
University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

Diploma Thesis

Evaluation of Dynamic Mesh
Compression Algorithms Using

Alternative Metrics

Pilsen, 2010 Oldřich Peťŕık

I hereby declare that this diploma thesis is completely my own work and that I used only the

cited sources.

Pilsen, 20/5/2010 Oldřich Petřı́k

Abstract

Evaluation of Dynamic Mesh Compression Algorithms Using
Alternative Metrics

In the last decade, with the growing complexity of 3D data, it became necessary to use compres-

sion techniques to reduce the storage space needed for such amounts of data. Many algorithms

were developped, most of them based on a lossy compression scheme. It became apparent,

that the distortion introduced by discarding a part of the data needs to be measured in order to

compare different settings and different algorithms. Several distortion metrics were proposed

based on various measurement methods.

In this thesis, four state-of-the-art dynamic mesh compression algorithms will be discussed:

Dynapack, D3DMC, FAMC and Coddyac. D3DMC and FAMC will also be implemented,

while the implementation of the Dynapack and Coddyac algorithms we have already available.

The principle and the input parameters of each of the algorithms will be described in detail

and the influence of different input parameters on the compression result will be discussed.

Two distortion measures will be used: KG and STED. Their performance will be evaluated and

compared.

At last, the matter of rate-distortion optimisation will be thoroughly discussed. In result, a

method for finding the optimal parameter values of a general compression algorithm for a

given dataset will be proposed. Its properties will be evaluated and compared to the current

state of the art.

Abstrakt

Evaluace algoritmů pro kompresi dynamických śıt́ı
alternativńımi metrikami

S rostoucı́ složitostı́ trojrozměrných dat v poslednı́m desetiletı́ vznikla potřeba použitı́ kom-

presnı́ch technik, aby bylo možné zmenšit úložný prostor potřebný k uloženı́ těchto datových

sad. Bylo vyvinuto mnoho algoritmů, z nichž většina pracuje se ztrátovou kompresı́. Použitı́m

takových algoritmů se část dat ztrácı́, cı́mž vzniká určitá chyba. Pro porovnánı́ různých nasta-

venı́ algoritmu či porovnánı́ různých algoritmů mezi sebou je třeba tuto chybu změřit. Za tı́m

účelem bylo navrženo několik metrik založených na různých principech.

V této práci budou představeny čtyři algoritmy pro kompresi dynamických sı́tı́: Dynapack,

D3DMC, FAMC a Coddyac. D3DMC a FAMC budou také implementovány, zatı́mco imple-

mentaci algoritmů Dynapack a Coddyac již máme k dispozici. Bude podrobně vysvětlen prin-

cip fungovánı́ každého z algoritmů a také jeho vstupnı́ parametry, včetně diskuse jejich vlivu na

výsledky komprese. Při tom bude využito dvou metrik pro měřenı́ vzniklé chyby: KG a STED.

Jejich chovánı́ bude následně vyhodnoceno a porovnáno.

Na závěr bude zevrubně diskutováno téma optimalizace datového toku vzhledem k chybě

způsobené kompresı́. Jako výsledek bude navržena metoda pro nalezenı́ optimálnı́ch hodnot

parametrů. Jejı́ vlastnosti budou analyzovány a porovnány s běžně použı́vanými metodami.

Contents

1 Introduction 3

1.1 Problem Definition . 3

1.2 Organisation . 5

1.3 Notation . 5

2 Compression Algorithms 6

2.1 Dynapack . 6

2.2 FAMC: Frame-based Animated Mesh Coding 12

2.3 D3DMC: Differential 3D Mesh Coding . 17

2.4 CoDDyaC: Connectivity-Driven Dynamic Mesh Compression 21

3 Rate-Distortion Optimisation 26

3.1 Rate and Distortion . 27

3.2 Principle of Equal Slopes . 27

3.3 Iterative Optimisation . 28

4 Implementation 34

4.1 Modular Visualization Environment 2 . 34

4.2 Compression Algorithms . 35

4.3 Optimisation Method . 39

5 Experimental Results 41

1

5.1 Algorithm Comparison . 41

5.2 Metric Comparison . 45

5.3 RD Optimisation Method . 45

6 Conclusions and Future Work 49

2

1

Introduction

Computer graphics has gained much popularity in the recent decades and became a crucial

part of many disciplines such as medicine, entertainment or advertising. The processing power

of graphics hardware has seen a fast advancement over the recent years making it vastly more

powerful than conventional processors. This advancement has made computer graphics capable

of solving problems that have been unreachable before.

With the growing hardware performance, a demand for visual quality arises causing still better

methods for data acquisition to be developed. While these two branches of computer graphics

may be able to keep up with each other, the storage space and data transfer speeds represent

significant limitations for the size of the datasets, which, especially for animated cases, may

be simply too large. Employing compression is a logical step to reduce or eliminate such

limitations.

1.1 Problem Definition

In this work, we concentrate on compression of dynamic triangle meshes with constant con-

nectivity (“dynamic meshes”, “animated meshes”). Such data may be seen as a succession of

triangle meshes, where each mesh represents a single frame of a uniformly sampled animation.

All the meshes then share the same number of vertices and the same connectivity (i.e. each

corresponding vertex has the same neighbours in each of these meshes), while the positions of

corresponding vertices are time-variable. There are various other ways to represent animated

3D scenes as meshes, such as dynamic triangle meshes with variable connectivity and dynamic

quad meshes, or using different approaches, for example skinning [9, 10]. However, this rep-

resentation is much simpler, while still being suitable for most problems at hand, and can be

3

INTRODUCTION PROBLEM DEFINITION

derived from the other representations.

The continuing research in the area of dynamic triangle mesh compression has resulted in

many compression methods with a wide range of different approaches. To reach the highest

compression ratios, most of these methods use a lossy compression scheme, where part of the

geometry data containing the least important information (according to the respective algorithm

design) is discarded. This introduces a distortion into the animation. In other words, the vertex

positions of the compressed animation differ from the original ones. To measure this difference,

several distortion metrics were developed based on different measurement schemes. We will

use the KG error metric proposed by Karni and Gotsman [8], which is the most common

distortion measure used in dynamic mesh compression, and the STED metric by Váša and Skala

[27], which correlates well with human perception of distortion. Together with distortion, we

will measure the bitrate (“rate”) of the compressed animation, which is expressed in bits per

frame and vertex (bpfv). This value is equivalent to the inversed compression ratio, as it is

constant for uncompressed dynamic meshes.

The compression methods for dynamic meshes use various segmentation and prediction models

to reduce redundance present in the data. In most cases, a quantisation process is employed to

discretise the data and prepare it for entropy coding. An entropy coder is also often integrated

to further decrease the entropy. Additional techniques may be involved adding or improving

some properties of the algorithm or adapting it for a specific application.

Most of the above-mentioned compression techniques need to be properly configured in order

to deliver the best performance. This is usually done by introducing configuration parame-

ters to the compression algorithm like the coarseness of the quantisation process, number of

clusters, etc. Usually, as an algorithm evolves to offer higher compression ratios or improved

properties, more techniques get involved in the compression process, thus increasing the num-

ber of configuration parameters. The number of parameters can range from one in very simple

algorithms like Dynapack (section 2.1) to e.g. five in FAMC (section 2.2) or even more.

Our goal is to find a method that will, for a given compression algorithm, dynamic triangle

mesh, and distortion metric, find such parameter values, which will result in an optimal com-

pression result, i.e. the minimal distortion for that bitrate and the highest compression ratio

for that distortion.

The problem of finding the optimal configuration for a general compressor, the function of

which is unknown to the optimiser, is non-trivial. The commonly used approach is actually an

exhaustive search, where a vector of values is specified for each parameter and the compressor

is run for all possible configurations created using these values. The configurations producing

4

INTRODUCTION ORGANISATION

the best results are then picked by hand or automatically. The number of times the compressor

has to be executed is exponential to the number of parameters with the argument equal to the

size of the value vectors. While this approach may be sufficient for compression algorithms

with one or two parameters, it may get unreasonably slow for higher parameter counts. We

attempt to design an algorithm that will be able to find optimal configurations in a reasonable

number of compressor runs.

1.2 Organisation

The rest of this work is divided into five parts. In the first part, four state-of-the-art algorithms

for dynamic triangle mesh compression – Dynapack, FAMC, D3DMC, and Coddyac – are pre-

sented. The principles of these algorithms are thoroughly explained and their input parameters

are described. Each algorithm is discussed in terms of compression performance and proper-

ties. In the next part, the problem of rate-distortion optimisation in dynamic mesh compression

is discussed. A general optimisation method is proposed and its design is explained in great

detail. This work also includes an implementation of the compression algorithms and the pro-

posed optimisation method. The implementation details are explained in the third part. Next,

we present and discuss experimental results of our method and compare them with the current

state of the art. Finally, a conclusion is drawn in the last part.

1.3 Notation

If not defined otherwise, the following notation will be used throughout the rest of the text:

F number of frames in the mesh animation

f a single frame of the animation

V number of vertices in each mesh of the animation

v a single vertex in a mesh

pred(ξ) . . . predicted value of ξ

ξ̂ quantised value of ξ

ξ̃ decoded value of ξ

5

2

Compression Algorithms

2.1 Dynapack

Dynapack [4] is a simple and fast compression method for dynamic meshes based on a local

spatiotemporal prediction model. The position of vertex v in frame f is predicted from the po-

sitions of three of its neighbours in frame f (spatial prediction) and from the positions of vertex

v and the same three neighbours in the previous frame f − 1 (temporal prediction). The algo-

rithm introduces two extrapolating space-time predictors — ELP (Extended Lorenzo Predictor)

and Replica. The ELP is very fast, but it only is a perfect predictor for rigid translations, while

Replica can perfectly describe any combination of rotation, translation, and uniform scaling at

the cost of higher computation complexity.

Mesh Traversal
The Dynapack algorithm utilises a mesh traversal approach similar to Rossignac’s EdgeBreaker

[16]. A Corner Table data structure [17] C is used to describe the topology of the mesh inside

both the encoder and the decoder. This table holds 3T entries, where T is the number of

triangles. The vertex indices of the three corners of a triangle t are stored at indices 3t, 3t+ 1,

and 3t + 2 in the corner table. For each corner (index) c, we can determine the triangle t(c)

it belongs to by an integer division t(c) = c DIV 3 and the associated vertex v(c) = Cc.

Assuming the triangles are consistently oriented, the other two corners of t(c) can be found:

the next corner in the triangle ordering n(c) = c− 2 if c MOD 3 = 2, otherwise n(c) = c+ 1,

and the previous corner p(c) = n(n(c)). An opposite corner table O contains for each corner c

the opposite corner o(c), i.e. the corner, for which applies n(c) = p(o(c)) and p(c) = n(o(c)).

For corners, whose opposite edge is a border edge, the table contains −1. The corner l(c) to

the left of c can also be determined: l(c) = o(n(c)), and the one to the right: r(c) = o(p(c)). A

boolean value m(t) indicates, whether triangle t has already been visited during the traversal.

6

COMPRESSION ALGORITHMS DYNAPACK

Similarly, m(v) marks vertices, which have been visited. At the beginning, these indicators are

initialised to false.

v(c)
r(c)l(c)

c

p(c) n(c)

o(c)

Figure 2.1: Corner operators in the Corner Table mesh representation.

