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Abstrakt

Svět kolem sebe vid́ıme pomoćı odraženého světla. Hologram toto světlo dokáže zazname-
nat a zreprodukovat, přičemž reprodukce neńı rozlǐsitelná od skutečnosti. Dı́ky existenci
numerického modelu můžeme využ́ıt této vlastnosti hologramu pro zobrazeńı virtuálńı scény.

Výpočet hologramu je však náročný proces a proto se zabýváme akceleraćı výpočtu holo-
gramu velkých velikost́ı. Jedńım z možných př́ıstup̊u je, podobně jako v poč́ıtačové grafice,
sńıžit detail, který dokážeme zaznamenat. Předložená metoda proto převád́ı scénu z povr-
chového vyjádřeńı na vyjádřeńı s použit́ım unifikovaného elementu. Zat́ımco pro zpracováńı
elementu využ́ıvá propagace úhlového spektra, pro řešeńı viditelnosti použ́ıvá vrháńı pa-
prsk̊u. Tedy metoda kombinuje dva odlǐsné př́ıstupy k výpočtu hologramu. Ukazujeme, že
tato kombinace je nejen možná, ale také poskytuje prostor pro daľśı urychleńı. Výsledek sice
neńı absolutně nejrychleǰśı v obecném př́ıpadě, ale ukazujeme, že i tento omezený rozsah je
dostatečně volný pro velké hologramy běžných scén.

Kromě návrhu nové metody a jej́ı akcelerace se pak zabýváme akceleraćı existuj́ıćıho
př́ıstupu založeného na použit́ı paprsk̊u. Předkládáme úpravu, která umožňuje efektivńı
využit́ı grafické karty či programovatelného technického vybaveńı.

kĺıčová slova: č́ıslicová holografie, výpočet hologramu, propagace světla



Abstract

We see the real world through reflected light. The hologram is a recording of such light and it
offers reproduction that is not distinguishable from the reality. Since we known a numerical
approximation of the hologram, we can display virtual scene through it.

However, hologram calculation is a time extensive process. Therefore, we accelerate cal-
culation of large holograms intended for viewing purposes. Being inspired by the computer
graphics, we reduce the detail of the scene by converting it to uniform elements. The method
combines two different trends of hologram generation. We apply propagation of the angular
spectrum to process the elements but we also apply ray-casting to solve visibility. We show
that this combination is possible and it offers opportunities for further acceleration. The
resulting method is not the fastest in a general case but we show that it is satisfactory for
usual scenes.

Besides the new method, we also discuss acceleration of another existing approach that
uses strictly ray-casting. We present an adjustment, that can facilitate efficiently the graph-
ical processing unit and that is compatible with programmable hardware.

keywords: digital holography, hologram generation, light propagation
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Chapter 1

Introduction

Holography is a research area that focuses on a by-product of light interaction with small
obstacles. First observed by Dr. Denis Gabor, it allows both to capture light and to reproduce
it subsequently. We can numerically approximate this process but it is computationally
demanding. Therefore, we propose a new method that address primarily this issue. We show
that this new method is fast and it can be accelerated efficiently. Also, we show that we
can adjust an existing method to be compatible with hardware and thus we can reduce the
computational time.

Holography assumes that light is an electro-magnetic wave that interacts with small ob-
stacles. By appropriate application of this interaction we can modulate light and hence we
can recreate light that was captured. The recording, which is being created under special
light conditions, contains complete visual information that can be detected by a human visual
system. As a consequence, holography is the only tool that is able to create an impression
almost indistinguishable from the reality. While creating the photograph we assume a viewer
and as a consequence we capture only a single view that was seen by the camera. Unlike that,
while creating a hologram a viewer is excluded and therefore the hologram captures every-
thing. This is the most important feature of holography. Usually, we refer to the recording
of light as the hologram and we refer to the process of reproduction as the reconstruction.

This work intends to optimise the calculation of a hologram from a virtual scene. We
calculate a structure that we can converted to a hologram using a simple calculation. For us,
the hologram serves as a multi-viewer 3D display and the image is formed on a retina of a
viewer. Since this is similar to the reality, we see the holography as a next step in evolution
of the computer graphics.

The major issue is a long computation time caused by both a high computational com-
plexity and a high resolution of the hologram. In the computer graphics we assume usually
only one viewer but in holography every sample is a viewer. Besides that, a discrete hologram
requires a sampling step that is approximately 10× smaller than a sampling step of a picture
displayed on a contemporary LCD. As a consequence, using a the most primitive algorithm
without an acceleration means to calculate a square of 2× 2 mm in an order of tens of hours.
This is not acceptable and therefore we address it in this work.

All methods that calculate holograms follow a single equation and they try to implement
it efficiently. Analysing the methods, we recognised three possible trends. Every trend
complements each other in terms of advantages and disadvantages and it is a subject of
research for a long time. However, combination of trends is not discussed often. Since two of

1



Chapter 1: Introduction 2

these three trends process a hologram in the same form, there is a high probability that we
can combine them. Thus, we focus on this in this work.

We presume that we can combine two different trends that are well known together and
we can reduce the computation time through that. Besides that, we draw an analogy between
the LCD and the hologram. Even tough the LCD pixel is large, the viewer is not significantly
disturbed by it when viewing a planar image and hence the spatial detail of the virtual scene
can be reduced as well. These two ideas are the major contribution of this work. We do
not strive for real-time generation of holograms, we aim to reduce the calculation time of the
2× 2 mm square to the order of minutes before applying any hardware-based acceleration.

We propose a method that is efficient under given conditions. We define these conditions
and we show that these condition are not restrictive. Hence, we show that we can reach
lower computational times for usual scenes. We, however, do not present any contribution to
the theory of light interaction. Neither we modify nor we develop a new description of light
behaviour because this work should be in a scope of the computer graphics. Exploring the
proposed method, we discuss a possibility of acceleration through a special hardware such as
the graphical processing unit (GPU) or programmable hardware. We, however, do not exper-
iment with them due to time constraints. Also, we do not address physical reconstruction of
a hologram. When necessary, we apply an ad-hoc approach that might introduce additional
noise. Thus, if we recognise the original scene by observing the reconstruction, we may threat
the reconstruction as valid.

Besides the major contribution we include results of our attempts on accelerating an-
other method. We collaborated with Martin Janda on adjustments of his method that uses
ray-casting. We reorganised his algorithm such that it became compatible with GPU and
programmable hardware. Doing these adjustments, we collected valuable experience about
an appropriate structure of a hologram generation method and we applied this experience in
the further development of our proposed method. Despite that, our proposed method differs
significantly from his method.

This work assumes basic knowledge of common approaches in the computer graphics. It
should be emphasised that we do not assume inherently a viewer in the scene. This is very
important for comprehending of all relative positions of scene components. In this work,
we begin with a brief overview of a holography background. We try to reduce detail of
any information that is not vital for the proposed method. We continue with an overview of
methods used for hologram generation. We try to cluster them through common features and
we focus on major advantages and disadvantages. Then, we present the proposed method
including its acceleration. After that we add a brief chapter on acceleration of the method
proposed by Martin Janda. Finally, we conclude with a summary.



Chapter 2

Holography

Holography deals with the light in a form of a wave and with interaction of the light in an
environment. This chapter contains an introduction into a part of holography that is applied
in subsequent chapters. First, we introduce a mathematical model of wave that is applicable
for light. We use these definitions for description of light interaction with an obstacle. At the
end, we describe briefly a process of hologram recording. We use this process to numerically
create hologram for optical reconstructions. Since this chapter serves only the purpose of
following chapters, it does not explore the area in detail. For more details, which are out of
the scope of this work, refer to [Goo05] or [BW05].

2.1 Wave

Light can be described through waves or through rays. The ray is an approximation used
by the ray optics and it is appropriate for describing a light behaviour on human scale. Yet,
the ray fails to express an interaction between light and microscopic obstacles. On the other
hand, while the wave used by the wave optics is unnecessarily accurate for larger scales, it
allows both a simple and an accurate description of interaction with microscopic obstacles.
Since holography explores the interaction of light on the microscopic scale, it relays on the
wave optics.

The light is an electro-magnetic disturbance that can be modelled by the Maxwell equa-
tions [Goo05]. The Maxwell equations relates magnetic and electric field vectors. If we
assume certain attributes of the environment, both the electric field and the magnetic field
follows the same scalar wave equation

O2u(p, t)− n2

c2

∂2u(p, t)
∂t2

= 0, (2.1)

where u(p, t) is the disturbance at the position p and the time t examined in a medium with
refractive index n.1 The disturbance travels through the medium at a speed of c/n, where c
is a speed of the light. In the further text, let us denote the disturbance as a wave.

The optical frequency ω or a wavelength λ = c
nω is an attribute of a wave. Since light

can be decomposed to individual wavelengths, we shall consider only a monochromatic wave
1The expression Eq. (2.1) is valid if the wave travels in dialectic medium that is a linear system, properties

of medium does not depend on polarisation (an isotropic medium), permittivity is constant (a homogeneous
medium), permittivity (a nondispersive medium), and magnetic permeability equals to vacuum permeability
(nonmagnetic medium).

3



Chapter 2: Holography 4

if not noted otherwise. The monochromatic wave is

u(p, t) = a(p) cos[φ(p)− 2πωt],
= <{u(p) exp(−j2πωt)}, (2.2)

where <{} denotes real part of a complex number, a(p) is an amplitude and φ(p) is a phase
of the wave at the position p and

u(p) = a(p) exp[jφ(p)] (2.3)

is known the complex amplitude. Since we examine only monochromatic waves, ωt is
constant for all waves. Furthermore, we can assume that the space contains sources that
emit the same disturbance all the time and they did it a long time before we began to
examine the space. As a consequence, the complex amplitude Eq. (2.3) serves as an adequate
description of the wave and thus it is used for this purpose in the following text. We denote
a volume with known complex amplitudes u(p) as the optical field.

Since Eq. (2.2) describes the wave, it has to satisfy Eq. (2.1). A substituting Eq. (2.2) in
Eq. (2.1) yields a time-independent equation

(O2 + k2)u(p) = 0, (2.4)

where k = 2π
λ is known as the wavenumber. The equation Eq. (2.4) is known as the

Helmholtz equation and a complex amplitude of a wave has to satisfy the condition in
order to describe a valid disturbance.

The optical field fills the whole space and every disturbance is spread in the whole field,
i.e., the disturbance is distributed into the whole volume. Thus, we can reconstruct partial
information about the source just by knowing a subset of the field, e.g., using known field
values at a surface, we can estimate field values outside the surface. Furthermore, since the
time is omitted, a subset of a volume contains waves emitted at the different time. Hence,
we refer to the process of estimating values as a wave propagation.

Another important feature of the light is its optical power. Actually, this is the only
attribute of the field that we can detect directly using our eyes or a detector such as CCD.
The optical intensity is an energy that crosses a unit area perpendicular to the energy
flow during a unit of a time. If the time period is short enough [Har96], we can approximate
the intensity I of the wave u(p) with

I = u(p)u∗(p) = |u(p)|2. (2.5)

Since we omit the time in our considerations, we use expression Eq. (2.5) to calculate intensity
of an optical field at the given location.

2.1.1 Interference and Coherence

Interaction of two or more waves is known as interference. Intensity of the interference
plays an important role in the holography because it is employed during hologram recording
process. Since the scalar wave equation Eq. (2.1) assumes a linear medium and all waves are
monochromatic, interference of two waves u1(p) and u2(p) yields a wave u(p) = u1(p)+u2(p).
Following [Har96], intensity of such a wave at the location p is

I(p) = |u1(p) + u2(p)|2,

= |u1(p)|2 + |u2(p)|2 +
1
2
u1(p)u∗2(p) +

1
2
u∗1(p)u2(p),

= I1(p) + I2(p) + 2 [I1(p)I2(p)]1/2 cos [ϕ1(p)− ϕ2(p)] , (2.6)
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where ϕ1(p) and ϕ2(p) are phases of the waves u1(p) and u2(p) respectively. On a surface,
the intensity from Eq. (2.6) forms a structure that is known as an interference pattern
or, as one may call it, a hologram.

Coherence of light is also essential for holography because it influences the visibility of
the interference pattern that can be detected by a recording device [Har96]. Visibility of the
interference pattern from Eq. (2.6) at the given position p is

V =
2(I1I2)1/2

I1 + I2
cos(ψ), (2.7)

where I1 and I2 are intensities of the first wave and the second wave respectively. The angle
ψ is an angle between electrical vectors of both waves, i.e., it is a polarisation.2 For clarity of
further that, let us assume that electrical vectors of all considered waves are parallel. Notice
that the expression Eq. (2.7) says that only the third term of expression Eq. (2.6) is desirable,
the rest acts as a background noise. This fact is exploited later by a technique known as the
bipolar intensity.

If light is incoherent, the interference pattern is not visible enough. In an ideal case,
coherent light is monochromatic light emitted by a point light source (PLS) for an infinite
time period. In reality, however, a light source is quasi-monochromatic and it has a finite size.3

Coherence expresses how much is a given light source close to the ideal one. Coherence can be
expressed analytically and it serves as a multiplicative coefficient in Eq. (2.7). Nevertheless,
for purpose of numerical simulations, coherence is not essential and therefore we omit any
further details. For more information on the subject, refer to [Har96, BW05].

2.1.2 Elementary Waves

In the previous sections, we discuss attributes of both waves and sources. In this section
we focus on a form of waves. The Helmholtz equation Eq. (2.4) is a condition that has to
be satisfied by a function u(p) that describes a wave. Solutions that fulfil the condition are
known as elementary waves. In this work, we used the planar wave and the spherical wave.
Any optical field can be expressed as a weighted superposition of given elementary waves.
This feature is exploited by the wave propagation.

Elementary waves differ by the shape of their wavefront. The wavefront is an iso-
surface defined by the phase ϕ(p) = 0 of the wave u(p). The planar wave is a wave whose
wavefronts are infinite planes [Goo05, Gra03, Kra04]. The optical field of the planar wave is

u(p) = a exp(jϕ) exp(jk · p),
= a exp(jφ) exp[j(xkxp + ykyp + zkzp)], (2.8)

where a is an amplitude and φ is a phase of the planar wave at the origin, i.e., at (0, 0, 0).
We denote the vector k = (xk, yk, zk) as the wavevector. If the wave is emitted by XY-
plane, the wavevector is a direction of wave propagation. The length of the wavevector is the

2Notice that visibility drops to zero if ψ = π/2. Hence, waves of polarised light do not create a visible
interference pattern if polarisation directions are perpendicular to each other.

3Quasi-monochromatic light contains a narrow range of optical frequencies instead of single optical fre-
quency ω. Thus, the light emitted by the source consist of various wavelengths and wavefronts of various
shapes. The wavefront is an iso-surface defined by the phase ϕ(p) = 0 of the wave u(p). An interference
pattern of such light consist of multiple overlapping patterns and thus it might become undistinguishable from
the background
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wavenumber k, i.e., |k| = k. Intensity on the planar wave at any location is constant and it
equals to I = |a|2. Planar waves are important for propagation of waves that is discussed in
Sec. 2.2.2.

The spherical wave is a wave generated by a point light source (PLS). Wavefronts of the
spherical wave are concentric spherical surfaces centred at the location of PLS. The optical
field emitted by PLS at origin (0, 0, 0) is

u(p) =
a exp(jϕ)
|p|

exp(jk|p|), (2.9)

where p = |p| is a distance from PLS defined by the amplitude a and by the phase ϕ.
The fraction a

|p| exp(jϕ) prevents growth of wavefront energy because increasing the distance
increases the area of the wavefront. Hence, the amplitude of an unit of area has to decrease
in order to keep overall energy constant. Since the spherical surface grows quadratically and
the intensity is I = |a|2, the amplitude has to be divided just by the distance.

PLS generates the spherical wave. If we examine only a window that has finite extent,
we can observe either a planar wave far away from the source as depicted in Fig. 2.1. In
other words, if the distance is large enough in comparison to extents in both the X-axis and
the Y-axis, we can approximate the spherical wave by the planar one or by the paraboloidal
one. This is exploited by the Fraunhofer approximation and by the Fresnel approximation
discussed in Sec. 2.2.2.

Figure 2.1: Relation between the spherical wave and the planar wave as seen though a small
window.

2.2 Diffraction and Propagation

Diffraction and propagation describe the same physical phenomenon of light interaction with
an environment on a microscopic level. Interaction of the light with a free space is denoted
as a propagation while interaction with obstacles is denoted as diffraction. The diffraction is
exploited by hologram reconstruction and both interactions are exploited by hologram record-
ing. For that reason, this section contains formulations that are fundamental for following
chapters.

2.2.1 Diffraction

Diffraction is a result of an interaction between light and obstacles at microscopic levels. The
interaction is a complicated process but in a case of a screen with an opening we can solve
it analytically. Even though this is a special case, it is widely used for approximating the
interaction in other cases as well.
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Diffraction can be described by two formulations that are widely applied in numerical
simulations: the Kirchhoff formulation with its Fresnel-Kirchhoff diffraction formula and the
Rayleigh-Sommerfeld formulation with its Rayleigh-Sommerfeld diffraction formulae [Goo05,
BW05, LBL02]. Both formulations are based the scalar wave theory and both formulations
describe interaction of light with an aperture. The aperture is an opening in an infinite
screen. The formulations allow to calculate an optical field starting from a distance of a few
wavelengths behind the screen from known optical field in front of the aperture. Since a
diffraction formula is essential for almost every method, we shall give a brief overview of its
derivation. Readers that are not interested in finer details might skip this section.

The first step toward the Kirchhoff formulation is to express a field value at a point in
the volume using a field value at a point on enclosing surface. If there are two continuous
functions u(p) and g(p) in the volume V , relation between the boundary S′ and the volume
V follows the Green’s theorem and it is∫∫∫

V
(u∇2g − g∇2u) dV =

∫∫ ′
S

(
u
∂g

∂n
− g ∂u

∂n

)
dS., (2.10)

Let us assume that the function g(p1) is a wave generated by PLS of the amplitude a = 1
and the phase ϕ = 0 located at p0, i.e., g(p1) = exp(jkr01)

r01
. As a consequence, S′ = Sε + S as

depicted in Fig. 2.2. This prevents discontinuity from the expression Eq. (2.9). Since both
functions u and g represent a wave, they have to satisfy the Helmholtz equation Eq. (2.4) at
the same time. Thus, we can apply Eq. (2.10) to yield

−
∫∫

Sε

(
u
∂g

∂n
− g ∂u

∂n

)
dS =

∫∫
S

(
u
∂g

∂n
− g ∂u

∂n

)
dS (2.11)

Since the left side of Eq. (2.11) equals to 4πu(p0) [Goo05], the expression Eq. (2.11) becomes

u(p0) =
1

4π

∫∫
S

(
u
∂g

∂n
− g ∂u

∂n

)
dS. (2.12)

The expression Eq. (2.12) is known as the Helmholtz-Kirchhoff integral theorem.

Figure 2.2: A configuration assumed by the Helmholtz-Kirchhoff integral theorem. [Goo05]

The next step adds a screen and solves the optical field behind it. Adding screen splits the
surface S into the part S1 that is located immediately after the screen and the hemispherical
cap S2 that is depicted in Fig. 2.3. The contribution of each part to the final solution is
solved independently following Eq. (2.12). Increasing the radius r, the contribution of the
hemispherical cap S2 becomes neglectable [Goo05].4 Hence, we can reduce the integration
domain of Fig. 2.2 to the planar part S1.

4This is a consequence of the Sommerfeld radiation condition limr→∞ r
(
∂u
∂n
− jku

)
= 0 that is satisfied by

the diverging spherical wave and that guarantees only outgoing waves on the surface S2.
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Figure 2.3: The screen and the volume S used for derivation of the Kirchhoff formulation.
[Goo05]

For purpose of further simplification, the function u is restricted by the Kirchhoff
boundary condition that limits the function u. The field values u are not influenced
by the screen across the surface Σ in Fig. 2.3. Outside the surface Σ, both the function u
and its derivation ∂u

∂n are zero. In a general case such a function u does not exist but if
the aperture is much larger than the wavelength, it serves as an acceptable approximation
[Goo05]. The boundary condition reduces the integration domain in Eq. (2.12) to the surface
Σ at the opening.

The final step towards the Fresnel-Kirchhoff diffraction formula is to express the optical
field on the surface Σ. The function g describes an optical field generated by PLS at p0 on
the surface Σ, i.e., g(p1) = 1

r01
exp(jkr01) where r01 = |r01|. Since the wavenumber k � 1

r01
,

derivate of the function g becomes

∂g(p1)
∂n

=
(

jk − 1
r01

)
exp(jkr01)

r01
n̂ · r̂01, (2.13)

≈ jk
exp(jkr01)

r01
n̂ · r̂01. (2.14)

Furthermore, let us assume that PLS located at p2 in front of the aperture as depicted
in Fig. 2.3. An optical field value at the aperture is u(p1) = a2 exp(jϕ2) exp(jkr21)

r21
where

r21 = |r21|. Since k � 1
r01

, the derivate ∂u(p2)
∂n is similar to Eq. (2.14). Combining it with

Eq. (2.12), it yields

u(p0) =
a2 exp(jϕ2)

jλ

∫∫
Σ

exp[jk(r21 + r01)]
r21r01

n̂ · r̂01 − n̂ · r̂21

2
ds. (2.15)

The expression Eq. (2.15) is known as the Fresnel-Kirchhoff diffraction formula. No-
tice that from the viewpoint of the source and the observation point, the Fresnel-Kirchhoff
diffraction formula is symmetrical. PLS located at p2 yields the same result at p0 as the
same PLS located at p0 and observed from p2. This effect is known as the reciprocity
theorem of Helmholtz. The formula in Eq. (2.15) is valid only for a single PLS in front of
the aperture. We can expand it towards multiple PLS in front of the aperture by summing
results of individual PLS.

The Kirchhoff formulation contains internal inconsistencies due to Kirchhoff boundary
condition. The condition presumes that both the function and its normal derivate are zero
behind the screen. This implies that the field behind the aperture should be zero as well
[Goo05]. However, it is in contradiction to physical experiments and even to results calculated
by Eq. (2.15). Nevertheless, if the opening is much large than the wavelength and the
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observation point is further away from the aperture at same time, the results corresponds to
physical experiments and thus the Kirchhoff formulation is widely used in practice.

The inconsistency of the Kirchhoff formulation is addressed by the Rayleigh-Sommerfeld
formulation. The formulation eliminates the inconsistency by redefining of the function g such
that either the function g or is derivate ∂q

∂n is zero over surface S1. This removes necessity
to enforce zero on both the function u and its derivate ∂u

∂n at the same time while restricting
the integration domain to the planar part Σ.

The function g that fulfils the new definition is constructed as an interference of two PLS
on a plane: PLS located at p0 and a mirrored PLS located at p′0 as depicted in Fig. 2.4.5

The amplitude of both sources is one, the phase may differ. There are two setups that allow
fulfilling the definition: either both sources emits in phase or in an opposite phase, i.e., their
phases differs by a half of a period.6 Each setup forms one solution.

Figure 2.4: A screen and a symmetrical PLS used by a definition of the function g. The setup
is used to derive the Rayleigh-Sommerfeld formulation. [Goo05]

Now, let us express the Rayleigh-Sommerfeld solution. Similar to the Kirchhoff solu-
tion, we define one PLS in front of the aperture. The PLS generates a field u(p1) =
a2 exp(jϕ2) exp(jkr21)

r21
at the aperture Σ. Using this, the Rayleigh-Sommerfeld diffrac-

tion formula is

uI(p0) =
1
jλ

∫∫
Σ
u(p1)

exp(jkr01)
r01

n̂ · r̂01 ds,

=
a2 exp(jϕ2)

jλ

∫∫
Σ

exp[jk(r21 + r01)]
r21r01

n̂ · r̂01 ds (2.16)

and the second solution is

uII(p0) = −a2 exp(jϕ2)
jλ

∫∫
Σ

exp[jk(r21 + r01)]
r21r01

n̂ · r̂21 ds. (2.17)

The first and second RayLeigh-Sommerfeld solution resembles the Kirchhoff-Fresnel
diffraction formula Eq. (2.15). The only difference are both the sign and the last cosine-
based component. It can be shown that the Kirchhoff formulation is an average of both the
first and the second Rayleigh-Sommerfeld formulation [Goo05]. Both the Kirchhoff and the
Rayleigh-Sommerfeld formulations are almost identical for small angles and larger distance
but they differ at small distances from the aperture. Since we use the Rayleigh-Sommerfeld
formulation most of the time, more detailed discussion is our of a scope of this work. For
more details, refer to [Goo05].

5This is rather an important difference from the Kirchhoff formulation. The Rayleigh-Sommerfeld formu-
lation assumes that the screen is a plane while Kirchhoff does not.

6Actually, the latter causes that the field generated by the second PLS at p′0 is subtracted from the field
generated by PLS at p0.
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2.2.2 Propagation

While the diffraction describes an interaction of light with obstacles, propagation describes
interaction of light with a free space. Propagation allow us to calculate an optical field values
at a part of the space from known optical field values.7 The propagation is exploited for
calculating of the optical field generated by a scene and for reconstruction purposes. Thus,
it is appropriate to give a brief overview of the phenomena.

For a single point source described in Sec. 2.1.2, the propagation equals to shift of the
phase according to a shift of the observation location. The sign of the change can be arbitrary
but it has to be consistent for all computations. For purpose of clarity, this work employs the
principle described in [Goo05]. The time dependent component exp(−jωt) of the wavefunction
Eq. (2.2) causes the phase to decrease as time advances. Mentioned in Sec. 2.1, we assume
sources. As a consequence, the waves emitted later are closer to the source. Thus, moving
further from the source increases the phase, i.e., the sign of the change is positive.

Propagation of the wave follows the Huygens-Fresnel principle [Goo05]. It is an
improved Huygens principle. The original one defines the new wavefront as an envelope
of spherical wave sources generated on the previous primary wavefronts. Such definition,
however, causes back-waves that are physically unjustified. Nevertheless, the Huygens-Fresnel
principle states that every point on the primary wavefront is a secondary PLS, which emits
spherical waves, and the result is superposition of these secondary PLS [Har05, Wei]. The
Huygens-Fresnel principle is confirmed by both the Kirchhoff diffraction formula and the
Rayleigh-Sommerfeld diffraction formulae. As mentioned in [LBL02], we can rewrite the
Rayleigh-Sommerfeld diffraction formula defined from the expression Eq. (2.16) as

u(p0) =
1
jλ

∫∫
Σ
u′(p1)

exp(jkr01)
r01

cos θ ds, (2.18)

where u′(p1) = a(p1) exp[jϕ(p1)] represents PLS located at p1 within the aperture Σ, r01 =
|r01|, and cos θ = n̂ · r̂01. Since the expression Eq. (2.18) is based on the Rayleigh-Sommerfeld
solution, all considered locations p1 have to be on a single plane. For purpose of simplification,
the plane is the plane κξ : z = ξ, which is parallel to the plane κ : z = 0, and thus
cos θ = zr01/r01.

Furthermore, we can rewrite the expression Eq. (2.18) as a convolution

u(p0) =
1
jλ

∫∫
Σ
u′(p1)h(p0,p1) ds, (2.19)

where h is an impulse response function h(p0,p1) = exp(jkr01)
r01

zr01
r01

. The form in Eq. (2.19) is
appropriate for calculating if all samples u(p0) are located the plane κ : z = 0. In such case,
Eq. (2.19) can be solved by applying the Fourier transform [Goo05].

2.2.3 The Angular Spectrum

According to Sec. 2.2.2, the optical field can be calculated as a superposition of spherical
waves. Besides the spherical wave that is an elementary wave, a planar wave can be used for

7Actually, the term ”propagation” might be misleading. As it was stated at a beginning of Sec. 2.1, we
omit the time. As a consequence, the configuration of disturbances in the optical field is stable and it fills the
whole free space. Under such circumstances, the propagation allow us to calculate the missing information
without any obstacles and any additional sources.
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similar purpose. Since such a use is exploited by numerical reconstructions and it is used by
numerous approaches, we discuss it in this section.

As it is shown in [EO06, Onu07], the optical field can be expressed as a superposition of
planar waves following

u(p) =
∫∫ +∞

−∞
U(xk, yk) exp(jk · p) dxk dyk, (2.20)

where k = (xk, yk, zk) is the wavevector, zk = [k2−x2
k−y2

k]1/2, and U(xk, yk) is known as the
angular spectrum [Lal68, Goo05, EO06]. The meaning of U can be derived from a special
case when all samples u(p) are located on a plane κ : z = 0. In that case, the expression
Eq. (2.20) becomes

u(p) =
∫∫ +∞

−∞
U(xk, yk) exp[j(xkxp + ykyp)] dxk dyk,

= 4π2

∫∫ +∞

−∞
U(2πxf , 2πyf ) exp[j2π(xfxp + yfyp)] dxf dyf . (2.21)

The equation Eq. (2.21) resembles inverse Fourier transform and thus U is proportional to
Fourier transform of the optical field U at plane κ.

According to Eq. (2.20), every frequency in the angular spectrum corresponds to a planar
wave propagating in a given direction. Relation between the direction of propagation and the
frequency can be seen from a diffraction of light on a cosine grating [Goo05]. For purpose of
explanation let us now consider only the 2D case.

In a 2D space, the cosine grating is spatially limited amplitude-modulating structure on
a line κ′ : z = 0 defined by a attenuation function

tc(x) =
[

1
2

+
m

2
cos(2πfcx)

]
rect

( x

2w

)
(2.22)

depicted in Fig. 2.5(a). If a planar wave that propagates in a direction perpendicular to
the line κ′ hits the grating, it is diffracted. Since the planar wave is modulated by tc, the
angular spectrum of optical field immediately behind the grating is a Fourier transform of
the expression Eq. (2.22), i.e.,

U(fx) =
[

1
2
δ(fx) +

m

2
δ(fx + fc) +

m

2
δ(fx − fc)

]
? sinc(2wfx), (2.23)

where ? denotes convolution. As it is shown in [Goo05]. the intensity |U|2 is proportional
to an intensity of the optical field generated by the grating at a line κ′z′ : z = z′ where z′ is
large. The intensity at distance z′ forms a pattern depicted in Fig. 2.5(b).

The central peak from Fig. 2.5(b) is original wave influenced by sides of the grating, side
peaks are the wave diffracted by the cosine function from Eq. (2.22) and influenced by the
sides of the grating at the same time. Individual side peaks are interpreted as original wave
deflected from the Z-axis. The deflection is described by relation known as the diffraction
condition:

sin θ =
λ

Λ
, (2.24)

where Λ = 1
fc

is a spatial frequency and θ is an angle of deflection away from the Z-axis. If
we use a grating that modules both the amplitude and the phase instead of Eq. (2.22), both
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Figure 2.5: (a) The amplitude-modulating function tc of a cosine grating and (b) an effect of
the cosine grating on a planar wave observed from larger distance. [Goo05]

the central peak and one side peak from Fig. 2.5(b) disappear. This is caused by the fact
that the Fourier transform of the amplitude-phase grating is not symmetric as in the case of
the amplitude grating, which is defined by a real-valued function tc. Hence, the expression
Eq. (2.24) represents a relation between the frequency and the direction of propagation, i.e.,
xk = 2π

λ sin(θ). Extension to 3D space follows linear theorem of the Fourier transform and
therefore the additional axis is handled separately.

Propagation of the angular spectrum exploits relation between expression Eq. (2.21) and
the Fourier transform. It is an alternative to Eq. (2.19). Let us now define a plane κz that
is parallel with plane κ and the shortest distance between the plane κ and the plane κz is
z. The equation Eq. (2.21) represents a sample at the plane κ. If the equation Eq. (2.20)
is considered only for samples at the plane κz, the only difference between Eq. (2.21) and
Eq. (2.20) is a the phase shift exp(jzkz). Hence, the propagation between the plane κ and
the plane κz can be expressed as

Uz(xk, yk) = U(xk, yk) exp(jzkz), (2.25)

where zk = (k2 − x2
k − y2

k)1/2 and U and Uz are angular spectrums at planes κ and κz
respectively. If z2

k ≤ 0, the expression Eq. (2.25) is still valid but the phase shift becomes
an attenuation factor exp(−|z2

k|1/2z) instead. Waves for which z2
k ≤ 0 are known as the

evanescent waves and they are usually zeroed inherently while calculating the expression
Eq. (2.25) because they are undetectable at a distance of only a few wavelengths away from
the plane κ.

Propagation of the angular spectrum can be further enhanced towards handling of tilted
planes [LF88, TB93, YAC02, EO06]. The tilt is achieved by rotating the wave vector k.
The rotation is applied in a form of a 3× 3 matrix R and the transformed wavevector k′ is
k′ = Rk. Application of the transformed wavevector to Eq. (2.25) yields

Uz(x′k, y′k) = U(x′k, y
′
k) exp(jz′kz)J(zk, z′k), (2.26)

where k′ = (x′k, y
′
k, z
′
k) and J(zk, z′k) is Jacobian correction factor [EO06]. The transformation

of the wavevector k by the matrix R equals to a shift of spatially limited hemispherical surface
over a hemisphere that is defined by all possible wavevectors excluding wavevectors of the
evanescent waves as depicted in Fig. 2.6. The radius of the hemisphere is the wavenumber.
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Figure 2.6: (a) All possible wavevectors with z2
k > 0 form a hemisphere in the angular

spectrum. (b) A rotation of the spectrum rotates a hemisphere. The greyed part of the
hemisphere in both (a) and (b) represents the same subset of wavevectors.

2.2.4 Approximations

In section Sec. 2.2.2, we presented an expression that allows to calculate a wave distribution
in a free space. The expression is accurate enough starting from distances of few wavelengths
from the source. Nevertheless, for larger distances the optical field can be approximated by
even simpler expressions. Since these expressions are used by various methods mentioned in
this work, it is appropriate to describe them as well.

The Huygens-Fresnel principle described by Eq. (2.18) can be used to handle a case of
two parallel planar surfaces as depicted in Fig. 2.7. The distance r01 = |r01| is calculated
as r01 = [z2

p0
+ (xp0 − xp1)2 + (yp0 − yp1)2]1/2. If z2

p0
� (xp0 − xp1)2 + (yp0 − yp1)2, we

can replace square root function by the Maclaurin series [Goo05]. Such an approximation is
known as the Fresnel approximation.

