of theanimation.

Second, trajectories were rigidly transformed to the average trajechograge
trajectory is calculated as the arithmetic average of position of all vertices for each trajectory
componentTrajectories were adjusted this way to maximally increase influence of their shapes
during clustering step of compression algorithm, but neglecting of this information led to

unpredictable (and negative) results.

»am

R

»
»

Original Trajectories Origin Translation Rigid Transformation

Average Translation

Fig. 14 Tested trajectory adjustments, matted shape represents average trajectory for rigid transformation.

40

We tried to neglect trajectory distribution using these adjustments to strengthen
influence of trajectory shape and thus construct clusters with trajectories as similar as possible
Unfortunately theadditional adjustment of traject@s suppresses original distributioand

direction of trajectories and this leadsnore distorted results of clustering.

Due to our observations and close relation between clustering and topology
compressionoriginal trajectories without any adjustment are usdtie rest of this thesis

3.1.2 K-means initialization

K-means providalifferent clustering with randomly chosen initial clusters and better
results of kmeans clustering are obtained only when initial clustering is close to the final
solution. Thus the initial selection of clustamtreds extremely important. From expeémtal
observations it is known, that if random initial clustering is used, some patterns (trajectories in
the case of this thesis) have the same cluster membership for each run em#éamsk
algorithm. This observation was exploited by Khan and Ahma#@8h [They proposed a novel

clustercentregnitialization algorithm CCIA for kmeans clustering.

In CCIA, dusters are computed for each individual attribute of the input set of patterns
in the first step of the-kneans initialization. Initial centres ateosen with maximum distance
between them and they are chosen from the inputsgdtiom which outliers are removed. It
is assumed, that each pattern attribute is normally distributed in the space of patterns. For
specified number of clustetsthe nornal distribution curve is split into intervals such that
we obtainb areas with the same size and the midpoint of this interval is set as a ciunter
This is performed to eliminate the outliers and to keep maximum distance between cluster

centresThus each value of this attribute is associated with one af tHesters.

Then kmeans is used aime input dataset to obtain cluster label for each pattern and
this process is repeated for each attribute. Vector of this labels assigned to simgte ipatt
called pattern string. At the end of this process we obtairedistinct pattern strings
representing aglusters. Next, we calculatentresof these clusters andifeU, we use this
centers as initialization centers formens. If0 0, we merge similar clusters together
until Va0 . The merging of clusters is provided by dengiised multiscale data condensation
method (DBMSDC) proposed by Mitra et al. [29].

41

We are using much simpler cluster initialization in this thesis. We are chgsteri
verticesusingtheir movement to separate vertices with different trajectories, thus we are using
initial cluster centreswith maximum distance while these centres (trajectories) describing
animated mesh movement with maximum accuracy. To find sudtctvaes we transform
vertex trajectories using PCA as indicated in section 2.3. Obtained vectors of transformed
trajectories (patterns) include combination coefficients (attributes) of principal components,
which are orderedccordingto their influence o the animated mesh motion. We find attribute
related with the most important principal component for each pattern and pattern with largest
absolute value of this attribute is set as an initial center of the cluster. This process is repeate

for the firstb most important principal components.

3.1.3 Facility Location

Facility location p] algorithm is similar to th&-meansalgorithm mentioned above. The
main difference is that the centres of clusters (called facilities) are always chosen from the set
of input data.The algorithm tries to find a placement and number of facilities, to which it
connects the other elements tbfe initial set. Each connection of element to facility is
evaluated by implementation specifiost For example Euclidean distance between element
and facility is acommonchoice of evaluationAlgorithm selects such locations of facilities to
make the price of the connection of all elements minimal (for example sum of Euclidean
distances of the elements from their respective cluster cen@eg).cluster containsll
elements connected smcommon facility and the facility itself, thuse number of reslting

clusters depends dhenumber of facilities.

Such an algorithm would openfacility in each element of the input degatand make
that way the total cost equal to O (each element will be facilityat is whyfacility location

uses the so callddcility cost.Facility cost ishe opening price for the facility.

Each facility needs to pay a constant opening price, which is one of the inputs of the
algorithm and reduces the number of faciliti€ee aim of the algorithm is to find a balance
between the number of clusters and their sizes. Number of created clusters is thus depender
only on the specified facility cost and the input esg¢& Like the kmeans algorithm, Facility
location is also iterative. Clusters are created and removed théarie is a better overall price

for the allocation of clusters.

42

Such an overaltostP is calculated as:
0 0 "Q 6O h (3.2)

whereNg is number of facilitiesN; is number of elements connected-th facility and
Cr is constant opening price for each facilitgost nction f.(i, j) calculatesthe costof
connection betweeth facility andj-th element of clustered dasat.