In each frame, each connected component of the animated mesh is traversed by the algorithm

in an exactly defined order, so that the process can be repeated in the decoder. First, we select

a seed corner c, encode the vertices of its triangle t(c) and mark the triangle and its vertices

as visited. Then, a recursive depth-first traversal is performed by calling dynapack(o(c)),

dynapack(l(c)) and dynapack(r(c)). The recursive procedure is defined as follows:

procedure dynapack(c)
begin

if c = -1 then exit;
if not m(t(c)) then
begin

if not m(v(c)) then
begin

encode(position(c, f) - predict(c, f));
m(v(c)) := true;

end
m(t(c)) := true;
dynapack(r(c));
dynapack(l(c));

end
end

The position(c, f) procedure returns the original position of the vertex of corner c in

the f -th frame, and predict(c, f) returns the predicted position of that vertex in frame

f . Note that for the first frame, a space-only prediction has to be used. For the subsequent

frames, the spatio-temporal predictors mentioned above are implemented. The vertices of the

seed triangle also have to be encoded differently. In the first frame, these vertices are stored

without prediction, while in the other frames, a time-only predictor can be employed using the

seed triangles from the previous frames.

7

COMPRESSION ALGORITHMS DYNAPACK

Decoding is carried out similarly to encoding. First, the seed triangle of the first frame is

decoded. Then, the rest of the mesh of the first frame is traversed using a spatial prediction.

The other frames are then decoded in the same way, except that a temporal predictor is used for

the seed triangles and a spatio-temporal predictor throughout the mesh traversal. The decoding

traversal is performed by issuing three calls: dynaunpack(o(c)), dynaunpack(l(c)),

and dynaunpack(r(c)). The dynaunpack() procedure is defined as:

procedure dynaunpack(c)
begin

if c = -1 then exit;
if not m(t(c)) then
begin

if not m(v(c)) then
begin

position(c, f) := predict(c, f) + decode();
m(v(c)) := true;

end
m(t(c)) := true;
dynaunpack(r(c));
dynaunpack(l(c));

end
end

Predictors

Space-only Predictor

This predictor is used to encode the traversed vertices in the first frame of the animation.

It utilises the parallelogram rule to predict the position of the vertex in the opposite corner

from the vertices of the known triangle in the same frame. It is exactly the parallelogram

predictor used by Touma and Gotsman [22] and by EdgeBreaker. The position of vertex v(c)

in frame f is predicted as:

v(n(c))f + v(p(c))f − v(o(c))f . (2.1)

Time-only Predictor

The prediction of the vertices of the seed triangles in all frames except the first is performed

using this purely temporal predictor. It simply assumes the position of the vertex in frame f

to be the same as in frame f − 1.

Extended Lorenzo Predictor

ELP is a generalisation of the Lorenzo Predictor [3] employed in compression of regularly

8

COMPRESSION ALGORITHMS DYNAPACK

v(o(c))f
p(c)

n(c)

c

v(n(c))f

v(p(c))f

v(c)f

pred(v(c)f)

o(c)

Figure 2.2: Scheme of the space-only predictor in Dynapack.

sampled four-dimensional scalar fields. It is a space-time predictor, which assumes that a

spatial prediction error in the current frame is the same as it was in the preceding frame. In

other words, it evaluates the prediction of vertex v(c) in frame f as:

v(n(c))f + v(p(c))f − v(o(c))f︸ ︷︷ ︸
spatial prediction in frame f

−
[
v(n(c))f−1 + v(p(c))f−1 − v(o(c))f−1︸ ︷︷ ︸

spatial prediction in frame f − 1

]
+ v(c)f−1.

(2.2)

This predictor is the perfect predictor for vertices in regions of the mesh that have been

transformed by a pure translation from the previous frame. I.e. if the four vertices of a

parallelogram have moved by a constant vector, the spatial prediction error stays the same,

thus no further information is needed to obtain the exact position of the predicted vertex.

v(o(c))f-1
p(c)

n(c)

c

v(n(c))f-1

v(p(c))f-1

v(c)f-1

o(c)

v(o(c))f

v(n(c))f

v(p(c))f

v(c)f

pred(v(c)f)

p(c)

n(c)

o(c)

c

Figure 2.3: Scheme of the Extended Lorenzo Predictor.

Replica

It is a vector-based predictor. Instead of using a linear combination of known vertex posi-

tions, Replica expresses the position of the predicted vertex v(c) in a local coordinate system

created from triangle t(o(c)). The local coordinates [a, b, c] are extracted from the known

position of the vertex in the preceding frame using the following equation:

9

COMPRESSION ALGORITHMS DYNAPACK

v(c)f−1 = v(o(c))f−1 + aAf−1 + bBf−1 + cCf−1 , where (2.3)

Ai = v(p(c))i − v(o(c))i ,

Bi = v(n(c))i − v(o(c))i , (2.4)

Ci =
Ai ×Bi
‖Ai ×Bi‖

3
2

.

The predictor assumes the coefficients a, b, and c to stay the same in the current frame, and

thus predicts the position v(c)f as:

v(o(c))f + aAf + bBf + cCf . (2.5)

The coefficients are obtained from equations 2.6, where Di = v(c)i − v(o(c))i.

a =
(Af−1 ·Df−1)(Bf−1 ·Bf−1)− (Bf−1 ·Df−1)(Af−1 ·Bf−1)
(Af−1 ·Af−1)(Bf−1 ·Bf−1)− (Af−1 ·Bf−1)(Af−1 ·Bf−1)

b =
(Af−1 ·Df−1)(Af−1 ·Bf−1)− (Bf−1 ·Df−1)(Af−1 ·Af−1)
(Af−1 ·Bf−1)(Af−1 ·Bf−1)− (Bf−1 ·Bf−1)(Af−1 ·Af−1)

(2.6)

c = Df−1 ·
Af−1 ×Bf−1
‖Af−1 ×Bf−1‖

3
2

The use of the local coordinate system gives Replica the ability to perfectly predict the

position of a vertex when the associated parallelogram is transformed by any combination

of rigid body motion and uniform scaling.

Encoding
The vertex positions of the seed triangles and the prediction residual values are converted to

integer numbers using uniform quantisation. First, a minimal axis-aligned bounding box wrap-

ping the whole animation (i.e. completely containing the mesh in each frame) is constructed

and the position of its minimal corner [xmin, ymin, zmin] and maximal corner [xmax, ymax, zmax]

are sent to the output data stream. Then, each x-coordinate of the position or the residue is

quantised using the following equation:

10

COMPRESSION ALGORITHMS DYNAPACK

v(o(c))f-1

v(n(c))f-1

v(p(c))f-1

v(c)f-1

pred(v(c)f)

C

A

B

cC

aA

bB

v(o(c))f

v(n(c))f

v(p(c))f

C‘

A‘

B‘

cC‘

aA‘

bB‘
D

D‘

Figure 2.4: Scheme of the Replica predictor.

x̂ = round

(
x− xmin

e · (xmax − xmin)

)
, (2.7)

where e is a user-defined accuracy parameter. The quantised value falls within the interval

of [0; 2q], q = log2
(
xmax−xmin

e

)
being the maximum number of bits needed to represent the

value. The y- and z-coordinates are quantised in the same manner. Finally, each quantised

triple of [x̂, ŷ, ẑ] is sent to the output data stream.

Input Parameters
There is only one parameter steering the compression in the Dynapack algorithm. It is the

quantisation accuracy parameter, which controls how coarsely the prediction residual vectors

will be quantised and thus, how much distortion will be introduced into the data.

Algorithm Discussion
Dynapack is a very simple and fast compression scheme. Its authors make it clear that the

aim of it is not to outperform the state of the art algorithms but rather to present a computa-

tionally cheap method with a reasonable performance, which could be implemented directly in

hardware. For this task, the algorithm works great. However, the algorithm could be greatly

improved by employing an entropy coding scheme to the output data stream. For example, the

context-adaptive arithmetic coders are very efficient and their hardware implementations are

already available.

Note, that the quantisation procedure uses a different step for each coordinate, since the differ-

ence of the minimum and maximum value is used as the range for each coordinate. Besides,

while this approach might work well for the absolute positions of the vertices, it won’t for the

prediction residues, because they are scattered around zero, and thus need not to be within the

11

COMPRESSION ALGORITHMS FAMC: FRAME-BASED ANIMATED MESH CODING

position range at all.

2.2 FAMC: Frame-based Animated Mesh Coding

This algorithm is based on the skinning approach by Mammou et al. [12]. The main idea is

to cluster the vertices of the animated mesh into groups, whose motion in each frame can be

predicted well with a single affine transformation. Each vertex is then assigned a vector of

weights for its cluster and the surrounding clusters describing their influence on the movement

of the vertex. The weighted transformations are then applied to the vertex for each frame and

a correction vector (or prediction residue) between the transformed and the actual position is

calculated. Finally, the entire animation is stored as the group of the first frame mesh (including

connectivity), the clustering information, a transformation matrix for each cluster and frame,

the weight vector for each vertex and a correction vector for each vertex and frame. We will

now describe the process in detail.

Input FAMC Encoder Compressed Stream

Static Encoder

Motion-based

Segmentation

S
k

in
n

in
g

M
o

d
e

l

E
st

im
a

ti
o

n

D
C

T
 T

ra
n

sf
o

rm

Q
u

a
n

ti
sa

ti
o

n

frame 0

frame i C
A

B
A

C

prediction errors

affine transforms

animationweights

partition

compressed frame 0

compressed residual errors

compressed skinning model

Figure 2.5: Diagram of the FAMC compression algorithm.

Motion-based Segmentation
In this stage, the animated model consisting of frame meshes M1 . . .MF is segmented into

clusters of points with similar motion. The partition Π = {πi}i=1...N defines N clusters,

where each cluster can be in optimal case accurately described using a single affine transform.

The FAMC algorithm uses a mean square motion compensation error to define the optimality

criterion E(Π):

E(Π) =
F∑
f=1

V∑
v=1

∥∥∥Ak(v)f pv1 − pvf
∥∥∥2 , (2.8)

12

COMPRESSION ALGORITHMS FAMC: FRAME-BASED ANIMATED MESH CODING

where Ak(v)f is an affine motion matrix describing cluster motion from the first frame to the

f-th frame, and k(v) is an index function, which for a vertex v returns the index k of the cluster

v belongs to. The motion matrix has the form described by equation 2.9.

A
k(v)
f =

a11 a12 a13 t1

a21 a22 a23 t2

a31 a32 a33 t3

0 0 0 1

 (2.9)

Coefficients tj describe the translational part of the motion and coefficients aij describe the

rotation and scaling. The matrix is defined by the following equation:

A
k(v)
f = arg min

A

 ∑
w∈πk(v)

∥∥Apw1 − pwf ∥∥2
 . (2.10)

Given a threshold error E0, the algorithm is designed to determine a partition Π∗ of the input

mesh with the minimal number of clusters, for which the resulting motion compensation error

E(Π∗) ≤ E0. This is achieved by hierarchical simplification strategy based on a successive

application of the half-edge collapse operator [2]. A half-edge collapse hc(v, w) of an edge

(v, w) merges vertex w into vertex v, which remains at its original position. All neighbours of

w are connected to v. Vertex v is assigned a set of ancestor vertices v∗:

1. initially: v∗ := {}

2. after hc(v, w): v∗ := v∗ ∪ w∗ ∪ {w}

The edge to be collapsed is determined by an objective error function C(v, w), which measures

the cost of collapsing edge (v, w). This function is defined by equation 2.11.