Figure 2.7: A setup used by the Fresnel/Fraunhofer approximation. [Goo05]

The Fresnel approximation exploits that (1+b2)1/2 can be expressed by the Maclaurin
series8, i.e.,

(1 + b2)1/2 = 1 +
1
2
b2 +

1
8
b4 + . . . . (2.27)

8The Maclaurin series of (1 + b2)1/2 is also known as the binomial expansion.
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If |b| � 1, we can omit higher members of the series in Eq. (2.27). For simplification reasons,
it is beneficial to use only the first two members of Eq. (2.27) yielding

r01 ≈ zp0 +
1
2

(xp0 − xp1)2 + (yp0 − yp1)2

zp0

. (2.28)

The expression Eq. (2.28) approximates the phase shift in Eq. (2.18). The distance r01,
which modifies the amplitude in Eq. (2.18), is approximated only by the first member of the
expansion Eq. (2.28) because the optical field is very sensitive to an error in a phase but
less sensitive to an error in the amplitude [MNF+02].9 Applying the approximation reduces
Eq. (2.18) to

u(p0) ≈ exp(jkzp0)
jλzp0

∫∫
Σ
u′(p1) exp

[
(xp0 − xp1)2 + (yp0 − yp1)2

zp0

]
dxp1 dyp1 , (2.29)

where p0 = (xp0 , yp0 , zp0) and p1 = (xp1 , yp1 , 0). The equation Eq. (2.29) is known as the
Fresnel diffraction integral and with a proper reordering it takes a form that resembles
the Fourier transform, i.e.,

u(p0) ≈ exp(jkzp0)
jλzp0

exp

(
jk
x2
p0

+ y2
p0

2zp0

)

×
∫∫

Σ
ū(xp1 , yp1) exp

[
−j2π(xp0xp1 + yp0yp1)

1
λzp0

]
dxp1 dyp1 , (2.30)

where ū(xp1 , yp1) = u′(p1) exp(jk
x2
p1

+y2p1
2zp0

) is an optical field at the planar surface Σ multiplied
by the chirp function.

The Fresnel approximation uses Eq. (2.27) that limits the validity of results. Since the
optical field is more sensitive to error in the phase [MNF+02, Goo05], error of approximation
is estimated as the third component of Eq. (2.27), i.e., the first component omitted from
calculation of the phase shift in Eq. (2.18). The Fresnel approximation leads to a valid result
only if the error is much less than 2π rad, i.e.,

z3
p0
� k

8
[(xp0 − xp1)2 + (yp0 − yp1)2]2 (2.31)

for all combinations of p0 ∈ Γ and p1 ∈ Σ. If the condition Eq. (2.31) is fulfilled for the
planar surface Σ and the planar surface Γ in Fig. 2.7, the planar surface Γ is said to be in
the near field or the Fresnel region from the viewpoint of the planar surface Σ.

Now, let us increase the distance between the surface Γ and the surface Σ such that
zp0 � k

2 (x2
p1

+ y2
p1

). Then, the chirp function in Eq. (2.30) becomes 1.0 and the expression
Eq. (2.30) is reduced to

u(p0) ≈ exp(jkzp0)
jλzp0

exp

(
jk
x2
p0

+ y2
p0

2zp0

)

×
∫∫

Σ
u′(p1) exp

[
−j2π(xp0xp1 + yp0yp1)

1
λzp0

]
dxp1 dyp1 . (2.32)

The expression Eq. (2.32) is known as the Fraunhofer approximation and the planar
surface Γ is said to be in the far field or the Fraunhofer region.

9In fact, even if the amplitude set to 1.0 in all samples, the reconstruction is possible. The intensity of
such reconstruction differs from the intensity of a reconstruction from the unmodified optical field.
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The distance enforced by the Fraunhofer approximation is much greater than the distance
required of Fresnel approximation, e.g., for a circular aperture of a radius 0.01 m and the
same observation region the minimum distance required by the Fraunhofer approximation is
247.37 m while the Fresnel approximation requires only 0.23 m. Therefore, the Fraunhofer
approximation is used for analysing the features of imaging system rather than hologram
generation.

2.2.5 Lens

Methods presented in sections Sec. 2.2.2 and Sec. 2.2.3 allow to calculate a propagation of the
wave in a free space. If an obstacle is put into the free space, the light will be diffracted. With
a proper optical attributes of the obstacle we can control the propagated light. One of such
an obstacle is a lens. Since the lens is mentioned in the following chapters, this sections gives
a brief overview on a special version of a lens that is widely applied in numerical simulations.

A wave that propagates through an optically dense material is delayed in comparison
to the same wave propagating in the vacuum. A lens is an optically dense material that is
homogeneous and that has a certain geometry controlling the effect of the delay. One of the
most frequently simulated lens is a thin lens known from the ray-based optics. The thin
lens denotes a lens which the ray enters and exits at approximately the same location. Thus,
the thin lens causes only a phase shift. Any other modification of wave propagation due to a
different optical density can be neglected.

In the following text, a lens is centred around the origin and it is located in the plane
κ : z = 0. The effect of a thin lens on an incoming wave has a form of a multiplicative
factor tl(p1), where p1 = (xp1 , yp1 , 0). Thus, optical field values immediately behind the lens
is ul(p1) = u(p1)tl(p1), where u(p1) is the incoming wave, i.e., optical field values at the
plane κ : z = 0. Attenuation due to reflection and due to losses inside the lens is omitted.
According to [Goo05, SJ05], the phase shift due to a thin lens depicted in Fig. 2.8 is

tl(p1) = exp[jkn∆(p1)] exp{jk[∆0 −∆(p1)]}
= exp(jk∆0) exp[jk(n− 1)∆(p1)], (2.33)

where ∆(p1) is a lens thickness function, ∆0 is a maximum thickness of the lens, and n is a
refraction index of the lens.

The thickness function from Eq. (2.33) controls the phase delay. Following Fig. 2.8, the
thickness function is

∆(p1) = ∆1(p1) + ∆2(p1)

= ∆0 − r1

1−

(
1−

x2
p1

+ y2
p1

r2
1

)1/2
+ r2

1−

(
1−

x2
p1

+ y2
p1

r2
2

)1/2
 .(2.34)

If the spatial extent of the lens in both the X-axis and the Y-axis is small in comparison
to radii r1 and r2, we can approximate Eq. (2.34) by the binomial series Eq. (2.27), i.e.,
[1− 1

r21
(x2 + y2)]1/2 ≈ 1− 1

2r21
(x2 + y2). Applying the approximation to Eq. (2.34), the phase
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Figure 2.8: (a) A side view of the lens and (b) a front view of the lens. Resulting optical field
values ul(p1) are on the right side of the lens. The input optical field values are on the left
side. Notice that the radius r2 is negative because the waves is assumed to travel from left
to right. The radius r is r = (x2

p1
+ y2

p1
)1/2. [Goo05, SJ05]

shift Eq. (2.33) becomes

tl(p1) = exp(jkn∆0) exp

[
−jk(n− 1)

x2
p1

+ y2
p1

2

(
1
r1
− 1
r2

)]
,

= exp(jkn∆0) exp

(
−jk

x2
p1

+ y2
p1

2f

)
, (2.35)

where 1
f ≡ (n− 1)( 1

r1
− 1

r2
) is the lens maker equation and f is a focal distance.10 Since

the multiplicative factor exp(jkn∆0) from Eq. (2.35) is constant for the lens, it is usually
omitted from calculations because it causes just a constant phase shift.

The lens described by Eq. (2.35) causes an aberration in phase that can be neglected if
the intensity I is the desired output because I ∝ |U |2. The aberration can be corrected by a
multiplicative factor p(p0) to a correct optical field u(p0). In such a case, the lens is applied
as u(p0) = p(p0)P{u′(p1)tl(p0)} where u′(p1) is an optical field value immediately in front
of the lens and the propagation operator P{} is propagation of light in a free space. The
correction factor is derived following the fact that any image at the distance 2f in front of
lens is projected into almost the same image at the distance 2f behind the lens. The only
difference is inversion of both the X-axis and the Y-axis. Hence, the multiplicate factor is
determined by comparison of an optical field propagated though lens with an optical field
propagated without lens.11 As described in [SJ05], using the Fresnel approximation as the

10Notice that this causes a plane wave which direction of propagation perpendicular to the plane κ to focus
to a single point at the distance f behind the lens.

11This means that in the first case we propagate at the distance 4f in a free space and in the second case,
we propagate through lens.
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propagation operation P{}, the factor p(p0) is

p(p0) = exp

(
−jk

x2
p0

+ y2
p0

2f

)
. (2.36)

A thin lens described by Eq. (2.35) has a wide application in the holography. It can
be used to estimate an effect of the optical field on a human viewer because human visual
system contains a lens. Among others, it is employed by a special case of holograms known
as Fourier holograms that is mentioned briefly in Sec. 2.3.3.

2.3 Holograms

A significant part of holography deals with holograms. A hologram is a recording of the
optical field that can be replayed. It was discovered by Dr. D. Gabor as a tool for microscopy
[Gab49]. 12 Among others, this discovery allows to verify calculated optical fields through
optical experiments, i.e., we can display content of the optical field. Therefore, this sections
gives a brief overview of the principle and the basic hologram types mentioned in the following
chapters. For more details, refer to [Har96].

The hologram is recorded using interference between an unknown wave and a known wave.
We denote the known wave as the reference wave. The unknown wave is usually light reflected
off or transmitted though a scene. The resulting interference pattern modifies opacity of a
photosensitive material. If such a material is developed and put as an obstacle to the same
reference wave, a consecutive diffraction causes a reconstruction of the original unknown wave
and a viewer is able to see the scene. We denote the process of hologram replaying as the
hologram reconstruction.

Let us now give a mathematical model of the process. Interference of the reference wave
ur(p1) and the optical field O from the scene forms an interference pattern on a surface. At
a given location, the interference pattern has intensity

I(p1) = |ur(p1) + o(p1)|2

= |ur(p1)|2 + |o(p1)|2 + u∗r(p1)o(p1) + ur(p1)o∗(p1), (2.37)

where o(p1) is a sample of the optical field O at the point p1 and o∗(p1) denotes a complex
conjugate of a sample o(p1). Even though Eq. (2.37) works for any kind of surface and any
kind of reference wave, usually only a planar surface and a planar reference wave is used.
Thus, for purpose of this work, the interference pattern is observed on a spatially limited
recording plate (the hologram) in the plane κ : z = 0, i.e., p1 ∈ κ, .

Recording of the intensity I(p1) to a photosensitive material followed by a developing
forms an obstacle that modulates amplitude by the multiplicative factor tA(p1) that is pro-
portional to intensity from Eq. (2.37).13 The difference between tA(p1) and I(p1) is due to
physical properties of the material and thus it can be neglected for purpose of the expla-
nation, i.e., tA(p1) ≈ I(p1). Also, similar to the thin lens case discussed in Sec. 2.2.5, we
assume that light is not influenced by a different optical properties of the material.

12If the hologram is recording by light with the wavelength λ1 and it is replayed using light with a shorter
wavelength λ2 = ξλ1, the recorded setup is scaled uniformly in the spatial domain. This is a consequence of
ξ < 0 applied to Eq. (2.18).

13Modifying the developing process, it is possible to create a phase modulating hologram that allows recon-
struction too but with better efficiency, i.e., less energy of the reference wave is lost due to interaction with
the material of the hologram.
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In our case, the hologram modulates the amplitude of the transmitted wave by the mul-
tiplicative factor tA(p1). When such a hologram is illuminated by the reconstruction wave
u′r(p1), the optical field immediately behind the hologram is u′(p1) = tA(p1)u′r(p1). The
reconstruction wave is proportional to the reference wave ur(p1) and for purpose of the sim-
plicity let u′r(p1) = ur(p1). As a consequence, following Eq. (2.37) an optical field sample u′

located p1 immediately behind the hologram is

u′ = |ur|ur + |o|ur + ou∗rur + uro
∗ur. (2.38)

The first term of Eq. (2.38) is an undisturbed reference wave and it is known as the DC term.
The second term of Eq. (2.38) is caused by a self-interference of the optical field O and is
known as a halo. Both the first and the second component are unwanted and disturbing.
The recorded optical field is encoded in the last two components.

The third term of Eq. (2.38) is proportional to original waves o(p1) of the optical field
O. When the reconstructed optical field is observed, the third term forms a view on the
scene as if the scene was present, i.e., it is the virtual image of the scene. The fourth term
contains modified copy of waves from the optical field O as well. The exact interpretation of
the fourth term depends on an actual type of hologram. In general, the fourth term behaves
as there would be another mirrored version of the original scene. In the first invented kind
of hologram discussed in Sec. 2.3.1 the fourth term behaves as there would be a copy of the
scene in front of the hologram and therefore the fourth term causes a the real image of the
scene. An example of real and virtual image is given in Fig. 2.9.

Figure 2.9: An intensity of a propagated optical field. The optical field was formed just after
an amplitude-modulating hologram. In this case, the hologram is a recording of sources on
a plane with various intensity. The optical field is propagated to a location of the virtual
image. At the same time, the real image is out of focus. Notice that this examples present
an off-axis hologram.

2.3.1 In-line Hologram

In-line hologram is the oldest and the most simple setup.14 The setup requires that a
hologram on the plane κ, a recorded object and the source of the reference wave are aligned

14The in-line hologram is also known as the Gabor hologram.
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in a line as depicted in Fig. 2.10. The reference wave is a planar wave with a wavevector
k = (0, 0, k). Since the reference wave is transmitted through the object, the object has to be
mostly transparent and almost planar in an ideal case, e.g., a wire-frame or a transparency.

Figure 2.10: (a) An in-line hologram setup for recording and (b) a in-line hologram recon-
struction. The distance of the object to the hologram is d. [Har96]

During the hologram reconstruction, the in-line hologram forms a real and a virtual
image that overlap each other when observed. As depicted in Fig. 2.10(b) real image is
symmetrically located on the opposite side of the hologram. The depth of the real image is
inverted. Since all terms in Eq. (2.38) overlap when the hologram is observed, the in-line
hologram is applicable only to a high-contrast objects, very small objects, or a sparse field of
particles and therefore it is not usually considered for displaying purposes.

2.3.2 Off-axis Hologram

The off-axis hologram offers a solution to the overlapping problem of the in-line holo-
gram.15 It assumes a setup that is almost similar to the in-line hologram with exception
of the reference wave that hits the hologram plane κ under a different angle as shown in
Fig. 2.11(a), i.e., the wavevector k 6= (0, 0, k). Unlike the in-line hologram, the objects can
be a 3D-shape without restriction because the optical field generated by the scene is created
by light reflecting off the scene.16

Since the incidence angle of the reference wave in Fig. 2.11 is different from zero, the
terms of Eq. (2.38) are partially separated during reconstruction by a different direction of
propagation. As it is shown in Fig. 2.11(b), staring from a particular distance the virtual
image does not overlap any other term as illustrated with Fig. 2.9. The higher the incidence
angle, the better the separation. However, increasing the incidence angle increases the max-
imum frequency in the interference pattern at the same time. This is a drawback of the
off-axis hologram because it requires materials able to record high frequency patterns while
retaining the contrast. Nevertheless, the off-axis hologram allows to record and reconstruct
reflected light from 3D-object and therefore it is suitable for displaying purposes.

15The off-axis hologram is also known as the Leith-Upatnieks hologram.
16To satisfy physical limitations imposed by coherence, the light illuminating the scene is generated by a

beam splitter from the reference wave. At the recording plane the difference of the path between these two
split parts of the light has be less than the coherence length mentioned in Sec. 2.1.1, otherwise the interference
pattern will not be visible. This means that the coherence length limits the maximum depth that can be
recorded in the hologram.
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Figure 2.11: (a) An off-axis hologram recording setup and (b) a reconstruction. The angle θ
represents an incidence angle of the planar reference wave from the hologram. [Har96]

2.3.3 Fourier Hologram

Unlike previously mentioned holograms, the Fourier hologram uses a lens for recording
purpose. Through the lens, a Fourier transform of the optical field is create and through
interference it is recorded as depicted in Fig. 2.12(a).17 The object is assumed to be a
transparency because it is usually illuminated front the back.

Figure 2.12: (a) A Fourier hologram recording setup and (b) a reconstruction. The distance
f is a focal distance of the lens. [Har96]

During the reconstruction, the hologram is illuminated by a planar wave. The recon-
structed optical field passes through a lens as depicted in Fig. 2.12(b) and at the back focal
plane it forms the real and the virtual image. Both images are at the focus and they are
symmetric as illustrated with Fig. 2.13. Optically created Fourier hologram are not used for
displaying purposes because they assume transparent object that are almost planar. Nev-
ertheless, Fourier holograms are used in numerical simulations and in that case they allow
recording of 3D scenes.

17A lens transforms an optical field such that an optical field at the back focal plane is a Fourier transform
of the optical field in the front focal plane and vice versa [Goo05].
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Figure 2.13: A numerical simulation of reconstruction from the Fourier hologram.



Chapter 3

Digital Holography

Digital holography is a discrete counterpart of optical holography. It deals with numerical
simulations of light behaviour. It employs models described in the previous chapter and it
designs their new interpretations. This chapter gives an overview of existing solutions, i.e.,
the previous work. Since this work is aimed on hologram generation, the overview focuses on
the subject as well. This chapters shall help the viewer to clarify the design decisions in the
method proposed in the next chapter.

Since digital holography is able to numerically simulate interaction of light with the en-
vironment, it is able to fully cooperate with optical holography, i.e., digital holography may
post-process data recorded during physical experiments or it may provide data for physi-
cal experiments. All numerical simulations runs in a discrete environment of a computer
and follows discrete versions of expression mentioned in Chap. 2. From a viewpoint of this
work, digital holography solves hologram generation, numerical reconstruction of the holo-
gram, information retrieval from the hologram, compression of the hologram, and hologram
reproduction as depicted in Fig. 3.1.

Hologram generation deals with calculation of a hologram or an optical field from a virtual
scene. In this work, calculated holograms are intended for viewing purposes. Since hologram
generation is the aim of this work, it is discussed in greater detail later in this chapter.
Following text gives a brief overview of other subgroups.

The most technologically demanding area is hologram reproduction. The aim of hologram
reproduction is to introduce digitally simulated data to physical experiments, i.e., replaying
of the calculated hologram. Existing solutions exploits various printing techniques to cre-
ate static holograms including hologram binarisation [BL66, Hua71, Har96] as a pre-step
to printing using laser printers [Mac97], CD/DVD burners [SMU04], and custom printers
[MKM06]. Dynamically changing holograms can be replayed using spatial light modulators
(SLM) [Goo05, SCS05, KIO+06] that allow controlled modification of light on a very small
scales. Since this work aims on hologram generation, some of available solutions for hologram
reproduction were used for purposes of optical verification.

The results of optical verification proves functionality of the numerically calculated holo-
gram. However, hologram reproduction may be expensive or slow and therefore a numerical
reconstruction can be used to detect a hologram that does not work. Usually, a hologram is
located on a plane κ : z = 0 and numerical reconstruction applies formulations from Sec. 2.2.3
and Sec. 2.2.4 to find an optical field generated by the hologram on the plane κξ : z = ξ. For
viewing purposes, the intensity is extracted from the optical field. Usually, no lens is applied

22
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Figure 3.1: Digital holography areas and their relation in a context of this work. The dashed
boxes belong to optical holography. Lines between boxes represents data transfer: white lines
represent an optical field, greyed lines represent an interference pattern, i.e., a hologram.

in the process and therefore if the input is a hologram of a virtual scene, the plane κξ has to
intersect the scene. Sources of waves at the intersection are denoted as being in the focus.
Even though such result is not equal to an image formed on a retina of an eye because it
lacks both a lens and an aperture, it is acceptable for verification purposes1.

With increasing size of a hologram or an optical field, the amount of required data is
increased too. While for storage purposes this might not be crucial, the amount of data is
a problem for a data transfer between devices [Luc96]. For that reason, hologram compres-
sion aims to decrease the size of hologram representation while avoiding degradation of the
hologram. The simplest solution may rely on compression schemes intended for image com-
pression [NFJT02]. More sophisticated solutions may incorporate the compression as a part
of the hologram generation method [Luc94, Luc96]. This allows finer control of compression-
based noise. The compression of holograms is outside the scope of this work and therefore
we shall not discussed it any further.

An optical field encoded in a hologram contains information that can be used to esti-
mate attributes of the source or obstacles between the source and the hologram. Information
retrieval methods try to extract information from the hologram captured by the CCD cam-
eraSec. 2.3. An original optical field is the basic content that can be extracted from a
hologram [YZ97, LBU04]. If the scene is similar to a sparse set of particles, detection of
particle locations is possible [BLCLO00]. However, in a general case, it is very complicated,
or even impossible, to make an estimation of an obstacle shape that caused given interfer-

1If the hologram or an optical field forms expected intensity pattern on a plane κξ, the method that
generated the hologram is considered correct.
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ence pattern. Since the task of the information extraction is beyond scope of this work, this
paragraph is presented only for completeness of the list.2.

3.1 Principles of hologram generation

The aim of this work is to generate holograms for viewing purposes. This section presents
basic methods in greater detail and defines an input and an output of hologram generation.
The purpose of this section is to provide an overview of the most common methods to the
reader. Acceleration techniques are discussed in the next section.

Hologram generation deals with calculating discrete samples umn of an optical field U or
discrete samples hmn of a hologram H. As shown in Sec. 2.3, optical field U can be reduced
to the hologram H and thus we shall consider the optical field as the default output of a
method.3 Furthermore, let us assume that samples are located on the plane κ : z = 0 and
they are organised into a rectangular and uniform grid. A distance between the samples
along the X-axis and the Y-axis is Dx and Dy respectively. As a consequence, the location
of a sample is umn = (mDx, nDy, 0). For purpose of simplification, let the optical field U be
represented by N ×N samples.

The optical field U that is sampled at the plane κ is generated by a virtual scene. The
virtual scene consists of objects. Every object is defined by the surface.4 The scene is
organised along the negative Z-axis and its orthogonal projection onto the plane κ does
not overlap the maximum extent of the hologram given by the number of samples and the
sampling step.5

The surface of objects is described by a triangular mesh with a complex texture A(s) =
a(s) exp[jϕ(s)] where s is a point on the surface, a(s) is an amplitude, and ϕ(s) is a phase.
The texture contains a result of interaction between a light in the scene and the surface. Such
a surface is considered as a self-luminous surface, i.e., it is the source of waves and it is not
influenced by self-interference. The texture is an input because hologram generation focuses
only on calculation of a hologram and it does not try to simulate interaction between light
and the scene. Besides that, the phase ϕ(s) shall not be constant because a self-luminous
surface with such a texture is not able to form a viewable hologram [LHJ68]. The effect of
such a constant phase is depicted in Fig. 3.2.

Hologram generation follows discrete version of formulations from Sec. 2.2.1. Individual
methods are usually based on a discrete Rayleigh-Sommerfeld formulation that describe an
optical field in a free space behind the planar aperture. The formulation assumes that the
optical field is generated by a single point light source (PLS) in front of the aperture or an
optical field in the aperture. The aperture is the obstacle, PLS in front of the aperture is a
point on the surface, and the observing point is the a calculated sample.

Hologram generation method address two problems: a propagation of a wave in a free
space between obstacles and influence of obstacles on the wave. The influence of obstacles
is commonly denoted as a visibility. Solutions of the problems applied by various methods

2Hrome, tuto část snad ṕı̌si počtvrté zcela znovu.
3Backward conversion of a hologram into an optical field is possible but it is beyond the scope of the work.
4Since both translucency or transparency, which might require the knowledge of volume, are not considered

in majority of cases, the surface is sufficient for a description of the object.
5This is in agreement with the sign notation mentioned in Sec. 2.2.2. Nevertheless, even the scene that is

organised along the positive Z-axis can create a working hologram.
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Figure 3.2: A numerical reconstruction from a partially covered optical field generated by a
scene with (a) a constant phase on the surface and (b) a pseudo-random phase on the surface.
Lower half of the optical field was zeroed covered prior the reconstruction. Notice that this
is similar to applying an aperture, e.g., a pinhole of a camera or a pupil of an eye.

clusters the methods into trends: geometry-based methods, wave-base methods, and view-
based methods. All three groups are discussed in following subsections.

3.1.1 Geometry-based methods

A common attribute of geometry-based methods is a use of a ray for calculation of a contri-
bution to the optical field. This is similar to the computer graphics but in this case the ray
carries a phase besides intensity. The phases of contributions in neighbouring samples have
to correspond each other for a successful reconstruction. As a consequence, the scene cannot
be sampled on a complete random basis. The visibility is solved by a ray-casting [Wat00]
as illustrated with Fig. 3.3. Even though using of ray-casting for a visibility solution means
ignoring diffraction on obstacles, it creates a working hologram and therefore it is considered
as an acceptable approximation [Und97].

Figure 3.3: Visibility solution of PLS p using a geometry-based method. While the sample
um′n does not obtain any contribution from PLS due to the obstacle, the contribution to
sample umn is proportional to exp(jkr)

r
z
r .

In order to force the correspondence between phases, the surface is usually converted to
different representations, e.g., a cloud of PLS. When a cloud of PLS is used, the computation
complexity is O(PN2) where P is number of PLS. For an acceptable visual quality the
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number of points has to be high, i.e., P ∼ N2. As a consequence, the worst computational
complexity is beyond O(N4). Since a selection of a proper representation is a exploited by
various acceleration techniques, it is further discussed in Sec. 3.2.

Geometry-based methods use a simple calculation and allows various acceleration tech-
niques including hardware-based solutions as discussed in Sec. 3.2. In majority of cases gained
acceleration is linear only. If the task is properly limited, smaller holograms can be generated
in a real-time manner [Luc94, IMY+05]. The drawback of geometry-based methods is an
amount of data such as PLS that has to be processed, i.e., a data bandwidth is high. This is
the major limitation of the geometry-based methods. Since geometry-based methods show
similarity to computer graphics methods, they are partially exploited by this work.

3.1.2 Wave-based methods

Wave-based methods rely on a propagation of the wave. Especially, a propagation of the
angular spectrum, which is discussed in Sec. 2.2.3, is used because it allows to calculate the
optical field much faster. The major problem of wave-based methods is visibility because
the propagation in angular spectrum operates in frequency domain while visibility has to be
solved in the spatial domain in a general case though masking some optical field samples. This
forces frequent switching between domains and it leads to a usual computation complexity of
O(TN2 log2N) where T is number of propagation-visibility pairs that have to be calculated,
e.g., it is number of planar patches in the scene.

The angular spectrum of the optical field is obtained by FFT. Since FFT assumes peri-
odicity, the result of propagation behaves as if the input consisted of periodically repeated
patch of optical field samples as illustrated with Fig. 3.4. Also, FFT assumes a uniformly
sampled signal. This becomes a problem when the optical field is rotated. The rotation
described in Sec. 2.2.3 causes a non-linear deformation of the spectrum and the spectrum has
to be resampled prior application of the inverse FFT [EO06]. This degrades the signal and
increases an amount of noise.

Figure 3.4: A numerical reconstruction of an optical field with added frame of zeros. Optical
field was calculated using (a) analytical expression for PLS and (b) propagation of the angular
spectrum. Notice the repeating of the pattern due to FFT in (b). The dashed line shows a
size of the original optical field.

As shown in Sec. 2.2.3, wave propagation is the most straightforward for two parallel
planes. This fact is exploited by layered holograms [Loh78]. The scene is sliced by planes
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parallel with the plane κ and waves are propagated from slice to slice towards the plane κ.
Each slice serves as an amplitude-phase modulator. The intersection of the surface with the
slice is a patch of sources and it is added to the optical field samples. Te area corresponding to
the object inside is a mask that zeroes optical field samples inside the object as illustrated with
Fig. 3.5(a). The drawback of the method is a high number of slices for a proper approximation
of the surface. Howover, at the same time the distance between slices has to be long enough
for propagation to become something else than a plain phase shift due to the diffraction
condition Eq. (2.24).

Figure 3.5: A visibility solution for wave-based methods is based on set of masks and corre-
sponding patches of sources. (a) Layered holograms uses parallel planes to slice the scene,
(b) the silhouette approximation combines parallel masks with titled sources but suffers from
wave leaking, and (c) an exact solution requires frequent rotation of the optical field.

Reduction of slices is possible through a better approximation of the surface, i.e., using
titled patches. If the distance between samples is large enough such that the maximum
frequency fmax = 1

2Dx
is less than 1

λ , the mask for a titled planar patch can be approximated
by a parallel patch. This is known as the silhouette approximation [MK04] and it removes
necessity to rotate the arriving optical field because only a newly added patch of sources is
rotated as illustrated with Fig. 3.5(b). Applied mask is an orthogonal projection of the
patch with sources. While the solution reduces the number of necessary slices it heightens an
influence of leaked waves. The wave leaking denotes a situation when a wave originating
from completely occluded patch is not masked and reaches the hologram as depicted in
Fig. 3.5(b).

The problem of leaking waves is solved through a titled mask [Mat05]. An incoming
optical field is rotated to become parallel with the source planar patch, it is masked and
propagated to the next plane as illustrated with Fig. 3.5(c). Originally, the mask is binary
but it can be enhanced towards a complex multiplicate factor that may have attributes of
a lens or another passive optical element [ZCG08].6 The visibility has to be solved by a

6Actually, the only difference between [ZCG08] and the original work of [Mat05] is the mask that is not
binary but uses a complex number instead. It is rather strange that such a trivial modification was considered
as a contribution worth of mentioning in a full paper on the EG conference.
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Painter’s algorithm [Wat00]. The algorithm is modified to consider the range in which the
source can influence the final optical field.7

The method does not require any conversion of the input scene because both the source
and the mask can be a triangle from the triangular mesh. The angular spectrum of the triangle
is obtained by rasterization of the triangle into a regular grid [Mat05]. Such a solution allows
any variation of both a phase and an amplitude. Another solution is to decompose the triangle
using a scheme similar to the Sierpiński triangle [KHL08]. Such a scheme decomposes the
original triangle to a group of smaller triangles the consist of two types: a triangle of the same
shape of the original triangle and an up-side version of the triangle. Both smaller triangles
have a constant phase and a constant amplitude. An angular spectrum of such triangles can
be described by an analytical function [ABMW08, KHL08]. The solution allows only a limited
variation of both a phase and a amplitude over the surface of the triangle in comparison to
a solution that uses sampling. Notice that a hologram calculated from an object completely
without a phase variation is not viewable by a human viewer [LHJ68].

Wave-based methods are able to calculate optical field of a virtual scene quickly if the
visibility is ignored. If the visibility is considered a frequent execution of FFT occurs in a
general case because visibility is efficiently solved in the spatial domain while the propaga-
tion is efficiently solved in the frequency domain. Also, wave-based methods suffers from
limitations of FFT, i.e., an assumption of periodicity and a requirement of a regular grid
that has be forced by resampling of the angular spectrum if necessary. While silhouette
approximation resamples only a newly added angular spectrum while keeping the calculated
optical field intact, the full solution resamples the calculated optical field over and over. This
increases the amount of noise. Besides that, the angular propagation applied together with
the Painter’s algorithm limits possibilities of acceleration by technical means such as parallel
computation.

3.1.3 View-based methods

View-based methods are not in a scope of this work and they are presented for completeness of
the list only. Thus, the presentation is only brief. View-based methods exploit the mechanism
of the Fourier hologram discussed in Sec. 2.3.3. The difference between individual methods in
an interpretation how is the optical field in the back focal plane influenced by PLS in front of
the lens. Nevertheless, all methods use multiple orthogonal views of the scene. The visibility
is solved by standard means of the computer graphics.

A solution presented in [LAe01, AR03] shows that views can be generated by a tilting
camera, if maximum tilt angles are kept small. Other solution presented in [SIY04] shows
that the same effect can be achieved by a camera that looks at a point in the scene and
rotates around the Z-axis at the same time. Nevertheless, before further method-dependant
processing, the view is transformed by FFT. Then, it is processed and added to the resulting
optical field. This makes the computational complexity of view-based methods approximately
O(V N2 log2N), where V is a number of used views.

View-based methods are able to calculate optical field without interference and coherence.
The computational complexity does not depend on a content of the scene because orthogonal
views are the only inputs. Furthermore, view-based method might allow capturing real-life

7The range depends on the maximum frequency fmax that can be recorded in the discrete optical field. If
fmax is applied to the diffraction condition Eq. (2.24), it gives a maximum deflection angle and as consequence
a range that is influenced by a sample or by a patch.
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scenes if the views are kept close to an orthogonal projection [SIY04]. Nevertheless, view-
based methods are sensitive to rounding errors of the rasteriser if the views are calculated
instead of recorded. Also, the number of required views might be high. Even though multiple
views can be interpolated from existing ones [KSR07], still each view has to be processed
separately, i.e., amount of data that has to be processed is still the same.

3.2 Acceleration of hologram generation

Previous section described the most common principles of hologram generation. Since calcu-
lation time is a major interest of this work, acceleration techniques are discussed separately
in this section. This section contains an overview of possible acceleration techniques used by
a wide range of methods.

The task of hologram generation follows the definition from the beginning of Sec. 3.1.
The goal is to calculate discrete samples umn of an optical field U on a plane κ : z = 0 from
a scene described by a triangular mesh with an applied texture. Similar to Sec. 3.1 the scene
is assumed to be organised along the Z-axis and orthogonal projection of the scene onto the
plane κ does not overlap a bounding rectangle of the samples.

In its principle, hologram generation calculates unknown target samples of the optical
field from a known source samples of the same optical field. Usually, both sets of samples
are located on a surface. If there is no obstacle between surfaces and the content stored
in source samples has to be preserved, a number of target samples has to be greater or
equal to a number of source samples. Since every source sample contributes to every target
sample, the worst computational complexity for N2 target samples is above O(N4). The
goal of acceleration is to find a coefficient χ such that the computational time driven by the
computational complexity

O
(

1
χ
N4

)
. (3.1)

is reduced.

Since the work aims on holograms for viewing purposes, N in Eq. (3.1) is a larger num-
ber.8 Therefore, even a linear acceleration means a significant reduction of the computation
time. Thus, it is acceptable to deal with hardware compatibility or parallel/distributed com-
puting. We compared principles of published method and we clustered them into groups
of acceleration techniques based on simplification of the scene, simplification of the signal,
and approximation including a special case. Usually, various acceleration techniques can be
combined easily and the computation time reduction is cumulative in such a case.

3.2.1 Approximations and special cases

A technique that promises a reduction of calculation time is a replacement of an operation
with fast yet less accurate formulation. In the digital holography, the most complicated
operation is a square root that is usually applied for calculation of a distance r = (x2 +

8This assumption is based on the diffraction condition Eq. (2.24) and the sampling step size. As it is
shown in Sec. 3.1.2, the sampling step size limits the range of target samples that are affected by a given
source sample. In order to calculate a proper hologram, the source sample should to be able to contribute to
all target samples, i.e., the sampling step has to be as small as possible. As a consequence, the number of
samples is high.
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y2 + z2)1/2 in Eq. (2.16). The square root can be approximated the first two members of the
binomial series Eq. (2.27). The result is a function

r ≈ z +
x2 + y2

2z
, (3.2)

where the first component is omitted because it is constant for a constant z or it is possible
to set z as the integer multiple of the wavelength. The function Eq. (3.2) can be calculated
directly [NSM+05] or by an iterative process using a differential scheme [IMY+05, YIO00].
A single step of the iterative process for a set-up depicted in Fig. 3.6 is

ri+1 = ri + ∆ri,
∆ri+1 = ∆ri + ∆∆r, (3.3)

where ∆ri = ∂r
∂x = 2xDx+D2

x
2z , r0 = z, and ∆∆r = ∂2r

∂x2 = D2
x
z is constant. The differential

scheme allows to use additional members of the binomial series from Eq. (2.27) easily [YIO00].
Beside the calculation of the distance, the approximation can be applied for calculation of
the wave vector component zk [MK04]. Since zk = (k2−x2

k− y2
k)1/2 the approximation leads

to a result similar to Eq. (3.2). In this case, however, the approximation is applied to obtain
a separable function rather than to provide a speed-up.