In our case there is natbig difference between-kneans and facility location. If we use
facility location algorithm with some facility cost and use the number of clusters askiimput
k-means, then the location and size of clusters should be the same or very similar for both
algorithms. Basically kmeans is a variation ofacility location algorithm, where we are
finding minimal sum of costs dfacilities instead of minimal number of facilities. In this case

facility cost is not set as an input of clustering algorithm

3.1.4 Edge-collapse Based Clustering

Unlike previous methodsvhich were only dependent on the geometry of the animation,
this method is also influenced by the connectivity of the animated o@sf hierarchical
decimation strategylhe clustering algorithrases a priority queue, from whiemedge of the
meshis selectedthat ha the best(lowest) evaluation.Evaluation of edge may for example

correspond to its length, or similarity of trajectories of vertices that are connected by the edge.

Lowest cost edges picked from the queue amdllapsed into one vertex. Edges adjacent
to this point are revaluatedaccording tathe changes caused by the collapEkis process is
repeated untithedesired number of remaining vertices is reaciiée. final number o€lusters
corresponds to the number of vertices resulting from collapsing the dtlybstinal vertex
has a tree of s collapsed ancestors and clustare defined by leaves of this tre@his
clusteringmethodin combination with FAMC cost functiois used by Ma m osuskinning

method

I n or i gi sFAMC dusterimgwalgorithnoriginal mesh isimplified while global

mean square motion compensation error remains lower than the predefined threshold.

43

Cost of collapsing the edge definedin section2.5.4 and eact description of this
algorithm can be found irb].

This algorithm was also tested in combination with modiffedture vectors. The
similarity of trajectories is no longer assessed on the basis of Euclidean distance of vectors, bu
by the mumber of important components of the vectors, which they have in common. The
components which are zero after quantization may be neglected by the compression algorithm
Therefore the similarity of trajectories is assessed by the number of zeros in seoifion
componentsln this casave do not want to cluster trajectories which are as similar as pgssible

but those that allow us to maximize what can be neglected, see 1§ Trajectories were
modified as follows:

O-trajectories: A threshold is given. Values fieature vecta, which are smaller than the
threshold are rewritten to 0, the others are rewritten to 1. Parts of vectors with O are those parts

which we want to discard. These vectors, that have the most of commont@&rafere joined
to the common clusr.

Cost functiorf¢(a,b) for thresholded vectosandb is defined as:

™~y ~

"Q ¢hw P O p W (3.5)

Clusters should therefore be designed so that it can be neglected as much of the vector:

as possibleachieving a reduction of the resulting data stream.

Vector components

Vector components
Vector components

Vectors of trajectories Vectors of trajectories Vectors of trajectories

Fig. 15 Nonzero components of vectors are black, zero components are white. Modified vectors (left) are
clustered by their common zecomponents (middle). Zermomponents common for all cluster (white between

grey dotted lines) are moved to the end of the vect®equences of zeros on the end of these vectors common for
one cluster can be neglected (hatched area).

44

3.2 Number of BasisVectors

In Coddyag settingthe number of basis vectors was used to influence the quality of the
output. Number of basis vectonssa user specified integéM and itshigher or lower values
led to increase and decrease of compressed mesh size artlathepeate error. When we use
clustering as a way tonprove efficiency of Coddyac compression, we have to change the

approach toetting the number of basis vectors.

The aim of clustering in the context of dynamic mesh compression is to identify areas of
mesh where the verticeme moving withlow entropy (similarly), join them into the one
common cluster and use it to express tmeavement bya lower number of basis vectors
while maintaining the same accuradyhe entropy of vertex movement (similarity of vertex
trajectories) might vary significantly between clusters; therefore different number of basis

vectors for each cluster ahld be selected.

In our modification of Coddyaa single scalar value of tolerable P@#troduced error
has to be specified iye user andthe algorithm calculates the appropriate humber of basis

vectors automatically for each cluster.

We can express the average amount of ff@¥duced error usindy basis vectors as:

. p p Y Y
Y 3 oo —h (3.6)

wherel is the average edge length of the animati¥ns thei-th component of thgth

original trajectory andY is thei-th component of thg-th trajectory reconstructed usirig
basis vectors. In order to select the number of basis vectors for a specific cluster, we select the
smallest possibl& for which this average PGitroduced error falls below a usspecified

value.

3.3 Compression Scheme

Before the compression algorithm statteeinput set of meshes representing frames of
animation is transformed into the form of single mesh and set of trajectories (one trajectory for
each vertex). Then the single mesh is clusteretbrding to vertex trajectories and cluster

index is assigned teach vertex.

45

In our scheme, the full mesh (figut6a) connectivityis compressed first and it is stored
in a file together with the indices of clustefgyre 16b) for each vertex. As the number of
clusters is relatively small (small variance of valuesyd their indices are often repeated, the
set of indices can be efficiently compressed for example by arithmetic encGdimgectivity

is compressed by EdgeBreaker.

Before the next phase we remove those triangles, whose vertices belong to more than on
cluster figure 16c), and so the dynamic mesh is topologically and geometrically divided into
smaller componentdigure 16d) corresponding to chosen clustering of vertices. Each cluster is

represented bg standalone object now.

Fig. 16 Topology of full mesh (a) is clustered (b) and stored. Triangles between clusters (c) are removed, and the
mesh is divided into components (d).