C(v, w) =

F∑
f=1

 ∑
u∈ϑ(v,w)

∥∥∥Av,wf pu1 − puf
∥∥∥2
 , (2.11)

where ϑ(v, w) = v∗ ∪ w∗ ∪ {v, w}, and

Av,wf = arg min
A

 ∑
u∈ϑ(v,w)

∥∥Apu1 − puf∥∥2
 . (2.12)

13

COMPRESSION ALGORITHMS FAMC: FRAME-BASED ANIMATED MESH CODING

The coefficients of both matrix Ak(v)f from equation 2.10 and matrix Av,wf from equation 2.12

can be found using least squares minimisation (LSM) from an overdetermined system of linear

equations. First, a matrixM of size 12×3q is constructed as described by equation 2.13, where

q is the number of vertices in the set in question, i.e. in the cluster π or in the ancestor set ϑ

respectively. MatrixM contains vertex coordinates in the first frame. A vector b of coordinates

in the f -th frame determines the right hand side. Then, vector a is obtained by solving the

system Ma = b by LSM. This vector contains the coefficients of the desired affine transform

(equation 2.14). In case the set contains four points or less, the system is exactly determined,

or underdetermined, respectively, and there is at least one vector a such that the error function

C(v, w) for that set equals zero. This situation occurs at the beginning of the segmentation

process and causes the clusters to grow randomly until they have more than four points.

M =

x11 y11 z11 1 0 0 0 0 0 0 0 0

0 0 0 0 x11 y11 z11 1 0 0 0 0

0 0 0 0 0 0 0 0 x11 y11 z11 1
...

...
...

...
...

...
...

...
...

...
...

...

xq1 yq1 zq1 1 0 0 0 0 0 0 0 0

0 0 0 0 xq1 yq1 zq1 1 0 0 0 0

0 0 0 0 0 0 0 0 xq1 yq1 zq1 1

; b =

x1f

y1f

z1f
...

xqf

yqf

zqf

(2.13)

a = (a11, a12, a13, t1, a21, a22, a23, t2, a31, a32, a33, t3)
T (2.14)

The clustering process starts with the original animated mesh, thus the initial partition Π0 di-

vides the mesh into K0 = V clusters, each containing a single vertex. From this state, the half-

edge collapse steps are successively performed, in each step collapsing the edge with the lowest

cost. A partition obtained after i steps is defined as Πi =
{
πik = uik ∪ (uik)

∗; k = 1 . . .Ki
}

,

where uik is k-th vertex of the mesh resulting from i simplification steps. This process is per-

formed while the global motion compensation error E(Πi) stays below the threshold error E0.

Skinning-based Motion Compensation
In the previous stage, we have found a segmentation of the animated mesh, where the motion

of points in each of the segments can be described using one affine transformation per frame

with the motion compensation error not exceeding the specified threshold E0. However, in

14

COMPRESSION ALGORITHMS FAMC: FRAME-BASED ANIMATED MESH CODING

most cases, this description is not accurate enough. Points near the borders of the clusters

can, to some extent, also exhibit motion of the neighbouring clusters. Thus, the algorithm

introduces the weighted motion compensation model. The motion of a point is here expressed

as a weighted combination of the motion of the cluster the point belongs to and the motions

of its neighbouring clusters. The predicted position p̂vf of vertex v in frame f is then obtained

using the following equation:

p̂vt =
K∑
k=1

wvkA
k
fp
v
1, (2.15)

where wvk is called the animation weight, which is a real value controlling the influence of the

motion of cluster k on the motion of vertex v. The animation weights of all the clusters for

vertex v together create an animation weight vector wv, which is defined by equation 2.16,

where θ(v) is the vertex set of the cluster including vertex v and its neighbouring clusters.

Similarly to the transformation matrices, this vector is found using LSM method. After that, for

each frame f and vertex v, the algorithm calculates a correction vector (or prediction residual

error) as εvf = pvf − p̂vf .

wv = arg min
α∈RK

F∑
f=1

∥∥∥∥∥
K∑
k=1

αkA
k
fp
v
1 − pvf

∥∥∥∥∥
2

; k /∈ θ(v)⇒ αk = 0 (2.16)

Encoding
The motion prediction model attempts to minimise the sizes of the residues, so that they can

be efficiently stored using an entropy encoder. To further reduce the redundancy present in the

data, a global translation vector tf is determined for each frame f by averaging the motion

of all vertices of the mesh as expressed in equation 2.17. These vectors are subtracted from

the vertex positions before the segmentation stage, which results in decrease in the translation

coefficients of the cluster transform matrices.

tf =
1

V

V∑
v=1

pvf − pv1 (2.17)

In the prediction stage, each cluster is assigned a sequence of transformation matrices, one for

each frame of the animation. To store the matrices, the algorithm expresses them as a motion

of four non-coplanar points and stores the trajectories of these points.

15

COMPRESSION ALGORITHMS FAMC: FRAME-BASED ANIMATED MESH CODING

The original design of the algorithm (as described by the MPEG-4 standard [6]) allows one

of three methods to be used to transform the point trajectories: Discrete Cosine Transform,

wavelet transform based on the Lifting Scheme [1] and direct coding (i.e. no transformation).

Since this work aims on comparing the algorithms based on their rate-distortion properties,

only the DCT version will be described. According to the authors of the algorithm [13], it is

the one that delivers the best performance with respect to this criterion.

In this version, DCT transform is applied to the sequence of global translation vectors, the

trajectories of the points determining the cluster motions and also the sequence of residual

errors (vectors) of each point of the mesh. As these transformations are one-dimensional, they

are applied separately in each coordinate. A Layered Decomposition and Prediction scheme

can be employed to enable spatial and temporal scalability of the resulting data stream. As

authors show, the use of this scheme does not improve the RD performance of the algorithm,

and therefore its description will also be omitted. Detailed information on this topic can be

found in [20].

Once the transformation has been performed, all the values are quantised using a uniform

quantisation to a certain number of bits q (equation 2.18). A separate value of q is used for

the global translation values, the transformation point trajectories, the animation weights, and

the residual values, in order to control the compression result precisely. The quantised values,

together with the clustering information, are then entropy encoded using the Context-based

Adaptive Binary Coding (CABAC) mechanism [11].

x̂ = round

(
2q · x− xmin

xmax − xmin

)
(2.18)

Input Parameters
The FAMC algorithm has five input parameters influencing the output data size and distor-

tion. The first parameter specifies the threshold error for the segmentation process. Each of

the remaining parameters sets the number of bits q for the quantisation of values in one of the

compression stages: the global translation vectors, the cluster transformation matrices, the an-

imation weights and the correction vectors. Since each stage takes in the result of the previous

one, they tend to compensate for the errors (both prediction and quantisation) caused by the

previous stages. However, as the errors propagate to a subsequent stage, they also increase the

size of the data produced by that subsequent stage. For example, increase in quantisation noise

in the global translation stage will get compensated in the cluster transformation matrices. The

translation elements in all the matrices will change by the same values increasing the redun-

16

COMPRESSION ALGORITHMS D3DMC: DIFFERENTIAL 3D MESH CODING

dancy in the data, though the way the matrices are encoded makes it difficult for the arithmetic

encoder to efficiently reduce this redundancy in the final output. Similarly, the distortion in

the data is highly dependent on the quantisation of the prediction residues as they by design

compensate for any errors present in the data after all the previous stages. On the other hand,

the larger compensation is needed, the more space will it take to store the residues.

Algorithm Discussion
The skinning approach in general is a very powerful tool in dynamic mesh compression. It at-

tempts to divide the mesh into clusters of vertices with the most similar motion while describing

this motion as accurately as possible. The FAMC algorithm improves this approach by extend-

ing its properties, like scalable streaming or random frame access. For these properties and a

competitive performance, FAMC has been standardised by the Motion Picture Experts Group

and included in the MPEG-4 standard. Since then, it has been considered the state of the art.

However, we can find some potential flaws that might be degrading the performance of this

algorithm.

First, about three quarters of all the edge collapses performed in the mesh segmentation process

occur on random edges, as the clusters have too few vertices forcing the collapse cost function

to zero. This can cause points with completely unrelated motion to end up in the same cluster.

Although such situations are partially compensated by the animation weights, there certainly

is a space for improvement, e.g. including a neighbourhood of the edge into the cost function

calculation, if the merging clusters have less than five points together.

The algorithm also might be improved by exploiting more the spatial coherence in the data.

The Layered Decomposition approach has been employed in the algorithm for this reason,

but experiments show that the performance of the algorithm using LD and even LD together

with DCT is still worse than with DCT alone. However, using Layered Decomposition also

introduces the possibility of progressive data transfer and decoding, which makes the algorithm

more versatile.

2.3 D3DMC: Differential 3D Mesh Coding

In 1998, Taubin and Rossignac [21] proposed a compression method for static triangle meshes

using their Topological Surgery mesh traversal approach. An improved version of this method

called 3D Mesh Coding (3DMC) was later accepted as the MPEG-4 standard for static mesh

compression [5]. To extend the 3DMC method to dynamic meshes, Müller et al. [15] proposed

17

COMPRESSION ALGORITHMS D3DMC: DIFFERENTIAL 3D MESH CODING

a differential octree-based compression scheme – D3DMC. The algorithm describes an anima-

tion similarly to conventional video coding. The animation is represented as a succession of

Groups of Meshes (GOMs), each beginning with an intra mesh (I mesh), which is followed

by differential meshes (P meshes). The I meshes are coded as static meshes using the 3DMC

algorithm, while an octree motion segmentation and prediction is performed on the P meshes.

Spatial Segmentation
The clustering algorithm used by the D3DMC algorithm is based on the spatial clustering by

Zhang and Owen [28]. For each mesh (frame) in the sequence, the decoded vertex positions

from the previous frame are subtracted from the positions in the current frame. The result is a

set of motion vectors ∆v describing the motion of the vertices between these two frames. The

mesh is then divided into cells of an octree structure and the motion of the vertices in each cell

is described by trilinear interpolation of eight motion vectors, one in each corner of the cell.

Each mesh is assigned a minimal bounding box containing all the vertices of the mesh. This

box is considered the topmost cell of the octree. Next, a recursive subdivision of the tree is

performed, until the motion of the vertices is described with the desired accuracy. For each

vertex of the mesh, a trilinear ratio ρ = [ρx, ρy, ρz] is calculated from the position of the vertex

v = [vx, vy, vz] in the octree cell as shown in equation 2.19, where [bx, by, bz] is the position of

the cell corner with the minimum x, y, and z.

ρx =
vx − bx
sx

ρy =
vy − by
sy

ρz =
vz − bz
sz

(2.19)

From this ratio, a set of weights of the cell corners w1 . . . w8 is calculated using equations

2.20 and the motion ∆v of the vertex v is approximated by weighted average ∆v of the corner

motion vectors m1 . . .m8 (equation 2.21).

w1 = (1− ρx)ρyρz w2 = (1− ρx)(1− ρy)ρz

w3 = ρx(1− ρy)ρz w4 = ρxρyρz (2.20)

w5 = (1− ρx)(1− ρy)(1− ρz) w6 = ρx(1− ρy)(1− ρz)

w7 = ρxρy(1− ρz) w8 = (1− ρx)ρy(1− ρz)

∆v =
8∑
i=1

wim
i (2.21)

18

COMPRESSION ALGORITHMS D3DMC: DIFFERENTIAL 3D MESH CODING

The corner motions are computed using a Least Squares Minimisation from a system of linear

equations Ax = b, where A is a weight matrix and b is a vector of vertex motions:

A =

w1
1 0 0 · · · w1

8 0 0

0 w1
1 0 · · · 0 w1

8 0

0 0 w1
1 · · · 0 0 w1

8

...
...

