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Tomáš Vomáčka
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Abstract

Modern applications in the fields of computer simulation, computer games and
others often need to simulate large crowds of people, flocks of birds, schools of
fish and other similar groups. Several scientific teams have been researching
the behavior of these clusters of entities as well as the environment in which they
exist. This technical report brings the state of the art of the most commonly used
methods of the space partitioning used together with artificial human simulations.
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1 Introduction

In modern virtual reality applications as well as in computer games, it is impor-
tant to be able to simulate human-like behavior for artificial entities. In virtual
reality applications, we may for instance need to populate cities with crowds of
virtual people to make them seem more realistic. In the game industry, we of
course want the environment to look as real as possible (which may as well mean
the presence of crowds of people in the environment) but we also want to provide
the player with artificial opponents which would be comparable to real human
opponents in terms of gameplay and overall behavior. In other applications, vir-
tual crowds may represent a vital part of various kinds of tests – e.g., in traffic
simulations.

Although the purpose of the artificial people may vary with each application,
the environment used for their navigation does not necessarily need to be dif-
ferent. For the purposes of path-planning and virtual human navigation, the
virtual environments used are usually based on various kinds of graph structures
and relevant algorithms (see [14, 19] and others) or on particle movement inside
potential fields (see [23]).

This report will describe the most commonly employed types of graphs as well as
some of the other data structures used for the representation of the virtual terrain
that are used for the artificial human navigation in the urban environment as well
as in any general terrain. We will address the problem which applications will
benefit from which data structure for the crowd simulations and why, describe the
type of the path that each of the structures provide, its benefits and drawbacks
(can the path be smoothed, is it the shortest path, etc.). And we will provide an
overview of the modern trends in general crowd simulation applications and in
the game industry.
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2 Graph Based Environments

2.1 Regular Space Partitioning

The graph-based structures which use regular space partitioning are represented
mostly by various kinds of grids. These grids pose various advantages, perhaps
the most obvious of them being that dividing any 2D or 2.5D virtual space (e.g.,
the streets of a simple virtual city1) is extremely straightforward and simple to
perform. Furthermore, the result of such a spatial division is a graph, however
simple, and thus all the commonly used path-finding algorithms may be em-
ployed. On the other hand, the grid technology can only uneasily be used for
more complex environments and (in the form of a regular grid) it does not pro-
vide us with any tools to effectively describe areas with uneven distribution of
details. Although the use of regular spatial partitioning is most often used in 2D
or 2.5D environments as said before, there are applications that exploit this type
of structure in full 3D (see [10]).

Due to their simplicity, various grid-based path planning methods have been
widely used in the computer gaming industry since its beginning. Probably the
best known representatives of this terrain representation are such games as War-
craft, Civilization, Heroes of Might and Magic (see [2, 4, 7] respectively) and
many others which use a regular square grid; or the first two parts of the Fall-
out (see [5]) series which use a regular hexagonal grid. Other types of grids are
not usually used in computer games because these two are the simpliest ones
(perhaps apart from dividing the space into triangles) and for historical reasons
– inconsiderable part of the first computer games that used such space division
originated from pen&paper games such as Dungeons and Dragons (see [9]) or
GURPS (see [6]) which use the same space partitioning. Furthermore, together
with the already mentioned triangles, these are the only convex polygons that can
be used to tesselate a 2D plane regularly (regular tesselation is a tiling composed
of regular polygons symmetrically filling the plane) – see [25]. The examples of
use of the hexagonal and square grids are shown in Fig. 1 – in the left part of this
figure, we may see a snapshot from the Fallout game showing the used hexagonal
grid, in the right part, there is a snapshot from Age of Empires which use a
square grid (the grid itself is not shown but its presence can be easily spotted by
the shape of the shadows or the layout of the objects in the figure).

There is one special detail worth noting in the grid problematics – some applica-
tions use path planning methods based on a data structure called path grid. The
problem is that the term is used to mark two completely different things used in
a similar context. First, the path grid used in the field of robotics means (simply

1Such a virtual city cannot contain bridges over walkable areas, multistory buildings and
similar structures.
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Figure 1: Two examples of applications using a grid terrain representation. Prop-
erty of [5] and [3] respectively.

said) that the navigation space is divided using a regular square grid and each
grid cell containing at least a part of an obstacle is considered to be impassable
for any path-planning algorithm. More details may be found for instance in [26].
Second, some game engines (e.g., those used by [1]) use a data structure which
is also called path grid for planning the paths of the artificial characters but this
structure is in fact a case of waypoint map (see further).