Figure 3.6: A setup used by a diffraction scheme from Eq. (3.3). A sample at (0, 0, z0)
contributes to samples umnc and um+1nc , where nc = const.. [YIO00]

Besides the removal of the square root, the approximation allows to show spatial relation
between optical fields generated by sources in various depths. Let us demonstrate it using
two PLS. The first PLS s is at s = (0, 0, z), the second PLS s0 is at s0 = (0, 0, z0), where
z = z0 + cλ where c is an integer. Intensity of both PLS equals to one. Phases of both PLS
are the same and thus it can be omitted from calculation because the scene contains only
these two PLS. Following Eq. (2.29), the contribution of PLS s to the sample u(x, y) of the
optical field on the plane κ : z = 0 is us(x, y) = 1

z exp(jkz + jk x
2+y2

2z ) and contribution of the
sample s0 is us0(x, y) = 1

z0
exp(jkz0 + jk x

2+y2

2z0
). Since z = z0 + cλ, components exp(jkz) and

exp(jkz0) can be omitted because exp(jkz) = exp(jkz0). As a result, it is possible to state
that

us(x, y) = σ′us0(x, y), (3.4)

where σ′ = z0
z exp

[
jk
(
z0
z − 1

)]
.

If cλ � z0, the factor σ′ might become neglectable because z0
z ≈ 1. However, in such a

case equality is lost because z 6= z0. Now, let us introduce coordinates x′ = x( z0z )1/2 and
y′ = y( z0z )1/2 in to the left size of Eq. (3.4). After that, equality is restored even though factor
σ′ ≈ 1 is omitted. The coordinates x′ and y′ can be interpreted as scaling of the optical field.



Chapter 3: Digital Holography 31

Hence, optical field generated by PLS s is a scaled version of the optical field generated by
PLS s0. The scale factor is

σ =
(z0

z

)1/2
, (3.5)

e.g., an optical field on the plane κ : z = 0 of PLS at (0, 0, 4z0) is approximately an optical
field of PLS at (0, 0, z0) that is scaled twice as illustrated with Fig. 3.7. This fact is used by
methods the rely on precalculated optical fields [BFJ+90, RBD+99, PM03]. Among others,
Eq. (3.5) shows that a linear scaling of the optical field on the plane κ : z = 0 causes quadratic
scaling of the distance. As a consequence, Eq. (3.5) is applicable if |z − z0| is small.

Figure 3.7: A real component of an optical field generated by PLS at (a) a distance z0 and
(b) a distance 4z0. Notice that additional circles in (a) are a product of an alias.

Further decrease in calculation time is possible by directly calculating a hologram instead
of an optical field. A hologram is product intensity of interference between optical field
samples o(p1) generated by the scene and optical field samples ur(p1) known as the reference
wave. As shown in Eq. (2.37), intensity of an interference pattern at the point p1 is I(p1) =
|ur(p1)|2 + |o(p1)|2 +u∗r(p1)o(p1) +ur(p1)o∗(p1) where the most important is the third term
and the fourth term because they cause a reconstruction of optical field samples o(p1) and
influence a visibility of an intensity pattern.9 Therefore, it is beneficial to use only the third
term and the fourth term and approximate the intensity I(p1) as

IB(p1) = u∗r(p1)o(p1) + ur(p1)o∗(p1),
= 2|ur(p1)||o(p1)| cos [ϕo(p1)− ϕr(p1)] , (3.6)

where ϕo = arg{o(p1)}, and ϕr = arg{ur(p1)}. Since the resulting intensity can be negative,
intensity IB defined by Eq. (3.6) is also known as the bipolar intensity [Luc92]. Calculating
only the bipolar intensity reduces to computation time to almost a half because it uses real
numbers instead of complex arithmetic. The resulting hologram, however, is tailored only for
a particular reference wave.

The computation time can be efficiently reduced by decreasing the number of contribution
collected by the hologram. An example of such reduction is a setup that considers only one
dimension instead of two. The effect of such reduction is a loss of parallax in the omitted
dimension, i.e., in an extreme case, the viewer sees the same image from locations that

9The first term, aka. DC term, from Eq. (2.37) can be omitted because it modifies only the lightness of
the result. The second term, aka. self-interference term, causes only disturbing artifacts and therefore it is
desirable to omit it as well.
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varies in the omitted dimension. Since human eyes are organised horizontally, it is desirable
to preserve the horizontal dimension [Luc92, Luc94]. The resulting hologram is known as
horizontal parallax only hologram, i.e., the HPO hologram. It is, in fact, a set of 1D
holograms, each calculated independently on the others. This reduces the basic computational
complexity of HPO holograms to O(N3). Nevertheless, while numerical reconstruction of such
hologram is simple, optical reconstruction requires a special reconstruction setup [LAe01] or
a specialised output device [LG95, Luc97] in order to prevent spreading of light in the vertical
direction.

3.2.2 Simplification of a scene

In the previous section, we presented techniques that exploit approximations and special
cases to reduce the computation time. Other possibility for acceleration is to manipulate the
scene. Therefore, in this section we present techniques that focus on a scene and employs
different description of scene content to reduce the computation time. Objects in the scene
are described by a triangular mesh. Even though the mesh is already a set of primitives
instead of a smooth continuous surface, it can be simplified even further. The goal is to find
a representation using a primitive whose optical field can be calculated easily. Following the
goal, the surface can be represented as a cloud of PLS, a wireframe (a cloud of line segments),
and a cloud of triangles. A brief description of representations follows.

Cloud of point light sources

Hologram generation from a single PLS is fast because it is calculated through rays and its
computational complexity is O(N2). When the number of PLS is increased, the calculation
time is increased linearly. Unfortunately, in order to represent a solid surface, the amount
of PLS is high, comparable with N2.10 Despite that disadvantage, there is a large number
of methods that accelerate hologram generation from a cloud of PLS. The reason is the
simplicity of the optical field generated by PLS and a wide range of acceleration possibilities.

PLS emits a spherical wave described by Eq. (2.9). A sample of the final optical field on
the plane κ : z = 0 can be estimated by a discrete Rayleigh-Sommerfeld solution

umn =
∑
i

νmni
si
rmni

exp(jkrmni)
zsi
rmni

, (3.7)

where rmni = [(mDx − xsi)
2 + (nDy − ysi)

2 + zsi ]
1/2 is a distance between PLS and the

sample umn, si is a complex amplitude of PLS located at si, and νmni ∈ {0, 1} is a result of a
visibility check. The visibility check is zero if PLS si is not directly visible from sample umn,
otherwise it is equal to one. An optical field of a single PLS is symmetrical. This fact can be
exploited to save the calculation time by calculating only a 1

8 of the optical field[JOPBV97]
and by distributing calculated values to remaining samples. This speeds up the computation
approximately four times.

Another possibility is to use tables of precalculated components of Eq. (3.7) such as a
sine table, a cosine table, and a distance table. While both the sine and the cosine tables are
1D and small, the distance table is 5D in a general case or 4D for a scene containing only a
single layer of PLS. 11 In either case, the table is too large to be contained in the operational

10Actually, if the goal is to compute a plane which size is equal to a spatially limited hologram, the number
of considered PLS is N2. This represents the extreme case.

11A 5D index consists of two indices of a target sample, three indices of a source PLS.
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memory. Yet, when the Fresnel approximation is applied, the table can be reduced to a set
of two 2D tables with a known maximum index [NSM+05] and these tables fit the memory.
The resulting computation is about two times faster than a full evaluation of Eq. (3.7).
Nevertheless, a side effect of the approximation is quantisation of PLS distribution.

More efficient solution is possible through HPO holograms and the bipolar intensity
[Luc92]. For a given index pair (m,n), applying the bipolar intensity Eq. (3.6) to evalu-
ation of the optical field Eq. (3.7) yields

IB =
∑
i

(<{si}Tc[∆i, z̄si ] + ={si}Ts[∆i, z̄si ]) ,

where ∆i = m− b 1
Dxsic, D = π

xk
, k = (xk, zk) is a wavevector of the reference wave, and z̄si

is a quantised Z-axis coordinate zsi . The quantisation of the Z-axis coordinate can be non-
linear and can depend on ability of the human visual system to distinguish between distances
[Luc94].

Now, let us express the tables Tc and Ts. Applying the quantisation step D, xkb 1
Dxsic

becomes equal to c2π, c ∈ Z. As a consequence, phase ϕr(mDx) of the reference wave becomes
ϕr(mDx) = xkmDx − c2π = ϕr(∆i). This allows to express the table Tc as Tc[∆, z] =
1
r cos(kr−xkr∆) where r is a distance between the sample and PLS. The table Ts follows the
same consideration. The only difference between the tables is that the table Ts uses the sine
function instead of the cosine function. Despite the fact that this simplifies the calculation
significantly, none of purely table-based techniques is able to remove the necessity to access
and process every sample of the optical field. Since the calculation is simple, the time spend
on data transfers between the tables and the optical field influences the resulting calculation
time significantly.

Since the optical field calculated from a cloud of PLS is superposition as shown in Eq. (3.7),
it is possible to exploit a hardware for accelerating purposes. The calculated optical field
can be divided into tiles and each tile is processed separately in a parallel or a distributed
environment [NSM+05]. The texture mapping ability of graphical processing unit (GPU)
[RBD+99, PM03] or programmable components of GPU [MIT+06, ABMW06] can speed up
the computation as well. Thanks to massive parallelism of GPU, an optical field of 2 × 106

samples can be generated with interactive rate if the number of PLS is kept small, e.g.,
103 PLS [ABMW06].12 More significant speedup can be achieved by applying a pipeline
architecture implemented on a programmable hardware (FPGA) [IMY+05]. The solution
uses the Fresnel approximation in a form of a differential scheme and it omits individual
intensities of PLS. The solution is able to calculate an optical field of 1.5× 106 samples from
a cloud of 104 PLS in the real-time rate.13

Hardware-based acceleration techniques provide a speedup that is almost linear and the
same time the the computation time depends linearly on a number of PLS. Since number
of PLS increases dramatically with increasing complexity of a scene, the techniques cannot
be used alone and they have to be combined with other techniques to became applicable.
Also, none of them includes visibility solution. If they are capable of applying visibility,
the visibility has to be pre-computed before the calculation begins. Besides that, in some
cases the techniques limit variability of PLS in the cloud, e.g., all PLS has to have the same
intensity [IMY+05] or the same phase [ABMW06] or both [RBD+99, PM03, MIT+06]. This

12Interactive rate means a framerate equal or greater than 1 frame per second.
13The real-time rate means a framerate equal or greater than 25 frames per second.
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renders majority of available hardware-based acceleration techniques rather useless except
for a quick and low-resolution previews.14

Let us now discuss generation of a cloud of PLS. The cloud can be generated from a
triangular mesh using a ray-casting [Und97]. Visibility is calculated by a ray-casting using the
original triangular mesh as in Sec. 3.1.1. Unlike a standard ray-casting that usually considers
a low number of viewers, on a hologram each sample is a viewer that gathers rays from the
scene. This significantly increases the computation time. In order to improve efficiency, it is
possible to apply a triangle culling in a limited manner. For that purpose, a triangle is tested
whether it is culled for a viewer located in a corner of a rectangular envelope of optical field
samples.15 A triangle that is culled from all four corners is considered completely invisible.
If applicable, this step is performed on a 2D slice of the scene [Und97]. Another option is
to approximate visibility through a lower resolution [ZCG08]. Visibility is examined from
selected samples and obtained information is shared among neighbours. In an extreme case,
visibility can be solved only for an orthogonal projection of the scene onto the hologram
plane κ : z = 0 [KYY08]. This approximation is considered valid when a diagonal of the
rectangular envelope is much smaller than a distance of the nearest PLS to the hologram
plane κ.16

Cloud of line segments

The major drawback of techniques that rely on a cloud of PLS is a number of PLS. If
a solid surface is processed, the number of PLS is high. In order to reduce the resulting
computational time, it is appropriate to calculate at once as many PLS as possible. This can
be achieved by using a line instead of PLS. A single line replaces many PLS and an optical
field of a line can be approximated by a function.

Similar to the previous case, the samples of an optical field are located on the plane
κ : z = 0. Since a rotation of the source about the Z-axis equals to a rotation of the optical
field about the Z-axis, only a line l : z = y tan γ, where the angle γ ∈ [0, 2π), has to be
considered. Let us assume that all point of the line l emits light with the same phase and
the same intensity. When the Fresnel approximation is applied [FLB86], an optical field of
the line l is

umn = exp
[
jk

(nDy)2

2zl

]
, (3.8)

where zl is an orthogonal distance between the line and the plane κ as depicted in Fig. 3.8.
First component of the Fresnel approximation is omitted from Eq. (3.8) because it is constant.

An optical field Us of a line segment ls can be approximated by a rectangular part of
an optical field Ul generated by an infinite line as illustrated with Fig. 3.9. A height of the
rectangle equals to a length a of an orthogonal projection of the line segment ls into the
plane κ. A width of the rectangle is limited only by the size of the optical field Us. This
approximation causes a blur of endpoints in the reconstruction. If the length a is large, the
blur is not disturbing and can be ignored. However, a smaller length a such that a ∼ Dyc

14As illustrated with Fig. 3.2, ability to control the phase almost arbitrarily is necessary for a hologram
viewable by a human viewer.

15The test compares a normal vector of a triangle with a vector connecting triangle vertices and the viewer.
If the comparison fails for all three vertices, the triangle is considered as culled for the viewer located at the
corner.

16In fact, this case is valid for almost all SLM currently available and authors seems to enjoy this technical
limitation.
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Figure 3.8: A part of an infinite line. An optical field of a line where α 6= 0 can be calculated
by rotating an optical field of a line where α = 0. [FLB86]

where c < 101 causes a blur that is much stronger than the reconstructed line segment and
the line segment is not visible in the reconstruction.

Figure 3.9: (a) A real part of an optical field generated by an infinite line and (b) a real part
of an optical field generated by a line segment. The dashed rectangle specifies an area that
is considered by the approximation.

Similar to the line segment, an optical field of a simple parametric curve depicted in
Fig. 3.10 can be approximated by a function [BFJ+90]. In cylindrical coordinate system a
curve on a cylinder of radius b is defined as

ρ = b, β = t, z = f(t),

where t ∈ [0, 2π) is the parameter. If z fulfils requirements for the Fresnel approximation and
function f(t) is slowly varying, the optical field generated by the curve can be approximated
by

umn ≈ exp

{
jk

[(m2D2
x + n2D2

y)
1/2 − b]2

2f(β)

}
, β = arctan

nDy

mDx
(3.9)

Similar to the line segment, the amplitude and the phase is constant over the curve. As it
is shown in [BFJ+90], points of the curve that are in focus are reconstructed much brighter
than the background and thus the reconstruction is successful.

Methods using a line segment are faster then methods using PLS because a single line
segment is equal to a multiple PLS. Similar to PLS, it is possible to decrease computation time
by exploiting GPU [RBD+99]. Nevertheless, unlike PLS, a line segment has a complicated
visibility and an efficient hidden-line removal algorithm that would consider multiple viewers
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Figure 3.10: A curve on a surface of a cylinder and the plane κ. [BFJ+90]

at the same time does not currently exist. Therefore, the visibility is either ignored completely
or it is faked using a visibility of an orthogonal projection of the scene. Also, necessity of
a constant amplitude and a constant phase over a line segment harms visual quality of the
reconstruction.17 For that reasons, usage of line segments is suitable only for generating of
quick previews.

Cloud of triangles

A number of at once processed PLS can be further increased through a surface, i.e., a triangle.
The major drawback of such a solution is a complicated visibility and a complicated optical
field. Even a triangle with a constant phase and a constant amplitude generates an optical
field that is much more complex than an optical field of PLS. The visibility is usually not
solved at all or it is approximated either by a triangle culling [ABMW08] or by using an
estimation based on a ray-casting [KHL08]. A proper solution of the visibility requires a
masking in a spatial domain. This slows down the computation as described in Sec. 3.1.2.

In a general case an optical field of a triangle cannot be expressed by a function. This can
be overcome through a table of pre-calculated optical fields. As a consequence the resulting
optical field is a weighted sum of appropriate table entries. Before summing, a retrieved entry
is rotated about the Z-axis and translated to the final location in the XY-plane. The sum
can be accelerated by GPU [KDS99, KDS01].18 However, the number of indices of the table
is the major concern of the approach because a triangles has much more parameters than a
line segment or a point. Variability of triangles can be reduced by keeping the size and the
shape of all triangles the same and by use of a constant shading, i.e., the amplitude over the
triangle is constant. Still, the table has to be accessed by three indices: an angle of rotation
about the X-axis, an angle of rotation about the Y-axis, and an orthogonal distance of the
triangle to the plane κ : z = 0 as illustrated with Fig. 3.11. Each entry in the table is an
optical field of a triangle. Therefore, the method requires large amount of memory and it is
useless without efficient compression of the field.

If both the phase and the amplitude of a triangle are constant, the angular spectrum of
such a triangle can be described by a function [ABMW08, KHL08]. The angular spectrum is
expressed on a plane τ that is defined by the triangle. Rotation, translation, and propagation
of the angular spectrum is handled by wave-based approaches mentioned in Sec. 3.1.2. The

17In fact, a constant phase over the line leads to an optical field that might not be suitable for the human
observer because such line is an equivalent to a thin slit (i.e., a thin rectangular opening in an opaque screen)
lit by a plane wave. While the observer is able to recognise the distance of edges from her/him, the depth of
the centre is undetectable because the viewer sees the source, i.e., PLS in infinity.

18Papers [KDS99, KDS01] shows that results can be recycled easily without almost any additional effort if
you have enough time. At the end, it is only a score that matters in the academic world.
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Figure 3.11: A triangle in a table is accessed through three indices: a rotation angle α about
the X-axis, a rotation angle β about the X-axis, and an orthogonal distance d between the
triangle and the plane κ.

triangle in the plane τ is defined as an amplitude coefficient

aT (xτ , yτ ) =

{
1, inside the triangle T
0, outside the triangle T,

where (xτ , yτ ) is a coordinate in a local coordinate system on the plane τ .

Let us assume two triangles T and T̄ . If both triangles are related through an affine
transformation, an angular spectrum AT of the triangle T can be expressed using an angular
spectrum AT̄ of the triangle T̄ [ABMW08]. Now, let us assume that the triangle T̄ is a
right triangle depicted in Fig. 3.12(a). Its angular spectrum AT̄ can be derived analytically
[ABMW08] and it is

AT̄ (u, v) =
∫ 1

0

∫ x

0
exp[−j2π(xu+ yv)] dy dx

=



1
2 , u = 0, v = 0
1−exp(−j2πv)

(2πv)2
− j

2πv , u = 0, v 6= 0
exp(−j2πu)−1

(2πu)2
− j exp(−j2πu)

(2πu)2
, u 6= 0, v = 0

1−exp(−j2πv)
(2πv)2

+ j
2πv , u = −v, v 6= 0

exp(−j2πu)−1
(2π)2uv

− 1−exp[−j2π(u+v)]
(2π)2v(u+v)

. otherwise

Yet, it is not the only triangle that can be expressed analytically. Another option is to
use a rotation of a general triangle in the plane ρ [KHL08]. If the general triangle is rotated
as illustrated with Fig. 3.12(b), its angular spectrum is

AT̄ (u, v) =


(a+b)c

2 , u = 0, v = 0(
a+b
c

)
exp(−j2πvc)

[
−1+(j2πvc−1) exp(j2πvc)

(2πv)2

]
, u = 0, v 6= 0(

−jc
2πu

){
exp[jπ(3ua+ vc)]sinc(ua+ vc)− sinc(ub−vc)

exp[jπ(ub+vc)]

}
, otherwise

(3.10)

where a, b, and c are defined by the rotated triangle, see Fig. 3.12(b).

Notice that in either case, the triangle has a constant phase over the surface. Arbitrary
phase distribution on a triangle can be handled by dividing the original triangle into elemen-
tary triangles [KHL08] as illustrated with Fig. 3.13. The elementary triangle has the same
shape as the original triangle but it is smaller. The division scheme requires two elementary
triangle: an elementary triangle and its copy turned 180◦ about the Z-axis. Elementary tri-
angles have a constant phase and a constant amplitude along the surface and therefore an
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Figure 3.12: Triangle shapes that allow to express the angular spectrum analytically. An
angular spectrum of a general triangle can be derived from (a) a special case triangle T̄
[ABMW08] or (b) can be expressed directly using a properly rotated triangle [KHL08].
Dashed line in (b) shows a general triangle prior rotation.

optical field of the elementary triangles can be expressed using Eq. (3.10).19 A combination
of elementary triangles, each of a different phase, creates a desired phase distribution. In-
creasing fineness of the division increases variability of the phase and as a consequence it
increases a viewing angle of the original tringle. Nevertheless, reaching the phase variation
that is available in wave-based methods is not possible without a significant increase of the
computation time due to a far too fine division scheme.

Figure 3.13: A triangle divided into elementary triangles. The division scheme requires two
versions of the elementary triangle that are marked by lighter and darker gray. [KHL08]

A triangle is more complicated structure than a line segment and PLS. This implies
complicated optical field that cannot be expressed analytically in general case. A table of
triangles is not efficient because it limits possible configurations of triangles and it has a
large memory footprint. An analytically expressed angular spectrum of a triangle with a
constant phase and a constant amplitude is questionable because a shape with a constant
phase is almost undetectable by the human viewer [LHJ68]. Even though combination of
triangles might create a phase variation [KHL08], the number of such triangles has to be high
in order to become comparable to basic wave-based methods described in Sec. 3.1.2. On the
other hand, an analytically expressed angular spectrum allows to calculate a rotated angular

19Actually, only an angular spectrum of the first elementary triangle is necessary. The other angular
spectrum is calculated by a rotation since the second elementary triangle is the first one rotated 180◦ about
the Z-axis.
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spectrum both accurately and without periodicity enforced by the discrete Fourier transform.
This makes the analytical expression a tool that improves accuracy rather than performance.

3.2.3 Simplification of an optical field

Besides a scene it is possible to find a different encoding of an optical field to reduce the
calculation time. Usually, an optical field is represented as a system of spatially limited
functions with weights. In some cases, the encoding forces a simplification of the scene as
well. As a consequence of a different encoding, each element in the scene requires a lower
number of write operations and thus it is calculated faster.

The method described in [Luc92, Luc93, Luc94, Ple03] uses a different representation of
a hologram to reduce cost of both storage and transportation. The representation was devel-
oped to reduce an data amount required for displaying the hologram using a MIT holovideo
system [Luc97]. The MIT holovideo shares a similar design concept as a common CRT
tube used by TV sets. Similar to the CRT tube, the device uses a time sharing to present
the whole hologram. In a single time slot, it shoots a ray into a direction that corresponds
to the time slot. The ray hits a digitally driven diffractive element. As a consequence, it is
split and diffracted at the same time and resulting rays continue towards the viewer.

The input of the method is a cloud of PLS. The output suits the design of the device
and therefore it is a hologram decomposed into independent diffractive elements knowns
as hogels. A hogel is a 1D hologram [Luc92] calculated using the bipolar intensity from
Eq. (3.6). Each PLS leads to an intersection of multiple rays as depicted in Fig. 3.14 and
this is can be detected by the viewer.

Figure 3.14: Relation between hogels and PLS. [Luc94]

Furthermore, the method assumes a quantised space. As a consequence a location of each
PLS is given by a vector of indices (o, p, q). This allows to construct a table Bmnopq that
converts PLS location indices (o, p, q) to an update of a hogel hmn. This leads to an algorithm
described by 1.

A disadvantage of the algorithm 1 is the rank of the table Bmnopq. Nevertheless, the rank
can be reduced by restricting the scene and the hologram [Luc93]. The first reduction occurs
if only HPO holograms are considered. This allows to remove the Y-axis coordinate from the
table thus to reduce the table Bmnopq to a table Bmoq. Since the hogel is calculated using the
bipolar intensity and the reference wave is planar, only a relative position of the hogel and
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Algorithm 1 The core algorithm of the method presented in [Luc92].
Let hogel hmn be zero
for all PLS p from a cloud of PLS do

Let o be a rounded X-axis coordinate xx
p of a point p

Let p be a rounded Y-axis coordinate yxp of a point p
Let q be a rounded Z-axis coordinate zxp of a point p
hmn = hmn + apBmnopq

end for

PLS is relevant. This reduces the table Bmoq to the table B∆mq, where ∆m = |m− o|. The
resulting table B∆mq does not depend on absolute position m within the n-th row and it is
reused by all hogels.

Furthermore, a hogel can be encoded as a hogel vector to reduce storage and calculation
requirements [LG95, Luc96]. The hogel vector h̄mn is a vector of weights such that a hogel
hmn =

∑
i h̄

i
mnbi, where bi is a precomputed diffraction structure known as a basic fringe.

The basic fringe is a hogel that diffracts a ray to a selected range of directions.

Since a number of basic fringes is lower than the total number of all possible directions, a
representation that is based on hogel vectors reduces a size of the hologram and the compu-
tation time. As a consequence, the method is able to generate, transfer, and display a single
hologram of 105 PLS in circa 102 s without any hardware acceleration. Thus, a hardware-
aided solution may allow a real-time rendering of such a cloud. Nevertheless, the drawback
of the representation is a blur of the reconstructions [Luc96] caused by a low number of basic
fringes.

Besides that, the method allows incremental updates [Ple03] that increase an interactivity
of the display. The generating engine is aware of currently displayed cloud of PLS. When
a change occurs, the engine computes an update 1D hologram from a current version of
modified PLS. Then, it subtracts the update hologram from the current hologram, i.e., it
removes modified PLS. After that it calculates a modifying hologram from a modified PLS
and adds the modifying hologram to the current hologram. The efficiency of the approach
depends on a number of affected hologram rows and therefore the overall speedup might not
be significant for all cases.

A full-parallax solution utilizing the simplification of an optical field is possible. It benefits
form a properties of neighbourhood of an optical field sample [LBU04, KYY08]. In a small
neighbourhood of a sample umn, the distance rmni [Eq. (3.7)] between the sample umn and
PLS si can be approximated by a linear function. The linearity in a close neighbourhood
means that a wavefront of a spherical wave emitted by PLS can be approximated by a
set of planar waves as illustrated with Fig. 3.15. Since the angular spectrum of a plane
wave consist of a single non-zero frequency, only a single frequency of the neighbourhood
angular spectrum has to be updated instead of updating all samples of the neighbourhood
in the spatial domain. A phase of a contribution to the frequency is krmni, where k is a
wavenumber. After all contributions to the neighbourhood are collected, the optical field of
the neighbourhood is obtained by applying the Fourier transform.

The approximation blurs PLS in all directions equally. Also, it limits the scene spatially
because the size of the neighbourhood is inversely proportional to the minimal acceptable
distance between PLS and the hologram. If FFT is used to convert the angular spectrum
into the optical field, the desired frequency is rounded to the nearest available frequency.
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Figure 3.15: (a) A wavefront generated by PLS and (b) a wavefront approximated by a
linear function. Notice that (b) is a almost ideal wavefront that lacks all disturbances due to
discontinuities between neighbourhoods. [KYY08]

This causes additional blur. Nevertheless, thanks to that the method significantly reduces
the computation time of a hologram.

3.3 Summary

In the previous section, we gave a brief description of methods and acceleration approaches.
Before we proceed to the major contribution of this work, let us summarise features of
methods and approach from a perspective of this work.

3.3.1 Methods

Every method that generates a hologram has its benefits and drawbacks The wave-based
methods are generally fast because they use a propagation in an angular spectrum that is
implemented through FFT. However, they are not able to solve a visibility efficiently. If speed
is preferred to accuracy, the visibility can be solved using an orthogonal projection. Scene
elements that are not visible, are simply removed. Nevertheless, this works only for smaller
scenes that are further away from the hologram. In a general case, the solution of visibility
is done in a spatial domain and therefore FFT has to be executed twice per an element of a
scene.

Besides that, the wave-based methods requires that the scene is composed of planar
elements, i.e, they are not able to handle curvy surfaces. Also, acceleration in a parallel or
a discrete environment is not efficient because only a single propagation can be parallelised,
the rest of the algorithm is sequential. Furthermore, the whole optical field has to fit into
the memory for efficient computing of FFT, otherwise the computation time is significantly
increased due to frequent exchanging of data between the memory and the external memory.

Contrary to that, the methods based on a cloud of PLS operates strictly in the spatial
domain and therefore they are able to use a ray-tracing, which is a well developed technique,
for solving of the visibility. Unlike the wave-based methods, the PLS-based methods are
able to handle curvy surface. Their performance can be boosted easily using a parallel or a
distributed environment. In such a case, the gained speedup is almost linear. Also, they can
be implemented in a custom hardware that boosts their performance even further. Despite
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that, these methods are much slower than the wave-based methods in general case. This
is caused by a high number of PLS they have to process in order to obtain a comparable
reconstruction.20

The view-based methods differs from previous ones. They use multiple views of the
scene without a depth information. Hence they have potential to create holograms of a real-
world scenes. However, the number of view is high and therefore these methods have similar
performance as the PLS-based methods.

Individual groups of methods are well developed. Almost every aspect of methods has
been already discussed in papers. As a consequence there is a low probability of a new
significant contribution to the field. However, a combination of these method groups has not
been discussed properly yet. Therefore, we examine this is area the following chapter.

3.3.2 Acceleration

Acceleration approaches that we discussed in the previous section can be applied almost to any
method with only a few restriction. When the vertical parallax is omitted, the computational
time is decreased significantly. However the resulting HPO hologram requires a complicated
reconstruction setup and it cannot be converted to a hologram that is compatible with a
full parallax hologram reconstruction setup. On the other hand, the bipolar intensity almost
halves the computation time but the resulting hologram is tailored for a given reconstruction
wave. Since both acceleration approaches can be applied without a significant reformulation
of a given method, they are not considered primarily in this work.

Similar to the previously mentioned approaches, the simplification of the scene is simple
and quite efficient if applied properly. The most accurate replacement of the scene is a
properly generated cloud of PLS because such approach allows to handle almost any surface
and a single PLS is processed quickly. However, the result is a dense cloud of PLS. On the
other hand, if a triangle is used instead of PLS, the number of triangles is low. Unfortunately,
the triangle is far too complex to processed quickly. Therefore, we try to search for a primitive
that combines features of both a triangle and PLS in this work.

A simplification of an optical field is also an efficient tool for acceleration. A special
solution based on a set of basic function has already been widely discussed in the papers. A
solution that uses a linear approximation of a function has already been discussed too. Thus,
there could be a low probability of a new signification contribution and therefore we do not
focus on employing a simplification of the optical field in this work.

20This is especially true when the scene contains solid surfaces.
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Detail Driven Generation

This chapter contains a description of a method that is the major contribution of this thesis.
The method shows that a combination between different principles is possible and that such
a combination yields both a working and a fast method to hologram generation.

First, we describe the basic method. This will show the principles that are used. Then,
we describe accelerations of the basic method. This will show that the method has a potential
to be accelerated algorithmically. And finally, we present enhancements of the method. This
will show that the method can be expanded and therefore it does not represent a dead-end
direction.

4.1 The Basic Method

In this section we present principles used by the proposed method. First, we present a
mechanism that we applied. Then, we show results calculated with the proposed method and
we compare the proposed method to other relevant methods.

The major problem that complicates the solution is occlusion. It is not possible to omit
occlusion because it is crucial to visual impression of the hologram content. Using a PLS-
based approach, the occlusion can easily be solved though ray-casting [Und97]. The drawback,
however, is that the scene contains a large number of PLS especially when a solid surface is
to be encoded. On the other hand, a number of scene elements is low when a FFT-based
approach is used. The FFT-based approaches works mostly with the angular spectrum, i.e.,
most of operations are done in the frequency domain. Unfortunately, the occlusion has to
be solved in the spatial domain and this complicates the method and slows it significantly
down. We noticed this fact and as a consequence we designed a method that combines both
a PLS-based approach and a FFT-based approach.

We started our exploration from PLS. PLS generates spherical wave defined in Eq. (2.9)
and occlusion can be approximated by rays [Luc94, Und97], i.e., a geometrical shadow of an
occluder is taken into account. Even though the geometrical shadow is in contradiction to
the physical experiments, the resulting approximation works. A propagation of the angular
spectrum, which is used by FFT-based methods, requires planes, in ideal case parallel ones.
PLS can be location within such a plane and therefore it is possible to use the propagation
of the angular spectrum to calculate the optical field generated by PLS. Application of the
geometrical shadow then becomes a piece-wise multiplication of a bit map (i.e., the shadow)
with the calculated optical field values.

43
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In the continuous domain, the above mentioned construction is valid since the angular
spectrum is an exact description of an optical field [BW05]. In the discrete environment,
however, the angular spectrum does not represent the optical field appropriately due to the
discrete Fourier transform (DFT). DFT assumes periodicity of the input signal by default.
As a consequence, the resulting optical field of PLS differs from the optical field calculated
using Eq. (2.9), i.e., the resulting optical field is rather an estimation.

Let us now try to apply the shadow to the estimated optical field. We would like to
know whether PLS can be reconstructed even in such a case and whether the shadow will
behave similarly to a case that uses Eq. (2.9). The first question is easy. The shadow divides
the field to two: the occluded part and the visible part. Since the sum of both fields is
the resulting field, we can propagate the both fields separately and sum the result. And
considering the fact that in the hologram (and hence the optical field) information about the
source is distributed to almost every sample, PLS can be reconstruction even if one part is
only considered.1 Hence, we can reconstruct PLS using only the visible part of the optical
field.

The second question is more complicated. In order to find an argument supporting our
goal, we did numerical experiments with two optical fields of a single PLS. We calculated
the first field using the spherical wave Eq. (2.9) and the second field using the propagation
of the angular spectrum. In both cases we assumed a sampling step 0.5 µm, a resolution of
2, 048× 2, 048 samples and a PLS distance of 1.2 mm.2 We assumed a planar occluder at the
distance of 0.6 mm. We applied the shadow of the occluder to both fields and reconstructed
both fields at the occluder distance.

The reconstructions depicted in Fig. 4.1(a) and Fig. 4.1(b) were similar. The only dif-
ference were numerous copies in Fig. 4.1(b) superimposed on each other. We assumed that
these copies were caused by periodicity of FFT applied for the propagation. We verified this
assumption by two experiments. In the first experiment we padded the samples by a zero
frame to obtain a grid of 4, 096× 4, 096 samples. In the second experiment, we just increased
the resolution to 4, 096 × 4, 096 samples and calculate the field using the propagation. We
reconstructed both fields and observe a region that corresponds to the original size.