...
. . .

...
...

...

wV1 0 0 · · · wV8 0 0

0 wV1 0 · · · 0 wV8 0

0 0 wV1 · · · 0 0 wV8

b =

∆v1x

∆v1y

∆v1z
...

∆vVx

∆vVy

∆vVz

(2.22)

The minimisation process results in vector x = (m1
x,m

1
y,m

1
z . . .m

8
x,m

8
y,m

8
z)
T , which con-

tains the components of the corner motion vectors. These motion vectors represent the best

estimation of the motion of the vertices enclosed in the currently evaluated cell. Next, the ac-

curacy of the estimation is obtained by substituting the calculated motion vectors into equation

2.21 and subtracting the resulting values from the corresponding vector motions. Two meth-

ods can be used to determine the error caused by the estimation: Max Distance and Average

Distance. If the error exceeds a specified threshold, the description of the vertex motion is too

inaccurate and the octree cell is evenly subdivided into eight octants. The whole process is then

applied to each one of these cells. Once the tree is subdivided enough for all the estimation

errors in its leaves to fall under the threshold, the splitting ends.

To determine the corner motions, at least eight vertices have to be present in the cell. After a cell

subdivision, some of the child cells may not contain enough vertices. For this reason, D3DMC

defines three types of octree cells. Empty cells do not contain any vertices and thus may be

stored very efficiently. Sparse cells contain one to seven vertices, whose motions are stored

directly without the motion estimation process. Cells of both these types are automatically

treated as leaves and are ignored by the subdivision process. Finally, Full cells enclose more

than seven vertices, whose motions are estimated by the corner motion vectors. These cells are

subject to the subdivision process unless the estimation error is less than the threshold.

Encoding
After the creation of the octree structure has finished, the resulting corner/direct motions in

each cell are quantised to a given number of bits. D3DMC employs a uniform quantisation

19

COMPRESSION ALGORITHMS D3DMC: DIFFERENTIAL 3D MESH CODING

process similar to the one used in FAMC (equation 2.18). To encode the subsequent frame, the

vertex positions in the current frame have to be decoded first. For full cells, the vertex motion

estimations are recalculated using the quantised corner motions. In sparse cells, the quantised

vertex motions are used directly. The obtained motions are then added to the corresponding

vertex positions from the decoded preceding frame. The resulting positions are then subtracted

from the positions in the subsequent frame and so on.

For each GOM, the 3DMC-encoded leading I mesh is first written to the output stream. Next,

the octree structures of all the P meshes are written. The quantised motions follow, first all their

x components, then all y components and finally all z components, each batch encoded by a

delta coder (i.e. using constant prediction). Finally, a CABAC method [14] is used to further

compress the P mesh data.

Input Parameters
The D3DMC compressor is driven by two main input parameters. The first is the octree split

threshold, which sets the maximum acceptable motion estimation error in each cell of the

octree. This value controls the depth of the octree and, subsequently, the size of the encoded

octree structure and the number of encoded motion vectors. Note that there is a limit to which

the octree can be subdivided – once each leaf of the tree only contains eight vertices or less,

the error falls to zero and no further subdivision is performed. On the other hand, should the

threshold be too high, the initial octree cell will not split and the whole mesh would be encoded

by this single cell.

The second parameter is the number of bits used for quantisation of the motion vectors. Since

the motions in each frame are calculated using the decoded version of the previous frame, quan-

tisation noise appears in the motion vectors. Setting a too coarse quantisation may decrease the

performance of the algorithm by adding too much noise to the motions, and thus forcing more

subdivisions of the octree.

Algorithm Discussion
The D3DMC algorithm is based on an idea different from most of the other compression meth-

ods – instead of a rather complicated segmentation it uses a simple regular space subdivision.

The simplicity of this approach is compensated by a smaller amount of data needed to store

the structure. However, this amount could be potentially further reduced, as in most cases,

the octrees of the subsequent frames are similar one to another. Instead of storing the whole

tree structure, only changes to the structure between each two frames could be stored. Similar

approach can be used for the motion vectors. While currently, a delta prediction is applied in

20

COMPRESSION ALGORITHMS CODDYAC: CONNECTIVITY-DRIVEN DYNAMIC MESH COMPRESSION

the spatial direction (i.e. inside each frame separately), it would be more sensible to employ a

prediction scheme in the temporal direction.

Since the motion of each part of the mesh is described only by the corner motions of its en-

closing cell, unwanted artifacts may occur on a border of two cells. These can be especially

disturbing, if the corner motions of neighbouring cells cause the cells to overlap each other.

In such case, the vertices near the border may form a visible fold on the mesh surface. These

artifacts are similar to “blocking”, which occurs in JPEG compressed images. Unfortunately,

the way the corner motions are calculated and the fact that the octree subdivision is not sym-

metrical (i.e. there can be subdivided and not subdivided cells on the same level of the tree)

does not leave much space for resolving this issue. A simple blending, where the motion of

vertices incident to an border-crossing edge would be calculated as an average of the motions

of both neighbouring cells, might be a quick solution. Other than that, the only way to get

around this problem would be a complete redesign of the segmentation and motion estimation

process.

2.4 CoDDyaC: Connectivity-Driven Dynamic Mesh Com-
pression

The Coddyac algorithm [24] is designed to combine very powerful methods exploiting the

spatial and temporal coherence in the data: Principal Component Analysis (PCA) in the space

of trajectories and an Edgebreaker-like mesh traversal. Most other compression approaches

neglect exploiting one coherence type to some extent, and thus are expected to perform worse

compared to Coddyac. The algorithm consists of these stages:

1. The trajectory of each vertex is represented as a column in a trajectory matrix of size

V × 3F .

2. A basis of the trajectory space is obtained by analysing the trajectory matrix using PCA.

3. N most important vectors of the basis are selected and encoded.

4. Each vertex is assigned an N -component vector of PCA coefficients (feature vector)

representing its trajectory as a linear combination of decoded basis vectors.

5. The mesh topology is processed by the Edgebreaker traversal, a parallelogram prediction

is employed to predict the feature vectors.

6. Prediction residues are encoded.

21

COMPRESSION ALGORITHMS CODDYAC: CONNECTIVITY-DRIVEN DYNAMIC MESH COMPRESSION

Principal Component Analysis
PCA [18] is a statistical method that transforms a set of correlated variables into a set of com-

pletely uncorrelated variables – principal components. The first principal component describes

as much variability in the original set as possible (using a single vector), and each subsequent

component accounts for as much of the remaining variability as possible. As a result, the prin-

cipal components are sorted from the most important one to the least important one. In terms

of vertex trajectories, the first principal component is the trajectory that describes the most of

the motion of the mesh, the second one describes the most of the remaining motion, etc. Since

each principal component is a linear combination of the original vertex trajectories, PCA can be

viewed as a simple change of basis, where the new basis consists of the principal components.

To compute the PCA basis, the algorithm uses eigenvalue decomposition of an autocorrelation

matrix. First, matrix B = bi,j of vertex trajectories is created, where each column consists of

the components of the position of a single vertex in all the frames – a total of 3F values. All the

trajectories must contain the values in the same order, but the order itself is irrelevant, since it

only means a row permutation. In Coddyac, the trajectories contain first the x, y, and z values

from the first frame, then x, y, and z from the second one, etc. A matrix of samples S = si,j is

constructed by subtracting an average trajectory A = ai from the vertex trajectories:

si,j = bi,j − ai ai =
1

V

V∑
j=1

bi,j . (2.23)

Next, the autocorrelation matrix Q = S · ST of size 3F × 3F is computed. The eigenvectors

Ei, i = 1 . . . 3F obtained from eigenvalue decomposition of Q form the PCA basis of the an-

imation. The importance of the eigenvectors is determined by their corresponding eigenvalues

(the higher value, the more important vector).

The key idea of the Coddyac algorithm is that most of the importance lies within only a small

number of the basis vectors. Thus, the rest of the basis vectors can be discarded without

introducing too much distortion into the mesh. A specified number N of the most important

vectors is selected. These vectors form a basis of a subspace of the original trajectory space.

The trajectory of each vertex is then expressed in this basis as:

Ti = A+
N∑
j=1

ci,jEj , (2.24)

whereC = ci,j is the matrix of combination coefficients obtained by multiplicationC = ST ·E,

22

COMPRESSION ALGORITHMS CODDYAC: CONNECTIVITY-DRIVEN DYNAMIC MESH COMPRESSION

E being a basis matrix, in which the k-th column is the k-th most important eigenvector Ek.

Each row Ci of C is a so-called feature vector, which contains coordinates of the trajectory of

i-th vertex in the truncated PCA basis.

eO eO
eO

eO eO

eL
eR

eL
eR

eLeR

v

v

v

v

v

C L R

S E

eL

eR

eL

eR

Figure 2.6: Edgebreaker traversal cases. The open edge is marked by a thick line, new edges by a dashed line, and
border edges are coloured black.

EdgeBreaker and Prediction
The Edgebreaker is a simple and efficient triangle mesh connectivity encoder proposed by

Rossignac in [16]. It is based on a specific traversal through the mesh triangles. First, a starting

triangle is selected and directly encoded. The edges of this triangle define the initial progressing

border. One of the edges is marked as open and the traversal starts growing the border through

this open edge. In each step of the traversal, an open edge eO connects the current triangle with

a single incident triangle containing this edge and two other edges, eL on the left and eR on the

right, which meet in vertex v. Depending on the relation of the border and these edges, one of

these cases will occur:

C: Vertex v has not been crossed by the progressing border yet. Both eL and eR are added

to the border, eO is removed from the border, and eR is marked as open.

L: Only eL is part of the border. eR is added to the border and marked as open, while eL
and eO are removed from the border.

R: Only eR is part of the border. eL is added to the border and marked as open, while eR
and eO are removed from the border.

S: Vertex v lies on the border, but neither eL nor eR are part of it. Both eL and eR are added

to the border, eO is removed from the border, and eR is marked as open.

23

COMPRESSION ALGORITHMS CODDYAC: CONNECTIVITY-DRIVEN DYNAMIC MESH COMPRESSION

E: Both eL and eR are part of the border. All three edges are removed from the border

and the procedure backtracks the processed triangles to find a border edge. The first one

found is marked as open. If no border edge is found, the traversal ends.

Since the PCA step is, in fact, only a change of basis, the feature vectors can be predicted in the

same way as the original vertex coordinates. In Coddyac, a simple parallelogram prediction of

the feature vectors is performed during the Edgebreaker traversal. Each C-step of the traversal

means crossing an open edge eO from the current triangle tcurrent to the incident one tnew
and discovering a previously undiscovered vertex vnew. Let vL and vR be the left and the

right vertex of eO, vO the remaining third vertex of tcurrent, and CL, CR, CO their respective

feature vectors. The feature vector Cnew of vertex vnew is then predicted by equation 2.25, and

a prediction residue Rnew = pred (Cnew)− Cnew is then calculated from this prediction.

pred (Cnew) = CL + CR − CO. (2.25)

vO

vL

vR

vnew

pred(vnew)

tneweO

tcurrent

Figure 2.7: Prediction of vertex vnew from the known vertices of triangle tcurrent using the parallelogram rule.

Encoding
To successfully decode the animation, the decoder needs to have the basis vectors together with

the average vertex trajectory, and the feature vectors for all the vertices. To store the basis, the

Coddyac algorithm utilises the Cobra encoder described in [25].