2.2 Waypoint Maps

Waypoint maps (sometimes also called roadmaps) and similar graph structures
operate on a very simple principle shown in Fig. 2 – a number of special naviga-
tion nodes called waypoints is placed into the environment, representing vertices
of a navigation graph. Some of these waypoints are then connected by edges,
representing that they are mutualy reachable by the artificial entities. Especially
in Fig. 2, we may see a small portion of a cave environment from the The Elder
Scrolls IV: Oblivion game with the waypoints represented by the blue squares,
some of them being connected by the yellow edges. These connected waypoints
are then mutualy reachable by the artificial entities inhabiting the cave.

There are numerous ways of constructing a waypoint map – it may be based on
a visibility graph (see [13]), some space partitioning structure such as octtree or
Delaunay triangulation (see [15]), it may be constructed as a medial axis of the
free space in the environment (see [24]) or even entirely constructed by the user
(which is one of the most commonly used approaches in the game industry).

If an artificial entity wants to move through the map from its current destination
to some other point, it searches the waypoint graph and locates two waypoints
– the one that is nearest to its current position (let us mark it A) and the one
that is nearest to the destination (let us mark it B). Using some kind of a graph
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Figure 2: Example of an environment with waypoint graph, [1].

searching algorithm, a path from A to B is then found through the waypoint
graph and the entity then moves along this path toward its goal.

Even though this principle may seem to be simple, there are some serious draw-
backs which make it hardly usable for crowd simulations. First of them is the
fact that for the most of the time the characters move strictly along the edges in
the waypoint graph which is extremely unnatural. Even if an artificial character
moves through an empty wide-opened space, its path will be ”zig-zag” shaped.
Furthermore, in its most simple form (as described here) the waypoint map does
not allow any trajectory smoothing because it does not contain any information
about its neighborhood (on the other hand, the waypoint map itself may be
smoothed during its creation – see [24]).

The waypoint graph also allows only one moving character per each edge at a
time. If two characters are to be able to move through some space (a stairway,
a street, a hallway, etc.) there would have to be multiple edges of the waypoint
graph in that area. Otherwise, one of the characters has to wait for the other
to leave the edge before entering it. This problem is caused by the same feature
of the waypoint graphs as the inability to smooth the paths of the characters
– because the edges of the graph contain no additional information about their
neighborhood, the characters simply do not know if (and how) they could possibly
evade each other if moving along the same edge simultaneously.

If there are two or more different types of artificial entities (which move in a
different fashion) we will most probably need a separate waypoint map for each
of those entity types because the waypoint map used for one of them will be
unusable for the other because it will be too close to the walls of the environment,
it will lead through corridors too narrow for some larger vehicles, etc.
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Even though the waypoint maps are widely used in the game industry today,
for the mentioned reasons they are unsuitable for managing large quantities of
artificial humans (i.e., a crowd) and even in the game industry, various producers
replace them with more sophisticated data structures that, apart from the infor-
mation contained in the waypoint maps, also provide the artificial entities with
some information about the surrounding environment (see further).

2.3 Corridor Maps and Navigation Meshes

As described before, the commonly used waypoint maps have some unpleasant
disadvantages which may make them barely usable for some applications like
navigating larger groups of artificial humans or navigation of many different types
of artificial entities at once. Most of these disadvantages originate in the fact
that the waypoint maps do not describe the surrounding environment. There
are two commonly used data structures which remove this drawback and thus do
not suffer from the same disadvantages – the corridor maps and the navigation
meshes.

Corridor Maps

Let us take a look at the corridor maps first – according to [11, 16] and others, a
corridor map represents a system of collision-free corridors for the static obsta-
cles in a given environment. Each corridor consists of a sequence of maximum
clearance disks (i.e., maximum disks which contain no static obstacle in the en-
vironment) – the centers of these disks form the centerlines of the corridors and
their radii provide us with so needed information about the surrounding environ-
ment. An example of a corridor map is shown in Fig. 3 (only the centerlines of
the corridors are displayed in the left subfigure, the right subfigure also shows
one full corridor).