The results of the first experiment shows that the copies are easily recognisable because
they further away from each other as depicted in Fig. 4.1(c). This is caused by the additional
frame of zeros. In the case of the second experiment, which is depicted in Fig. 4.1(d), the
copies are missing completely. This, however, is caused by the fact that PLS is too close to
contribute to a neighbouring copy due to the diffraction condition Eq. (2.24). Therefore, the
neighbouring copies are not superimposed into the reconstruction as they do in Fig. 4.1(b).

Even though increasing of the resolution at the generation time led to a lack of the copies,
we decided to avoid it because it is not practical. Since DFT accesses all values of the optical
field, the values have to fit into the memory otherwise it will not be efficient, i.e., the memory
footprint is significantly increased when PLS is moved further beyond the safe distance. On
the other hand, the first case implies that the geometrical shadow will not disturb the region
of interest when the optical reconstruction is done. During the optical reconstruction, the
frame, which we enlarged in the simulation, can be considered infinite, i.e., the disturbing
copies will be out of region of interest. Therefore, we decided to use this approach.

1This assumes that either part are large enough. Obviously, it is not possible to reconstruct anything from
a single sample.

2PLS at that distance can be captured in the optical field without a risk of aliasing due to inappropriately
low sampling rate, i.e., it is beyond the safe distance given by the diffraction condition from Eq. (2.24).
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Figure 4.1: An effect of a geometrical shadow on PLS located at the distance 1.2 mm re-
constructed numerically at the distance of 0.6 mm. (a) The input field was calculated using
the spherical wave. (b) The other input was calculated using propagation of the angular
spectrum and (c) the same input padded with a frame of zeros before reconstruction. (d)
The input calculated using propagation of the angular spectrum and a larger resolution. The
dashed rectangle in (c, d) corresponds to the resolution used in (a, b).

Figure 4.2: An influence of periodicity assumed by DFT on either PLS (a) closer than the safe
distance and (b) beyond the safe distance. The angle theta is given by Eq. (2.24). The dashed
lines indicates a side-effect due to the periodicity, the gray area in (b) shows overlapping of
contributions.

Based on the text above, we can state that the propagation in the angular spectrum
can be used as a replacement for evaluation of Eq. (2.9) even in the discrete environment.
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Nevertheless, as it was stated above, PLS is too small to be used efficiently. Therefore, we use
a planar patch instead of PLS and apply the geometrical shadow to the propagated patch.

This, however, is not a valid solution in a general case. A patch can be decomposed
to a rectangular grid of PLS. Since each PLS has different spatial location, each PLS will
use a slightly different shadow. If the same shadow is used for all PLS, a blur will appear.
The larger the patch, the more blur will be present until the gap created by the geometrical
shadow disappears. We validated this assumption by an experiment that considers a patch
of a given size and a shadow of an occluder in a shape of a disc as illustrated with Fig. 4.3(a).
We assumed that the shadow was calculated from the centre of the disc. We propagate the
patch, applied the disc-like shadow and propagated a halfway back. In this case we used a
resolution 1, 024 × 1, 024 samples and a sampling step 0.5 µm. The orthogonal distance of
the patch to the optical field plane κ : z = 0 was 4.0 mm.

Figure 4.3: (a) The used setup and numerical reconstructions at the distance d. The source
is a patch of (b) 16× 16 PLS, (c) 256× 256 PLS, and (d) 1, 024× 1, 024 PLS.

As it can be seen in Fig. 4.3(b) a sufficiently small patch does not cause almost any blur
unlike a case of a large patch, viz. Fig. 4.3(d). In such a case, the gap is almost lost in the
blur. This means that we can use patches instead of PLS in our method but these patches
has to be small enough.

Since now we know that we can combine PLS-based visibility approximation with prop-
agation of the angular spectrum, we can specify our method more in a greater detail. Our
method will calculate an approximation of a discrete optical field generated by the virtual
scene. We assume that the optical field is intended for a human viewer. This implies that
qualities of the surface and the physical size of the optical field. We define the discrete optical
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field values U on the plane κ : z = 0 at points umn organised to a rectangular and uniform
grid. A value at the point umn is umn. If not noted otherwise, we shall assume that the grid
is spatially limited and contains N ×M points. A pitch between points along the X-axis and
the Y-axis is Dx and Dy respectively. Though the most of the text N = M and Dx = Dy.

The virtual scene, which is the input of the method, consists of surfaces that are approxi-
mated by triangular meshes, i.e., it is fully compatible with scenes used in computer graphics.
The mesh can be unclosed but it does not contain artifacts such as an edge shared by more
than two triangles. Also, the scene does not contain intersecting meshes. The surface is
solid, opaque, diffuse, and self-luminous, i.e., interaction of surfaces with each other is not
considered.3 All normals of the surface point consistently outward the objects. All triangles
are located in a subspace defined by the plane κ and the positive Z-axis. No triangle touches
the plane κ.

Let us now discuss occlusion. Even though it is possible to simulate an accurate solution
of occlusion, our method approximates it. The reason is that such an accurate solution,
which is illustrated in Fig. 4.4(a), is both unnecessarily slow and unnecessarily accurate.4

If we omit the diffraction, we obtain an approximation that uses geometrical shadows and
ray-casting as illustrated in Fig. 4.4(b) [Und97, JHO08]. Such an approximation does not
have almost any significant impact on the visual quality of the reconstruction. However, it
captures details that are comparable to a length of the sampling step. This is still too accurate
if we consider a human viewer that is not able to perceive a detail in order of micrometers
[Luc94]. Therefore, we can approximate the occlusion even further by undersampling it, i.e.,
the occlusion is solved in a much lower resolution that the optical field.

Figure 4.4: Occlusion of PLS due to an obstacle with a diffuse surface solved (a) without
any approximation, (b) using a geometrical shadow, (c) using approximation applied in the
detail driven method. Lighter parts of the optical field receive the contribution from PLS,
darker parts are not influence by PLS. Notice that the example considers only the area of
the optical field, waves that may reach the area outside the optical field are not considered.

For that purpose we cluster points of the grid to a coarser grid. We denote the grid as the
visibility grid. The result of the visilibity/occlusion test is shared among all samples umn
that belong to the cell glo of the visibility grid, where l ∈ [−L/2, L/2−1], o ∈ [−O/2, O/2−1],
L ∝ M , i.e., L is proportional to M , and O ∝ N . Since no interpolation is applied to the

3This simplification is used by almost all authors and it is known as the source model. The accurate
solution is known as the field model and it is much more computationally extensive. Despite inaccuracy of
the source model, the resulting hologram works.

4An accurate solution requires a simulation of diffraction on the surface of the occluder.
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result, there is an error as illustrated with Fig. 4.4(c). This error can be interpreted as a
deformation of the obstacle and it can be neglected if the size of the patch is small, see
Fig. 4.3.

The visibility approximation, however, leads only to a minor acceleration. Most of the
time is spend on calculating the optical field generated by a element of the scene. This is
caused by both a high number of samples that has to be calculated and a long computational
time required by basic mathematical functions such as a square root, a sine and a cosine that
are evaluated for each sample. We cannot accelerate the generation by reducing the number
of samples because the number of samples has a direct impact on ability to capture the scene
[KYY08]. Nevertheless, we can decrease the number of elements in the scene and improve
the efficiency of their processing.

Since the scene consists of triangular meshes, the most efficient scene elements are trian-
gles. However, each triangle has a different shape, a different size, a different rotation and
a different phase/amplitude variation. These features complicates the computation since a
rotation leads to resampling of the spectrum [Mat05, TB93, EO06] that inherently introduces
a noise into the optical field. A solution might be to try to analytically express the angular
spectrum of a triangle. This, however, is not possible due to phase variation that is required
by a diffuse surface. Despite that fact that a mesh can be resampled to contain triangles of
the same shape and the amplitude of a single triangle can be constant 5, we decided to ignore
triangles and search for something in a halfway between a triangle and PLS.

In our method, we look at how a common 2D pictures are digitally stored. Instead of
creating a high-definition vector description, a picture is composed of rectangular shapes,
i.e., pixels. Even though, this limits the detail and might be memory inefficient, it can be
processed easily. Following that, we replaced a general mesh with a cloud of patches. Every
patch is parallel with the plane κ and it has a constant intensity as the pixel has. Due to
a random variation of the phase, the patch cannot be expressed analytically. However, the
numerical processing does not introduce any additional noise since there is no rotation. The
size of the patch defines the smallest detail of the scene. In the following text, we assume that
the size of a patch is comparable with a pixel size of contemporary LCD, i.e., 0.22 mm. We
choose this size because even though the pixel can be recognised easily, it does not disturb
viewer significantly when viewing images or playing games.

We specified that our method uses a cloud of patches that replaces meshes in the scene.
Let us further limit the cloud. Following the analogy of a pixel-based image, a general location
of the patch within the cloud is unnecessary. Therefore, we align patches to the visibility grid
and we define that the size of a patch is equal to the size of a visibility grid cell. Furthermore,
we limit the spatial extent of the cloud. Sice we plan to use the propagation of the angular
spectrum, we shall use DFT. DFT assumes periodicity and therefore the patch has to be
located completely inside a subspace defined by an axis aligned bounding box (AABB box)
of grid points umn and the positive Z-axis.

Let us now summarise the proposed method. Our method replaces a mesh by a cloud of
patches. Each patch is aligned to the cell glo. Since there can be many patches aligned to
the cell glo, we denote d-th patch aligned to the cell as edlo. The patch, then, is specified by
an amplitude aedlo , an orthogonal distance zedlo to the plane κ : z = 0 and a phase variation
on the surface. A patch is sampled by E ×E points and as a consequence the visibility grid
contains L× O cells where M = EL and N = EO. The output of our method is an optical
field. The algorithm that describes our method is presented in Alg. 2. And we describe the

5This means flat shading [Wat00].
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basic building blocks in steps 1, 3, 5–7 in the following subsections. Besides that we present
results calculated by our method and we compare our method to others.

Algorithm 2 The core algorithm of the detail driven method.
1: Create patches
2: for all patches do
3: Calculate an approximation of visibility.
4: if the patch is visible then
5: Calculate the optical field of the patch without visibility.
6: Apply the visibility to the optical field of the patch.
7: Add the optical field of the patch to the final optical field.
8: end if
9: end for

4.1.1 Patch Generation

In this subsection we describe the process of patch generation from a triangular mesh, i.e.,
it is the step 1 from Alg. 2. We focus only on patch generation, other structures that are
generated through the processing of the mesh are discussed in corresponding subsections.

In our method, we replace the mesh with patches aligned to a visibility grid, i.e., the
mesh is resampled to patches. We use a ray-casting for this purpose [Wat00]. All rays are
parallel and we shoot one ray par a cell. The ray is shot from the centre of a cell and it
generates intersections hi every time it intersects with the mesh. We evaluate a normal nhi
of the surface at the intersection hi and if the normal nhi points outwards the plane κ, we
create a new patch, i.e., dhi < 0, where

dhi = nκ · nhi , (4.1)

nκ is a normal of the plane κ and · is a dot product.

We calculate an intersection using standard means of computer graphics [Wat00]. These
are, however, singularities: a triangle that is perpendicular to the plane κ, an edge of a
triangle and a vertex of a triangle. When a ray hits a triangle that is perpendicular to the
plane κ, it generates almost an infinite number of intersections. In our case, the ray generates
only two intersections: one at the entry and other on exit. Even though in both cases dhi = 0,
we consider that dhi > 0 at the entry and dhi < 0 at the exit.

When a ray hits an edge that is shared by two triangles, it results to two intersections.
Since all these intersections are calculated using the same equation and the same parameters,
the distance zhi of the intersection hi along the Z-axis equals each other and we can pick
almost randomly one intersection and drop the other one. We apply this solution even in
the case when dhi differs for any of triangles involved, i.e., the ray hits a silhouette of the
mesh. Such an approach may significantly disturb the visual appearance only if it results to
a large number of either scattered patches or missing patches. Since the patch is small, we
assume that a group of neighbouring triangles that share the same result of Eq. (4.1) is large
enough to prevent it. The rest of singularities such as intersecting meshes or an edge shared
by more than two triangles are not considered because we assume that the scene does not
contain such meshes. We use the approach described above to solve the intersection of a ray
and a vertex too.
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We use ray-casting to create patches. In our case, however, a general ray-casting in a 3D
space is unnecessarily complex. Since many origins of rays share the same Y-axis coordinate,
we can create a horizontal slice of the mesh and we solve the ray-casting on a 2D plane. The
slice is an intersection of the scene with the plane ρξ : y = ξ and slices can be calculate using
an efficient iterative algorithm [JHS07] because all origins of rays are uniformly distributed
along the Y-axis.

Now, since we know intersections hi that are valid in our case, we create a patch at each
of those. We align the centre of the new patch to a location of the intersection. Other
possibilities, which might be more sophisticated, such as selected a maximum or minimum
from a close neighbourhood of intersection are not considered. Again, we assume the patch
is too small so the this fine-tuning of the patch location will make only a little difference.

The amplitude ahi of the patch hi is calculated using the cosine law [Pho75] because we
assume a diffuse surface. In fact, we can use the complete Phong’s lighting model [Pho75] or
any other model to calculate the amplitude. In this case it is just matter of visual appearance
and it has no influence on the ability of the hologram to recreate captured optical field. Even
though the patch has a constant amplitude over its surface, it does not harm the visual
appearance because, again, the patch is small.

On the other hand, the phase variation over the surface influences functionality of a
hologram. We assume that the patch is self-luminous and hence the phase defined energy
distribution.6 A constant phase, which is inappropriately used by some authors [KHL08,
ABMW08], allows an analytic expression of the angular spectrum [Goo05] but the result is
not suitable for a human viewer [LHJ68]. In fact, a constant phase result to a set of apertures
exposed to a plane wave. As a consequence, a human viewer is not able to detect the surface,
which is, in fact, not existing, and sees only edges, which have low intensity.

We use a diffuse surface and thus the phase variation should causes the energy to be
distributed uniformly to all directions available. Such an ideal case, however, does not have
a solution except an ad-hoc iterative process [Luc94, WB89]. Since this problem is out of
the scope of this work, we decided to use an approximation. We consider the phase as a
pseudorandom function. As the result the energy is distributed to almost every direction
even though the distribution is not uniform. This causes a speckle noise to appear on the
surface of recorded objects. The speckle noise resembles tiny dots of high intensity whose
configuration looks differently from every location, i.e., the object in the reconstruction seems
to be glittering. Since this artifact does not deny the reconstruction of the surface, we does
not address it and we ignore it.

The final algorithm that calculates the patches is described in 3. The input of the algo-
rithm is a triangular mesh. The output is a cloud of patches whose centres are aligned with
centres of visibility grid cells.

4.1.2 The Visibility Test

In this section we present a description of the visibility test that is used by our method. We
define an auxiliary structure and we specify an algorithm that uses the structure to evaluate
visibility of a patch and a cell.

6A patch that is self-luminous means that it emits the energy on its own and at the same time it is not
influenced by other emitters.
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Algorithm 3 The algorithm of patch generation.
1: Create the slice So, o = −O

2 of the scene using the plane ρη, η = −O−1
2 EDy.

2: for all o, o ∈ [−O/2, O/2− 1] do
3: for all l, l ∈ [−L/2, L/2− 1] do
4: Shoot a ray r from (lDx, 0) in a direction (0, 1) in the slice.
5: Create a set H of intersections of the ray r and the slice So.
6: Remove all intersections hi where dhi > 0.
7: Sort the set H according to the distance zhi .
8: Let d = 0.
9: for all i, hi ∈ H do

10: if zhi−1
< zhi then

11: Create a patch edlo.
12: Increment d.
13: end if
14: end for
15: end for
16: Create the next slice So+1 using the slice So.
17: end for

Similar to PLS-based method, our method uses ray-casting to calculate the visibility test,
i.e., it shots a ray from a patch towards a cell. If the ray intersects the mesh, the patch is
considered occluded and does not contribute to the cell. Yet, use of the mesh for the test is
unnecessarily accurate in our case because we approximate the visibility of the patch by a
single ray. Therefore we propose a replacement of the mesh for the purpose of the visibility
test.

We resample the mesh by pillars. A pillar is a cuboid segment of a space defined by the
cell glo and the positive Z-axis. It contains a part of the volume defined by a mesh. Since
we assume multiple meshes and concave shapes, we denote d-th pillar that corresponds to
the cell glo as the pillar pdlo. A pillar is closely related to the intersections used in Sec. 4.1.1.
The intersections define locations of both the front cap and the back cap of the cuboid
segment along the Z-axis and the front cap shares the location with the patch. The pillars
are generated during generation of patches. In fact, we modify Alg. 3 such that patches are
generated after pillars were created. We create a patch edlo at a front cap of each pillar pdlo.

Let us now describe generating of pillars. Following Sec. 4.1.1, we shoot rays into the
scene but unlike it, we process each mesh of the scene separately first, i.e., for the mesh χ
we calculate the set Hχ of intersections. Then, using Eq. (4.1), we distinguish front caps and
back caps. We assume that a normal points outward the volume of an object. If dhi ≤ 0, the
intersection hi will become a front cap. The rest of the intersections will become back caps.
We sort the set Hχ according to the distances zhi of intersections ascendantly. If multiple
intersections have the same Z-axis coordinate as a result of singularity, we assume that front
caps are closer then back caps. After sorting, we expect that caps of both the same type and
the same distance zhi are ordered randomly.

In an ideal case, the ordered set Hχ contains front caps succeeded by back caps, i.e., a
sequence ’front-back’. Such a sequence defines a pillar. In a general case, however, the set
Hχ contains invalid sequences of caps: ’front-front’ and ’back-back’. This is a consequence
of an unclosed mesh or a singularity, which we already discussed. We solve the ’front-front’
case by adding a new back cap to the first front cap of the sequence. The new back cap is
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created at the location of the front cap and it is shifted along the Z-axis by zε. The result
is a valid sequence ’front-back-front’. The ’back-back’ sequence is solved similarly. We add
a new front cap, which is locate at first back cap of the sequence, and we shift it along the
Z-axis by −zε. This leads to a valid sequence ’back-front-back’. All other attributes of these
newly added caps are copied from caps that lead to their creation.

Since the major case of the invalid sequence is an unclosed mesh, we think of the constant
zε as a thickness of the mesh surface. The mesh is infinitely thin in the ideal case and
we exploit an analogical situation in the discrete environment. According to the diffraction
condition from Eq. (2.24), the sampling step Dx and Dy defines a pyramid inside which we
can obtain a contribution from PLS. If the sample is outside the pyramid, it will not obtain
any contribution from PLS. Hence, a grid of samples close enough to PLS might receive a
contribution only to a single sample, i.e., a propagation of PLS becomes phase shifting. Let
zε by such a distance. As a consequence, if we had replaced both caps that are shifted from
each other by zε for patches, both patches would have been in focus at the same distance.
Thus, such a pillar is infinitely thin.

After the set Hχ contains pairs ’front-back’, we create a set of pillars and we merge all
sets of pillars to a single set P and we sort the set P according to Z-axis location of front
caps ascendantly. The set P may contain overlapping pillars because we merged multiple
sets together. Since we shall use the pillars to create patches, we have to merge overlapping
pillars as illustrated in Fig. 4.5. We do that by iterating through the set P and applying
rules depicted in Fig. 4.5. If two caps of the same type are in the same distance, we pick one
of them randomly as we did in Sec. 4.1.1. The maximum number of iteration is equal to a
size of the initial set P and in such a case the set P contains a single pillar at the end.

Figure 4.5: Invalid configurations of pillars and corresponding fixes. The black rectangles
and gray rectangles denotes front caps and back caps respectively.

The resulting set P now contains mutually exclusive pillars pdlo and we can now create
patches. The algorithm is summarised in Alg. 4 and it is able to solve all singularities that
were mentioned in Sec. 4.1.1. The worst one is intersection of the ray r with a triangle that
is perpendicular to the plane κ. As depicted in Fig. 4.6 the result is a single pillar.

The visibility test shots a ray from the centre of the patch to the centre of the cell. Since
we replaced the scene with pillars, we can now exploit the regular organization the visibility
grid. As a consequence, we are able to exclude pillars that can never be intersected by a
ray from the visibility test. An orthogonal projection of ray into the plane κ is a line the
connect two cells. If we use the visibility grid as a 2D raster as depicted in Fig. 4.7, only cells
intersected by the line may contain intersected pillars.
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Algorithm 4 The algorithm of patch generation including generation of pillars.
1: Create a slice So, o = −O

2 of the scene using the plane ρξ, ξ = −O−1
2 EDy.

2: for all o, o ∈ [−O/2, O/2− 1] do
3: for all l, l ∈ [−L/2, L/2− 1] do
4: Shoot a ray r from (lDx, 0) in a direction (0, 1) in the slice.
5: Let the set P of pillars be empty.
6: for all polygons of the slice So that belongs to a mesh χ do
7: Create a set Hχ of intersections of the ray r and the polygons.
8: Mark intersection either as a front cap or a back cap according to dhi .
9: Sort the set Hχ according to the distance zhi .

10: Inspect the set for both front-front and back-back sequences and fix them.
11: Add pillars created from the set Hχ to the set P .
12: end for
13: Sort the set P according to the distance of front caps.
14: Fix the set P following Fig. 4.5.
15: Let d = 0.
16: for all j, pj ∈ P do
17: Let the pillar pj became a pillar pdlo.
18: Create a patch edlo at the front cap of the pillar pdlo.
19: Increment d.
20: end for
21: end for
22: Create a new slice So+1 using the slice So.
23: end for

Figure 4.6: An example of a singular case solved by merging of pillars. The processed slice
contains an edge from the triangle B that is perpendicular to the plane κ and the ray r
hits the triangle B. Just for purpose of this example, a front cap and a back cap that were
generated from the triangle B are denoted as fB and bB respectively. Greyed caps are added
to fix missing member of a pair.

Finding the intersected cells is a problem that resembles closely a few problems solved
by the computer graphics. The algorithm has to be able to find all intersected cells. This
request is not compatible with a high-performance Bresenham’s algorithm [FVDFH96] for 2D
line resterization because the algorithm is not able to find all intersected cells, it finds only
a subset. Besides that, the requested algorithm has to consider the fact that the number of
parallel rays is low because the distance of patches is arbitrary. This request is not compatible
with the shear-warp factorization algorithm [LL94] that is designed for a direct rendering of
data stored in a uniform grid. Therefore, we decided to use the DDA algorithm [FTI86] that
is designed to obtain all intersected cells.
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Figure 4.7: A visibility test between the patch edst and the cell gvw.

In order to explain the process, let gvw and edst be the cell and the patch respectively that
we want to test. Using the DDA algorithm we find all possible index pairs (a, b) that identify
the intersected cells as illustrated in Fig. 4.7. Since each pillar corresponds to a cell, the DDA
algorithm identifies potentially intersected pillars as well. Therefore, we can extend the DDA
algorithm to test all pillars pdab. We calculate a depth at which the ray enters the cell and a
depth at which the ray lefts the cell. This gives us a depth interval that is compared to all
pillars pdab corresponding to the cell gab. If the depth intervals are not mutually disjunctive,
ray intersects a pillar and, consequently, the cell gvw and the patch corresponding to the front
facing cap of the pillar pdqt are mutually invisible.

The calculation of the depth interval corresponding to the cell gab exploits the linearity
of the depth variation along the ray. As a result, for each cell gab we can evaluate the depth
at the point where the projection of the ray enters the cell gab and the depth where the
projection of the ray leaves the cell. Those two depth values determine the desired interval.

4.1.3 Computation of the Optical Field

In the previous section, we described the visibility test. In this section we shall apply it. This
section closes the description of the proposed method. It contains a mathematical expressions
used through the calculation. The section, however, is not necessary for understanding of the
method and therefore it can be skipped.

In Sec. 4.1.2 we described the visibility test that evaluated a visibility of a patch edst when
viewed from a cell gvw. We apply the test to calculate a visibility map of the patch. The
visibility map T is a binary map. Each member tlo of the map specifies wether the patch can
be seen from the cell glo, i.e., the map is a coarse version of the geometrical shadow that is
applied to the optical field of the patch edst. Calculating the visibility map, we test whether
the patch is visible from any cell. If not, we skip it.

We calculate the optical field Ust of the patch edst using a propagation of the angular
spectrum, i.e.,

Ust = FFT−1 [FFT (V ) �Hstz] , (4.2)
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where � denotes a piece-wise multiplication, V are optical fields values of a patch, z is a
distance between the patch edst and the plane κ and Hstz is a propagation operator.

The optical field values V = [vmn] are valid for a patch whose centre is located over the
centre of the field. This means that

vmn = rect
(
m

E
− 1

2

)
rect

(
n

E
− 1

2

)
ζmn, (4.3)

where ζmn defines optical field values of the patch. Since we defined that the surface is
diffusive, we use ζmn = exp[j2πφmn] where φmn is a pseudorandom function. The operator
Hstz = [hηψ(s, t, z)] combines a phase shift due to the distance with a phase shift due to a
spatial shift in the plane of the patch. The latter is a shift theorem [Goo05]. Let η and ψ be
indices of frequencies. Then,

hηψ(s, t, z) = exp
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−j2πηs
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︸ ︷︷ ︸
propagation of the angular spectrum, see Eq. (2.25)

, (4.4)

where X = MDx and Y = NDy are width and height of a rectangle that encloses points at
which the optical field is sampled.

Since we now know that the patch edst is visible and we estimated its optical field values
Ust, we can calculate a contribution u′mn to the final optical field value umn as

u′mn = aeûmntbm
E
cb n
E
c, (4.5)

where ûmn is a value of the optical field values Ust and ae is an amplitude of the patch edst.
Evaluated, we add the contribution u′mn to the corresponding value of the resulting optical
field.

In this section we gave a mathematical description of calculations used while the pro-
cessing of a patch. This closes the description of the method. In the following section we
shall present results calculated with the proposed method and compare the method to other
relevant methods.

4.1.4 Results

Since we described principle of our method, we can now present results obtained. The results
are presented in two steps. First, we present result showing that our method calculate
working optical fields. Then, we present time measurements. The latter is contained in the
next section.

In this section we present evidence to show that our method calculates working optical
fields. Following a principle that is used by all other methods, we verify the content of the
calculated optical field by reconstruction. By reconstructing the optical field we refer to
calculation of optical field values from known ones. Following ability of detectors to measure
only intensity, the result of the reconstruction is usual a 2D image of intensity. Using the
reconstruction, we are able to explore the content encoded in the optical field. And if we are
able to reconstruct encoded sources, we shall consider the result valid.

In the ideal case, the reconstruction is done optically, i.e., by creating a hologram and
reconstructing it using a (quasi-)coherent light [Har96]. This, however, is too complicated
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and it requires expensive equipment but it provides the most reliable result. The optical re-
construction can be simulated and the results of the simulation are similar to results captured
by CCD. A result depicted in Fig. 4.8(a) was capture by CCD without any additional optics.
In this particular case, we used a small LCD as SLM. Since there is no additional optics
that might cause a deformation, we composed the final image from multiple projections. In
order to compare the measured result we simulated it numerically propagation of the angular
spectrum and we obtained a similar result that is depicted in Fig. 4.8(b). In both cases we
used an optical field values calculated by a method based on ray-casting [JHO08] and the
phase on the surface was constant. Based on result, we consider the numerical reconstruction
similar to the optical one.

Figure 4.8: (a) An optical reconstruction of a virtual scene with a constant phase on its
surface. (b) A numerical reconstruction of the same scene and (c) a numerical reconstruction
using an aperture. Notice the missing part of the object due to the pinhole. The dashed
circle shows boundary of the aperture.

The goal of our method is to calculate an optical field that can be viewed by a human
viewer and that does not require projecting into a flat screen or any other similar medium.
Therefore, the optical field has to have features of an optically captured hologram, i.e.,

1. It has to contain multiple views on the scene. This allows every eye to see a different
image and thus reconstruct the depth.

2. It has to alow focusing on various depths. This allows a natural viewing of the scene.

3. Obscuring by a screen with opening should limit only the range of views or sharpness
of the reconstruction. As a consequence, we can select different views [NM08].

4. Applying a lens should cause a deformation similar to the perspective one.

Almost all papers use just propagation of the angular spectrum between two planes. This,
however, validates only the first and the second feature. It cannot validate the third and the
fourth feature. Especially, the third feature is crucial for the human viewer [LHJ68]. While
the numerical reconstruction depicted in Fig. 4.8(b) proves that the optical field contains the
scene, it does not show that by applying a pin-hole, part of the scene disappears as depicted
in Fig. 4.8(c). This fact is widely ignored by many publication on computer generated
holograms.

Following the goal of our method, we numerically simulate the human eye. The human
eye consist of a lens, a pinhole and a projection surface, i.e., the retina. In our case, we use
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a planar surface as the projection plane. The pinhole is an aperture with a small circular
opening. Since every sharp edge generates a strong response as illustrated with Fig. 4.9(a),
we decide to define the pinhole as

amn =

{
1
2 −

1
2 cos

{
π

[(mDx)2+(nDy)2]1/2

d

}
if (mDx)2 + (nDy)2 ≤ d2,

0 otherwise,
(4.6)

where d is a radius of the pinhole. The effect of such a definition is illustrated with Fig. 4.9(b).
Since the reconstruction is not a major concern of this work, we did not experiment with
other aperture definitions that might be better.

Figure 4.9: Intensity of a plane wave propagated through either (a) a pinhole with sharp
edges or (b) an amplitude modulator defined by Eq. (4.6). The dashed circle shows an area
where the pinhole function is not zero.

Similar to the ideal thin lens [Wal95, Goo05], we consider a lens a phase shifting medium
[ZCG08]. We, however, do not use any approximation from Eq. (2.35). Instead of this, we
define a lens such that a point at a distance fA in front of the lens is projected by the lens
to the distance fB behind the lens [Lob08]. The phase shift of such a lens is

φlmn = − 1
λ
{[(mDx)2 + (nDy)2 + f2

A]1/2 + [(mDx)2 + (nDy)2 + f2
B]1/2}. (4.7)

As depicted in Fig. 4.10 the distance fA controls what is being focused and the distance fB
controls the deformation. Such a lens does not apply any approximation and has similar
features as does the thin lens from Sec. 2.2.5.

Figure 4.10: A setup used by the numerical reconstruction. The lens, the aperture and the
plane with optical field values are located at the same distance from the screen.
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For purpose of the demonstration, we create a few scenes. Each scene serves different
purposes. The scene “Bunny” is based on the Standford Bunny dataset [SU94]. The scene
show ability of the method to handle concave surfaces and surfaces almost perpendicular
to the plane κ : z = 0. The scene “Chess” contains multiple small objects and it is used to
demonstrate effect of our method on details. The scene “Plane” consists of a single plane with
a texture. This scene the basic scene and it demonstrates validity of our method. The scenes
“Primitives” and “Primitives2” contain six objects. In the first case, objects are distributed
at significantly different depths and the scene is dedicated to test the perspective and the
visibility. In the second case, the last object is much larger and the depth range is smaller
than in the fist case. The scene is used to test the visibility. The last scene “StillLifeBunny”
allows us to demonstrate the visual quality of the reconstruction because it contains multiple
objects, detailed textures and precalculated shadows. Parameters of the scenes including
orthogonal projections are presented in Chap. C.

In most of cases, we calculate two sets of optical fields: one intended for the numerical
reconstruction, the other for optical reconstruction. Each of them differs in parameters. In
both cases, however, we use a wavelength 635 nm, i.e., a red light.

In the case of optical reconstruction we calculate a fairly large optical field: 6, 144×6, 144
samples and we use the sampling step Dx = Dy = 7.0 µm. Using these parameters, we
choose the size of the patch similar to a pixel size of contemporary LCD monitors, i.e.,
0.22 mm. This gives us that a patch consists of 32× 32 samples. We use this resolution of a
patch for the numerical reconstruction case too. Since such a larger sampling step is useful
only for numerical reconstruction, we denote such scenes with a symbol ‡in superscript, e.g.,
“Primitives‡”. The meaning of such symbols is summarised in Tab. C.2.

Considering a hologram that is an real-valued amplitude modulator the range of viewing
angles is 2.6◦ according to Eq. (2.24) and according to the fact that the angular spectrum
of the modulator is symmetric. After evaluating the optical field, we calculate on off-axis
hologram by adding a plane wave. Since we print holograms using a binary device, we use
a threshold to create a binary hologram. The threshold is selected such that the amount
of white and black pixels is approximately the same. This allows us to preserve as many
structures in the hologram as possible.

We print the hologram using an image setter and illuminate it with a quasi-coherent light
source.7 We use a high luminous LED of 640 nm and we filter it with a pinhole to create an
expanded beam of quasi-parallel rays. The images are captured using a regular camera with
optics and therefore they are reliable in terms of visual impression on the human viewer.

In the case of the numerical reconstruction, we assume an optical field with following
parameters: 4, 096 × 4, 096 samples, the sampling step Dx = Dy = 0.5 µm. Considering
optical field values that are complex numbers the range of viewing angles is 78.8◦. This is
enough for testing perspective and visibility. During reconstruction, we pad the optical field
with a frame of zeros so that we process optical fields of 12, 228 × 12, 228 samples.8 If not
noted otherwise, only 2, 048 × 2, 048 samples at the centre of the reconstruction image are
presented. Since the lens inverts both the X-axis and the Y-axis, we inverted them back in
the presented images. The distance fB is 2.0 mm and the diameter of the pinhole is 0.5 mm.

The reconstructions will contain multiple copies of the object that do not overlap each
other. This is a side effect of the periodicity assumed by FFT. Since we use FFT to generate
the field, we cannot avoid these copies. If necessary, we can pad the optical field at the

7A usual image setter has 3600 DPI, i.e., it is able to create a 7.0 µm binary dot that is well defined.
83× 4, 096 = 12, 228
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generation time so the copies will be further away from each other. Also, the copies might
overlap each other due to perspective introduced by the lens. Since we solve visibility only
for a limited range of viewpoints, the copies may contain holes.

We tested our method using the scene and the parameters described above. First, we
tested the scene “Plane”. In such a case, we can show that our method is fully functional.
Since every cells sees every patch, our method follows the Babinet’s principle [BW05], which
describes a behavior of an optical field disturbed by two planar screens. Both screens contain
openings that are disjunctive and that fill the whole plane when added up. Let us have a
source that emits waves and thus forms an optical field values U on the plane κ. If the first
screen is placed between the source and the plane κ, the optical field values U are disturbed
and optical field values U1 are detected on the plane κ instead. Similarly, when the second
screen is used, optical field values U2 are detected on the plane κ. The relation between the
fields is U = U1 + U2. This is described by the Babinet’s principle.