The feature vectors are compressed using the parallelogram prediction described above. The

full feature vectors of the first triangle of the mesh traversal are stored, followed by the pre-

diction residual vectors. Each component a of each of these vectors is uniformly quantised

as described in equation 2.26, where l is the average edge length of the mesh and q is a user

specified fineness of the quantisation. Finally, the quantised feature vector data is processed by

a CABAC encoder.

â = round
(

2q · a
l

)
(2.26)

24

COMPRESSION ALGORITHMS CODDYAC: CONNECTIVITY-DRIVEN DYNAMIC MESH COMPRESSION

Input Parameters
The compression in the Coddyac algorithm is controlled by three parameters. The first one is

the number of vectors N the PCA basis is truncated to. This value has a strong influence on

the size of the encoded basis and also the size of the feature vector data, since each feature

vector has exactly N components. The Cobra encoder takes in the second parameter, which

is the quantisation fineness q used in the basis vector encoding. The last parameter is again a

quantisation fineness q, which, in this case, steers the quantisation process of the feature vector

encoding. While the first two parameters affect the quality of the PCA basis encoding and

the third one the accuracy of the feature vectors, they all have an impact on the quality of the

reconstructed vertex trajectories and thus the quality of the compressed animation.

Algorithm Discussion
The Coddyac algorithm satisfies the assumptions made in its design and in a vast majority of

cases outperforms its competitors. One of its advantages lies within the distribution of error

caused by the PCA-based compression, which appears as a loss of small details in the vertex

trajectories rather than motion discontinuities exhibited by D3DMC and FAMC, or quantisation

noise in the case of Dynapack.

However, using PCA in the space of trajectories means that most of the data (at least the whole

set of feature vectors) has to be available to the decoder in order to decode any single frame of

the animation making Coddyac unsuitable for use in applications where random frame access

is crucial. Nevertheless, for a standard animation coding, where it is enough to have random

access to the keyframes, this approach fits fine.

Recent research has also shown that there still is room for improvement of the algorithm. Using

only a simplified mesh in the prediction of the feature vectors and interpolating the rest of them

using Radial Basis Function improves the performance of the algorithm while also enabling for

a progressive data transfer and decoding as shown in [26]. Employing a novel Laplacian-based

quantisation approach by Sorkine et al. [19] might also improve the performance and the error

distribution.

25

3

Rate-Distortion Optimisation

Rate-distortion (RD) optimisation, in terms of general lossy compression, is a technique that

configures a compression algorithm for optimal performance. In most cases, this configuration

depends on the input data, thus we have to perform it again for every new dataset. There is

usually a set of many possible optimal configurations for each input data. RD optimisation is a

process that finds a single configuration from this set that satisfies a specified constraint, e.g. a

particular target bitrate.

In video compression, for example, a multiple-pass compression is often performed in order

to achieve the best result. In the first pass, the input data is analysed. Based on this analysis,

each subsequent pass attempts to configure the compression process for the best quality, while

maintaining a user-specified overall bitrate or quality. Simultaneously, the analysis is updated

based on the current compression result, thus each pass is expected to produce a result better

than the previous one. Most video encoders only require the constraint value (target quality or

bitrate) as an input. However, internally, they might use many different configuration parame-

ters. The values of these parameters are either preset to defaults by the authors of the algorithm,

or determined from the input data and the behaviour of the compression process.

For the dynamic mesh compressors from the previous chapter, the configuration parameters

are exposed to the user and require to be set before the compression starts. To reach a state

similar to video compression, where a configuration is selected automatically based on the

given constraint value, we need to use a RD optimisation method.

26

RATE-DISTORTION OPTIMISATION RATE AND DISTORTION

3.1 Rate and Distortion

As was mentioned before, the performance of a lossy compression algorithm can be measured

int terms of the distortion it introduces to the compressed data and the bitrate of the result.

If we run the compressor on a given data with a value set P of n input parameters p1 . . . pn,

it will produce compressed data of a certain bitrate with a certain distortion compared to the

original data. These two values – rate, r and distortion, d – can be plotted on a rate-distortion

chart H . For a single input dataset, different parameter configurations will produce different

points h = [r, d] in this chart. In other words, the compression can be seen as a projection

C;C(P) 7→ H . Assuming the parameters are continuous, there is generally an infinite number

of such points. However, a lower bound can be found for each bitrate forming an envelope

curve O of the chart:

O = {o = (ro, do) : ∀x = (ro, d) ∈ H, d ≥ do} (3.1)

This curve contains the parameter configurations that result in the lowest distortion for a given

bitrate, i.e. optimal configurations, which is exactly what we are looking for. Experiments

show, that for most dynamic mesh compression methods, including the ones we focus on, the

curve O is decreasing and convex.

Note: From this point further, the term “compression” will be equivalent to dynamic mesh

compression.

3.2 Principle of Equal Slopes

Now, let us choose an optimal configuration P j ;C(P j) ∈ O and change the value of a single

parameter pi while keeping the other parameters fixed. We will obtain an RD curve Hj
i . This

way, we can construct curves for all the parameters. We will assume that all these curves are

also decreasing and convex. As these curves are subsets of H , they lie above O – except for

a single point, where they touch O and also one another. This point is the result point C(P j).

Should any two of the curves intersect in that point, they would also intersect O meaning that

a part of each of them would lie below O contradicting its definition, thus the configuration

cannot be optimal.

The idea can be explained better using slopes. For each point hji of a curveHj
i we can calculate

the slope value sji of a tangent of the curve in that point. Two convex curves with a common

27

RATE-DISTORTION OPTIMISATION ITERATIVE OPTIMISATION

point either have different slope values at that point (they are intersecting), or they have equal

slopes in the common point (they are touching each other). We have already defined that in an

optimal configuration all the curves are touching one another, and a configuration, in which the

curves are intersecting, is not optimal. Hence we can say that a parameter configuration P j is

optimal if and only if the slopes sji of all rate-distortion curves Hj
i in the result point C(P j)

are equal.

0.22

0.27

0.32

0.37

1.6 1.8 2.0 2.2 2.4

K
G

 D
is

t
o

r
t
io

n

Bitrate [bits per frame and vertex]

Optimal

Variable Basis Size

Variable Basis Quantisation

Variable Residual Quantisation

Figure 3.1: Parameter curves of the Coddyac algorithm touching the envelope curve in an optimal configuration.

3.3 Iterative Optimisation

Based on the Principle of Equal Slopes, we have designed an algorithm that iteratively refines

a parameter configuration until it gets close enough to an optimum. In each iteration, the pair

of r and d is evaluated by running the compression algorithm with the current configuration.

Two additional pairs of values for each parameter pi are evaluated by shifting the value of

that parameter a small step downwards (rlefti , dlefti), and a small step upwards (rrighti , drighti), as

shown in equation 3.2. From these values, we can then calculate a local approximation of the

left and right slope slefti , srighti (equation 3.3).

28

RATE-DISTORTION OPTIMISATION ITERATIVE OPTIMISATION

(r, d) = C(p1, . . . , pn)

(rlefti , dlefti) = C(p1, . . . , pi −∆pi, . . . , pn) (3.2)

(rrighti , drighti) = C(p1, . . . , pi + ∆pi, . . . , pn)

slefti ≈ r − rlefti

d− dlefti

srighti ≈
rrighti − r
drighti − d

(3.3)

Finally, a new configuration is then determined using these values. This configuration is then

used as an input of the next iteration and so on, until a stop-condition is met. For each new con-

figuration P j , the overall deviation ej is calculated. Once this deviation falls under a specified

threshold value, the optimisation ends.

Optimisation Criteria
The optimisation process needs to be constrained to exactly determine the resulting config-

uration. Therefore, a certain criterion needs to be applied. This criterion also specifies the

calculation of the overall deviation for the stop-condition of the iterative configuration refine-

ment. There are four criteria we have considered and implemented:

Fixed Slope

This criterion allows us to specify a target slope value s∗ the final slopes should be equal to.

The overall deviation is here defined as the maximum of the distances between the specified

slope and each parameter slope:

ej = max
i=1...n

|s∗ − sji | (3.4)

This method is not very useful most times, since we usually do not know the magnitude of

the bitrate and the distortion, and thus we cannot exactly determine the desired slope.

Fixed Bitrate

With this criterion applied, the algorithm tries to find an optimal configuration which re-

sults in the specified bitrate, r∗. It can be quite effectively used if we want to compare the

compression algorithm with another one for which we know exact RD values. The overall

deviation depends on both bitrate and slope differences. It is evaluated using the maximum

slope distance from an average slope and the absolute deviation from the target bitrate:

29

RATE-DISTORTION OPTIMISATION ITERATIVE OPTIMISATION

ej =

√(
ejs
)2

+
(
ejr
)2

(3.5)

ejs = max
i=1...n

∣∣∣∣∣
(

1

n

n∑
k=1

sjk

)
− sji

∣∣∣∣∣ ejr = |r∗ − rj | (3.6)

Fixed Distortion

The idea here is the same as in the previous case, only the output configuration is bound to

have a given distortion d∗ instead of bitrate. The overall deviation is also defined similarly

to the fixed bitrate case:

ej =

√(
ejs
)2

+
(
ejd

)2
(3.7)

ejs = max
i=1...n

∣∣∣∣∣
(

1

n

n∑
k=1

sjk

)
− sji

∣∣∣∣∣ ejd = |d∗ − dj | (3.8)

Fixed Parameter

This criterion drives the optimisation with respect to a given value of a specified parameter.

It is a very useful method for constructing the optimal RD curves, since we usually know

the possible value range of the parameters, while we might not know the resulting bitrates,

distortions and slopes. In each iteration, the slope sjk of the fixed parameter pk is evaluated

and the overall deviation is then determined in a similar manner as in the fixed slope case:

ej = max
i=1...n

|sjk − s
j
i | (3.9)

Next Configuration Calculation
Once we have acquired the information about the local curve behaviours, we can determine

the configuration for the next iteration. The algorithm approximates the shape of the parameter

curves by functions of their known local behaviour, and then calculates the next configuration

using these functions. The quality of the curve approximation influences the speed and the

probability of convergence to the desired result. We have considered three different methods

of determining the next configuration:

Linear Approximation in All Parameters

This method approximates the slope of a parameter curve by a linear function of the cor-

responding parameter. Note that we cannot use a linear function to approximate the curve

30

RATE-DISTORTION OPTIMISATION ITERATIVE OPTIMISATION

itself, since in that case, the slope of the approximation would stay constant. In each itera-

tion, relative differences of slope (dsi), rate (dri), and distortion (ddi) are calculated for each

parameter pi, as shown in equation 3.10.

dsi =
srighti − slefti

∆pi
dri =

rrighti − rlefti

2∆pi
ddi =

drighti − dlefti

2∆pi
(3.10)

The slope equality condition then determines n − 1 linear equations (3.11). One additional

equation is then constructed based on the selected optimisation criterion (3.12). These equa-

tions together form a linear system with variables ζ1 . . . ζn. The solution of this system

defines the parameter shifts for the next configuration, i.e. the next value of each parameter

pi is calculated by adding the corresponding shift ζi to its current value.

ds1ζ1 − ds2ζ2 = s2 − s1
... (3.11)

ds1ζ1 − dsnζn = sn − s1

fixed slope: ds1ζ1 = s∗ − s1

fixed rate: dr1ζ1 + · · ·+ drnζn = r∗ − r (3.12)

fixed distortion: dd1ζ1 + · · ·+ ddnζn = d∗ − d

fixed parameter pi: ζi = 0

This method can be very fast, as it optimises all the parameters in each step, but it does

not adapt very well to curve changes. When one of the parameters is changed, the shape

of another parameter’s curve may also change, especially if there are dependencies between

these parameters. This method, however, expects the curves to stay invariant. This fact

can lead to actually less optimal configurations and, subsequently, divergence, if the curves

change too much. Moreover, experiments show, that linear approximation of slopes is not

very accurate.