The second phase is used only for compression of geometrycamotectivity
Compressed mesh is processed bgdBteaker algorithm agaitout it is executed for each
component individually and resultir@pnnectivitydescription is not stored. Geometry of the
components is compressed by P@&dd COBRAseparately by the Coddyac algorithBvery
time a new vertex is reached by EdgeBreaker, this event is handled by geometry compressor.
Geometry compressor predicts trajectory tbis vertex, residuum between predicted and
original trajectory is quantised and encoded using arithmetic coder. Simple schéne o

compression is depicted in figuté.

Clustering compression results in one set of cluster indices for whole mesh, one CLERS
string withconnectiviyy description of whole mesh and number of sets of compressed geometry

data(basis, means vector anebture vectorspne set for each cluster.

46

Input Set of Meshes

y
Transformation into
Dynamic
Triangle Mesh

y
Clustering Table Cluster Index
into of
N Clusters Cluster Indices o
. (O]
FIRST PHASE > EdgeBreaker Ra|sedCEventy -8
O
[
CLERS String LLl
______ Mesh Cutting| ~ —— — — ——— — T o
into) =
N Meshes Basis, Means Vector GE_)
PCA & COBRA é
| -
SECOND PHASE EdgeBreaker | Raised C Event gec:jrp?ry <
R re 8|‘c fon Encoded Trajectory
CLE String Residuum

Quantisation

Fig. 17 Simple scheme of clustered Coddyac compression.

34 Raised Problems

After applying a clustering algorithm on the vertices and PCA on the inpuseatae
obtain a index for each vertex of thigiangle mesh (and the corresponding trajectory) that
determines to which cluster the vertex belongs. For reasons of topology compression, as
indicated insection2.5.5 (for the descriptionof connectivitythe EdgeBreaker algorithm is
used), it is necessathat the clusters are topologically compact. This means that the vertices
belonging to one cluster are not topologically separated by vertices of another cluster. Each
cluster should consists of triangles which are touching their neighbours by edgest gt
corners, to enable EdgeBreaker to traverse the cluster topology by crossing edges of

neighbouring triangles.

It is actually a projection from andimensional space, in which the algorithm performs
the clustering of the vertices of tineesh on b the 2dimensional space of the surface of an
animatedmesh Unfortunately, after such projection individual clusters may overlapiréfig

18). If we usesimplification clustering, as in edgeollapse based clustering mentioned above,

47

where clustering iprocessed by medimplification (edge collapsegjirectly on the surface of
the mesh, we obtain clusters without overlapping areas. But if we use clustering method
without dependency on the mesh connectivityis necessary to correct the clusters on the

surface of the animatadeshto create areas of triangles as connectigynpact as possible.

Fig. 18 Clusters separated in for example 3D space (xyz) can overlap after projection onto 2D surface (xz). This
situation can be hard to solve for EdgeBreaker compression.

This inconvenientharacteristic of projection of higiimensional clustering into lower
dimensionsmay cause malfunction of EdgeBreaker and has to be solZddeBreaker
algorithm is built to traverse megly crossing its edges. It should behave the same way while
traversng smaller separate parts of the mesh defined by clustering of mesh vertices. Therefore
our compression algorithm has to take into account the connectivity of the vertices in common

clusterby employing acorrection algorithm

Due to this observation thengllest possible cluster of vertices or its separate part has to
contain at least 3 vertices. If there are only one or two separate vertices, it is not possible to
accept them by EdgeBreaker as individual cluster. Therefore when this situationtbesers
vertices have to be reassigned into the surrounding clifstiee. cluster or cluster part contains
3 or more vertices it is acceptable by our compression algorithm, but if the number of vertices
is small (for example 10 vertices), it will negativelyeadt final compression ratio because each

such cluster needss own initialisation data, as described further in this section.

There are two ways to resolve the situatadnsmall cluster see figure 19The first
option is to connedheremote clusteparts bya "bridge”, the second option is "drown" the
remote cluster part. Both of these options lead to a situation when some vertices of a cluster ar
reassigned to a different cluster. This creates an error in the original assignment of vertices intc

clusters and leads to a reduction in the efficiency of compression algorithms.

48

Fig.19 Correction of overlapped clusters. Small cluster part a) could be drown b). Large cluster part c) is better to
connect to the rest of cluster by bridge d).

If there isa separate part of a cluster on the surface ohteghand it is sufficiently
small, it is possible "drown" it. This means that all vertices of the small separate part of the
cluster are connected to the cluster, which is adjacent or surrounding it. The greater the
drowned part of this cluster is, the greates error of its "drowning" arises. If the cluster is
large enough, it is better to build a "bridge" between the two specific parts of the cluster by
reassigning vertices between them. The farther away these parts are, the larger number o
vertices has tde reassigned in building a "bridge”, and the greater error occurs. Building a
"bridge" raises a number of inconvenienosay to do so, how long it will be and what if the
number of vertices for building the bridge is greater than the number of vertittes distant
part of the clusteand several situationghich are difficult to solve. One such situation is

presented in figurgo.

Fig.20 Bridgesbetween clustersa) creation of blue bridge splits red cluster into two parts, b) creation of red

bridgesplits blue cluster into two parts and we need both bridges to solve this situation correctly.

49