Let us now consider a planar screen that is parallel to the plane κ. An original source of
waves is behind the screen and thus we can consider the screen to be a source of waves. The
waves emitted by the screen form optical field values U on the plane κ. Now, we make a half
of the screen black, i.e., opaque. As a consequence, we detect disturbed optical field values
U1 on the plane κ. When the second half is made black instead of the first one, we detect
optical field values U2. According to the Babinet’s principle U1 +U2 gives us an undisturbed
optical field U . Furthermore, we apply the principle on the field U1 to decompose it into two
optical field values. Such a recursive application of the principle can be repeated until used
screen contains only a single opening of a size equal to the patch. Even in that case we are
able to reconstruct the original values U from values generated due to screens. This shows
that our method works for the scene consisting of a plane parallel to the plane κ.

This is verified by a successful numerical reconstruction depicted at Fig. 4.11(a). Despite
that the reconstruction is damaged by a speckle noise, the original texture, which is depicted
in Fig. 4.11(b), is recognisable.

Figure 4.11: (a) An optical reconstruction of the scene “Plane” focused at 6.0 mm and (b)
the original texture. The texture is courtesy of Libor Váša. Used with his permission.

Next, we calculated optical fields of scenes “Primitives” and “Primitives2” and we recon-
structed them numerically. In order to obtain different views, we shifted the grid of calculated
samples in the plane κ by 0.5 mm horizontally just after padding with zeros. The reconstruc-
tions in Fig. 4.12 show that the optical field works as expected: both the perspective and the
visibility are correct and we are able to focus at different depths.
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Figure 4.12: (a-c) A numerical reconstruction of the scene “Primitives” focused at the cone.
The optical field was shifted horizontally by (a) −0.5 mm, (b) 0.0 mm, (c) +0.5 mm. (d-f)
A numerical reconstruction of the scene “Primitives2” focused at different objects (different
depths): (d) the cone (6.0 mm), (e) the cube (10.0 mm) and (f) the torus (14.0 mm).

We tested results of our method optically using the scene “Primitives‡”. As depicted at
Fig. 4.13 the reconstructions were successful. Objects are recognisable and changing of camera
position changes relative position of objects while the visibility stays correct as expected.
Thus, our method work for optical reconstruction too.

Figure 4.13: An optical reconstruction of the scene “Primitives‡” focused at the cone. Notice
that visibility is solved correctly when viewer changes its location.
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Before creating the hologram, we calculated a numerical reconstruction using just the
propagation of the angular spectrum [Fig. 4.14(a)] and we observed artifacts at the edge
of patches [Fig. 4.14(b)]. In this case artifacts forms vertical lines. These artifacts are
overlapping energy contribution of patches. The nearer the reconstruction distance is to the
distance of a patch, the more energy is gathered close to the patch. As as consequence, the
artifact is recognisable at patches that are almost at the focus and it is much smaller than
the patch. Despite that we were able to recognise the artifacts using the propagation in the
angular spectrum, we are not able to recognise them on optical reconstruction [Fig. 4.14(c)].
Therefore, we assume that these artifacts will not disturb the viewer unless the patch is too
large. Since the large patch case is suitable only for previewing purposes, we do not need to
handle these artifacts.

Figure 4.14: (a) A numerical reconstruction of the scene “Primitives‡” focused at the cube
(0.5 m). The reconstruction uses a propagation in the angular spectrum without a pinhole
and a lens. (b) An enlargement of the dashed rectangle showing artifacts in a form of vertical
lines. (c) An optical reconstruction focused on the cube. Notice that the artifacts has no
influence on the optical reconstruction.

As the next, we tested an influence of a patch size. The result, which is depicted at
Fig. 4.15, indicates that details smaller than the patch size are lost completely. If the scene
contains small objects, the scene may not be reconstructed successfully. On the other hand,
if the scene contains larger objects, change of the patch size, which is illustrated by Fig. 4.16,
changes mostly just the coarseness of the scene as expected. Notice that tiny details formed
by a small patch [Fig. 4.16(a)] are lost in the speckle noise.

Finally, we demonstrate that our method can generate an optical field that pro-
vides a depth impression. For that purpose we calculated an optical field of the scene
“StillLifeBunny‡”. Shifting the optical field values in the plane κ, we created two recon-
struction and combined them to a anaglyphic image presented at Fig. 4.17. If the viewer uses
properly coloured glasses, a impression of a depth is recreated. This shows that our method
can provide 3D image of the scene.

4.1.5 Comparison

In the previous section we presented results calculated by the detail driven method. We
showed that results work for the optical reconstruction. In this section we shall compare
our method to others. This section will show that our method is more efficient than strictly
PLS-based methods and strictly wave-based methods.
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Figure 4.15: (a) A numerical reconstruction of the scene “Chess” focused at the closes corner
of the chessboard (6.0 mm). (b) An orthogonal projection of the scene.

Figure 4.16: An numerical reconstruction of the scene “Primitives” focused at the cone
(6.0 mm). The optical field was calculated using a patch size: (a) 8× 8 samples, (b) 16× 16
samples, (c) 32 × 32 samples, (d) 64 × 64 samples, (e) 128 × 128 samples and (f) 256 × 256
samples. Notice the coarseness of cone edges when the size of the patch increases.

Before we proceed to the comparison, let us first discuss criteria of the comparison. Since
we generate hologram intended for viewing purposes, we compare the visual quality. For
that purpose we choose a geometry-based method that uses a cloud of PLS (a PLS-based
method) because there is no DFT-forced periodicity, the angular spectrum is not deformed
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Figure 4.17: Numerical reconstructions of the scene “StillLifeBunny‡” focused at the corner
of the table (0.4 m). The reconstructions are combined to anaglyphic image. A red filter is
assumed to be on the left eye.

by resampling as in the case of wave-based methods and there are no wave-leaks described
in Sec. 3.1.2.

Instead of using a general PLS-based method, we choose to use a ray-based method with
a constant angular step (the AngRay method) [JHO08]. The method evaluates a visibility
without under-sampling and it is able to capture a solid diffuse surface. At the same time, it
supports GPU and therefore it can provide comparable results in reasonable time.

We decided that we shall not examine optical field values and we shall use numerical
reconstructions instead because both methods define a phase variation of the diffuse surface
slightly different and therefore a significant difference in phase does not imply a significantly
malformed reconstruction.9 Furthermore, we did not apply any metrics such mean square
error or peak signal-to-noise ratio on the reconstructed image due to speckle noise. When
viewed, speckle noise are tiny dots on the surface of the object. The pattern of these dots
differs significantly for every viewing location. Since the viewer is not able to view the
hologram perfectly still and the human eye integrates intensity over time, the reconstruction
seems to be sparkling and perfectly sharp at the same time. However, through numerical
evaluation, we obtain only a perfectly still view. Such a view differs from the real visual
impression and thus a result of a numerical evaluation might be misleading. Therefore, we
decided to compare results visually.

We calculated an optical field of 4, 096×4, 096 samples and reconstructed it using both the
setup and the parameters from Sec. 4.1.4. Since we have already shown a loss of tiny details
in the scene “Chess” in Sec. 4.1.4, we used the scene “Primitives” that contains multiple
medium sized objects and the scene “Bunny” that contains a single object. As it can be
seen in Fig. 4.18, larger objects are almost not affected by the loss of detail and the visibility
approximation applied by our method does affect the result significantly too.

Since our method aims to reduce the computational time, we evaluated it as well. Follow-
ing the principle of our method, we presume that it is faster only under certain conditions.
Therefore, we derive analytically the computational complexity and based on that we present
a lower estimation of boundary parameters. We verify all these them through measurements.

9Besides that, we lack equipment to capture a hologram of a real object and use it for comparison. If we
had had such equipment, we would have used it instead of results of the PLS-based method.
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Figure 4.18: (a, c) A numerical reconstruction from optical fields calculated using the AngRay
method [JHO08]. (b, d) A numerical reconstruction from optical fields calculate using the
proposed methods. Notice the slight deformation of bunny’s ear in (b) and a distortion of
the cone in (d). Both artifacts are caused by use of patches.

Let us express formally the computational complexity. For simplicity let us assume that
the optical field values are calculated at N×N sampling points. The number of visibility grid
cells along a single axis is C = bNE c. For a single patch, the estimated number of operations
is a sum of the number of pillars that are examined during the visibility test and the number
of steps required for FFT. The computational complexity of 2D FFT is O(N2 logN). The
number of pillars examined during DDA traversal can be expressed as follows. If the cell g00

is the starting one and the cell gvw is the ending one, the number of examined cells is v+w at
maximum. An exception is a case where v = w. In such a case we assume the ray traverses
from one cell to the next one through the common corner and the number of examined cells
is v. We can, therefore, express the total number of examined cells when the visibility of the
patch ed00 corresponding with the cell g00 is solved as an arithmetic series. Computing the
sum of the arithmetic series and assuming that each cell contains K pillars in average, the
total computational complexity of processing one patch is

O
[
N2 log2N +K

(
C3 − 3C2 − C

2

)]
. (4.8)

The expression in Eq. (4.8) is valid for other cells as well so we can now express the total
complexity for the whole hologram. As K � C, we consider KCn ≈ Cn, n ∈ N in Eq. (4.8).
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Since C = bNE c, Eq. (4.8) becomes

O
(
N2 log2N +

N3

E3
− 3

2
N2

E2
+

1
2
N

E

)
≈ O

(
N2 log2N +

N3

E3

)
. (4.9)

There are KC2 ≈ C2 patches that have to be processed. Therefore, for a larger N the
computational complexity of the complete generation process is approximately

O
[
N4

(
log2N

E2
+
N

E5

)]
. (4.10)

Notice that expression Eq. (4.10) shows a significant feature of our method: the efficiency
of the method depends on a size of a patch. If the patch consists only of a single sample, our
method will become a PLS-based method.10 Thus it is desirable to have the patch as large as
possible. At the same time, however, increasing the patch size increases coarseness of scene
(Fig. 4.16). Therefore, the patch has to be chosen as balance between the visual quality and
the computational time.

We can estimate patch size using an known ability of the human visual system to recognise
details [Luc94]. In our case, however, we decided to use a much simpler solution: a pixel size
of an contemporary LCD. Using such pixels, we can view an image without any significant
degradation and hence the patch of similar size will not degrade the visual impression too.
Among others, thanks to both perspective deformation and the fact that we assume the
virtual scene fully behind the hologram, the patch will be smaller than that. As it was
already noted in Sec. 4.1.4, we assume a 0.22 µm pixel.

As the next step, we verified the derived computational complexity by a measurement.
For that purpose we measured computation times for the scene “Primitives‡” using various
resolutions of the optical field and various resolutions of the patch. In all measurements, we
used a sampling step of 7.0 µm. The method was implemented using the C++ language and
the FFTW library [FJ]. All times were measured on a PC with Intel Xeon 3.2 GHz. The
measured times were compared to times predicted by the computational complexity.

In the first set of measurements we kept the resolution of the patch equal to 32×32 values
and we calculated optical fields at various resolutions. The pitch between the values was
scaled proportionally to the resolution of the field so that the optical field size was always
43 × 43 mm. This preserved the ratio of a number of pillars to a number of cells almost
constant and therefore we were able to compare easily the measured times. Results of the
measurements are provided in Fig. 4.19(a). In the second set of measurements, we kept the
resolution of the optical field equal to 6, 144× 6, 144 values and used different resolutions of
the patch. Unlike the first set, we kept the pitch between points umn constant. This again
preserved the ratio of a number of pillars to a number of cells. Results of the measurements
are provided in Fig. 4.19(b).

In order to compare the measured and predicted times, we multiplied the result of
Eq. (4.10) by a constant σ. This is a valid operation because the expression in Eq. (4.10)
is a computational complexity where multiplicative constants are neglected. The constant
σ modifies the result of the expression in Eq. (4.10) so that the predicted time pc becomes

10Actually, a PLS-based method with an incredibly inefficient calculation of PLS optical field due to a
propagation of the angular spectrum.



Chapter 4: Detail Driven Generation 66

Figure 4.19: Time measurements of our method for the scene “Primitives‡”. (a) The patch
resolution is constant and both the sampling step and the resolution of the optical field differ.
(b) Both the sampling step and the resolution are constant and the patch resolution differs.

equal to a calibration measurement tc. The calibration measurement tc is measured using an
optical field of 6, 144× 6, 144 values with a patch of 32× 32 values. Therefore, the predicted
time pp corresponding to the measured time tp is pp = σsp, where σ = tc

sc
. The estimations sc

and sp are calculated according to the computational complexity expression Eq. (4.10) with
parameters corresponding to the measurements tc and tp respectively. The estimated times
presented in Fig. 4.19 correspond with measured times and we can consider the expression
in Eq. (4.10) as a valid estimation of the computational complexity of our method.

Since we verified the complexity expression Eq. (4.10) by measurements, we can use it
to establish performance relation with both PLS-based methods and wave-based method.
Let us first discuss PLS-base methods. A computational complexity of PLS-based methods
is O(PN2) where P denotes the total number of PLS. This complexity does not include a
visibility solution. The expression in Eq. (4.10) shows that our method has a lower complexity
if

P > N2

(
log2N

E2
+
N

E5

)
. (4.11)

If the cloud of PLS represents a solid surface then P ≈ N2 for common scenes and there-
fore the total complexity becomes O(N4). Under such assumptions, our method is faster if
( 1
E2 log2N + N

E5 ) < 1 and for larger N if N < E5.

To prove validity of the expression Eq. (4.11), we measured two computational times: a
computation time t of our method and a computation time tPLS of a single PLS using the
spherical wave expression Eq. (2.9). The sampling step was 7.0 µm. We used the scene
“Primitives” and a patch of 32× 32 samples. The measurement was done on PC Intel Xeon
3.2 GHz. Then, we calculated a number nPLS of PLS that could had been calculated during
time used by our method, i.e., nPLS = dt/tPLSe. Then, we evaluated the expression Eq. (4.11)
that defines efficiency boundary for our method using above given parameters and we compare
them to measured results.

As it is shown in the table Tab. 4.1, the estimation using the expression Eq. (4.11) was
higher than a number of PLS estimated from measured times and therefore the expression
is valid. Furthermore, the scene “Primitives‡” consist of 972 triangles. This means that
PLS-based method is able to use only 20 PLS per a triangle in the case of the largest optical
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field. This is far from creating an impression of a solid surface. Hence, our method is faster
than any PLS-based method.

Table 4.1: A comparison between an estimated number P of PLS and measured number
nPLS of PLS for a different resolution of the optical field. The measured number of PLS was
estimated from the computation time t of the scene “Primitives2‡” using our method.

Resolution t [s] P nPLS

1, 024× 1, 024 226.5 10,272 687
2, 048× 2, 048 4,493.7 45,312 3,431
4, 096× 4, 096 42,749.3 198,656 7,602
6, 144× 6, 144 244,948.6 470,844 19,186

Let us now discuss wave-based methods. We choose to use a triangle-based generator
[Mat05] because it handles both the visibility and a diffuse surface as our method does.
Other methods do not offer similar abilities, i.e., they are not efficient [Loh78], the diffuse
surface is either limited [KHL08] or not supported [ABMW08] or they do not solve the
visibility [ABMW08]. Therefore, we excluded them from the comparison.

The selected wave-based method yields a computational complexity of approximately
O(TN2 log2N) where T denotes a total number of planar surfaces. In our case we consider
triangles because it is compatible with a representation used in the computer graphics. Unlike
PLS-based methods, the complexity includes a visibility solution. According to the expression
in Eq. (4.10), our method has lower complexity if

T >
N2

E5

(
E3 +

N

log2N

)
. (4.12)

Similar to the case of the PLS-based method, we verified the expression Eq. (4.12) by
measurement. Due to time restrictions, we implemented the selected method only partially.
In its original form, the selected method does following operations for each triangle:

1. Rotate the angular spectrum.

2. Convert the angular spectrum to the spatial domain.

3. Raster the triangle.

4. Calculate the angular spectrum from the representation in the spatial domain.

5. Apply the propagation operator by piece-wise multiplication with the angular spectrum.

We implemented steps 2), 4) and 5) because we presumed that they are the most time
expensive ones. As a consequence, the real computation time will be higher. Since all these
steps together form a propagation of the angular spectrum, we used the same implementation
as does our method.

Using the partial implementation and configurations from the case of the PLS-based
methods, we measured the lower estimation of a time tTRI per a single triangle and we
estimated a number nTRI of triangles as nTRI = dt/tTRIe, where t is a computational time
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using our method. As it is shown in the table Tab. 4.2, the expression Eq. (4.12) gave us a
number of triangle that is higher than a number estimated from measured times and therefore
the expression is valid. Among others, the table Tab. 4.2 shows that our method is not well
suited for scenes that contains a low number of triangles.

Table 4.2: A comparison between an estimated number T of triangles and measured number
nTRI of triangles for a different resolution of the optical field. The measured number of
triangles was estimated from the computation time t of the scene “Primitives2‡” using our
method.

Resolution t [s] T nTRI

1, 024× 1, 024 226.5 1,027 278
2, 048× 2, 048 4,493.7 4,119 1,360
4, 096× 4, 096 42,749.3 16,555 3,184
6, 144× 6, 144 244,948.6 37,413 5,751

In this section we showed that our method provides a visual quality similar to the more
accurate PLS-based method. We derived computation complexity and we validated it through
measurements. We compared performance of our method to others and we shown that our
method is faster even though this is true under certain conditions. With an appropriate size
of the patch, PLS-based methods are not able to create an impression of a solid surface during
the same calculation time.

Our method is not suitable for scenes that contain a low number of triangles because
wave-based methods can calculate them faster. On the other hand, our method can process
scenes that contain a high number of triangles without any preprocessing such as triangle
decimation in shorter times than the wave-based methods. Furthermore, our method does
not require resampling of the angular spectrum because it does not rotate a patch. Hence,
it does not introduce additional noise. Besides that, our method is able to control both the
visual quality and the computation time though the patch size: a large patch can be used for
previews while smaller patch for final production of a hologram.

This section closes the evaluation of the principle. In the following sections we shall
discuss acceleration of the method by various approximations.

4.2 Accelerations

In the previous section we described the basic algorithm used by our method. The combi-
nation of both the PLS-based principle and the wave-based principle proved to be efficient.
Despite this success we explored the method further and revealed that the method can be
accelerated even further by modifications of the algorithm.

In this section we propose modifications that accelerate the algorithm. We discuss the
impact of the modifications on the visual quality of the result and we measure time im-
provements using the scenes introduced in Sec. 4.1.4. We prove validity of modifications by
reconstructions.11

11Actually, we follow a rule used by all other authors: if the recorded object is reconstructed properly, the
method works and therefore it is valid.
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Since we aim to decrease the computational time, we have to first analyse a computational
time distribution among steps of the algorithm Alg. 2. Therefore, we calculated optical fields
of 4, 096× 4, 096 samples with the sampling step of 0.5 µm and a patch resolution of 32× 32
samples. We used PC Intel Xeon 3.2 GHz to measure computation times of algorithm steps:
creation of pillars (step 1), calculation of the visibility map (step 3), calculation of an optical
field generated by a patch (step 5) and application of the visibility map (steps 6 and 7). The
results are summarised in the table Tab. 4.3.

Table 4.3: Computation time of 4, 096× 4, 096 samples and its distribution throughout steps
of the algorithm Alg. 2 in percentage of the total time.

Scene Time Patch Calculation Opt. field Application
[hours] creation of the vis. map of a patch of the vis. map

“Bunny” 11.86 7.0× 10−4 % 0.3 % 97.7 % 2.0 %
“Chess” 11.29 4.6× 10−4 % 0.3 % 97.9 % 1.8 %
“Plane” 11.46 0.3× 10−4 % 0.8 % 93.4 % 5.8 %
“Primitives” 12.58 0.6× 10−4 % 0.7 % 95.5 % 3.8 %
“Primitives2” 9.21 1.2× 10−4 % 0.6 % 96.1 % 3.3 %
“StillLifeBunny” 6.83 17.1× 10−4 % 0.6 % 95.7 % 3.7 %

As it is presented in the table Tab. 4.3, the computation time of both the pillar creation
and calculation of the visibility map is almost neglectable. Despite that application of the
visibility map is very low, we presume that it may become significant if we reduce the most
time extensive part: calculation of an optical field generated by a patch. Following the results,
we shall focus on acceleration of the optical field calculation. Since the ratio of the calculation
to the whole computational time does not almost depend on the scene, we chose the scene
“Primitives” and use it for all time measurements.

4.2.1 Library and Grouping

Our method uses patches that are aligned to a visibility grid. However, patches have both
a random variation of the phase and an arbitrary location along the Z-axis. Following the
approach that we applied though designing the algorithm, these qualities of a patch might
offer an opportunity for acceleration. In this section we propose an approach that reduces
arbitrariness of qualities mentioned above and it decreases the computational time through
that. We show that the reduction of arbitrariness does not degrade the visual quality of
reconstructions and we present time measurements.

Let us first address the a random phase function. As it was discussed in Sec. 4.1.1, the
phase has to be an arbitrary function that is a random function in our case. Nevertheless,
following measurements in the table Tab. 4.3, the most time extensive part of the algorithm
is calculation of the optical field generated by a patch. Since we use propagation of the
angular spectrum, the part consist of a forward FFT, calculation of a phase shift, and an
inverse FFT. From these three operations, both the forward and the inverse FFT have the
highest computational complexity, i.e., O(N2 logN). Thus, if we had removed a single FFT,
we would have been able to reduce the computation time to up to a half.
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As a next step, we refine our assumption about the acceleration ratio. We measured
time of individual operations and we found out that both FFT represent only about 50 %
of the computation time and the rest is devoted to calculation of the phase shift. Despite
that we focused on FFT because we assumed that optimization of the phase shift is rather a
low-level adjustment. We addressed it later in Sec. 4.2.4. As a consequence, we adjusted our
expectation about the time reduction to a range [66%, 75%].

According to the sequence used by the propagation, we can replace the forward FFT. In
order to replace it, we have known the angular spectrum of a patch. If the patch was defined
with a constant phase, we would be able to express the spectrum analytically. However, in our
case we use an random phase and an analytical expression of the angular spectrum contains
a convolution. Based on this, we choose to use a single precalculated angular spectrum for
all patches instead of FFT, i.e., we defined the spectrum library that contains a single
spectrum.

We calculated an optical field of the scene “Primitives” using a single precalculated angu-
lar spectrum and we tested it numerically using a setup depicted in Fig. 4.10. We focused the
cylinder at 12.0 mm. We chose the cylinder because it is partially hidden behind the cone.
In order to see the whole cylinder, we shifted the hologram by a vector (0.3 mm, 0.3 mm).
We present only a centre of the reconstruction that contains 2, 048× 2, 048 samples, the rest
is clipped. If not noticed otherwise, this setup is used by other reconstructions as well.

The numerical reconstruction depicted in Fig. 4.20(a) seemed to be successful but it
differed from the version calculated without the library [Fig. 4.20(b)]. The result contained
the expected shape of the scene but unlike the calculation without the library, the surface was
disturbed by a an almost regular pattern of dots. We presumed that this regularity might
prevent the human viewer from focusing the surface.

Figure 4.20: Numerical reconstructions from optical fields calculated (a) using a library of a
single spectrum and (b) not using a library compared with (c) an optical reconstruction.

In order to verify the presumption, we tested the optical field using the optical recon-
struction as shown in Fig. 4.20(c). The optical reconstruction verified our assumption. The
viewer was neither able to focus on the surface nor recognise the shape, the view was dis-
turbed by a regular pattern. Since the artifact did not appeared when the library was not
use, we assumed that the pattern is caused by interference between patches because patches
are aligned to a regular grid and waves generated by patches interfere with each other. If
each patch has a different random pattern, the interference is too weak to disturb. Therefore,
we propose to increase the number of spectrums in the library.
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The method uses diffusive patches. An ideal diffusive patch should illuminate evenly a
plane ρ that is parallel to the patch and that is in the Fraunhofer region [Goo05], i.e., far
away from the patch. At such a distance, the intensity of all samples at the plane should
be constant because the patch is diffusive. A scene build from diffusive patches should yield
similar result that is disturbed only by visibility solution as shown in Fig. Fig. 4.21(b). If we
use just a single spectrum, the distribution shown in Fig. Fig. 4.21(c) differs significantly. In
both cases, however, the average intensity is the same.

Figure 4.21: (a) A graph showing convergence of sample variance and intensity of samples
at the Fraunhoffer region for a optical field calculated (b) without the library and (c) with a
library of a single spectrum. The graph shows a difference s2

diff of a sample variance from a
sample variance of a case calculated without the library. A scene in (b, c) is “Primitives”.

Hence, we estimated the necessary number patches by comparing intensity of samples in
the Fraunhofer region [Goo05]. However, since the method uses a patch that is not an ideal
diffusive patch, the intensity is disturbed by a high-frequency noise. Therefore, we applied a
low-pass filter to attenuate the noise before comparison.

Since the result should be a constant function in the ideal case, we used the sample
variance s2 to evaluate the difference. The sample variance is s2 = 1

N2

∑
m

∑
n(Imn − Ī)2

where N × N is a number of samples, Imn = |umn|2 is intensity of a sample umn and Ī is
the average intensity of all samples. In all experiments, the average Ī depended on a used
scene. The number of spectrums in the library did not affect it. The result depicted in
Fig. Fig. 4.21(a) shows that for all considered scenes the sample variance s2 converges to
the value calculated without the library of spectra. Following the graph, we chose to use 64
spectra because after that convergence of the sample variance s2 slows down.

We verified the decision by an experiment. We calculated optical fields of the scene
“Primitives” and reconstructed them numerically. As it is shown in Fig. 4.22, increasing
the number of spectrum in the library weakens the artifact. And as expected, if the library
consists of 64 spectrums, the result [Fig. 4.22(c)] is almost indistinguishable from the optical
field calculated without the library [Fig. 4.20(c)]. A lower number of spectrums illustrated
with Fig. 4.22(a, b) leads to irregularity of intensity at the bottom of the cylinder.

While we increased a number of spectrums in the library, we adjusted slightly the al-
gorithm Alg. 2. The spectrum has to be stored as a whole because it does exhibit neither
periodicity nor symmetry. As a consequence, a näıve implementation is highly memory
extensive. Therefore, we assign a patch an index of a library spectrum and sort patches



Chapter 4: Detail Driven Generation 72

Figure 4.22: Numerical reconstructions from optical fields calculated (a) using a library of a
single spectrum, (b) using a library of 8 spectrums, and (c) using a library of 64 spectrums.
Notice the intensity variation at the bottom of the cylinder in (a) and (b).

according to the index prior their processing. As a consequence, we can generated the library
of spectrums on the fly and store only a single item from the library.

We reduced significantly the execution of the forward FFT. Even if the library contains
64 samples, it is still less than 0.8 % of patches generated for the scene “Primitives”. This
means that the execution time of the forward FFT cease to influence the total execution
time. In experiments, we measured calculation time and compared it to the computation
time using the basic version of our method. The library of one spectrum and library of 64
spectrums reduced the calculation time to 76.1 % and 74.0 % respectively, i.e., in both cases
the reduction agrees with our expectations.

The approach described above addresses the phase. Let us now address arbitrariness of
the Z-axis location. In its original form, the patch can by located anywhere along the positive
Z-axis. However, the viewer does not have a zero depth of field, i.e., the viewer focuses a
range of depths not just one. Therefore we can quantise the Z-axis and if two patches use the
same index of the spectrum library, we may apply a spatial shift to the second one instead of
a full propagation. This will exchange an execution of two FFT plus evaluation of the phase
shift for a memory move.

Considering the proposed optimisation, we avoided a fixed and uniform quantisation of
the Z-axis. Instead of that we defined a maximum group depth and we grouped patches such
that the depth range of the group is less than the maximum group depth. Hence, we denote
this acceleration approach as the grouping. The larger the maximum group depth is, the
more and more patches join the group. At the same time, however, it introduces holes to the
surface or it degrades a surface with a low variation over the Z-axis to a plane. Therefore, we
propose a criteria for maximum group depth selection that is ideal and compare it to other
solution that is ad-hoc and uses a larger group depth.

Let us now assume that the viewer is able to distinguish any depth, i.e., the viewer
employs only a propagation in a free space. We have to find such a range of depths that
cannot be distinguished by the viewer. In the continuous environment, the range contains
only a single depth. In the discrete environment, we can find a range where propagation
equals to phase shift as depicted in Fig. 4.23. It is a side-effect of a limited sampling step.
Since the propagation becomes a phase shift, the viewer cannot tell whether current optical
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field values are optical field values of the patch or they are modified by propagation.12 As a
consequence, the visual impression does not degrade.

Figure 4.23: (a) PLS contributing to all optical field values and (b) PLS that is too close to
contribute to any value but the only the middle. If had been contributing to all samples, it
would have created aliasing. The angle θ denotes a maximum angle that does not lead to an
aliasing.

We tested the proposed maximum group depth by calculation an amount of patches that
shifted spatially instead of propagation. We used the scene “Primitives‡” and a library of 64
spectrums. Using the optical field of 6, 144× 6, 144 samples and a sampling step of 7.0 µm,
almost 63.3 % of 16, 964 patches were shifted spatially instead of propagation. However, when
we decreased the sampling step to 0.5 µm and resolution of the optical field to 4, 096×4, 096,
the ratio changed to 7.6 % of 8, 000 patches. The latter was calculated using a smaller optical
field. Despite that, we assume the ratio is strictly dependant on the sampling step. Therefore
the proposed maximum group depth is not suitable for smaller sampling steps.

Another option is to choose a larger maximum group depth. Since our method considers
the side of a patch as the smallest possible detail, we can use the detail size for this purpose
as well. This is an ad-hoc solution and we use it to illustrate an influence of a larger group
depth on both performance and the visual impression. Using the sampling step of 0.5 µm,
the ratio increased to 44.1 %. As expected, this is better then in a case of the maximum
group depth based on a sampling step and we can expect lower computational times.

In order to introduce the grouping to the algorithm, we modify sorting used by the library
of spectrums. We add a secondary key: the depth along the Z-axis, i.e., if both compared
patches uses the same spectrum, they will be ordered according to the Z-axis coordinate. As
a consequence, we can create groups on the fly and we do not need any additional memory.

Using the both maximum group depths, we calculated 4, 096× 4, 096 optical field values
generated by the scene “Primitives”. The sampling step was 0.5 µm and in the reconstruction
we focused 6.0 mm, i.e., the cone. The results are presented in Fig. 4.24. Even though the
maximum group depth based on the patch size is ten times larger than the maximum group
depth based on the propagation distance, the reconstructions does not show any significant
disturbances.

Results in Fig. 4.24 might lead us to a conclusion that we can safely use larger group.
In such a case, however, we have to estimate the boundary size of a group. A patch with a
random phase variation is a complicated object and therefore we have to examine it numeri-
cally. Unfortunately, due to the speckle noise, we are not be able to identify presence of holes
accurately enough. Therefore, we shall use a maximum group depth based on the sampling
step size. Even though it might seem that this is significantly less efficient, in Sec. 4.2.5 we
show that the overall performance is almost the same.

12Optical field values at the patch are not know to the viewer.
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Figure 4.24: Numerical reconstructions from optical fields calculated using a library of 64
samples and (a) grouping disabled, (b) grouping using a maximum group depth along which a
propagation equals to a phase shift of optical field values, and (c) grouping using a maximum
group depth that is equal to the patch size, i.e., ten times larger than in the case (b).

Besides the results, we also measured times and compared them to the basic version of
the method. The results are presented in Fig. 4.25 and they were measured using PC Intel
Xeon 3.2 GHz. An inverted relation between the times in the 7.0 µm case is caused by an
inverted relation between maximum group depths. According to our measurements, using of
the grouping reduces the calculation time and it correlates all our assumptions.

Figure 4.25: A comparison of basic version with the library spectrum version. The library
contains 64 spectrums. All times are relative to the computational time of the basic version.

We have addressed a variation in the phase over the patch and reduced it using a library.
At the same time, we did not enforce any restriction on the phase, i.e., we can still have use
any function to express the phase variation on the surface of a patch. Also, we introduced a
quantisation along the Z-axis that further improves efficiency of the spectrum library.

4.2.2 The Visibility by the Frequency Masking

In the previous section we addressed the fact that all patches has the same shape. This led us
to pre-calculated angular spectrums and as a consequence we reduced the number of forward
FFT executions. In this section we shall further extend the idea. We convert the calculation
to the frequency domain and we show that we can approximate the visibility in that domain.
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A patch is a part of the plane κz. Following the definitions from Sec. 4.1.3, the optical
field values at the plane κz are V = M � U , where U are samples of an optical field of
a diffuse and infinite plane and M is a mask that represents spatial limitation of a patch,
and � denotes piece-wise multiplication. The angular spectrum of values V is V = M ? U ,
whereM = F {M}, U = F {U}, ? denotes convolution, and F {} denotes Fourier transform.
Since we assume that U is based on a random function, we cannot predict anything about its
spectrum U . On the other hand, we defined the amplitude mask M as the rect function and
therefore its spectrum M is the sinc function. The unpleasant feature of the sinc function
is that amplitude of the function converges to zero but never reaches it. As a consequence,
a single frequency in the spectrum V obtains contribution from all other frequencies due to
convolution and thus the original spectrum U is significantly blurred. Hence, it seems that
we cannot manipulate with the spectrum.

Now, let us discuss the effect of a patch. A patch contributes to all cells and hence we
may consider the patch as a superposition of contributions to each single cell. Let us now
look at the relation between a patch and a single cell g. We shall discuss it in 2D case, i.e.
considering only the X-axis and the Z-axis. Extension towards a full 3D case does not require
any reformulation. In a 2D case, the goal of the patch is to send energy towards the cell g
while limiting influence of a neighbourhood of the cell g. Optical field values G at the cell
are

G = (U �M) ? Hz, (4.13)

where Hz is a spatial domain version of the propagation kernel from Eq. (4.4).13 The angular
spectrum G of the cell g is G = (U ?M) � Hz. Let us assume the optical field values U
contain only a single frequency fg that represents a plane wave propagating towards the cell
as illustrated in Fig. 4.26. Thus, U = [ν(f)], ν(f) = δ(f − fg)Afg . Due to the convolution in
the expression Eq. (4.13), the angular spectrum G contains the angular spectrum M whose
central frequency is shifted to the frequency fg and whose phases are shifted according to the
kernel Hz.

Figure 4.26: A patch and a cell including distanced used by the presented acceleration ap-
proach.

The spectrum M distributes the frequency fg to the whole spectrum G, i.e., it blurs the
spectrum U . For our purpose we would prefer absence of the blur. This, however, would
prevent us from getting a predictable shape of a patch in the spatial domain. Nevertheless,

13We can use the kernel Eq. (4.4) directly or we can strip down the shift theorem component. In this
particular discussion we assume that the shift theorem component is removed. Nevertheless, this assumption
is not essential for a success of the discussion.
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we can reduce the blur using the windowed-sinc filters [Smi97] instead of the rect function.
A spectrum of the filter is finite and as a consequence only a limited number of frequencies
are combined together, i.e., the frequency fg is distributed only to a limited neighbourhood.