Linear Approximation in a Single Parameter

To improve the convergence probability of the previous method, we can limit the number

31

RATE-DISTORTION OPTIMISATION ITERATIVE OPTIMISATION

of parameters optimised at a time. By only changing one parameter in each iteration, we

can eliminate the reliance on curve invariance. On the other hand, this step may signifi-

cantly slow down the optimisation, especially for compression algorithms with high param-

eter counts.

The next configuration is here calculated as follows. First, the parameter pk with the most

deviating slope is selected. For the fixed slope case, it is the parameter, whose slope deviates

the most from an average slope. For fixed rate and distortion, it is the one, which deviates

the most to the wrong direction (i.e. if its slope changes towards the average, the target

quantity will move towards the desired value). In the fixed parameter case, it is, naturally,

the parameter with a slope most distant from the slope of the fixed parameter. Next, the

shift ζk of the selected parameter is calculated according to equations 3.13, where savg(k)
is the average of slopes not including sk and the relative differences dsi, dri, and ddi are

defined the same way as in the previous method (equation 3.10). The weight w determines

the priority given to reaching the target rate or distortion over the slope equality. Its value

is proportional to the deviation in the target quantity, i.e. the closer we get to the desired

value, the more weight is given to equalising the slopes and vice versa. This accelerates the

convergence in case the most deviating slope is close to the average slope.

fixed slope: ζk =
s∗ − sk
dsk

fixed rate: ζk = w
r∗ − r
drk

+ (1− w)
savg(k) − sk

dsk
(3.13)

fixed distortion: ζk = w
d∗ − d
ddk

+ (1− w)
savg(k) − sk

dsk

fixed parameter pi: ζk =
si − sk
dsk

Exponential Approximation in All Parameters

Another way of improving convergence probability of the first method is to better describe

the shape of the curves. In this case, we are using an exponential function sk = akb
pk
k to

determine the slope. It has been experimentally found, that for the algorithms we focus on,

this function is a much closer approximation of the slope than a linear function. From the

known information about the parameter curve, the coefficients ak and bk are calculated for

each parameter pk, as shown in equations 3.14, where pleftk = pk − (∆pk)/2. The parameter

shifts are then determined using this approximation (equations 3.15).

32

RATE-DISTORTION OPTIMISATION ITERATIVE OPTIMISATION

ak = sleftk

(
sleftk

srightk

)− pleft
k

∆pk

bk =

(
sleftk

srightk

) 1
∆pk

(3.14)

fixed slope: ζk =
ln(s∗)− ln(ak)

ln(bk)

fixed rate: ζk =

(r∗ − r) +

n∑
j=1

[
drk ln(−sk)

ln(bk)

]

ln(bk)
n∑
j=1

[
drk

ln(bk)

] − ln(−sk)
ln(bk)

(3.15)

fixed distortion: ζk =

(d∗ − d) +
n∑
j=1

[
ddk ln(−sk)

ln(bk)

]

ln(bk)

n∑
j=1

[
drk

ln(bk)

] − ln(−sk)
ln(bk)

fixed parameter pi: ζk =
ln(si)− ln(ak)

ln(bk)

Because of the more accurate approximation of the slope behaviour, this method is in most

cases faster than the previous two methods and has a high probability of convergence. How-

ever, it exploits an additional knowledge about the optimised algorithms, thus it might not

be as generally applicable as the linear version.

33

4

Implementation

In this chapter, the implementation details of the described compression algorithms and the

proposed method of rate-distortion optimisation will be explained. The implementation of

both parts was carried out in the form of modules on the Modular Visualization Environment 2

(MVE2) platform [23].

4.1 Modular Visualization Environment 2

It is a data-flow-based scientific data visualisation and processing tool developed at the Univer-

sity of West Bohemia. MVE2 consists of a graphical or command-line front-end, an execution

core, and a library of modules and standard data types. It offers a platform for creating and

running experiments and collecting results. Each experiment is defined as a map consisting of

modules linked together in a data-flow manner and their settings. A module has an interface

of input and output ports, through which it is connected to other modules in the map (i.e. an

output of a module is linked to an input of another module).

The module library contains, among others, modules for loading various file formats including

the most common static and dynamic triangle mesh formats, many data processing modules

(e.g. normal computation, colour mapping, iso-surface extraction), and output modules, such

as renderers and file savers. The platform includes intuitive API for creating custom modules

and data types.

Data Types
MVE2 contains a large number of predefined data structures for various data representations.

Dynamic triangle meshes are here represented as an array, where each element is a static tri-

34

IMPLEMENTATION COMPRESSION ALGORITHMS

angle mesh representing a single frame of the animation. For an array with all elements of

the same type, MVE2 defines the UniformDataArray type. Each frame is then stored in a

TriangleMesh structure, which is a special case of an unstructured grid – the UnstrGrid

data type. Each unstructured grid contains an array of vertex positions (the Point3D type)

and an array of cells, which determine the connectivity. For the TriangleMesh subclass,

the vertices are connected through triangle cells (type Triangle). The UnstrGrid type

can also contain arrays of point and cell attributes (e.g. cluster membership).

Module Design
Each module in MVE2 is created as a subclass of the Module API class. This class de-

fines default implementation of the core module methods. The most important one is the

Execute method, which is called each time a linked module requests an output of this mod-

ule. The GetInput(portName) method retrieves data from an input port with the spec-

ified name. After the processing is done, the output data is exposed at an specified output

port by calling SetOutput(portName, data). Ports are added to the module using the

AddInPort(portName, dataType) and AddOutPort(portName, dataType)

methods, usually in the class constructor.

The settings of a module are by default represented by public read-write properties of the

module class. Each such property is visible in the module setup dialog and is stored in the map

file. Both the saving/loading of the settings and the setup dialog can be customised should the

author of the module need it.

4.2 Compression Algorithms

The implementation of the Dynapack and Coddyac algorithms is already available as a part

of Dynamic Mesh Compression Toolkit for MVE2, which can be obtained from the MVE2

Module Repository [23]. Details of the implementation of these two algorithms can be found

in the documentation of the toolkit. The toolkit also contains implementations of the distortion

metrics used in this work.

The D3DMC and FAMC algorithms had to be reimplemented, since to the day, we were unable

to obtain a working implementation from the authors of these algorithms. The implementation

of the algorithms was based on the available documentation and published papers. While we

were able to replicate the published results for D3DMC, our implementation of the FAMC

algorithm does not reach the compression ratios claimed by the authors of the algorithm.

35

IMPLEMENTATION COMPRESSION ALGORITHMS

D3DMC
The D3DMC compression algorithm is implemented as a single module, D3DMCCompressor.

This module has three settings:

• number of bits for the keyframe quantisation

• number of bits for the motion vector quantisation

• octree split error threshold

Three input ports are attached to the module, InAnimation for the input mesh animation and

optional InQBits and InSplitThr for externally overriding the latter two of the settings.

Output ports cover the decompressed animation (OutAnimation) and the bitrate in bpfv

(OutBitrate).

The compression procedure is implemented in the Compressor class. First, an instance of

this class is created and given the input animation and the compression parameters. The con-

structor initialises the required data structures and the quantiser. The decoded vertex positions

can be then obtained from the DecodedPositions property of this class. This property is

lazy-initialised, thus the compression itself is performed the first time it is accessed. The first

frame of the animation is compressed through the 3DMC compressor. After that, for each pair

of consequent frames, the motion octree structure is built as an instance of the Octree class.

For each tree, the root cell is initialised and inserted into a queue. A loop then removes one

cell from the queue in each iteration, until the queue is empty. If the motion compensation

error in this cell is higher than the threshold, the cell is split into octants and these are pushed

into the queue again. Immediately after the creation of each cell, the positions of the enclosed

vertices are decoded using the corner motions of the cell, and the motion compensation error

is calculated. Finally, the decoded positions from leaves of the tree are collected and returned

as a result.

A wrapper class, D3DMCCompressorImpl, is created as an interface between the module

and the Compressor class. It helps to separate the pure compression procedure from the data

encoding and the module logic. This class has two important methods. The Compress()

method reads the decoded positions from the compressor instance, and then reconstructs and

returns a data structure with the decoded animation (a UniformDataArray of UnstrGrid

elements). The WriteData(stream) method encodes the compressed animation into the

provided stream and collects statistics about the encoded data, such as the total size and bitrate

of the data. These informations are then returned to the module in a CompressorStats

structure.

36

IMPLEMENTATION COMPRESSION ALGORITHMS

FAMC
The implementation of the FAMC compression algorithm is divided into two separate modules.

The motion-based segmentation is carried out by the FAMCClusterizer module and the

FAMCCompressor module then performs the compression itself.

Clusteriser

From specification, the segmentation process of the FAMC algorithm is driven by a single

parameter, which is the threshold error of the motion approximation. The magnitude of this

error is usually unknown to the user. Therefore, we have added an option to specify the

number of resulting clusters instead. Because of that, the FAMCClusterizer module has

two settings: the error threshold and the number of clusters, and a switch to choose, which

one of those settings will be used. Input ports include the animation input (InAnim) and two

ports to override the settings (InMaxError and InNumClusters). The port OutAnim

then outputs the input animation with a cluster index attached to each vertex as an point

attribute, and the OutClusters port outputs the cluster connectivity (i.e. the remaining

non-collapsed edges of the mesh).

The Clusterizer class contains the implementation of the main segmentation procedure.

The class constructor initialises an array with one ConnectedPoint instance for each ver-

tex and builds a priority queue of ConnectedEdge instances, one instance per mesh edge.

The ConnectedPoint structure holds the list of ancestors of the corresponding vertex and

a list of edges leading from this vertex. The ConnectedEdge structure represents an edge

of the mesh. It stores the indices of its endpoint vertices and the cost of collapsing the edge.

The edges are stored in a priority queue, where the topmost edge is the one with the lowest

collapse cost. The CreateEdge(v1, v2)method constructs and edge between the spec-

ified vertices and calculates its collapse cost by calling a delegate cost function specified as a

parameter of Clusterizer constructor. An array containing cluster index for each vertex

is returned by the GetClusterIndices() method, and an array with the non-collapsed

edges is returned by the GetClusterEdges() method. The first one called of these two

methods builds the clustering by invoking the CreateClusters() method. This method

iteratively performs the half-edge collapse of the topmost edge in the priority queue and tests

for a stop-condition by calling a delegate method, again, specified through the constructor.

Once the condition is met, the collapsing ends and the clustering array is returned. Using

external delegate functions allows us to use the Clusterizer class also outside of FAMC

with other definitions of cost functions and stop-conditions.

Similarly to the D3DMC implementation, a wrapper class, FAMCClusterizerImpl, is

37

IMPLEMENTATION COMPRESSION ALGORITHMS

created. This class contains the delegate method CostFunction(), which calculates

the cost of collapsing the specified edge, and methods ClustCntStopCondition and

MaxErrStopCondition for testing the cluster count and error threshold stop-conditions.

Finally, the GetAnimation() and GetConnectivity() methods are the heart of this

class. The first one acquires the clustering array from the Clusterizer instance, em-

beds it into the point attribute of each frame of the input animation, and returns the result.

The second builds and returns an unstructured grid containing the non-collapsed vertices as

points and the edges between them as cells.