Using the corridor maps for artificial entity navigation is basically very similar
to using an ordinary waypoint map. Let us again have an entity which wants
to move from point A to point B. First we have to find in which corridors A
and B lie and then we use a graph searching algorithm to find a sequence of
corridors which connect the first and the last one that the entity will need to
traverse (i.e., the ones that contain A and B, respectively). So far the approach
is essentialy the same as if we used an ordinary waypoint map, but instead of
having the entity move along the centerline of the corridor sequence, we may use
the entire space given by the corridors on the path, because we know that they
are empty of static obstacles. To do so, we may for instance create an abstract
point which attracts the moving artificial entity and move this point along the
centerline. Using the attraction point, we create a force which moves the entity
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Figure 3: Example of a corridor map and a sample corridor, [18].

towards its destination using possibly the whole space of the corridors en route.
Furthermore, this attraction force may be combined with other forces that affect
the entity such as grouping forces (which will hold together a group of entities
that are supposed to move together, see [14]) or repulsion forces (which will make
the entity avoid dynamic obstacles in the corridors such as other pedestrians etc.,
see [18]) and many other different forces as required by the target application.

Navigation Meshes

The idea behind navigation meshes (also called navmeshes) is basically the same
as the idea behind corridor maps – the navigation meshes also represent an ex-
tension of waypoint maps but with the idea to keep the environment description
as simple as possible (i.e., the aim is on quick construction and low memory
consumption). Thus, instead of creating a centerline of the environment and as-
signing each of its points a radius, we divide the environment into rather small,
convex parts – i.e., a mesh. This mesh may be composed of triangles, quadrilat-
erals (either irregular ones or rectangles), or virtually any convex subparts of the
environment – see [20]. Example of a navigation mesh is shown in Fig. 4.

Navigation meshes work essentialy in the same way as corridor maps – they
provide us with a data structure that describes the whole environment that the
artificial entities can traverse in a form of a graph. Thus any suitable graph-
based algorithm for path-planning may be used to find a sequence of navigation
mesh primitives that will lead the artificial character from point A to point B.
Because the path also contains some part of the surrounding environment, it may
be easily smoothed to look more natural. Compared to the corridor maps, the
navigation meshes do not provide us with equally quality path because there is
no guarantee that the found mesh primitives sequence contains the maximum
available surrounding environment and is highly dependent on the type of the
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Figure 4: Example of a navigation mesh, [8].

navigation mesh and the construction algorithm. On the other hand, the memory
needed for storing a navigation mesh is substantially smaller than the memory
needed for corridor maps and if the navigation mesh is well constructed, the found
paths will be of good quality.

Similarly as the corridor maps, the navigation mesh itself does not handle any
moving obstacles such as other artificial entities. To do so, it has to be combined
with some other apparatus such as the attraction and repulsive forces we have
already described or for instance kinetic data structures which are described
in [12] (in combination with a different terrain representation). In the game
industry, the navigation meshes may be found for instance in games such as
Countre Strike: Source from [8], Fallout 3 from [1] and others.

2.4 Other Commonly Used Types of Graphs

Of course there are numerous other data structures which may be used for ter-
rain representation in crowd simulations and similar applications that were not
discussed here. This section will provide a brief overview of some of them.

Higher Order Voronoi Diagrams

Unlike the ordinary Voronoi diagrams which represent a spatial partitioning of
a given space into cells that consist of points nearest to one of the points in the
generator set, the kth order Voronoi diagram decompose the given space into cells
containing points nearest to k−tuples of the generator points (for details on both
the ordinary and the kth order Voronoi diagram see [17]).
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According to [22], the combination of the 1st and 2nd order Voronoi diagrams
may be used to simulate crowd behavior. The relevant subpart of the 2nd order
diagram is embedded into each cell of the 1st order diagram, thus creating a graph
in which the paths may be found for all of the virtual entities simultaneously
(without the need for creating a special Voronoi diagram for each entity which
would consider the other entities to be obstacles). Example of the combination
of the 1st and the 2nd order Voronoi diagram is shown in Fig. 5 – in the left part
of this figure we can see the combination of the two Voronoi diagrams (red edges
are those of the 1st order diagram and the black edges are from the 2nd order
diagram). The right part of Fig. 5 shows a data structure called Multi-agent
Navigation Graph which is used for the navigation itself (see [22]).

Figure 5: Combination of the 1st and the 2nd order Voronoi diagram, [22].

Visibility Graphs

Although this type of graph is often used as a substep in the process of creating
a waypoint map for a given environment, it may also be used for the navigation
itself (see [20]). In that case, the visibility graph works exactly as any other
waypoint map would. However, some problems may arise from the fact that the
edges of a visibility graph usually connect corners in the environment which can
make the artificial entities in the environment to move too close to the walls or
corners and maybe even collide with them.