A patch, however, contributes to every cell and it forms optical field values Gc at the plane
κ. If there is an obstacle that prevents contribution to a cell, resulting optical field values
becomes Gc − G. This solution is accurate but also complex because it requires knowledge
of G. Subtraction removes some energy from the spectrum because we the spectrum G was
contained in the spectrum Gc. If spectrums G had not overlap spectrums of neighbouring cells,
it would have been removed completely. We can use this fact and propose an approximation.
Since the spectrum M is limited and a magnitude |M|2 has a peak over the frequency fq,
there is a high probability the frequency fg is attenuated significantly.

We follow this mechanism. However, instead of subtracting the blurred frequency fg from
the spectrum Gc, we remove it including a close neighbourhood. As a consequence, we damage
contributions of cells surrounding the cell g. We, however, do not damage all contributions
in a general case because the spectrum M is limited and Gc is a superposition of shifted
spectrums M.

Now, let us look at the geometrical shadow the we use to approximate the visibility
as discussed in Sec. 4.1. Since the size of a patch is the smallest detail, we can expect
that all possible occluders will be much larger than a single patch. Thus, the shadow will
influence many neighbouring cells. Therefore, there is high probability that we shall remove
the damaged cells later too. At the end, some cells are removed completely, some only
partially, some are damaged and some are intact. If the shadow influences most of cells, the
patch will be lost in background noise, i.e., it cannot be reconstructed. At the same time
this means that such a patch is occluded most of the time anyway and therefore its loss does
not harm the visual quality significantly. Hence, we may apply the approximation. Since we
mask some frequencies, we denoted this acceleration technique as the frequency masking.

The relation between a patch and the cell is reciprocal. Thus, we can assume that the
patch was created as product of interaction between cells and its spectrum is a superposition
of spectrums blurred by the mask M. Since the number of cells is limited, the spectrum of
the patch is limited too. In order to create such a spectrum, we modify the definition of a
patch from Eq. (4.3) such that optical field values V = [v′mn] are

v′mn = B
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(4.14)
where vmn is an optical field value from Eq. (4.3), sinc(t) = sin(πt)

πt , and B(t) = 0.42 −
0.50 cos(2πt) + 0.08 cos(4πt) is the Blackman window [Smi97]. While this assures that the
frequency spectrum of a patch is no longer infinite, it reduces unevenly the energy radiated
by PLS of the patch in the spatial domain. The edges of the patch become darker, the centre
stays bright. This might influence the visual impression. Nevertheless, if the patches are
small enough, the viewer will not recognise a matrix of larger dots. We assume that s/he will
detect just a darker surface.

In order to apply the approach, we have identify the index mfg of the frequency fg and a
neighbourhood that has to be removed. First, we discuss a solution on a plane defined by the
X-axis and the Z-axis and then we expand it towards a 3D space. The X-axis component xk

of the wavevector k that corresponds to the frequency fg is xk = 2πfg. Since xk = 2π
λ sin θg
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as illustrated with Fig. 4.26 and fg = 1
Dx

mfg
M , the index of the frequency is

mfg = M
Dx

λ
sin θg. (4.15)

Let us discuss a simplified case. We designed our method to calculate larger holograms
intended for printing. In our first experiment we print a hologram using a cheap technique
that enforces a larger sampling step of 7.0 µm. Thus, let us first discuss the this case. If
the sampling step is large enough, sin θ ≈ tan θ, where θ is the maximum deflection angle
defined by Eq. (2.24). Hence, following the illustration in Fig. 4.26, the expression Eq. (4.15)
becomes

mfg ≈M
Dx

λ

xg
zg

(4.16)

We estimate the range of neighbourhood indices following the fact that edges of the cell g
are located at xg ± E

2 Dx along the X-axis. Since we can assume that the distance between
a patch and a cell along the Z-axis is large in this case, we use just a centre of a cell. As
a consequence, we shall remove all frequencies from a range [mfg − Dfg ,mfg + Dfg ], where

Dfg = E
2
M
ze

D2
x
λ and ze is an orthogonal distance between the patch and the plane κ.

Using the expression Eq. (4.16), the neighbourhood indices are distributed evenly for
a single patch. If united, ranges of frequencies corresponding neighbouring cells create a
compact range without gaps. This compact range may not include all frequencies in the
spectrum Uc and thus it may leave some remnants of the patch even though the patch is
fully occluded. This happens in a case of patches that are further away from the plane κ.
We zero these frequencies because these frequencies allow a periodical copy of a patch to
influence the calculated optical field. As a consequence, if the patch is occluded completely,
its contribution Uc to the final optical field will be zero.

If, however, we consider a smaller sampling step, the solution is different.14 We begin
with the expression Eq. (4.15). Since sin θ < tan θ for θ ≥ 0, we have to evaluate it exactly
and therefore

mfg = M
Dx

λ

xg
rg
. (4.17)

As a consequence, frequency indices of neighbourhood centres are not distributed evenly
and sizes of frequency ranges are not constant. We calculate a corresponding range using
range of angles upon which is the patch seen from the cell as illustrated in Fig. 4.27. The
resulting ranges overlap each other slightly and they form a compact range without gaps if
united as illustrated with Fig. 4.28. Also, frequencies outside this compact range are zeroed.
Nevertheless, since we assume that occluded cells form compact neighbourhoods, we may
examine a patch just from a centre of a cell. This shrinks ranges such that they touch each
other without a gap. Except cells at the edge of the compact neighbourhood, this removes
the same range of frequencies. Hence, we use this approximation.

Now, let us expand frequency ranges to a 3D space. In a simplified case described by
Eq. (4.16), the problem is separable and the shape of a single range is a rectangle.15 However,
in a general case described by Eq. (4.17), the distance rg depends on both a relative location
of a cell along both the X-axis and the Y-axis and thus the problem is not separable. Shape of
a range is a slightly curved and skewed rectangle as illustrated with Fig. 4.28. Nevertheless,

14The smaller sampling step allows us to capture objects that are closer to the plane κ. Therefore, one can
assume that the smaller sampling step is more desirable.

15Actually, if we assume equal sampling steps along both axes, the shape of a range is a square.
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Figure 4.27: Angles used for an estimation of frequency ranges. If we had ignored the
diffraction at the edge of the cell, only the plane waves from a range [θ1, θ2] would have hit
the patch.

we can approximate these rectangles using a closed polygon of four edges of a diamond-like
shape.

Figure 4.28: Corners of original frequency ranges (gray dots) and corners of used frequency
ranges (black dots) including corresponding ranges (solid rectangles). In this case a patch is
closer than a distance given by the diffraction condition Eq. (2.24) and therefore some ranges
may overlap an edge of the angular spectrum (a dotted rectangle).

In order to introduce the method to the existing algorithm, we have to adjust step 5 and
steps 6–7 of the algorithm Alg. 2. The steps 6–7 apply the visibility map and we enhanced
steps 6–7 to calculate a frequency mask from frequency ranges. The step 5 calculates the
optical field values of a patch. We use the library of spectrums and thus the forward FFT has
to be executed only once per each spectrum in the library. Since the number of spectrums
is much lower than the number of patches, we can neglect execution time of the forward
FFT. Furthermore, the frequency masking operates directly in the angular spectrum and
as a consequence the inverse FFT has to be executed only once per optical field. Thus, an
execution time of FFT is neglectable if the frequency masking is used.

We tested the frequency masking using various scenes and two setups: one using a larger
sampling step and one using a smaller sampling step. Since the smaller sampling step is a
more general case, we focused on it. In the reconstruction, we sought for surface artifacts
and visibility artifacts.
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We tested the larger sampling step case using the sampling step of 7.0 µm, resolution of
6, 144× 6, 144 samples, a patch size of 32× 32 samples, and a library of 32 spectrums.16 We
calculated optical fields of the scene “Primitives2‡” using the frequency masking and using
the spectrum library. While looking for artifacts, we shifted slightly the optical field in the
XY-plane and reconstructed it using a lens.17 The results shown in Fig. 4.29 represents a
1, 500× 1, 500 samples from the centre.

Figure 4.29: Numerical reconstructions of the scene “Primitives2‡” using an optical field
shifted (a,d) by (16.1 mm, 0.0), (b,e) by (10.8 mm, 10.8 mm), and (c,f) by (0.0, 16.1 mm).
The optical fields in (a–b) were calculated using the frequency masking, the optical fields
in (d–f) were calculated using the spectrum library. All reconstruction focus the sphere at
0.725 m. Dashed parts shows either (a–c) the object that is in focus or (d–f) the requested
reconstruction.

The results shown in Fig. 4.29(a-c) are similar to the results calculated using only the
spectrum library depicted in Fig. 4.29(d-f). There is no visible overlapping or no obvious loss
of a patch. There is, however, disturbance on the surface. The surface seems to composed of
dots. Despite that the surface is not lost in blur or scattered and therefore we can assume
that the viewer will be able to detect the surface.

Also, unlike the spectrum library, the frequency masking loads leads to less noticeable
copies as shown in Fig. 4.29(d-f). This is caused by the fact that the frequency masking
attempts to remove all frequencies that might allow a neighbouring copy to contribute to

16Notice, that in such a case, the patch size is similar to the size of a contemporary LCD, i.e., 0.22 mm.
17Since the sampling step was large, we used an pinhole with a radius of 7.0 mm and the distance between

the lens and the projection plane was 0.1 m.
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the optical field. Therefore, while the neighbouring copy still exists, it might not receive a
contribution from the optical field during reconstruction.

We achieved similar results when we use a smaller sampling step. In such a case, we used
the scene “Primitives2” and a setup from Sec. 4.2.1.18 Unlike the larger sampling step, we
show a detail of 1, 024×1, 024 samples from the centre of the reconstructed image. Numerical
reconstruction are shown in Fig. 4.30.

Figure 4.30: Numerical reconstructions of the scene “Primitives2” using an optical field
shifted (a,d) by (0.7 mm, 0.0), (b,e) by (0.5 mm, 0.5 mm), and (c,f) by (0.0, 0.7 mm).
The optical fields in (a-b) were calculated using the frequency masking, the optical fields in
(d-f) were calculated without the frequency masking. All reconstruction focus the sphere at
12.0 mm.

We calculated optical fields using the frequency masking and using the spectrum li-
brary and we reconstructed these fields being shifted in the XY-plane. Results depicted
in Fig. 4.30(a-c) are very similar to results calculated using the spectrum library alone. The
only difference is the surface that seems to have a dot-like structure when enlarged as illus-
trated with Fig. 4.31. The difference between Fig. 4.29 and Fig. 4.30 is caused by a smaller
sampling step in the latter, a different aperture size and a different fB.19 Since there are no
artifacts except the multiple copies that are very weak, the frequency masking is acceptable
approximation.

18The setup was: a sampling step of 0.5 µm, a resolution of 4, 096 × 4, 096 samples, a patch size 32 × 32
samples, a library of 64 spectrums. The radius of the pinhole was 0.5 mm and the distance between the lens
and the projection plane was 2.0 mm.

19Both the value of fB and the aperture size cannot be made too small due to a sampling step of 7.0 µm
that is significantly larger than 0.5 µm.



Chapter 4: Detail Driven Generation 81

Figure 4.31: (a) A numerical reconstruction of the scene “Primitives2” using an optical field
calculated using the frequency masking and (b) a enlarged detail of the reconstruction. Notice
the structure the is present in the detail. The reconstruction focuses the cylinder at 8.0 mm.

Following the successful reconstruction, we did an experiment using a different definition
of M . We replaced the proposed definition of the patch described by Eq. (4.14) by the
original definition described by Eq. (4.3). We calculate optical fields of various scene and
reconstructed them. To our surprise, the results, which are shown in Fig. 4.32, did not
contain any significant visibility artifacts. Also, the illusion of the surface was not disturbed.
The results resembled reconstructions of optical field calculated using the spectrum library
alone. This means, the we might be able to use the original definition of the patch together
with the frequency masking. Despite that, we decided to use the new and safe definition of
M in the rest of the work.

Since we have shown that the frequency masking can provide working optical fields without
significantly disturbing artifacts, we can now measure the acceleration we achieved. We used
the setup of smaller sampling step and, as usually, we measured computation times using PC
Intel Xeon 3.2 GHz. We compared the measured times to computation times of the basic
method.

The measurements presented in Fig. 4.33 show an expected fact that there is a reduction
of a computation time that is better than in the case of the spectrum library presented in
Fig. 4.25. Also, measurements done with the grouping enabled correlate with results from
Sec. 4.2.1, i.e., the larger the group, the better the reduction. Despite that we reduce the
computation time by removing almost all FFT from the computation, the reduction did
not meet our expectations. As it was already discussed in Sec. 4.2.1, this is caused by a
lengthy calculation of the propagation kernel described by Eq. (4.4). We address this issue
in Sec. 4.2.4.

By applying the frequency masking, we excluded almost all FFT execution from calcu-
lation of the optical field. This reduces the computation time. At the same time, it might
cause a change in a distribution of the computation time among three major step of the
algorithm Alg. 2: calculation of the visibility map (step 3), calculation of an optical field
generated by a patch (step 5) and application of the visibility map (steps 6 and 7). Therefore
we checked time distribution between these components. Being illustrated with Fig. 4.34, the
computation of the optical field is still the dominant step. The only change happens when
the grouping is enabled and the size of the group is large. In that case, a larger amount
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Figure 4.32: (a-c) Numerical reconstructions of the scene “Primitives” focused at the cylinder
(12.0 mm) and (d-f) numerical reconstructions of the scene “StillLifeBunny” focused at the
corner of the table (9.0 mm). The optical fields were shifted (a,d) by (0.7 mm, 0.0), (b,e) by
(0.5 mm, 0.5 mm), and (c,f) by (0.0, 0.7 mm). All fields were calculated using the frequency
masking and a patch defined by the expression Eq. (4.3) instead of the expression Eq. (4.14).
The image is an area of 1, 300× 1, 300 samples.

Figure 4.33: A computation times of various scenes using the frequency masking with or
without grouping enabled. All times are relative to a computation time of the same scene
using the basic version of the algorithm. The maximum group size equals to a distance for
which propagation reduces to a phase shift.

of patches skips the step 5. Still, the optical field calculation is the most dominant step.
Therefore, we have to still focus further on acceleration of the optical field calculation.
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Figure 4.34: A distribution of computational time between steps of Alg. 2. If not noted
otherwise, all results we measured using the frequency masking.

Besides the acceleration, the proposed frequency masking has another feature that greatly
improves usability of the method. The original solution executes FFT frequently. 2D-FFT
accesses every item in the input matrix and therefore the input matrix has to fit into computer
memory.20 This limits the maximum size of the processed optical field. Since the frequency
masking does not require a transition to the spatial domain, we can process the angular
spectrum by tiles. This is based on an assumption that there are significantly fewer spectrums
in the library than the total number of patches. In such a case, the method can afford
expensive execution of FFT using the external memory. As a consequence we can add a large
frame of zeros about the patch and limit the influence of periodicity.

In this section we presented an acceleration approach that further extends the idea of the
library. We have shown that it can be combined with the grouping and we derived that it
can calculate optical field that are larger than available memory without an extensive data
transfer between the external memory and operating memory. However, this approach did
not reduce the dominance of the propagation step over the rest of the steps. Therefore, we
focus on the propagation further in the next sections.

4.2.3 Adaptive Sampling

In the previous sections we addressed acceleration of the propagation by removing individual
operations. We focused on reduction of FFT executions. In this section we address still
propagation but we focus on reduction of data that has to be processed. We show that by
applying a feature of the optical field we can significantly reduce computation times without
unnecessary degradation of the visual quality.

Let us describe the principle. Following the diffraction condition Eq. (2.24), the sampling
step defines the maximum frequency that can be captured by the field and as a consequence
it defines the maximum deflection angle. Thus, we can define a distance at which PLS can
contribute to all calculated samples of the field at the plane κ : z = 0 without a risk of an
alias. If PLS is closer than that, it will not contribute to all samples at the plane κ and we
shall not able to see the PLS from all available viewpoints.

20It is true, that 2D-FFT can be executed using 1D-FFT. 1D-FFT is executed over each row. Then, the
matrix is transposed and 1D-FFT is executed again. While the first and the third step can be done efficiently
using an external memory, the second step cannot because it requires frequent seek operations. Even though
there are various schemes, 2D-FFT requires still to access to all items of the matrix almost simultaneously.
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Reciprocally, we can calculate a maximum sampling step D′ that allows to capture PLS
at the distance z′ without aliasing as D′ = λ

2 sin θ′ , where

θ′ = tan−1 ∆
z′

(4.18)

is a deflection angle and ∆ = max(MDx, NDy). Thus, if D′ > max(Dx, Dy), we may
calculate a lower number of optical field values and resample the them later to fit the original
sampling steps Dx and Dy. This reduces the amount of data that has to be processed but
it adds resampling at the same time. Nevertheless, based on results of previous sections, we
presume that the resampling will cost less than propagation. Since the sampling step D′

depends on a distance z′ of a patch, we denote this acceleration approach as the adaptive
sampling.

Let us now assume that Dx = Dy in the following text, i.e., we shall used the sampling
step size D = Dx instead. The size D′ of the sampling step can be arbitrary but this will
introduce resampling issues. Therefore, we set the sampling step D′ to be an integer multiple
of both the sampling step Dx and the sampling step Dy.21 Furthermore, we decided to avoid
any other filtering in order to prevent discontinuities that lead to additional copies as shown
in [Onu07]. Therefore, we apply a convolution of the samples with the sinc function because
this approach does not cause additional noise. The convolution is done in the frequency
domain. FFT, which is used for this purpose, is most efficient if a number of processed
samples is two to power of some integer. Considering this and assuming that the resulting
grid contains two to power of some integer samples, we defined all possible sampling step
sizes as

Dω = 2ωD, (4.19)

where ω, ω ∈ Z is the zone number.

This splits the orthogonal distance from the plane κ to zones. A patch at the distance z′

from the plane κ belongs to a zone

ω =
⌊

log2

λ

2D
z

∆

⌋
, (4.20)

where ∆ = max(MDx, NDy), i.e., z′ ∈ [zω, zω+1), where zω is calculated using the expression
Eq. (4.18) and the sampling step Dω.22 If z′ < z0, we assume that it belongs to the zone
ω = 0. This simplifies the resampling even further as discussed below. Since this work is
actually a proof of a concept, we simplify the implementation as much as possible. Therefore,
we impose a limit on a maximum zone number ω such that the sampling step size Dω ≤ ED.

In order to calculate the zone, we calculate the sampling step D′ using the expression
Eq. (4.18) and we apply the sampling step to the expression Eq. (4.19). By default, we
assumed that ∆ = Dmax{M,N} in the expression Eq. (4.18). This is not necessary. Due
to a difference deflection angle, zone boundary distances zω of PLS located over the centre
might are different from distances zω of PLS aligned to the edge of the visibility grid. As
shown in Fig. 4.35, ranges of neighbouring zones overlap and thus we can us higher zones for
a given patch. Therefore, we redefine the distance ∆ = maxn{Xn} where Xn is a distance
between the patch orthogonally projected into the plane κ and a corresponding edge of the
visibility grid as depicted in Fig. 4.36.

21Even though this condition seems to be a little bit tricky in a general case, in our experiment we usually
assume that Dx = Dy due to the printing device.

22We can capture PLS using the sampling step Dω if the distance z′ between PLS and the plane κ is
z′ ∈ [zω, zω+1).
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Figure 4.35: A minimum distance for zones calculated using an optical field of 4, 096× 4, 096
samples and a sampling step D of either (a) 0.5 µm or (b) 7.0 µm. In both cases, the
wavelength is 635 nm.

Figure 4.36: A calculation of distances X0 and X1 along the X-axis. Distances X2 and X3

are calculated similarly along the Y-axis.

Each patch might require a different sampling step. Hence, in order to combine samples
of optical fields in grids of various sampling steps, it is necessary to resample them to match
the resulting grid of samples. Thanks to the definition of Dω in the expression Eq. (4.19),
all samples in the spectrum of a coarser grid of samples overlaps samples in the spectrum
of the resulting grid. Thus, in order to resample through the sinc function, samples of the
spectrum of the coarser grid are padded with zeros and converted back to the spatial domain.
If done improperly, this may change energy emitted by the processed patch. Therefore we
examine the effects of the used sampling scheme on the energy of a patch and we introduce
correction coefficients in following paragraphs. For simplification, let us assume that the
processed patch belongs to the zone ω and we denote this patch as the under-sampled one.

First, let us examine a plane that is immediately behind a patch because energy emit-
ted by the patch that arrives at this plane is the same as the energy that arrives at any
other plane. The arriving energy due to an under-sampled patch is eω =

∫
Pω
|u(x)|2dx ≈

D2
ω

∑
m

∑
n |umn|2, where Pω is an area of the patch, u(x) is a value of an optical field at a

point at the plane and umn is a value of a sample of the coarser grid at the same plane. Since
the plane is immediately behind the patch, the value umn is

|umn|2 =

{
Iω, if the sample is inside the patch
0, otherwise.

(4.21)

Since the intensity Iω is a multiplicative factor and it is constant for all samples in Eq. (4.21),
it can be removed and applied after propagation, i.e., we shall replace Iω by 1 in Eq. (4.21)
for purpose of the following text. Hence, the energy of the patch is eω = D2

ω( E2ω )2. As-
suming a normalized DFT, the Parseval’s theorem [Smi97] states that

∑
m

∑
n |umn|2 =∑

m

∑
n |fmn|2 = ( E2ω )2, where fmn is a sample of the spectrum. Since the propagation mod-

ifies just the phase, the energy is the same at any distance from the patch. By adding zeros
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during the resampling, the energy of the patch becomes e′ = D2( E2ω )2 6= eω. Thus, every
sample fmn of the spectrum has to be multiplied by 2ω before the resampling.

Since Dω ≥ D, the angle θω defined by the diffraction condition Eq. (2.24) applied with
the sampling step Dω is θω ≤ θ. Hence, the under-sampled patch spreads its energy over a
smaller area. As a consequence, if both the original and the under-sampled patch contribute
with the same energy, by applying an aperture such as the pupil of an eye, the under-sampled
patch becomes brighter. Since this is not acceptable, the energy of the under-sampled patch
has to be reduced.

Following Eq. (4.21), energy emitted by a patch is IE2D2, where I = |umn|2 is constant.
In the case of the patch, energy that arrives at the plane κ is IE2D2 = I ′a, where a is
area of a base of the pyramid at the plane κ as illustrated in Fig. 4.37. In the case of the
under-sampled patch, the energy that arrives at the plane κ is the same and it is I ′ωaω. A
hologram, however, captures only a fraction of bases of both pyramids. As a consequence, the
under-sampled version is reconstructed with higher amount of energy, i.e., it appears brighter.
In order to avoid such an unwanted artifact, intensity Iω of a sample of the under-sampled
patch has to be

Iω = I
aω
a
, (4.22)

where a = (z sin θ + ED)2 and aω = (z sin θω + ED)2 are the areas of the pyramidal bases.
As a consequence, the amplitude of a sample of the under-sampled patch is |umn| = (I aωa )1/2.

Figure 4.37: A pyramid defined by a patch and a diffraction condition.

The adaptive sampling is compatible with the library of spectra. However, the library of
spectra contains spectra of fields sampled with a finer sampling step D. Thanks to Eq. (4.19),
samples of a spectrum corresponding to the sampling step Dω overlap samples of a spectrum
corresponding to the sampling step D. Hence, the requested spectrum can be created by
zeroing samples that corresponds to higher frequencies. Such an approach, however, fails to
comply with Eq. (4.22). After zeroing the frequencies, energy emitted by the patch becomes
êω = (Dω)2Îω, where Îω =

∑
m

∑
n |fmn|2 is a sum of non-zero samples of the spectrum,

instead of eω = IωE
2D2 that is requested energy of the under-sampled patch. Hence, in

order to satisfy Eq. (4.22), an amplitude of every sample has to be multiplied by a coefficient
cω, where c2

ω = eω
êω

. Applying the assumption that intensity |umn|2 of a sample of the patch
is either 0 or 1 if sample is inside the patch, amplitude of every sample of the spectrum of
the under-sampled patch has to be multiplied by a coefficient

cω =
E

2ω

(
aω
a

1
Îω

)1/2

. (4.23)

In order to implement the adaptive sampling, the algorithm described in Alg. 2 has to
be modified only slightly. Both the visibility test and the visibility application stays almost
the same. We add a resampling sub-step to the visibility application step in the algorithm
Alg. 2. Also, we modify the patch creation step of the algorithm Alg. 2 by calculating the
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zone number ω for each patch. For that purpose we use the expression Eq. (4.18). Even
though the expression can be simplified in a case of a large sampling step, we did not apply
it because calculation of the zone number is executed only once per patch.23

The resampling sub-step samples an optical field of a patch using the sampling step
D. This allows to sum fields calculated with various Dω together. In order to avoid long
computation times, we decided to sacrifice additional memory. We accumulate separately
optical fields generated using a given sampling step Dω and resample them all at once after
all patches are processed. Since Dω = 2ωD, this approach increases memory consumption by
one third of a size of an optical field.

Let us now test the proposed acceleration approach. We calculate 4, 096× 4, 096 optical
field values using a patch size of 32 × 32 samples and a the sampling step of 0.5 µm. If not
noted otherwise, this setup is used by all other tests.

First, we test whether the adaptive zones will have impact on calculation time for testing
scenes. As it is shown in Fig. 4.38 most of the scene spans over multiple zones and therefore
we can expect decrease of the calculation time. Notice that most of scenes are further such
that they do not occupy the zone ω = 0, i.e., these scenes could be processed using larger
sampling step by default. Therefore, we scaled some scenes and shifted them along the Z-axis
so that the span of the scenes includes the zone 0. If not noted otherwise, we distinguish
these scene using a symbol ∗ in a superscript, .e.g., the scene “Primitives∗” is an adjusted
version of the scene “Primitives”. As it is shown in Fig. 4.38, these scene occupy the zone 0
and hence they allow us to demonstrate an impact of the adaptive sampling.

Figure 4.38: A distribution of patches into zones for various scenes.

Next, we verify an impact on the visual quality. We used scenes “Primitives” and “Primi-
tives2” because these two scenes spans over the highest number of zones as shown in Fig. 4.38.
We compared numerical reconstruction of optical fields calculated both with and without the
adaptive sampling. The calculation applies a library of 64 spectrums without the frequency
masking. Since we focus the cube that is obscured by other objects, we shift the field by
(−0.2 mm,−0.2 mm) before the reconstruction. The result, which is presented in Fig. 4.39
shows no obvious degradation. The object in focus can be recognised and there is no disturb-
ing intensity artifact. The most significant difference, which is visible in Fig. 4.39, is a lack of
some copies. This is a side-effect of the increased sampling step. When the step is increased,
the hologram cannot diffract the light towards the copy as it would have been possible if a
smaller sampling step had been used.

23A sampling step size that is large enough is a step size such that sin θ ≈ tan θ, where θ is the deflection
angle.
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Figure 4.39: Numerical reconstruction of either (a, b) the scene “Primitives” or (c, d) the
scene “Primitives2”. The optical fields were calculated either (a, c) using the basic version or
(b, d) using the adaptive sampling. Dashed circle emphasise the object in focus. The images
represent an area of 1, 024× 1, 024 samples from the centre.

Finally, we tested the impact of the acceleration approach on the calculation time. For
that purpose we used the same scenes, i.e., the scenes “Primitives∗” and “Primitives2∗”. For
completeness, we include original versions of these scene. The results presented in Fig. 4.40
are relative to the calculation time of the basic version. Following results shown in Fig. 4.38,
reduction of the computation time depends on distribution of patches into zones, i.e., the
more patches in higher zones, the more significant is the reduction. Nevertheless, even if
some patches occupy the zone 0, the reduction is significant.

Figure 4.40: A computation times of various scenes using the adaptive sampling. All times
are relative to a computation time of the same scene using the basic version of the algorithm.
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Since we apply a different sampling step size in every zone, we can define a different
maximum group size without slipping to an ad-hoc approach as discussed in Sec. 4.2.1. Using
the spectrum library with the adaptive sampling, we measured influence of the grouping
on the computation time. The results in Fig. 4.41 shows that the grouping influence has
increased. The results correlates distribution of patches into zones depicted in Fig. 4.38. The
more patches in higher zones, the better efficiency of the grouping. Despite that the ad-hoc
approach is more efficient, in Sec. 4.2.5 we shall show that the efficiency is almost similar the
grouping with a maximum depth size depending on a sampling step size.

Figure 4.41: A computation times of various scenes using the adaptive sampling and grouping
with various maximum group depths. All times are relative to a computation time of the
same scene using the basic version of the algorithm.

Since we reduced the number of samples, we measured whether we still have to focus on
propagation. According to our measurements shown in Fig. 4.42, the propagation is still the
largest fraction of the calculation time. As a consequence, we shall focus on the propagation
step even further.

Figure 4.42: A distribution of the calculation time between steps of the algorithm Alg. 2
for various scenes and various applied acceleration approaches. All measurements uses the
adaptive sampling. The basic sampling size is 0.5 µm. The measurements were done one PC
Intel Xeon 3.2 GHz.

In this section we presented an acceleration approach that uses an adaptive sampling
step calculated from a distance of the path. Even though we limited all possible sizes of
the adaptive step, we still get significant reduction of calculation times. Furthermore, the
approach is compatible with all other acceleration approaches and thus it can be applied
together with them.
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4.2.4 Low-level Optimisation

In the previous sections we identified the propagation step of the algorithm Alg. 2 as the most
time consuming one and we address this issue. In this section we focus the calculating of the
expression Eq. (4.4). We modify the calculation to use a single-precision float point data type
(floats) and we show that we can use only 32-bit integers to evaluate. Such a modification
is crucial for an efficient usage of hardware acceleration through a programmable hardware
(FPGA) [IMY+05], streaming SIMD extensions (SSE) [Int07], and graphical processing unit
(GPU) [NVI08].

In Sec. 4.2.1 we discussed the fact that application of the phase shift coefficient defined by
Eq. (4.4) costs almost the same computation time as it does the rest of the propagation step,
i.e., two FFT. The phase shift is plain piece-wise matrix multiplication, which is much simpler
than FFT, but it uses a double-precision floating point data type (doubles) for accuracy
reasons and it executes functions such a square root, a cosine, and a sine. This slows down
significantly evaluation of the expression Eq. (4.4).

First, we address the issue by replacing the sine and the cosine function with two tables.
Due to performance reasons, we do not assume any interpolation during extracting of a value
from the tables. Following consideration about an acceptable phase error in the Fresnel ap-
proximation [Goo05], we set the length of the table Nsincos to Nsincos ≥ 29. As a consequence,
the quantisation error is approximately 0.7◦ � 1 rad. Since the sine function is just a shifted
cosine function, we refer to both tables as the sine/cosine table.

Next, we adjust the phase shift 2πφz caused by the distance z to use floats. Following
the expression Eq. (4.4), the phase shift is a multiplication 2πφz = zkz, where zk ∈ [0, 2π

λ ]
is a component of a wavevector k. Let us discuss a direct application of floats. Since the
wavelength λ ≈ 10−7 and the phase shift is used as an argument of a complex number, only
a fractional part of 1

2πzkz is actually needed. The integer part, however, occupies a larger
number of bits. In our case the distance z ≈ 10−1 and thus the integer requires approximately
20 bits. Since the mantissa of floats has 24 bits [IEE85], a maximum rounding error is 2−4.
Interpreted as an argument of the cosine function, it equals to an error of up to 11◦ that
much close to 1 rad that the quantisation error discussed above.

Despite that the error seems to be high, we examined it by an experiment. For that
purpose, we reformulate the phase shift zkz to a form 2πzλtz, where zλ = z

λ . Since we
replaced both the sine function and the cosine function with tables, we can drop 2π. Besides
that, we pre-calculate tz into a table.

Using the above specified scheme, we propagated a patch. Since we wanted to examine
the accuracy, we chose to use a short wavelength of 471 nm. This wavelength corresponds to
a blue color and it might be taken as the shortest wavelength used for color holograms. Also,
we put the patch at the distance of 0.8 m that can be considered a boundary distance for
viewing purposes. As a consequence zλ = 1.7×106 ≈ 221. Besides that, we aligned the patch
to the corner of the boundary rectangle of optical field samples. This eliminates influence
of the shift theorem. Following parameters used in this work, we set the sampling step to
0.5 µm, intensity at every sample of the patch to 1.0 and we used a random phase variation
of the patch.

We propagated the calculated optical field values back to the patch and we examined
intensity because it is the only directly measurable quality of the optical field. We did not
apply any lens or aperture because they were not necessary. As depicted in Fig. 4.43(b),
the patch is modulated a light noise but the shape is not deformed. Since we know the
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exact result of the reconstruction, we can calculate a mean square error (MSE) to express
numerically influence of the error. MSE is MSE = 1

MN

∑
m

∑
n(|umn|2−|vmn|2)2, where vmn

is a optical field value calculated using doubles and umn is calculated using floats. In this
case, MSE = 3.7 × 10−7, i.e., it is very low. Thus, as long as the patch is closer than 0.8 m
to the hologram plane κ, it seems that we can use floats.

Figure 4.43: A enlarged detail of a numerical reconstruction. The reconstruction was calcu-
lated from an optical field of a patch calculated (a) using a full evaluation of the expression
Eq. (4.4) with doubles and (b) using tables with floats.

This success is caused by a range of tz. Since, tz ∈ [0.7, 1.0] ≈ 2−1, the exponent of the
floating point number is constant with a single exception at tz = 1.0. As a consequence, the
rounding error of tz is similar for all frequencies and we can interpret it as a slight variation
of the distance z in fractions of the wavelength, i.e., the patch is only slightly modulated by
noise.

Even though our experiments showed only a slight noise modulation, we proposed an
adjustment that improves accuracy. The accuracy issue is a consequence of a large integer
part in expression φz = zλtz. While designing the sine and the cosine table, we declared a
minimum table length Nsincos ≥ 2−9. Thus, we have to assure that the rounding error of the
phase φz is equal or less than 1

Nsincos
, i.e., the representation of the phase φz has to contain

at least χ bits in the fractional part where 2χ = Nsincos.24 Then, if zλ ≤ 2X−χ where X is
a bit length of mantissa, we may calculate safely φ using only the multiplication. However,
this might limitation that is too strict. Let us demonstrate it using the shortest considered
wavelength of λ = 471 nm, χ = 9 as the minimal bit length of the sine/cosine table, and
X = 24 for floats. In order to calculate an optical field using this setup we have assure that
every patch is closer than z ≤ 15.4 mm. Such a distance is too short for some scenes used in
this work.