Compressor

The implementation of the FAMC compressor shares the same structure as the above de-

scribed implementations. The module is represented by the FAMCCompressor class. It

has four settings corresponding to the quantisation parameters of the FAMC algorithm:
• GlobalTranslationQBits,

• ClusterTransformQBits,

• ClusterWeightsQBits,

• PredictionErrorQBits,
and a fifth setting specifying the quantisation of the first frame (FirstFrameQBits). For

each of these settings, a corresponding input port is also defined. The InAnim input port

is defined to obtain the input animation with the clustering attribute and the InClusters

input port takes in the cluster connectivity. Two output ports are also defined: OutAnim,

which outputs the decompressed animation, and OutRate, which provides the resulting

bitrate in bpfv.

The core compression procedure is implemented in the Compressor class. The constructor

of the class initialises the required data structures, encodes the first frame, computes and en-

codes the global translation vectors, and restores the clustering structure from the input data.

Although the published descriptions of the algorithm does not mention the compression of

the first frame, the MPEG-4 standard states that 3DMC encoder is used for this purpose. The

DecompressedPositions(frame)method provides an array with decoded vertex po-

sitions in the specified frame. The first time this method is called, the compression process is

performed. The ConstructTransformationMatrices() method is called to obtain

the cluster transformations in each frame. The ComputeClusterWeights() method

then determines the transformation weights for each vertex. Residual vectors are retrieved

by calling ComputeReziduals() and finally, the decoded positions are recovered by the

Decode() method.

38

IMPLEMENTATION OPTIMISATION METHOD

The FAMCCompressorImpl class takes care of reconstructing the decoded animation

data structure through the GetAnimation() method. Four classes were designed to

store and encode the results of the four respective compression stages: GMC for the global

translation, ClusterTransform for the cluster transformations, ClusterWeights for

the animation weights, and PredictionReziduals for the residual vectors. The final

encoding and arithmetic compression is then performed by the WriteData(stream)

method. As a result, this method returns a CompressorStats structure containing infor-

mation about the compressed dataset.

4.3 Optimisation Method

The proposed method is implemented in the PES module. This module has two input ports for

reading the current bitrate (InRate) and distortion (InDistortion) and a variable number

of output ports, which depends on the number of optimised parameters. Settings of this module

include semicolon-separated sets of the initial, maximum, minimum and step values for the pa-

rameters, a switch for choosing the desired criterion, the target value for the selected criterion,

optimisation core selection, and the slope equality and target value tolerances.

An interface named IOptimizer is created to simplify the switching between various op-

timisation cores and speed up the implementation process of new ones. This interface de-

fines two methods: Init(...), which initialises the optimiser with the specified setting

values, and NextStep(currentParam) to determine the parameter shifts for the next iter-

ation. Three properties are defined for reading the current state of the optimisation: Bitrate,

Distortion, and Slopes.

The Execute() method of the PES module contains the main optimisation loop. First, an

instance of the selected optimisation core is created and initialised. Then, the iterative config-

uration refinement is started. In each iteration, an optimisation step is performed by invoking

the NextStep() method. This method updates the properties of the core instance and de-

termines the next parameter shifts. After that, the stop-condition is tested depending on the

selected criterion. If this condition is not satisfied, the calculated shifts are used to improve the

current parameter configuration and a next iteration is performed.

Four optimisation core classes were created:

• PESOptimizerA
– linear slope approximation and optimisation of all parameters in each step

• PESOptimizerB

39

IMPLEMENTATION OPTIMISATION METHOD

– linear slope approximation and optimisation of only one parameter in each step

• PESOptimizerC
– exponential slope approximation and optimisation of all parameters in each step

• PESOptimizerD
– an improved version of PESOptimizerC with additional means of recovering from

unexpected situations, such as bad slope shapes

Each class implements the IOptimizer interface and its methods and properties. The con-

struction of all these classes follows the same pattern. When the NextStep() method is

invoked, it first calls the EvalParam(p) method for each parameter to retrieve information

about the parameter curve. Based on the specified optimisation constraint, one of the step meth-

ods (StepSlope(), StepRate(), StepDistortion(), or StepParameter()) is

then called to calculate the parameter shifts. The resulting shifts are then handed back to the

optimisation module.

40

5

Experimental Results

5.1 Algorithm Comparison

In this section, we will compare the four algorithms described in this work: Dynapack, D3DMC,

FAMC, and Coddyac. The comparison will be performed the KG and STED metrics, and the

compression performance of the algorithms in both metrics will be evaluated. We will use three

dynamic mesh datasets of different properties to evaluate the performance of the algorithms:

• Dance is a 201 frames long sequence of meshes with 7061 vertices. Its motion is based

on a bone skinning model, which results in rigid or nearly rigid affine motion in parts of

the mesh, and a very limited number of principal vertex trajectories.

• Chicken Crossing sequence consists of 3030 vertices and 400 frames. It comprises 41

connected components. This may degrade the performance of algorithms based on a

mesh traversal approach. The animation combines sequences of rapid movement with

sequences of almost rigid motion.

• Cowheavy is a simulation of an interaction with a rubber cow model. It represents a

general, difficultly skinnable, motion characteristic, which may be cause problems when

using algorithms based on motion segmentation. It contains 2904 vertices in 204 frames.

Figures 5.1–5.6 show the RD curves of optimally configured algorithms. As you can see, the

Coddyac algorithm outperforms the others on all the tested datasets and both metrics. It is

followed by D3DMC and last comes Dynapack. Moreover, the gap between Coddyac and

D3DMC is larger when the STED metric is used. This might indicate that the distortion caused

by the Coddyac algorithm is less disturbing to a human viewer than the distortion caused by

D3DMC. Note that we have only included the results of the FAMC algorithm in the first ex-

periment, since it clearly produces results worse than the reference values (figure 5.2).

41

EXPERIMENTAL RESULTS ALGORITHM COMPARISON

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0 1.0 2.0 3.0 4.0 5.0

S
T

E
D

 D
is

t
o

r
t
io

n

Bitrate [bits per frame and vertex]

Coddyac

D3DMC

Dynapack

FAMC

Figure 5.1: RD curves of the Dance sequence measured using the STED metric.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 1.0 2.0 3.0 4.0 5.0

K
G

 D
is

t
o

r
t
io

n

Bitrate [bits per frame and vertex]

Coddyac

D3DMC

Dynapack

FAMC

FAMC (reference)

Figure 5.2: RD curves of the Dance sequence measured using the KG metric.

42

EXPERIMENTAL RESULTS ALGORITHM COMPARISON

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

S
T

E
D

 D
is

t
o

r
t
io

n

Bitrate [bits per frame and vertex]

Coddyac

D3DMC

Dynapack

Figure 5.3: RD curves of the Chicken Crossing sequence measured using the STED metric.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

K
G

 D
is

t
o

r
t
io

n

Bitrate [bits per frame and vertex]

Coddyac

D3DMC

Dynapack

Figure 5.4: RD curves of the Chicken Crossing sequence measured using the KG metric.

43

EXPERIMENTAL RESULTS ALGORITHM COMPARISON

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0 2.0 4.0 6.0 8.0 10.0 12.0

S
T

E
D

 D
is

t
o

r
t
io

n

Bitrate [bits per frame and vertex]

Coddyac

D3DMC

Dynapack

Figure 5.5: RD curves of the Cowheavy sequence measured using the STED metric.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.0 2.0 4.0 6.0 8.0 10.0 12.0

K
G

 D
is

t
o

r
t
io

n

Bitrate [bits per frame and vertex]

Coddyac

D3DMC

Dynapack

Figure 5.6: RD curves of the Cowheavy sequence measured using the KG metric.

44

EXPERIMENTAL RESULTS METRIC COMPARISON

5.2 Metric Comparison

We will now discuss the influence of the distortion metric on the optimal parameter config-

urations of the compression algorithms. If we compare the optimal configurations of any of

the algorithms between the two distortion measurement methods, we may note that they con-

tain different parameter values. Tables 5.1 and 5.2 show such differences for Coddyac and

D3DMC algorithms between the metrics. For Coddyac, there are large differences in the pre-

diction residue quantisation settings. At similar bitrates, STED prefers finer quantisation of

the residues than KG, at the expense of decreasing the number of basis vectors and slightly

coarsening the quantisation of basis vectors. Results of D3DMC show that again, in compar-

ison with the KG metric, finer quantisation settings are selected with STED, while allowing

for higher motion compensation error to reach a similar bitrate. Even our implementation of

FAMC, which does not perform according to the reference results, shows changes in parameter

values between the measurement methods.

STED KG

Basis Size Basis Q Res. Q Bitrate Basis Size Basis Q Res. Q Bitrate

20 13.96 1.82 0.40 30 15.17 -0.30 0.41

30 14.95 2.34 0.57 40 16.04 0.41 0.60

40 15.76 2.63 0.73 50 16.66 0.92 0.79

50 16.47 3.08 0.93 60 17.18 1.38 1.00

80 17.70 3.84 1.51 80 18.00 2.18 1.49

100 18.14 4.24 1.90 100 18.56 2.75 1.96

120 18.68 4.62 2.33 120 19.03 3.27 2.49

160 19.53 5.22 3.19 160 20.02 4.20 3.67

Table 5.1: Optimal parameter values for the Cowheavy animation compressed using the Coddyac algorithm in the
STED and KG metrics.

5.3 RD Optimisation Method

We compared our optimisation algorithm to the commonly used exhaustive search approach,

which is considered the state of the art. In the following part, we show the results of finding

the optimal envelope curve on the Cowheavy animation using Coddyac and D3DMC com-

45

EXPERIMENTAL RESULTS RD OPTIMISATION METHOD

STED KG

Motion Q Comp. Thr. Bitrate Motion Q Comp. Thr. Bitrate

8.0 3.25 0.60 8.5 3.75 0.59

8.0 2.75 0.67 9.0 3.00 0.70

8.5 2.25 0.79 9.0 2.50 0.77

8.5 2.00 0.86 8.5 2.00 0.86

8.5 1.50 1.00 9.0 1.75 0.97

9.0 1.25 1.17 9.5 1.25 1.24

9.0 1.00 1.33 9.5 1.00 1.41

9.5 0.75 1.65 10.0 0.75 1.73

10.0 0.50 2.13 10.0 0.50 2.13

11.0 0.50 2.42 11.5 0.50 2.57

Table 5.2: Optimal parameter values for the Dance animation compressed using the D3DMC algorithm in the
STED and KG metrics.

STED KG

Clusters Trans. Q Weight Q Res. Q Bitrate Clusters Trans. Q Weight Q Res. Q Bitrate

10 12 10 0.0 0.33 10 12 10 0.0 0.33

10 12 12 0.0 0.38 10 14 10 0.0 0.36

10 14 12 0.0 0.41 10 16 10 0.0 0.40

12 14 14 0.0 0.52 18 16 10 0.0 0.56

18 14 14 0.0 0.60 18 18 10 0.5 0.66

18 16 14 0.0 0.68 18 18 10 1.0 0.80

18 16 16 0.0 0.73 18 18 10 2.0 1.32

Table 5.3: Optimal parameter values for the Dance animation compressed using the FAMC algorithm in the STED
and KG metrics.

46

EXPERIMENTAL RESULTS RD OPTIMISATION METHOD

pression algorithms. For Coddyac, the fixed parameter criterion was used in our method with

15 different numbers of basis vectors. The same 15 values were set in the brute-force search

together with 15 basis quantisation and 20 residual quantisation settings producing a total of

4500 configurations. With D3DMC, the optimiser was run the same way with 19 octree split

threshold values, and 51 motion quantisation settings were used for the brute-force search (969

configurations in total).