Binary Space Partitioning Trees

This data structure is most commonly used for rendering acceleration (see [21]),
because it allows us to quickly determine which parts of the environment may
be seen by the camera. On the other hand, its features allow it to be used for
collision detection or even as a base structure for waypoint map or navigation
mesh generation. It is, however, not usualy used for navigation purposes.
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3 Environments based

on Non-Graph Structures

Environments used for artificial crowd simulations and similar problems that are
not based on the graph data structures mentioned in the previous sections usually
exploit some kind of potential field as the underlying data structure. These
methods work in a way that is completely different than the aforementioned
graph-based methods (see [23]). The environment is divided into a fine grid and
a potential function value is computed for each of the cells of this grid (see Fig. 6).
In this figure we can see that the potential function is constructed as a sum of
three different functions – the density function is used to prevent the pedestrians
to collide with each other by raising the potential values around the location of
each of the pedestrians. The goal function is used to determine the targets of
the pedestrians and the boundary function prevents the pedestrians from leaving
the designated area and colliding with the static obstacles. These functions are
the summed together (perhaps with other similar functions not mentioned here)
and the pedestrians are then updated according to the neighborhood values of
the final potential function.

The potential function thus reflects the probability that an artificial pedestrian
will choose this cell as a part of his/her path. Depending on the set of rules used
for the pedestrian movement, the function value may be dependent on its posi-
tion in the environment (the pedestrians are more likely to walk on the pavement
than in the middle of the road), the proximity of other pedestrians and other
objects (to prevent collisions with both static and dynamic obstacles), the goals
of each of the pedestrian and possibly on some other criteria. Even such circum-
stances as periodically changing environment (such as a pedestrian crossing with
traffic lights) or learning from previous experience may be incorporated into the
computation. Each pedestrian then finds his/her way through the environment
by moving along the path with minimum energy consumption.

The most obvious disadvantages of this kind of approach include the fact that
the potential function must be computed periodically at a rather high framerate
in order to make the movement seem natural and it must be computed for each
pedestrian separately. On the other hand, the global-scope path planning is
done together with collision avoidance, group coherence conservation and the
preservation of other behavior-based features of the moving crowd as needed
and defined by the potential function. Furthermore, the crowd may be divided
into several groups of pedestrians that share a common goal and the potential
field may then be computed for the entire group. Also, unlike the graph-based
methods, this approach is dependent on the size of the environment rather than
the number of the people in the crowd.
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Figure 6: Example of a potential field computation, [23].

The behavior of the crowd is driven entirely by the potential function and thus it
is very difficult to make each pedestrian behave differently. For some applications
the diversity of the crowd may easily be ommited for the sake of the simplicity
and a performance improvement, but in other applications we might want each
artificial pedestrian to move according to slightly different rules and follow a
different goal. In such cases, the potential field based methods provide us with
only few advantages.

11



4 Conclusion

The modern crowd simulation applications may be divided into two main
branches according to the type of the underlying structure they use for the crowd
navigation. The first group uses some kind of a graph to divide the environ-
ment into logic parts and uses graph path-finding algorithms to navigate sepa-
rate agents through the environment. The solutions in this group may be further
subdivided according to the type of the graph they use and according to the type
of local criteria they use for tasks such as collision avoidance and similar behav-
ior. However, independently on these features, we may say that these approaches
provide us with more possibilities to control each agent individually (according to
his visibility field, position, overall condition and possibly other features) and are
more natural as the crowd is clearly a special group of different human entities.

The other group of approaches is based on gradient methods running on a po-
tential field map. This approach does not need any spatial division of the en-
vironment except of the fine grid which discretises the potential function. It is
also convenient that the performance of these methods is usually independent on
the number of the entities in the environment (it is, however, dependent on the
size of the environment and the number of cells in the grid). The potential field
based methods provide us with less possibilites to control the crowd as a group of
individuals and sometimes suffer from collisions between the pedestrians (which
are easily handled by the agent based methods) but they may easily simulate the
crowd phenomena such as lane and vortex forming because these problems are
well-known from other fluid dynamics applications.

Each of the two approaches provides us with different possibiilites, suffers from
different drawbacks and – probably most importantly – has a different focus. The
correct use of one or the other of these approaches strongly depends on the desired
purpose of the crowd. Agent based methods allow us a more individual control
over each human in the crowd which may be important for computer games or
other strongly interactive applications, while the potential field based methods
are more suitable for applications with the focus on the flow of the entire crowd
– e.g., traffic simulations, simulated evacuation scenarios, etc.
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