Therefore, we propose a redefinition of the distance zλ as zλ = żλ + z̄λ × 2X−χ, where
żλ < 2X−χ and z̄λ is integer. When multiplied by tz, z̄λ × 2X−χtz shifts the decimal point
of tz by X − χ bits right by default. Since z̄λ is an integer and we need only the fractional
part of φz at the same time, the integer part of 2X−χtz can be dropped. As a consequence,
φz = żλtz + z̄λt̄z, where t̄z = frac(tz2X−χ). Theoretically, the only limitation of the scheme is
that zλ < 22(X−χ), i.e., for the setup λ = 471 nm, X = 24, and χ = 9 this means z < 505.7 m.
This is far beyond the considered distance for viewing purposes.

24We can assume this because zλ is constant and tz ∈ [0, 1].
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We tested the proposed solution using a propagation of a patch at 0.8 m and we obtained
MSE of 2.0×10−12 that is much lower than in the case without split zλ. Thus, we succeed to
improve the accuracy. The only price that we have to pay for that is additional multiplication
and one additional table of t̄z. The measured impact on the calculation is discussed later in
this section.

Now, let us examine the shift theorem part of the expression Eq. (4.4). The theorem is
separable in variables x and y and therefore we shall discuss only the X-axis case. Since we
apply the result of the theorem as an index to the sine/cosine table, the shift theorem is
ηs EMNsincos, where η is a frequency index along the X-axis, s is a coordinate of a cell gst and
Nsincos is a length of the sine/cosine table. Since we aim to calculate large optical fields of
M ×N samples, M > 29 and we can assume that Nsincos = max{M,N}. As a consequence,
the theorem becomes ηsE, where both the index η and the coordinate s are integers. Since
we need just χ lower bits of ηsE, we can calculate it using 32-bit integers. The only limitation
of the scheme is that M has to fit into a 32-bit integer, i.e., the edge of a hologram is limited
to 1010 m for a sampling step of 0.5 µm. This is more than sufficient for purposes of this
work.

We have shown that the shift theorem can be evaluated in 32-bit integers. Furthermore,
we can show that the phase shift φz can be evaluated using 32-bit integers too. Since we need
just the fractional part of φz, multiplication zλtz can be done in 32-bit integers if and only
if both the fractional part of tz and fractional part zλ fit altogether in 32-bits. Under such
condition, the overflow influences only the integer part of the result that we drop anyway.
Since zλ is a distance, a rounding error of zλ is just a shift by a fraction of a wavelength along
the Z-axis and thus we can assign zλ much shorter fractional part.

We test the proposed solution using the same setup as in the previous cases, i.e., a patch
at a distance of 0.8 m. We assigned 28 bits to a fractional part of tz and 3 bits to a fractional
part of zλ. The resulting MSE of 5.8× 10−8 is better then in a version using floats but it is
worse than a version that uses a slit up zλ. Hence, the improvement is caused by additional
bits available for representing tz. The limitation of the scheme is that the distance zλ has to
fit into 32-bit integer including the fractional part. If we left 3 bits for the fractional part
and we use a wavelength of 471 nm, z < 126.4 m. Such a limitation is far beyond considered
distanced for viewing purposes.

In order to test the proposed solution we used the version with the highest MSE, i.e., the
version with a compact zλ and floats. We used two setups. In both setups we use a wavelength
of 635 nm. First, we took a small sampling step of 0.5 µm and a scene “Primitives” whose
furthest object is at 30.0 mm. In such a case, the distance z is only slightly larger than the
distance that allows a direct use of multiplication. Next, we took a larger sampling step of
7.0 µm and a scene “Primitives2‡” whose furthest objects is at 0.8 m. In such a case, the
distance zλ is large and a difference between tz for neighbouring frequency indices is in lower
bits since tz ∈ [0.99, 1.00], i.e., the accuracy of tz will influence the result significantly.

We reconstructed the fields using a lens and a pinhole and we compared them visually
to reconstruction from fields that were calculated using doubles. In both setups we focused
the furthest object.25 The results calculated from the scene “Primitives” show no visible
difference. Unlike that, results calculated from the scene “Primitives2‡” depicted in Fig. 4.44
contain loss of details around the rim of the teapot lid. The detail in Fig. 4.44(c) shows

25For a sampling step of 0.5 µm, we used a pinhole with a radius of 0.5 mm and we shifted the optical field
in the XY-plane such that the focused object (the torus) was not obscured significantly. For a sampling step of
7.0 µm, we did not use a pinhole and similar to a previous case, we shifted slightly the field in the XY-plane.
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additional noise. Besides that, the surface of the teapot is not disturbed and there are no
intensity artifacts as illustrated in Fig. 4.44 (b). Nevertheless, since the size of the gap is
comparable to the size of the patch, we can neglect the error. Thus, it seems that the use of
floats and tables can lead to recognisable results even for larger scenes. However, as we show
below, the performance impact of slit zλ can be neglected.

Figure 4.44: Numerical reconstructions of the scene “Primitives2‡” that is focused at the
teapot (0.8 m). Numerical reconstructions uses optical fields that were calculated either (a)
using doubles for evaluation of the expression Eq. (4.4) or (b, c) using floats and tables. (c) A
detail, which is emphasised by a dashed rectangle in (b), shows additional noise in the gap at
the rim. The shape in (c) bounds the gap that is clearly visible in (a). The result represent
an area of 1, 024× 1, 024 samples from the centre.

As shown in Fig. 4.45, the improvement of the computation time is approximately 2/3
of the calculation time using doubles.26 Even if we used the version with the split distance
zλ, we obtained similar reduction of the calculation time. Hence, the split zλ can be used
without a significant negative effect on performance. Since we reduced the calculation time
of the propagation step, we measured distribution of times between steps of the algorithm
Alg. 2. As shown in Fig. 4.46, the ratios did not change and therefore there is still no need
to accelerate other steps than the propagation one.

Figure 4.45: A comparison of calculation times. All times are relative to a corresponding
calculation time using doubles.

In this section we presented acceleration through using of a shorted data type. We showed
that the evaluation of Eq. (4.4) can be done using 32-bit integers or floats. This allows us to

26For measurements, we used the same PC as in the previous cases, i.e., PC Intel Xeon 3.2 GHz.
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Figure 4.46: A distribution of calculation time into steps of the algorithm Alg. 2.

use hardware acceleration means such as FPGA, SSE, or GPU. The presented acceleration
can be combined with other approaches to reduce the computation time even further. This
fact is discussed in a following section.

4.2.5 Summary

In the previous section we presented approaches that decreases computation time. Some
approaches are more efficient, some less. In this section we show that these approaches can
be combined and their effect on the computation time is cumulative. This section closes the
discussion about considered acceleration approaches of the detail driven method.

Following measurements from the table Tab. 4.3, we focused on acceleration of the prop-
agation step. We measured reduction achieved by proposed approaches by calculating opti-
cal fields of 4, 096 × 4, 096 samples. For that purpose we used a sampling step of 0.5 µm
and scenes: “Primitives”, “Primitives2”, “Bunny”, “StillLifeBunny”, “Primitives∗”, and
“Primitives2∗”.27 We chose to use a patch resolution of 32 × 32 samples because if we
had used a sampling step of 7.0 µm, the size of such a patch would have been equal to a pixel
size of a contemporary 17” LCD display.

Similar to previous sections, we expressed the measured times as a fractions of correspond-
ing times of the basic version. The table Tab. 4.4 summarised worst-case acceleration for all
discussed approaches. Since some approaches can be combined, we presume that maximum
reduction of the calculation time is 12 % without the frequency masking and 8 % with the
frequency masking. We verified the presumptions by an experiment.

We verified the presumption calculating optical fields of 4, 096× 4, 096 samples from the
scene “Primitives∗”. Since we presumed a different reduction of the calculation time for a
case with the frequency masking and without it, we measured two sets of results on PC Intel
Xeon 3.2 GHz. For each measurement we enabled an additional acceleration approach and
we present the measured times in Fig. 4.47. Thus, by applying all acceleration approaches
we were able to reduce the time to 9.8 % with the frequency masking and 15.6 % without it.
This correlates with the presumption and thus we can state that individual approaches does
not influence each other significantly.

Since we aimed the propagation step most of the time, we verified whether it is not
necessary to accelerate other step as well. As showed in Fig. 4.48 the propagation step is

27Following the section Sec. 4.2.3, we denote scenes that were shifted and scaled in order to occupy the zone
0 by a symbol ’∗’ in superscript.
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Table 4.4: The worst-case reduction of a computation time using proposed accelerations. All
values are relative to a computation time of the basic version and rounded up. If a library is
applied, it will contain 64 spectrums.

The acceleration approach Reduction
The library 76 %
The frequency masking with the library 52 %
The adaptive sampling 24 %

with the grouping 19 %
Propagation using floats and tables 82 %

Figure 4.47: Calculation times of the scene “Primitives∗” measured with and without the
frequency masking and other acceleration approaches. The library consists of 64 spectrums
and all times were measured using PC Intel Xeon 3.2 GHz.

still the most time consuming one. In the case of the scenes “Primitives”, “Primitives2”, and
“StillLifeBunny” the propagation step is reduced much more but it is just a side-effect of the
minimum distance in the scene. As discussed in Sec. 4.2.3 and illustrated with Fig. 4.36, no
patch of these scenes occupies the zone 0. Therefore, they cannot be used a representative
case and thus it is meaningful to address the propagation part in the future work.

Figure 4.48: A distribution of the calculation time between steps of the algorithm Alg. 2
for various scenes. All measurements use the frequency masking with applied acceleration
approaches such as the grouping, the adaptive sampling, and propagation using floats and
tables. The basic sampling size is 0.5 µm. The calculation were done one PC Intel Xeon
3.2 GHz.
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By applying all acceleration approaches, we reduced the computation time significantly
as illustrated with Fig. 4.49. The scenes “Primitives”, “Primitives2”, and “StillLifeBunny”
are accelerated more than the rest because they do not occupy the zone 0 as it was discussed
in Sec. 4.2.3. Furthermore, the results in Fig. 4.49 shows that the final impact of the add-
hoc maximum group depth differs from impact of the maximum group depth based on the
sampling step size by less than a percent. This is caused by the fact that the grouping affects
only propagation of a patch, the rest of steps has to be executed without any reduction. Since
we reduced computation time spend on propagation, we reduced the impact of the grouping.

Figure 4.49: Computation times of various scenes using both the grouping with different
maximum group sizes and the frequency masking with applied acceleration approaches. All
times are relative to a computation time of the same scene using the basic version of the
algorithm. The calculation were done on PC Intel Xeon 3.2 GHz

Besides the reduction of the time we have to address the visual quality of reconstructions.
For that purpose we calculated optical fields of scenes “Primitives∗” and “Primitives2∗” with
the frequency masking as the most efficient approach. Since the latter scene contains small
objects, which might be significantly disturbed by the frequency masking, we also included
the scene “Primitives2”. We reconstructed the optical field using lens28 and we compared
the reconstructions visually with the results without the acceleration approaches enabled.
In all reconstructions we focused the cube. As shown in Fig. 4.50, no shape of object in
focus exhibits any deformations. Also, we do not observed any significant overlapping or any
significant hole caused by visibility error. With an exception of Fig. 4.50(b) there are no
significant intensity artifacts. The intensity artifacts in Fig. 4.50(b) are caused by the fact
that the object is too small for the frequency masking and these artifacts are not present
using the enlarged scene in Fig. 4.50(c).

Throughout the sections about the acceleration, we did not address directly use of brute
force acceleration approaches through distributed computing, CPU streaming SIMD exten-
sions, and graphical processing unit (GPU) because it is an implementation issue. The
structure of the algorithm Alg. 2 allows independent processing of patches. In fact, patches
can be processed in any order and we utilise this fact to implement efficiently the proposed
acceleration approaches. This feature is similar to the ray-base solution [JHO08] in which we
have shown that distributed environment leads to almost linear reduction of the calculation
time.29

28The radius of the pinhole was 0.5 mm and the distance between the lens and the projection plane was
3.0 mm.

29In another words, by implementing the approach on a cluster of computers we would have verified an
obvious fact. As a consequence we would have wasted valuable time on doing stuff that has only a little, if
any, potential for scientific publication.
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Figure 4.50: Numerical reconstructions of optical fields calculated from scenes: (a,d)
Primitives∗, (b,e) Primitives2∗, and (c,f) Primitives2. The optical fields were calculated
using either (a–c) the basic (non-accelerated) version or (d–f) the frequency masking
with all acceleration approaches enabled. In all cases, the optical fields were shifted by
(−0.2 mm,−0.2 mm) and we focused the cube at (a,d) 9.0 mm, (b,e) 5.0 mm, (c,f) 10.0 mm.
The image represents a square of 1, 024× 1, 024 samples containing all objects of the scene.
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In this section we showed that we can combine the acceleration approaches freely and
that their effect are cumulative. Even though the resulting calculation is approximately just
10× faster than the original algorithm, the reduction is significant in absolute numbers. This
closes the discussion about the acceleration of the detail drive method. Other possible means
such as a programmable hardware should be considered as a future work.

4.3 Pillar Sidewalls

The presented method decomposes the virtual scene to patches and we process them sepa-
rately. While this allows efficient acceleration, it also causes the major weakness. We process
only patches and use parallel and orthogonal rays to create them. As a consequence, we
are not able to capture properly large planes that are almost perpendicular to the hologram
plane. In this section, we address this weakness. We propose to use additional patches and
we show that such an approach is able to significantly reduce this weakness of our method.

The method decomposes the scene into pillars and it assigns a patch to each front cap
of a pillar. However, this ignores sidewalls of pillars. As a consequence, a patch that is long
enough and that is at sides of an object will prevent light from passing trough but it will not
emit light. In this text, we refer to this artifact as the black hole. While this would not be a
problem in a case of a single standalone pillar, in a case of a group of such pillar, the resulting
effect might be disturbing for a viewer. Thus, we have to add an emitter to a sidewall of a
pillar.

We examined two approaches: using sidewall segments and using auxiliary patches. The
sidewall segment approach is the most straightforward one. We introduce an emitter in a
shape of a sidewall for each sidewall. While this solution seems to be perfect, it has two issues:
calculation of an optical field generated by a sidewall and estimation of sidewall visibility.
The latter is caused by a size of a sidewall. We expect that pillars causing dark holes are long
and thus we cannot approximate the visibility of a whole sidewall by a single boolean value.
Therefore, we have to split a sidewall to sidewall segments and we estimate the visibility of
each segment independently. In order to minimise overlapping due the visibility estimation,
we limit the size of a sidewall segment to a size of a patch. Hence, there is a high probability
that we will generate a lot of sidewall segments per a pillar.

The issue of optical field is caused by the spatial structure of the sidewall segment. A
sidewall segment is a part of a plane perpendicular to the plane κ. Despite that, we cannot
just rotate the angular spectrum as it is proposed by the wave-based methods described
in Sec. 3.1.2. This is caused by the fact that FFT assumes periodicity, i.e., the segment is
repeated infinitely on the plane perpendicular to the plane κ, at which we evaluate the optical
field. This effect cannot be avoided, it can be only reduced by padding the segment by zeros.
Even in this case, copies will be still present. Thus, we have to use a cloud of PLS and a
geometry-based method that are very slow. This will increase calculation time. Nevertheless,
we can significantly reduce its influence by pre-calculating optical field of sidewall segments
and reuse them as a part of the spectrum library described in Sec. 4.2.1.

Facilitating the spectrum library, we have to have additional data files that depends on
resolution of the optical field and the sampling step. Besides that, we presume that a regular
scene will require a large number of sidewall segments because a size of a sidewall segment is
similar to a patch size and depth of a scene is much greater than the patch size. This might
harm the performance and thus we searched for another solution that is able to adaptively
distribute additional structures and that does not need any other shape than a patch. Since
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the patch is parallel with the plane κ, it is both faster and less prone to error to calculate
optical field of a patch than it would have been if the patch had been a rotated plane as it
was discussed in Sec. 2.2.3.

Let us examine the purpose of an emitter. A structure used as an emitter has to assure
that any ray that is shot from an optical field sample towards the scene will hit the structure
prior entering a volume of an object. Observing this, we decided to distribute patches along
the pillar that is at the edge of an object and use these patches as emitters. We denote these
additional patches as the auxiliary patches.

The distance between auxiliary patches is given by rays shot from edges of a bounding
rectangle that encloses optical field samples. No other ray that hits the auxiliary pillar have
a larger angle from the normal of the plane κ. Illustrated with Fig. 4.51, the distance Dn

between two consecutive auxiliary patches en and en+1 that are generated inside a pillar pdlo
is

Dn+1 = xc tanαn+1,

αn+1 =
1
z

(zdlo + zn),

zn+1 = zn +Dn+1, (4.24)

where the initial distance z0 is z0 = 0, zdlo is an orthogonal distance between the patch edlo and
the plane κ, xc = min{Dx, Dy}E is the minimal size of a patch, and x = max{l+L/2, o+O/2}
is the maximum distance to the edge of the bounding rectangle of the visibility grid containing
L×O cells. Notice that our definition of the distance Dn assures that the auxiliary patches
are sparser with increasing distance from the plane κ.

Figure 4.51: Distribution of auxiliary patches inside the pillar pdlo.

Since an auxiliary patch en inside the pillar pdlo is similar to a regular patch, we use
almost the same approach to estimate the visibility. The only difference is that we remove
temporarily the pillar pdlo prior the evaluation. As illustrated with Fig. 4.52, we can estimate
the visibility accurately only for a the cell glo. The rest of cells lays in a half-shadow created
by the preceding auxiliary patch en−1, where e0 = edlo. Since we do not support a partial
visibility in the method, we decided to follow the visibility test of the method, i.e., an auxiliary
patch will be fully visible if the centre of the auxiliary patch sees the centre of a cell. However,
introduces overlapping artifacts that we shall discuss later.

We generate auxiliary patches just after we create pillars. After calculating a location of
an auxiliary patch inside the pillar, we test whether it is not surrounded by other pillars in
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Figure 4.52: Partially occluded auxiliary patches. Decreasing the angle between a direction of
a ray and the normal of the plane κ, the dashed lines show the first ray that hits an auxiliary
patch from the edge of the hologram.

the 4-neighbourhood.30 If it is not surrounded, we estimate intensity of the patch and set its
phase variation, otherwise we drop the auxiliary pillar.

Similar to regular rays, we estimate intensity of auxiliary patches through ray-casting. We
shoot rays from a centre of a patch along the X-axis and the Y-axis and at the intersection
point with the object, we calculate intensity as illustrated with Fig. 4.53. In general case,
we have to shoot four rays per an axis per a patch. Following the 4-neighbourhood test, we
shoot only two rays usually. If we retrieve multiple results due to multiple rays in multiple
axes, we select an intersection that is closest to centre of the ray. This might be similar to
a random-like picking of an intersection. However, we can afford it because our methods
ignores details and intensity variations that are smaller than a patch.

Furthermore, since we shoot rays along axes and origins of rays is at centre of patches,
we can search for intersection in 2D. Let us now examine only rays along the X-axis. We
slice the scene by the plane µo : x = (o + 1

2)EDy and use the slice to calculate intersection
between the scene and rays generated from auxiliary patches inside pillars pdlo, for all d and
for all l ∈ [−L

2 ,
L
2 −1]. The approach for Y-axis rays is similar. Since the slice are equidistant,

we employ a fast iterative slicer [JHS06].

We assume a diffusive surface. Thus, we use a random phase variation on an auxiliary
patch. Nevertheless, a random phase variation is not as appropriate for this purpose. A
random phase causes that a patch emits lights in almost every direction. Applied to auxiliary
patches, we might experience overlapping of auxiliary patches in reconstructions. Hence, we
have to modulate the phase variation of a patch. This is a problem of digital diffusers. Since
digital diffusers are out of scope of this work, we shall not address the issue here.

Since an auxiliary patch is handled similar to a regular patch, we can expect increase
of computational time. The increase will depend on amount of auxiliary patches. For that
purpose, we checked a number of additional auxiliary patches for various testing scenes. As
it can be seen in the table Tab. 4.5, most of the scene has a low number of auxiliary patches.
The only exception is the scene “Bunny”, where the majority of auxiliary patches fill the
base of the bunny. Thus, for testing of influence on a visual quality, we shall use only the
scene “Bunny”.

30We do not expect a chessboard like structure created by pillar. If, by any occasions, such a structure
appear, the visibility test will prevent a hidden auxiliary patch to influence the result.
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Figure 4.53: Obtaining intensity of an auxiliary patch from known location of the auxiliary
path inside a pillar.

Table 4.5: Increase of number of patches due to additional auxiliary patches and a maximum
number of auxiliary patches per a pillar. All scenes fit an optical field of 4, 096 × 4, 096
samples. Scene are ordered according to the increase of the auxiliary pillars.

Scene Original patches Auxiliary patches Max. per a pillar
Bunny 4067 45.8 % 18
StillLifeBunny 4291 16.1 % 15
Primitives2 5738 15.1 % 6
Primitives 7999 6.6 % 10
Chess 3873 0.1 % 3

Besides the scene “Bunny” we included a special scene that contains a cube perpendicular
on the plane κ. This scene is rather artificial but it represents the most inappropriate object,
i.e., the worst case. Furthermore, we distributed some smaller objects around the cube to
test visibility of auxiliary patches. In this text, we denote this scene as the scene “Cubes”.

In order to show the perpendicular parts without being disturbed by copies, we scaled
the scenes such that their orthogonal projections onto the plane κ fit to a rectangle defined
by a grid of 1, 024 × 1, 024 samples. We denote such scaled scenes with a symbol “†” in
a superscript. We calculated na optical field of 4, 096 × 4, 096 samples using the sampling
step of 0.5 µm and reconstructed them numerically using a lens.31 Reconstructing the scene
“Cubes†”, we shifted the lens to (−0.3 mm, 0.3 mm) and we focus at the second object, i.e.,
at 2.0 mm. This allowed one of objects to occlude some of auxiliary patches and thus we could
test the visibility. Reconstructing the scene “Bunny†”, we shifted the lens to (0, 0.3 mm)
and we focus at 1.8 mm. This allowed us to see the base of the bunny. Reconstructions are
presented in Fig. 4.54.

The reconstruction in Fig. 4.54(b) shows that sidewalls are present unlike the case when
auxiliary patches are disabled as depicted in Fig. 4.54(a). Also, the object, which is a tiny
cube, in focus is not disturbed by auxiliary patches, i.e., visibility works. Similarly, the base

31In order to accentuate the perspective and reduced the circle of confusion, we shorten the distance from
the lens to the projection plane to 1.0 mm and we use a smaller aperture with a radius of 0.25 mm respectively.
These settings were applied only to scenes “Bunny†” and “Cubes†”.
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Figure 4.54: Numerical reconstruction of optical fields calculated from scenes (a,b) “Cubes†”
and (c,d) “Bunny†”. Calculating, auxiliary patches were either (a,c) disabled or (b,d) enabled.
The dashed line shows outlines of objects, the solid line shows an example of overlapping. The
image shows (a,b) , 1024× 1, 024 samples and (b,d) 768× 768 samples for a reconstruction.

of the bunny is present in Fig. 4.54(d). Unfortunately, the bunny seems to contain intensity
artifacts. We suspected that the overlapping might be the cause and verified it by calculating
an optical field of the scene “Bunny” and reconstructing it. A reconstruction depicted in
Fig. 4.55(b) shows intensity artifact located close to the base where the most of auxiliary
patches are cumulated.

Verified by reconstructions, the chosen solution works. It does not require any pre-
computed optical fields and it generates additional structures adaptively according to the
depth. Since the method handles auxiliary patches similar to regular patches, it is compati-
ble with almost all acceleration approaches described in Sec. 4.2. The only exception is the
grouping the might cause unwanted shift of auxiliary patches.

The only glitch of the approach is overlapping that causes slightly disturbing intensity
artifacts. It is a product of visibility approximation and a random phase variation. Nev-
ertheless, since the phase defines directions in which a patch emits light, we can solve the
overlapping by modulating the phase variation. This is a problem close to a problem of digital
diffusers that is out of scope of this work.32

32Actually, the only available solution [WB89, Luc94] requires an iterative approach that is rather slow.
Since the patch is a plane parallel to the plane κ, we can easily incorporate it but we did not because the
solution is a plain application of the brute force.
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Figure 4.55: Numerical reconstruction of optical fields calculated from scenes the scene
“Bunny” either (a) without auxiliary patches or (b) with auxiliary patches. The dashed
rectangle shows overlapping and images represents a detail of 1, 024× 1, 024.

We showed that we can enhance our method such that it is able to handle large planes
perpendicular to the plane κ. Nevertheless, we also showed, that most of the scenes that we
use does not need the handle such planes. Our solution works but it has a minor glitch that
can be removed by more sophistical definition of surface emittance properties.

4.4 Discussion and Summary

In this chapter we proposed a new method that calculates an optical filed from a virtual
scene. We accelerated the method using features of the optical field. We also addressed
the only weakness of the method and we showed that we can reduce its negative influence
significantly. In this section, we summarise features, advantages and disadvantages. Also, we
discuss other possible trends towards further acceleration.

Before we continue, let us discuss the difference between our method and the method pro-
posed by Martin Janda [JHO08]. Following features of the method, we denote this method as
the AngRay method. We decided to include a few paragraphs on this topic due to objections
that we received for a reviewer. Let us first summarise similarities. Similar to majority of
other methods, we employ the Rayleigh-Sommerfeld diffraction formulation [Goo05] and we
use ray-casting both to solve the visibility and to examine a surface in a scene. Also, we can
process triangular meshes and we calculate an optical field of surfaces in a virtual scene. Yet,
these are the only similarities between the two methods.

The difference between our method and the AngRay method is that the AngRay method
handles the surface differently. There is no pre-processing step. The AngRay method samples
the surface from the optical field on the fly. Since rays are uniformly distributed in a given
range of angles, the AngRay method converts the surface to tiny patches of irregular and
uneven shape. It runs strictly in the spatial domain and it is able to handle detail comparable
with the size of the sampling step. For that reason, it is quite slow.

Our method can easily process objects of any type that allows calculation of intersection
between the object and a ray. It decomposes the scene to patches that acts similar to
fragments created by a graphic card. A patch is a part of a plane that is parallel with the
plane κ : z = 0 at which we evaluate the optical field. Since every patch has both the same
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shape and the same size, we can accelerate the process of optical field calculation easily and we
do not need any resampling due to rotation of a patch. Even without proposed acceleration,
the fact that we decompose the scene to patches larger than PLS, leads to a speedup.

Since size of a patch defines the smallest detail we capture and it controls calculation time
at the same time, we can generate easily fast previews. However, if we use a patch of a size
that is equal to a sampling step, we reduce the method to a geometry-based one. In fact, the
resulting calculation is even slower than a regular geometry-based method because we use
propagation of the angular spectrum. Therefore, for final production we have to select an
appropriate patch size. In this work we consider a patch size that is similar to a pixel size of
contemporary LCD because LCD has a pixel that is large but it does not disturb the viewer.
The other option, which we did not explore, is to follow abilities of human visual system that
were applied by the MIT Holovideo solution [Luc94].

Our method decomposed the scene to pillar and it puts a patch in a front cap of every
pillar. As a consequence, we block light by a sidewall of a pillar but we do not emit any light
from it. This might cause a viewer to see dark places. Therefore, we proposed an approach
that adds patches to emulate light emitters at sidewalls. While this solve the missing emitters,
it introduces overlapping that leads to small intensity artifacts. The overlapping is caused
by approximation of a half-shadow through a threshold. We assume that it can be solved by
modulating phase variation of the patch. Since this is rather a problem of diffusers, it is out
of scope of this work and we do not address it here.

Despite the proposed additional patches, out method is not suitable for processing of
large and standalone unclosed meshes. Every such a mesh prevents our method from cre-
ating appropriately long pillars at sides of an object. Hence, large planes that are almost
perpendicular will be decomposed to a cloud a pillar rather then a volume of pillars. However,
this is not a serious limitation because a user case prepare or fix a proper mesh using already
existing approaches of the computer graphics.

Our method does not address partial transparency because we assume the surface in
scenes is opaque. If the transparent object does not deform the objects visible trough it,
we may solve it by modifying evaluation of visibility without any additional computation
time.33 If the object had deformed passing waves, we would have had to properly modulate
light emitter by every patch of the transparent object. Actually, we would have to calculate
an optical field generate by occluded objects at that patch[ZCG08]. This would increase
significantly the computation time.

The basic version of our method requires memory because it uses the 2D FFT. The
2D FFT is highly inefficient if the input array is stored in a external memory because it
accesses the whole array. Nevertheless, if we apply the frequency masking approach, which
was introduced in Sec. 4.2.2, we may decompose the optical field to tiles and solve each tile
separately. The frequency masking approach requires one FFT at the end of computation
and one FFT every time it generates a patch with a new phase variation. We can combine
it with the spectrum library, which was introduced in Sec. 4.2.1. As we have shown, the
number of required phase variations is much lower than number of patches and hence we can
afford to execute the 2D FFT using the external memory.

Furthermore, our method suffers from unpleasant effects of periodicity enforced by FFT.
Due to the periodicity we cannot capture patches that are outside of a subspace defined by a
positive Z-axis and a rectangle that encloses samples on the plane κ : z = 0. If we had tried

33In such a case, a result of the visibility test would be a number in a range [0, 1] rather than a boolean
value.
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it, we would have created overlapping patches because every patch repeats periodically and
the length of a period is exactly a size of the optical field. Nevertheless, this limitation is not
significant since a hologram acts as a window to a reality behind it.34

The more serious issue is the fact that a patch repeats periodically. As a consequence,
we obtain a periodically repeating copies of the virtual scene. This disturbs a viewer because
these copies will interfere with the original when perspective is applied. Since it is a side-effect
of a discrete and finite Fourier transform, we cannot avoid it completely. We can pad a patch
with thick frame of zeros such that the distance of copies increases then a viewer does not
see them.35 Consequently, this increases memory requirements. Thus, this is the only true
limitation which we cannot avoid or reduce efficiently.

Even though we already discuss various acceleration approaches, we did not deal with
brute-force acceleration through hardware means because we focused mostly on optimisa-
tions of the algorithm. Thus, let us discuss them briefly now. From a viewpoint of our
method, a usage of multiple threads on a single machine is not efficient enough due to mem-
ory requirements. We may still use it but the resulting approach has a lot of sequential
parts.

Using a distributed environment, the situation is different. The algorithm Alg. 2 processes
every patch independently of each other. As a consequence, we can distribute patches among
computational nodes, calculate them at each node, retrieve results and sum these results
together. As shown in Sec. 4.2, the most time consuming part of computation is propagation
of the angular spectrum. Thus, the time spend on calculation will greatly depend on number
of patches. Hence, if we had had a homogenous network, we would have been able to distribute
the patches statically among nodes and thus to eliminate synchronization almost completely
as we did in [JHO08]. Nevertheless, we did not experiment with it due to time restrictions.

Also, we considered application of means that are very low level, i.e., streaming SIMD
extensions (SSE) and a graphical processing unit (GPU). Thanks to the adjustment intro-
duced in Sec. 4.2.4, we can use SSE to accelerate the propagation of the angular spectrum.
As shown in this chapter, our method uses ray-casting to evaluate visibility and the 2D FFT
to calculate the propagation. The rest of operations are piece-wise multiplications and sum-
mations. Since the 2D FFT can be implemented on GPU with a speedup, our method can
be implemented on GPU as well. The only issue is a limited memory of GPU that is much
smaller than a memory accessible by the CPU. This limits the maximum size of the maximum
size of the optical field.

In this section we presented features of the proposed method. We showed that our method
has a few real disadvantages that we can significantly reduce and only one of them is disturbing
and cannot be avoided completely. Through discussion, we suggested that we might reduce
the calculation time even further by applying brute-force acceleration such as distributed
computing. We, however, did not experimented with it. Overall, we succeeded on designing
a method that can calculate optical fields of a virtual scenes at significantly reduced time.

34Actually, in order to see na object that is reconstructed in front of a hologram, one have to look at a
hologram. The reconstructed object cannot cross the boundary of a hologram.

35If the sampling step is larger then 1
2
λ, which allows to capture almost all frequencies according to Shannon

sampling theorem, we may set the size of the frame according to a range of samples that might be influenced
by the patch. Due to the maximum deflection angle, which is specified by the diffraction condition Eq. (2.24).
As a consequence, the additional copies should not be able to receive any contribution.



Chapter 5

Hardware Acceleration of a
Ray-based Method

In the previous chapter we proposed a new method and presented its acceleration. In this
chapter we shall present acceleration of a method designed by Martin Janda [JHO08]. We
begin with briefly describing a principle of the method. Then, we describe our contributions
that are minor contribution of this thesis. We contributed to his work by proposing accel-
eration through graphical processing unit. Also, we adjusted a reduced occlusion version of
the method to fit the programmable hardware. For the purpose of the description, we denote
the method designed by Martin Janda as the AngRay method.

Before we proceed to the description of our contribution, let us briefly introduce the
AngRay method that was developed by Martin Janda. We introduce only necessary facts,
for more details refer to [JHO08]. We begin the description of the major algorithm and we
continue with the proposed accelerations.

The AngRay method calculates an optical field samples from an virtual scene that consists
of triangular meshes. In its core, the AngRay method is a PLS-based method that allows
more efficient acceleration and that uses ray-casting [Wat00]. The major difference from a
common geometry-based method that processes a cloud of PLS is that the AngRay method
shoots rays from an optical field sample towards the scene. When a ray hits the surface, it
generates PLS and calculates a contribution of PLS to the sample. A direction of a ray is
defined by two discrete angle ψs and ξt as illustrated with Fig. 5.1. The AngRay method
shoots rays with a uniform step in both angles and sums contributions.1 This forms an
algorithm that is summarised in Alg. 5.

Let us now introduce briefly calculation of a contribution done by the AngRay method.2

The ray, which is shot towards the scene, is defined by an origin at ûmn and two discrete
angles ψs and ξt, i.e.,

Rmnst = {x : x = umn + rmnstr̂st}, (5.1)

where r̂st is a unit directional vector depicted in Fig. 5.1. Hence, at an intersection rmnst
is the distance between the sample at umn and PLS used in the spherical wave expression
Eq. (2.9). The amplitude of PLS is calculated directly from the intersection using standard
means of the computer graphics. The phase of PLS can be arbitrary. In this work we used

1The range of angles is not vital for description of our contribution. For more details, refer to [JHO08].
2Since we keep the notation equal to the Detail driven method, we differ slightly from the paper [JHO08].
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Figure 5.1: The directional vector r̂st of the ray Rmnst. [JHO08]

Algorithm 5 The core algorithm of the AngRay method. [JHO08]
1: Zero all samples umn.
2: for all samples umn of the optical field do
3: for all angles ψs do
4: for all angles ξt do
5: Create the ray using angles ψs and ξt.
6: Find the nearest intersection between the ray and the mesh.
7: Create PLS at the intersection and shift it properly.
8: Calculate the contribution of the create PLS to the sample umn.
9: Add the contribution to the sample umn.