The resulting rate-distortion charts are shown in figures 5.7 and 5.8 and the results are sum-

marised in table 5.4. For the Coddyac compressor with three input parameters, the proposed

algorithm is significantly faster than the exhaustive search, while for D3DMC with only two pa-

rameters, the performance is roughly equal. This shows a decrease in complexity related to the

number of parameters compared to the brute-force approach. With more than three optimised

parameters, our method would probably be even more efficient. Note that most configura-

tions evaluated during the brute-force search produce higher than optimal bitrates resulting in

longer encoding times. Thus, the run-time difference between the algorithms is greater than

the difference in the number of compressor runs.

Coddyac D3DMC

Compressor Runs Run Time Compressor Runs Run Time

brute-force 4500 36:06:35.4 969 9:44:33.5

our method 612 1:19:03.7 859 8:02:42.6

speedup 7.4 27.4 1.1 1.2

Table 5.4: Construction of a curve of optimal configurations for the Cowheavy animation using 15 different num-
bers of basis vectors for Coddyac and 19 different split thresholds for D3DMC.

47

EXPERIMENTAL RESULTS RD OPTIMISATION METHOD

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0 1 2 3 4 5 6 7

K
G

 D
is

t
o

r
t
io

n

Bitrate [bits per frame and vertex]

Exhaustive Search

RD Optimiser

Figure 5.7: The results of the optimisation method compared to the configurations evaluated by the exhaustive
search for the Cow animation compressed by the Coddyac algorithm.

0.0

0.5

1.0

1.5

2.0

2.5

0.0 2.0 4.0 6.0 8.0 10.0 12.0

K
G

 D
is

t
o

r
t
io

n

Bitrate [bits per frame and vertex]

Exhaustive Search

RD Optimiser

Figure 5.8: The results of the optimisation method compared to the configurations evaluated by the exhaustive
search for the Cow animation compressed by the D3DMC algorithm.

48

6

Conclusions and Future Work

This work focused on rate-distortion optimisation in the area of compression of dynamic trian-

gle meshes with constant connectivity. We have presented four compression algorithms, which

are considered the state of the art. Each of these algorithms was described in detail, its config-

uration parameters were introduced and their influence on the compressed data was explained.

The performance of the algorithms was then discussed, potential problems were identified, and

suggestions were made to eliminate these problems.

We have introduced the problem of rate-distortion optimisation and discussed it thoroughly.

Subsequently, we have proposed a novel method of rate-distortion optimisation of dynamic

mesh compression algorithms, based on the Principle of Equal Slopes. For compressors with

more than two input parameters, our method is able to find optimal configurations faster than

the current state of the art. It reaches significant speedups with the Coddyac algorithm. How-

ever, experiments show that this optimisation approach might not be suitable for compression

algorithms with compression stages compensating for the distortion caused by the preceding

stages, which is the case of FAMC.

In the scope of this work, we have reimplemented two of the covered compression algorithms,

FAMC and D3DMC, and implemented the proposed optimisation method. We were able to

reach the published results with our implementation of the D3DMC algorithm, but the FAMC

implementation produces worse results than those published by its authors. The implemen-

tation was carried out in the form of modules for the Modular Visualization Environment 2,

which enables us to easily connect our optimiser to various modules for dynamic mesh com-

pression and distortion evaluation.

A comparison of the rate-distortion performance of the described compression algorithms was

presented. Their performance was evaluated using the KG and STED distortion measures. We

49

CONCLUSIONS AND FUTURE WORK

have found out, that the order of the algorithms according to their performance stays constant

in all examined cases between the two metrics. However, the performance ratios between the

algorithms have changed, which suggests that the choice of the distortion measure might in-

fluence the order. Moreover, the optimal configurations differ significantly between the used

metrics. The results reveal that, in comparison with the KG method, the STED metric prefers

finer quantisation settings at the expense of other parameters. That is a logical conclusion, as

its design focuses on human distortion perception, which has been shown to be more sensi-

tive to fine noise, such as the quantisation one, than to smooth deformations of much higher

magnitudes [7, 19].

The possible course of future work is to focus on improving the optimisation method to make

it applicable to FAMC and algorithms of similar nature. An entropy-distortion optimisation

approach might be employed, where the entropy of the residues is measured and used instead

of bitrate. Another room for improvement can be found in the robustness of the optimisation

algorithm, since the parameter curves often contain noise and deformations. While the cur-

rent implementation contains some simple measures of dealing with such situations, a more

sophisticated approach would certainly improve the performance of the method.

50

References

[1] CALDERBANK, A. R., DAUBECHIES, I., SWELDENS, W., AND YEO, B. Wavelet trans-

forms that map integers to integers. Applied and Computational Harmonic Analysis 5, 3

(1998), 332–369.

[2] HOPPE, H. Progressive meshes. In SIGGRAPH ’96: Proceedings of the 23rd annual

Conference on Computer Graphics and Interactive Techniques (New York, NY, USA,

1996), ACM, pp. 99–108.

[3] IBARRIA, L., LINDSTROM, P., ROSSIGNAC, J., AND SZYMCZAK, A. Out-of-core com-

pression and decompression of large n-dimensional scalar fields. In Proceedings of Eu-

rographics 2003 (2003), pp. 343–348.

[4] IBARRIA, L., AND ROSSIGNAC, J. Dynapack: space-time compression of the 3D anima-

tions of triangle meshes with fixed connectivity. In SCA 2003: Proceedings of the 2003

ACM SIGGRAPH/Eurographics symposium on Computer animation (2003), Eurograph-

ics Association, pp. 126–135.

[5] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO/IEC 14496 Part 2:

Visual. International Organization for Standardization, 2001.

[6] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO/IEC 14496 Part 16:

Animation Framework eXtension (AFX), amendment 2: Frame-based Animated Mesh

Compression (FAMC). International Organization for Standardization, 2009.

[7] KARNI, Z., AND GOTSMAN, C. Spectral compression of mesh geometry. In SIGGRAPH

’00: Proceedings of the 27th annual conference on Computer graphics and interactive

techniques (New York, NY, USA, 2000), ACM Press/Addison-Wesley Publishing Co.,

pp. 279–286.

[8] KARNI, Z., AND GOTSMAN, C. Compression of soft-body animation sequences. Com-

puters and Graphics 28 (2004), 25–34.

51

REFERENCES

[9] KAVAN, L., MCDONNELL, R., DOBBYN, S., ŽÁRA, J., AND O’SULLIVAN, C. Skin-

ning arbitrary deformations. In I3D ’07: Proceedings of the 2007 symposium on Interac-

tive 3D graphics and games (New York, NY, USA, 2007), ACM, pp. 53–60.

[10] KAVAN, L., SLOAN, P.-P., AND O’SULLIVAN, C. Fast and efficient skinning of ani-

mated meshes. Computer Graphics Forum 29, 2 (2010), 327–336.

[11] KIRCHHOFFER, H., MARPE, D., MÜLLER, K., AND WIEGAND, T. Context-adaptive

binary arithmetic coding for frame-based animated mesh compression. In ICME 2008:

2008 IEEE International Conference on Multimedia and Expo (2008), pp. 341–344.

[12] MAMOU, K., ZAHARIA, T., AND PRÊTEUX, F. A skinning approach for dynamic 3D

mesh compression. Computer Animation and Virtual Worlds 17, 3-4 (2006), 337–346.

[13] MAMOU, K., ZAHARIA, T., PRÊTEUX, F., STEFANOSKI, N., AND OSTERMANN, J.

Frame-based compression of animated meshes in MPEG-4. In ICME 2008: 2008 IEEE

International Conference on Multimedia and Expo (June 2008), pp. 1121–1124.

[14] MARPE, D., SCHWARZ, H., AND WIEGAND, T. Context-based adaptive binary arith-

metic coding in the h.264/avc video compression standard. IEEE Transactions on Circuits

and Systems for Video Technology 13, 7 (july 2003), 620–636.

[15] MÜLLER, K., SMOLIC, A., KAUTZNER, M., EISERT, P., AND WIEGAND, T. Predictive

compression of dynamic 3D meshes. In ICIP 2005: 2005 IEEE International Conference

on Image Processing (2005).

[16] ROSSIGNAC, J. EdgeBreaker: Connectivity compression for triangle meshes. IEEE

Transactions on Visualization and Computer Graphics 5 (1998), 47–61.

[17] ROSSIGNAC, J. 3D compression made simple: Edgebreaker with zipandWrap on a

corner-table. In SMI 2001: 2001 International Conference on Shape Modeling and Ap-

plications (may 2001), pp. 278–283.

[18] SMITH, L. I. A tutorial on Principal Component Analysis. University of Otago, Dunedin,

New Zealand, 2002. Lecture Notes for COSC435: Computer Vision.

[19] SORKINE, O., COHEN-OR, D., AND TOLEDO, S. High-pass quantization for mesh

encoding. In SGP 2003: Proceedings of the Eurographics/ACM SIGGRAPH Symposium

on Geometry Processing (2003), Eurographics Association, pp. 42–51.

52

REFERENCES

[20] STEFANOSKI, N., XIAOLIANG, L., KLIE, P., AND OSTERMANN, J. Scalable linear

predictive coding of time-consistent 3D mesh sequences. In 3DTV Conference, 2007

(May 2007), pp. 1–4.

[21] TAUBIN, G., AND ROSSIGNAC, J. Geometric compression through topological surgery.

ACM Transactions on Graphics 17, 2 (1998), 84–115.

[22] TOUMA, C., AND GOTSMAN, C. Triangle mesh compression. In Graphics Interface

(June 1998), pp. 26–34.

[23] UNIVERSITY OF WEST BOHEMIA. Modular visualisation environment 2. Online re-

source: http://herakles.zcu.cz/research/projects/11/index.php, April 2010.

[24] VÁŠA, L., AND SKALA, V. CoDDyAC: Connectivity driven dynamic mesh compression.

In 3DTV-CON, The True Vision - Capture, Transmission and Display of 3D Video (Kos,

Greece, May 2007), IEEE Computer Society.

[25] VÁŠA, L., AND SKALA, V. Cobra: Compression of the basis for the PCA represented

animations. Computer Graphics Forum 28, 6 (2009), 1529–1540.

[26] VÁŠA, L., AND SKALA, V. Geometry-driven local neighbourhood based predictors for

dynamic mesh compression. To appear in Computer Graphics Forum (2010).

[27] VÁŠA, L., AND SKALA, V. A perception correlated comparison method for dynamic

meshes. To appear in IEEE Transactions on Visualization and Computer Graphics

(2010).

[28] ZHANG, J., AND OWEN, C. B. Octree-based animated geometry compression. In DCC

’04: Proceedings of the Conference on Data Compression (Washington, DC, USA, 2004),

IEEE Computer Society, p. 508.

53

	Introduction
	Problem Definition
	Organisation
	Notation

	Compression Algorithms
	Dynapack
	FAMC: Frame-based Animated Mesh Coding
	D3DMC: Differential 3D Mesh Coding
	CoDDyaC: Connectivity-Driven Dynamic Mesh Compression

	Rate-Distortion Optimisation
	Rate and Distortion
	Principle of Equal Slopes
	Iterative Optimisation

	Implementation
	Modular Visualization Environment 2
	Compression Algorithms
	Optimisation Method

	Experimental Results
	Algorithm Comparison
	Metric Comparison
	RD Optimisation Method

	Conclusions and Future Work