10: end for
11: end for
12: end for

two setups of phase: a constant and a random function based on a location of PLS.3 If the
ray does not hit the surface, its contribution will be zero.

The method samples the surface with rays. In a general case, a texture on the surface
contains arbitrary frequencies that causes light to be emitted in arbitrary direction. However,
it is not possible to capture all frequencies due to a finite sampling step. The texture has
to be modified to contain only supported frequencies. Such a texture is easily manageable
if the surface consist of planes parallel to the plane κ. In order to create such planes from
the original surface, the method shifts each generated along the ray such that the new Z-axis
coordinate of PLS becomes an integer multiply of the wavelength.

5.1 Acceleration through GPU

In this section we present our contribution to the AngRay method. Calculating an optical
field of M×N samples, the method generates MN rays. This is a high number but there is a
significant coherence between rays. We facilitate this coherence to use efficiently the graphical
processing unit (GPU). First, we present design decisions, then we discuss accuracy issue that
appeared and we close the discussion with results and measurements.

3Since the constant phase is not suitable for viewing, it is used only for testing purposes.
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5.1.1 The Design

The GPU is designed to transform triangular meshes and sample them through a unit called
a rasterizer. The output of the rasterizer is a uniform, rectangular grid of a samples. In
terms of ray-casting, the rasterizer samples the scene by casting parallel rays. Following
the expression Eq. (5.1), these are ray Rmn00 with a directional vector r̂00 = (0, 0, 1). By
applying the depth buffer technique, which is hard-wired [Wat00], the rasterizer selects the
first intersection for every ray.

Our goal is to exploit the intersection calculation done by GPU. In our first attempt, we
tried to follow gathering of contributions done by steps 3–11 of the algorithm Alg. 5. This,
however, revealed two issues that threatens the performance: an additional summation step
and visibility errors. The latter is caused by the fact that GPU assumes parallel rays. As
a consequence, the setup used by the algorithm Alg. 5, which is depicted in Fig. 5.2(a), has
to be deformed to a setup depicted in Fig. 5.2(b). If the scene contains large triangles, this
deformation will cause visibility errors because GPU transform only vertices of a triangle.4

In order to avoid it, we have to split large triangles and this might be an expensive operation
even for the latest GPU.5 Besides that, after we evaluate all contributions, we have to sum
them. Since we access all samples of a large memory block, we shall experience reduced
performance [NVI08]. Therefore we searched for another, more simple solution.

Figure 5.2: (a) A cross-section of two planes sampled by rays originating from the sample
umn and (b) a cross-section of the same setup deformed to fit the rasterizer. While the plane
α consists of a single triangle, the plane β consists of multiple triangles. As a consequence,
a visibility error occurs in (b). The surface α′ represents the plane α deformed accurately.

We notice a fact that the loops in the algorithm Alg. 5 have no sequential dependance and
thus we can freely reorganise them. Hence, if we gather a single contribution for all samples
umn, we shall match the scheme that is used by the GPU without any additional summation.
Since the AngRay method shoots rays according to the angles ψs and ξt, all rays are parallel
for a given pair of angles. Hence, we do not need any deformation similar to the one depicted
in Fig. 5.2. For that reason, we choose to explore this solution. Still, in order to employ
the rasterizer, we have to find a transformation Pst that maps the directional vector r̂st to a
vector r̂00.

The first step towards the transformation Pst is to find a transformation that maps a
directional vector r̂st to a vector that is parallel with the vector r̂00 regardless of its length.

4The rasterizer considers the triangle as a part of a plane and thus it will not deform the surface. Such a
result might suffer from an improperly solved visibility as illustrated with Fig. 5.2(b).

5In fact, we can split triangles in that geometry shader that is on the chip. However, the geometry shader
can generated only a limited number of additional triangles and it is one of the slowest units of GPU. Thus,
we shall end up with an increased calculation time. Among others, at the time of development the geometry
shader was not available and thus we searched for another solution that proved to be better.
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We identified two such transformations: rotation and skewing. If the rotation is applied to
all rays a centre of rotation xmrnr has to be chosen. As a consequence, the distances rmnst
are not preserved except the distance rmrnrst as depicted in Fig. Fig. 5.3(b). Furthermore,
the rotation displaces origins of the rays. Due to these features, the rotation is unacceptable.

Figure 5.3: Transformations that are able to transform a direction r̂st to a vector parallel
with a vector r̂00. (a) The Mesh G consist of a single line that can be either (b) rotated or (c)
skewed. While rotation leads scaling in all axes, skewing scales only along the Z-axis. The
dashed line shows the desired output.

The remaining option is skewing that shifts the X-axis and the Y-axis coordinate by an
offset. The offset is a function of the Z-axis coordinate. Applied to all rays, the skewing scales
distances rmnst by a constant while it keeps origins of the rays intact. As a consequence, the
directional vector r̂st becomes parallel to the vector r̂00 and Z-axis coordinates of intersections
equal to corresponding distances rmnst from Eq. (5.1) scaled by a constant as depicted in
Fig. 5.3(c). Such behaviour suits our needs.

In the second step towards a proper transformation Plm we compensate the scaling
constant by introducing a multiplicative correction constant ζst. The correction constant
is inversely proportional to a projection of the direction vector r̂st into the Z-axis, i.e.,
z · r̂st = 1/ζst. As illustrated with Fig. 5.4, the correction constant is

ζst =
(
1 + tan2 ψs + tan2 ξt

) 1
2 . (5.2)

Let us assume a left-haded coordinate system [Wat00].6 Applying Eq. (5.2), the transforma-
tion Pst is a transformation matrix

Pst =

 1 0 0
0 1 0

− tan ξt − tanψs ζst

 . (5.3)

The whole GPU generation is summarised in Alg. 6. Nevertheless, implementing the
algorithm we run into an accuracy issue that prevented us from directly implementing the
algorithm Alg. 6. We proposed a solutions that we discuss in the next section.

5.1.2 The Accuracy Issue

During implementation of the algorithm Alg. 6, we ran into accuracy issues. Due to perfor-
mance reasons, we solved the issue by adjusting the computation rather than using larger

6Direct3D, which we used for actual implementation, uses the left-handed coordinate system. Nevertheless,
the transformation Pst can be easily modified to fit the right-handed one.
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Figure 5.4: Calculation of the correction constant ζst. An orthogonal projection of the
directional vector r̂st into the Z-axis multiplied by ζst equals to the vector (0, 0, 1).

Algorithm 6 The algorithm of the AngRay method modified to fit GPU. Notice that lines
6–10 are executed entirely on GPU employing the parallel environment of GPU.

1: Zero all samples umn.
2: for all angles ψs do
3: for all angles ξt do
4: Calculate the constant ζst. . Eq. (5.2)
5: Calculate and set the transformation Pst . Eq. (5.3)
6: for all samples umn do . Begin GPU processing
7: Find the nearest intersection for every ray Rmnst.
8: Calculate the contribution. . Eq. (2.9)
9: Add the contribution to corresponding sample.

10: end for . End GPU processing
11: end for
12: end for

data type. GPU supports both single-precision floating point numbers (floats) and double-
precision floating point numbers (doubles). However, the number of mathematical units of
GPU in the case of floats is much higher than in the case of doubles [NVI08], i.e., execution
using doubles will be slower. In this section we propose a modification that allow us to use
floats.

Following the expression Eq. (2.9), the contribution of PLS consist of a real-valued am-
plitude and a phase. Since the resulting contribution are summed together, the phase is a
complex number χmnst = cos(2π φmnst)+j sin(2π φmnst), where φmnst = 1

λrmnst+φPLS, φPLS

is proportional to the initial phase of PLS, and rmnst is a distance between the sample umn
and PLS defined in Eq. (5.1).7 Both the sine and the cosine are periodical functions and
thus only a fractional part of the phase φmnst is relevant. As λ ≈ 10−7 m and the maximum
distance rmnst ≈ 10−1 m for usual scenes, φst ≈ 106 ∼ 220, i.e., the fractional part occupies
only 4 bits of the 24-bit mantissa if floats are used[IEE85]. This proved to be not enough the
phase shift properly because it introduced disturbing artifacts into the reconstruction.

To address the problem of accuracy let us define a plane κi : z = iDz, Dz = const. and
a distance rκ that equals the longest straight section of a ray Rmnst between two successive
planes κi and κi+1 as depicted in Fig. 5.5(a). In a general case, rκ → ∞ but thanks to a
limited sampling step, a diffraction condition Eq. (2.24) and a limited bounding box of the

7Since we sum contributions later, we use the Euler formula rather than the phasor form.
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scene, rκ is finite. We chose Dz such that 1
λrκ can be represented in 24-bit mantissa with

adequate accuracy of the fractional part. Following similar consideration as in Sec. 4.2.4, we
experimented with a 10-bit fractional part.

Figure 5.5: (a) Evaluation of the longest distance rκ and (b) decomposition of the distance
including corresponding phase shifts φv

mnst and φκmnst. The longest distance is computed from
Dz and the extreme ray Rmns′t′ .

Consequently, we define the triangular meshGi that is the triangular meshG in a subspace
between planes κi and κi+1.8 Furthermore, we split the Z-axis coordinate of vertices of the
mesh Gi. Let vj be a location of a vertex in the mesh G and let vji be a location of the
corresponding vertex in the mesh Gi. The new location vji = vj − (0, 0, iDz) assures that its
Z-axis coordinate zvji ≤ Dz.

Following the definition of the Z-axis coordinate, we split the phase φmnst of a contribution
to φmnst = φv

mnst + φκmnst, where

φv
mnst = ζst

zvji
λ
,

φκmnst = ζst
iDz

λ
(5.4)

as illustrated with Fig. 5.5(b). The fractional part of φv
mnst can be computed on GPU with

adequate accuracy because of an appropriately selected distance Dz. Since iDz is constant for
all vertices in the mesh Gi, the fractional part of φκmnst is computed on CPU using doubles.
However, unlike φv

mnst it is computed only once per each direction r̂st. The resulting phase
is a sum of fractional parts and this is accurate enough.

Another accuracy issue appear when φs ≈ 0 and ξt ≈ 0. Applied to Eq. (5.2), the result
is only slightly larger than one and when stored in floats before it is sent to GPU, it becomes
one. We resolved this issue by sending ζlm − 1 instead of ζlm and processing it in that
decomposed form on GPU.

In this subsection we proposed solution of the accuracy issues. In the next section we
present measurements and we compare the results with the results of the original algorithm
Alg. 5.

8The mesh Gi can be computed using standard means of the computer graphics [JHO08].
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5.1.3 The Results

In the previous sections we presented acceleration of the AngRay method using GPU. In this
section we show that the proposed solution works and provides significant acceleration. For
that purpose we use a large sampling step of 7.0 µm. As a consequence, both angular steps
Dψ and Dξ will be small and ψs ≈ 0 and ξt ≈ 0 most of the time. Also, we select such scenes
that contain objects at least at 0.4 m. This will test the proposed accuracy solution.

We calculate optical fields of scenes “Chess”, “Plane”, and “Primitives”. In the case of
the scene “Plane” every ray hits the surface and thus we can test real efficiency of GPU. The
scene “Primitives” contains a small number of objects at different depths and a small number
of triangles while the scene “Chess” contains a larger number of objects with a complicated
visibility and a larger number of triangles. Through these scene we shall test influence of
triangle number and visibility solution.

First, we tested the accuracy of the calculation described in Sec. 5.1.2. Since we know the
accurate result, which is calculated by CPU, we can compare the optical fields numerically.
For that purpose we calculated an optical field of 1, 024× 1, 024 samples. We used the scene
“Plane” because it consists of a single plane at 0.42 mm, i.e., there will be no blur due to
focus in the reconstruction. Hence, we can measure how accurately we captured the surface.

Since intensity is the only measurable feature of the optical field, we compare intensities
of optical fields propagated without lens. After the propagation, we normalised both fields
such that the maximum intensity was 1.0 and we calculated the mean square error (MSE) of
M×N samples as MSE = 1

MN

∑
m

∑
n(|umn|2−|u′mn|2)2. The resulting MSE was 0.97×10−4.

Such MSE is neglectable and thus the proposed version that uses GPU is able to calculate
properly an optical field.

Next, we measured a speedup. For that purpose we calculated optical fields of all scenes
using both CPU (Intel Xeon 3.2 GHz) and GPU (NVIDIA GeForce 8800 GTX). Due time
reasons, we used smaller optical fields of 1, 024 × 1, 024 samples.9 As shown in the table
Tab. 5.1, the speedup is significant. The more rays hit the void, the weaker is the speedup.
The number of triangles has almost no influence on calculation using GPU because the
scene “Chess” was calculated 1.2× slower than the scene “Primitives” even though the scene
“Chess” contains 44× more triangles. On the other hand, the GPU employs a brute force
approach while solving the visibility, i.e., it drops previously calculated contribution when it
finds a closer one. This reduces the speedup as illustrated with the scene “Chess”, which has
a complicated visibility, compared to the scene “Plane”.

Table 5.1: Calculation times and speedups using the GPU in comparison with the CPU. The
table also shows estimated percentage of created rays that hits the scene.

Scene CPU GPU Speedup Hit rays
Chess 78.6 hr 0.3 hr 245.7 32 %
Primitives 65.4 hr 0.2 hr 327.1 30 %
Plane 218.9 hr 0.3 hr 718.9 100 %

Illustrated with measurements, we achieve the goal of accelerating the AngRay method.
Using just a single GPU, we outperformed the CPU significantly. Despite our attempts on

9Even through the field contained rather low number of samples, it took about 218 hours to calculate using
CPU and the original algorithm.
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accuracy, the calculated optical field differs from the result of CPU but we showed that the
difference is neglectable.

5.2 The Partial Quadratic Approximation

Besides the original AngRay method, we also collaborated on the reduced occlusion method
that is a modification of the AngRay method. We designed an approximation that speeds up
a the reduced occlusion method developed by Martin Janda and that is suitable for imple-
mentation on a programmable hardware. We begin with a brief overview of the modification
and we continue with a description of our contribution.

First, let us briefly described the reduced occlusion method proposed by Martin Janda
[JHS07, JHO08]. The basic principle is the same as the AngRay method. The major difference
in handling of PLS and in range of angles. The reduced occlusion method ignores the Y-axis,
i.e., the discrete angle ψs depicted in Fig. 5.1 is zero all the time. This removes one loop from
the algorithm Alg. 5 and saves computation time. However, at the same time this creates
a horizontal parallax only (HPO) hologram. If reconstructed without a setup used in this
work, it will blurred vertically. In order to prevent the blur, each generated PLS contributes
to the whole column of samples rather than to a single sample. For the purpose of this text,
we denote this method as the ReOc method.

We collaborated with Martin Janda on improving the efficiency of the ReOc method.
Thanks to the HPO-like structure, the ReOc method reduces number of lighting calcula-
tions. However, it does not reduce the number of calculated contribution because every PLS
contributes to the whole column. We focus on that fact. The contribution of PLS to the col-
umn follows the spherical wave expression Eq. (2.9). The calculation can be simplified using
various approximation but they have either restrictive spatial limitations [YIO00, IMY+05]
or require double-precision floating point [MT00]. Thus, we propose a new approximation
that imposes quite loose restrictions and that is able to use 32-bit integers. The latter makes
the approximation compatible with the programmable hardware (FPGA) and graphical pro-
cessing unit (GPU).

5.2.1 The Approximation

In order to decrease the calculation time of the reduced occlusion method, we designed an
approximation that calculates an column of samples generated by PLS. The approximation
suits the reduce occlusion method and allows a fixed point arithmetic. This is crucial for
use with a programmable hardware (FPGA). In this section we describe the principle of the
approximation.

Let us now discuss a single PLS s generated by the ReOc method. PLS is located at
s = (xs, ys, zs). Without imposing a significant restriction, we can assume that all PLS are
located in a subspace defined by the positive Z-axis and the XY-plane, i.e., zs > 0. It is self-
luminous and it emits light with a complex amplitude I1/2

s exp(j2πφs), where Is is intensity of
PLS and 2πφs is the phase of PLS. Since PLS generates a spherical wave defined by Eq. (2.9),
the contribution cmn of PLS to the sample umn is

cmn =
I

1/2
s

r

z

r
exp(j2πφr + j2πφs), (5.5)
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where φr = 1
λ [(mDx − xs)2 + (nDy − ys) + z2

s ]1/2 is proportional to the phase shift due to a
distance r between PLS and the sample umn.

Since ψs = 0, the ReOc method generates PLS from a horizontal slice of a scene. Each
slice is aligned to a row of samples and thus ys = nsDy. A single PLS contributes to a single
column νm : umn′ , n′ ∈ [−M/2,M/2− 1]. Then, the phase shift φr is

φr =
1
λ

[(n′ − ns)2∆2
y + ζ2]1/2, (5.6)

where ζ2 = (xs − xmns)2 + z2
s is constant for a given column νm and PLS located at s.

A frequent approach to efficient evaluation of Eq. (5.6) employs the binomial series that
approximate the square root function [IMY+05, YIO00]. This, however, enforces a minimum
distance along the Z-axis in which the approximated φr is considered valid [Goo05]. The
larger the scene is, the further away it has to be. Nevertheless, the function φr is smooth
and in a small range n′ ∈ [n0, n0 + P − 1], where P ∈ Z is small, it resembles a quadratic
function. Thus, we can split the column into subparts and approximate each subpart by a
quadratic function. This removes the necessity of the square root function within the range
similarly to the binomial series but it does not enforce the minimum distance.

Thus, we split the column νm into subparts µmi = (umip), where umip is a sample of
the subpart µmi and p ∈ [0, P − 1], i.e., a subpart contains P samples. We denote the first
sample umi0 of a subpart νmi as the node ηmi and we evaluate the phase φr at the node
accurately using the expression Eq. (5.6). Since the starting phase φs is constant for PLS,
we approximate the sum φr + φs with a quadratic function

φr + φs ≈ φmip = at2x + btx + c, tx =
p

P
, (5.7)

where a, b, and c are the quadratic coefficients, tx ∈ [0, 1) and P is a length of a subpart.
The expression Eq. (5.7) approximates the phase between two nodes ηmi and ηmi+1 . Since
the nodes are uniformly distributed along the column, the coefficients a, b, and c are

a =
1

2λ
(rmi+2 + rmi − 2rmi+1),

b =
1

2λ
(4rmi+1 − 3rmi − rmi+2),

c =
1
λ
rmi + φs, (5.8)

where rmi is an accurate distance between PLS and the node ηmi . Due to the applied
principle, we denote this approximation as the partial quadratic approximation.

Following the expression Eq. (5.5), the amplitude of a contribution at the node ηmi is

Ami =
I

1/2
s

rmi

zs
rmi

, (5.9)

where rmi is the distance between PLS and the sample at the node ηmi and Is is PLS intensity.
The amplitude function Eq. (5.9) exhibits similar properties as the function φr and thus it
can be approximated similarly. However, we use much coarser approximation because the
amplitude does not need to be represented as precisely as the phase [Goo05].10 Using linear
interpolation, we approximate the amplitude at the sample umip as

Amip = Ami + (Ami+1 −Ami)tx, tx =
p

P
. (5.10)

10Even if we ignore completely the amplitude, the hologram will provide a recognisable reconstruction
[MNF+02, IMY+05].
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Based on a contribution expression Eq. (5.5), the phase approximation Eq. (5.7), and the
amplitude approximation Eq. (Eq. (5.10)), the contribution cmip of PLS to the sample umip
is approximated as

cmip = Amip exp(j2πφmip) = Amip cos(2πφmip) + jAmip sin(2πφmip). (5.11)

5.2.2 The Length of a subpart

In the previous section, we described the approximation. In this section we estimate a
proper length of a subpart. For that purpose we estimate error caused by the approximation
and its influence on the reconstruction. Since the optical field is sensitive to the phase
[MNF+02, IMY+05, Goo05] rather than the amplitude, we examine only the error of the
phase.

First, we verified the shape of the error. For that purpose we evaluated the phase both
using the approximation Eq. (5.7) and using the binomial series [YIO00, IMY+05] discussed
in Sec. 3.2. For this purpose, we chose arbitrarily a length of a subpart as P = 256 samples,
we put PLS at a distance of 0.3 m over the beginning of a column and the sampling step was
2.0 µm. Using various lengths of columns, we evaluated the error as a difference from an
exact value at the last subpart of a column because we presumed that the error will be most
noticeable at that location. The results presented in Fig. 5.6. Since the phase φ = 1

λr, where
r is a distance, the error equal to 1.0 means an error in phase of one period.

Figure 5.6: The difference of phases calculated using the binomial series and using the pro-
posed approximation for a column of either (a) 2,048 samples and (b) 16,384 samples.

The results in Fig. 5.6 show that the difference is a smooth and concave-like function.
Thus, we can use a maximum of the difference between the approximated phase φmip and the
exact phase φr as the error of approximation. Also, the results shows that unlike the binomial
series the error is almost independent on the size of a column. Hence, we can approximate
accurately larger optical fields.

Now, let us discuss the influence of the approximation error on the reconstruction. We
can expect that by increasing a length of the subpart we increase the error. Hence, if we had
known the acceptable error, we would have been able identify by a computation a length that
is appropriate. For that purpose we calculated optical fields generated by a single PLS and
reconstructed them without a lens because we did not examine influence on the viewer. In
order to create various error, we chose to use various lengths of subparts and various distance
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of PLS. In all cases we used a sampling step of 0.5 µm that is the shortest sampling step we
considered.11 We present the reconstructions in Fig. 5.7.

Figure 5.7: Numerical reconstructions of optical fields calculate using the proposed approx-
imation. A number in a corner of each image is the maximum difference of phases in all
possible subparts. The number of samples per a subpart was (a) 512, (b,c) 1,024, (d,e) 2,048.
The distance of PLS was (a,c) 5.0 mm and (b,d,e) 3.0 mm.

As it is shown in Fig. 5.7, a difference in phases larger than one period has a devastating
effect on a reconstruction. Even if difference is below one period, it still has a negative impact.
The asymmetry present in Fig. 5.7(c) is caused by asymmetry of evaluation of interpolation
coefficient in Eq. (5.8). Following experiments, we say that a difference greater than 1

4 period
is not acceptable. Due to implementation reasons, we restrict all possible subparts length to
P = 2a, a ∈ Z. Since P ≤M we can estimate the maximum appropriate length of a subpart
by calculating the error fast enough.

In this section we showed that the proposed approximation has better accuracy than the
binomial series. Also, we estimated a boundary error that assures a valid reconstruction and
we applied this error to estimate the maximum appropriate length of a subpart. In the next
section we discuss ability of the approximation to use fixed point arithmetics.

5.2.3 The Fixed-Point Calculation

In the previous sections we presented an approximation that uses a quadratic function. In
this section we show that it compatible with fixed point arithmetic. For that purpose we
define parameters of the scene and we estimate necessary bit lengths. This section is crucial
for successful implementation using programmable hardware. For clarity of the text, let as
assume that we are processing the subpart νmi , i.e., we shall inherently assume the index mi

in this section if not noted otherwise.

The programmable hardware is not suitable for floating point operations. Also, fixed
point multipliers are usually a limited resource and therefore we have to reformulate Eq. (5.7).
Since both the sampling step Dy and the length P are constant, we can use a differential
scheme that lacks multipliers. Based on the phase approximation Eq. (5.7) and the amplitude
approximation Eq. (5.10), the differential scheme is

Ap+1 = Ap + ∆A,
φp+1 = φp + ∆φp+1,

∆φp+1 = ∆φp + ∆∆φ, (5.12)

where the phase φ0 and the amplitude A0 are evaluated accurately at the node ηmi . Using
the expression Eq. (5.8) that defines quadratic coefficients, the parameters of the differential

11We calculated na optical field of 2, 048× 2, 048 samples and PLS was located over the centre of the field.
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scheme are

φ0 = c
1
P
, ∆φ0 = b

1
P

+ a
1
P 2

, ∆∆φ = 2a
1
P 2

,

∆A = (Ami+10 −Ami0)
1
P
. (5.13)

Next, we limit the spatial extent of the virtual scene and we define parameters of a
supported optical field. This step will allow us to select appropriate bit lengths of number
representations. In all our computations we assume a wavelength of λ = 635 nm by default.
We designed the solution for a sampling step of 0.5 µm and an optical field of 65, 536×65, 536
samples. We assume that intensity of all PLS is a range [0.0, 1.0] and Z-axis coordinate of
all PLS is in a range of [0.092 m, 0.200 m]. We select the minimal distance according to
the diffraction condition Eq. (2.24) applied to an amplitude-modulating hologram.12 Using
these parameters, we estimated a maximum size of a subpart to P = 16, 384 samples. Let
us denote this configuration as the configuration A. Since such a large optical field is not
practical for testing purposes, we also used an optical field of 2, 048× 2, 048 samples. In such
a case, we estimated a subpart length of P = 512 samples and we shifted the depth range to
[0.003 m, 0.200 m]. Let us denote this configuration as the configuration B.

Let us now define necessary bit ranges for parameters of the differential scheme Eq. (5.12).
According to the expression Eq. (5.11), the argument of a contribution to a sample up is 2πφp.
Both the sine and the cosine, which we use to express the complex number, are periodic and
therefore we need just a few first bits of the fractional part of the phase φp. Since φp >> 1,
we can use a fractional part directly and we do not need to care about overflows in the integer
part.

The scheme Eq. (5.12) implements a quadratic function. Hence, the parameter ∆∆φ
defines convexity of the function φp. Thus, we can estimate the minimum value of ∆∆φ
using the closest PLS and the maximum value using the furthest PLS as illustrated with
Fig. 5.8(a). The reference sample is at edge of the optical field in order obtain extreme
values. The parameter ∆φp ∝ ∂φp

∂tx
defines how the function φp changes when we move to a

next sample. Thus, it reaches the minimum using PLS that is further away along the Z-axis
and it reaches maximum using PLS whose function φp is the most convex one as illustrated
with Fig. 5.8(b).

The amplitude function Ap, which is defined by Eq. (5.9), contains two components: a
cosine-like function zs

r and a function 1
r . As illustrated with Fig. 5.8(c,d), both functions

reach their maximum and minimum using different PLS. Therefore, we estimated the range
by multiplying maximums and minimums. Also, we assumed that intensity Is of PLS is
1.0 at the maximum and 2−6 ≈ 0.02 at the minimum. Any PLS with intensity lower than
the minimum is excluded. The results range contains all possible worst-cases because the
function Ap never reaches the point when both zs

r and 1
r are at maximum or at minimum.

By applying the approach described above, we can calculate necessary bit ranges for both
the configuration A and the configuration B. Uniting them and assuming that an error of the
amplitude is not crucial, we obtained the minimal bit budget depicted in Fig. 5.9. The budget
shows that we can use 32-bit fixed point numbers to calculate the optical field. This budget
supports any other configuration that is between the configuration A and the configuration B.
That this assumes that the minimal distance of PLS should be set according to the resolution

12An amplitude-modulating hologram is an array of real numbers. Hence, its Fourier transform is symmetric
[Smi97]. Thus, exposing the hologram to a plane wave means that we can control only a half of the whole
range without a risk of overlapping with the symmetrical copy.
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Figure 5.8: Positions of PLS that may lead to either the maximum or the minimum of (a)
∆∆φ, (b) ∆φp, (c) zs

r , and (d) 1
r , where r is a distance between the sample and PLS. PLS at

the white circle leads the minimum and PLS at the black circle leads to the maximum. Both
the maximum and the minimum are inspected from a sample marked by a gray circle.

of the optical field. If PLS is close than it should be, we suggest to limit the contribution
only to a range defined by the diffraction condition Eq. (2.24).

Figure 5.9: Estimated bit ranges necessary to evaluate the differential scheme Eq. (5.12).
The thick vertical lines show locations of decimal points.

We use fixed point numbers to evaluate the fractional part of the phase φp. Hence, we
replace the sine and the cosine function with a table. Using the results of experiments done
in [RBD+99], we set the bit length of the table index to 8 bits. Since both the since and
cosine function give values from a range [0, 1], we use the same number of bits to represent
table contents. After we retrieve the sine and the cosine, we multiply them with the function
Ap and we round the result to 8 bits.

As long as we kept 1
r � 1, we obtain working optical fields. However, when we exper-

imented with a different settings that fits the bit budget but that uses too small distances
for a given sampling step, we run into accuracy issues. We calculated an optical field of
4, 096× 4, 096 samples using a sampling step of 7.0 µm, a subpart of P = 4, 096 samples and
a depth range of [0.4 m, 0.7 m]. Using the original rounding to 8 bit we obtained an optical
field with significantly disturbed phase as depicted in Fig. 5.10(a). The phase was almost
constant and the optical field behaved like an in-line hologram as illustrated with Fig. 5.11(a).
When we increased the bits left after the rounding, the situation improved. From results of
Sec. 5.1 we knew that single-precision floating point numbers (floats) works. Since floats have
24-bit mantissa and we need at maximum 10 bit for the integer part, we can round to 14 bit
fractional part safely. We experimented successfully with it as illustrated with Fig. 5.10(c)
and Fig. 5.11(b). Thus, instead of rounding to 8 bits, we round to 14 bits.

As we increate the number of rounding bits, we reduce a number of PLS that we can
accumulate less before an overflow. Since the integer part of the function Ap is 10 bits
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Figure 5.10: Histograms of phases of optical fields calculated using (a) an 8-bit, (b) 12-bit,
(c) 14-bit, and (d) a 16-bit fractional part of a result. All histograms are scaled similarly, the
top of a histogram is 0.5 % a total number of optical field samples.

Figure 5.11: Numerical reconstructions of the same field. The optical fields were calculated
using (a) an 8-bit and (b) a 14-bit fractional part of a result.

and the fractional part of the result is 14 bit, we can accumulate only 256 light sources.
Afterwards, we have convert these sources to a floating point numbers and add them to the
resulting optical field. This increases calculation time but as we show in the next section, the
increase is not overly dramatic.

5.2.4 The Results

In the previous section we presented a new approximation that is based on a quadratic
function. Using the approximation, we can calculate an optical field facilitating a fixed
floating arithmetics. In this section we focus on time measurements. We show that increase
of the rounding bits does not significantly increase the computation time and we discuss that
our approximation is better than other ones.
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First, we show that by increasing the rounding bits, we do not increase significantly
the computation time. For that purpose we used the scene “Primitives”, an optical field
of 4, 096 × 4, 096 samples and a sampling step of 7.0 µm. Using PC Intel Xeon 3.2 GHz,
we measured the computation time. The measured values that are presented in the table
Tab. 5.2 shows that the calculation time is increased but the increase is not proportional.

Table 5.2: A reaction of calculation time to increase of rounding bits. The column denoted
at “Relative increase” shows additional time when compared to 8-bit case. All times were
measured using PC Intel Xeon 3.2 GHz.

Fractional bits left Calculation time Relative increase
8 bit 171.3 hr 0 %
12 bit 175.3 hr 2 %
14 bit 188.0 hr 10 %
16 bit 239.9 hr 40 %

As the next, we measure the actual speedup achieved by the proposed approximation.
For that purpose, we used a smaller optical field of 2, 048×2, 048 samples, a sampling step of
0.5 µm and the scenes “Primitives” and “Bunny”. Using these parameters, we used the sub-
part length of P = 512 samples. Besides our approximation, we implemented a full evaluation
of a contribution Eq. (5.5) using double-precision floating point numbers (doubles) and we
used measurements of this implementation to show a speedup achieved by our approximation.

Besides that we implemented a Fresnel approximation in a form of scaling of a precalcu-
lated optical field as described in Sec. 3.2.1. We used a single floating point numbers (floats)
and a bilinear interpolation to retrieve the sample from a precalculated optical field. Also,
we implemented a version of our method that uses just a linear interpolation instead of the
quadratic one. In that case, we shrank a subpart to P = 64 samples. In both the linear
interpolation and the quadratic one, we used 8-bit rounding. We measured times using PC
Intel Xeon 3.2 GHzand we compared them to the computation time of the exact evaluation
defined by Eq. (5.5). The results are presented in Fig. 5.12.

Figure 5.12: A speedup of calculation on CPU using various approximations. The speedup
is expressed in percentage of calculation time using exact evaluation of the distance.

The results from Fig. 5.12 show that we achieved speedup. Using the table Tab. 5.2, we
can estimate the speedup in a case of 14-bit rounding to 13× (7.6 %) lower computation time.
The linear version of our interpolation provides similar speedup. This is caused by a simpler
differential scheme. On the other hand, the quadratic version allows longer subparts. This
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might lead to more efficient implementation on a hardware because we do not often disturb
the computation by providing a new set of parameters.

Also, we did not compared directly our approximation with the recurrence formula
[MT00]. According to the paper, the maximum error caused by the recurrence formula
is comparable. If we apply additional error control to the recurrence formula, the error will
be significantly lower than the partial quadratic approximation. Even though in such a case
it is rather questionable whether it is necessary to decrease error beyond the boundary we
discussed in Sec. 5.2.2. Unfortunately, the recurrence formula requires doubles for a sampling
step shorter than Dx ∼ 10λ ≈ 6 µm. As a consequence, the original paper states that the
recurrence formula achieve a speedup maximum of only 4× (25.1 %) lower computation time
than a full evaluation of a contribution Eq. (5.5). Hence, we are faster.

On the other hand, a solution proposed in [YIO00] uses fixed point numbers.13 According
to the paper, they are able to reach a speedup of 20× (5.0 %). However, they use the binomial
series and therefore they end up with a high error for larger optical fields in combination with
closer objects as we have shown in Sec. 5.2.2. Thus, they are 1.5× faster but we can handle
objects that are much closer.

In this section we have shown that the proposed approximation is not the best in both
the speedup and the accuracy. We showed that our approximation is either faster or more
accurate than considered and existing approximations. Also, we have shown that the increase
the number of rounding bits does not lead to a significant increase of computational time.
Hence, our approximation is useful. Since it uses fixed point numbers and a subpart is quite
long, we can expect that by implementing on a programmable hardware we gain another
speedup. Since this is out of scope of this work, we did not implement it.

13Actually, other mentioned solution [IMY+05] is just reimplementation that omits amplitude in order to
obtain better performance. For that reason, we did not compare with it.
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Summary

In the previous chapters, we gave a brief and necessary overview of holography. Then, we
summarised existing method for hologram generation and we identified their weaknesses.
Based on that, we proposed a new method and showed that under appropriate conditions
it is faster. Next, we presented our contribution to the method designed by Martin Janda.
Finally, in this chapter we give an overview of results achieved in this work. This chapter
summarises the whole work.

In this work, we examined whether it is possible to combine different trends on digital
hologram generation and gain a speedup at the same time. We verified that such a com-
bination is possible and we showed that under appropriate conditions we can end up with
low computation times. We estimated these conditions using theoretical evaluation and we
verified them numerically. Based on that, we can state that these conditions are not tight so
that they are not serious limitations of the proposed method.

Even though we achieved the goal of lower computation time, we experimented with the
method even further. Thanks to the design of the method, we introduced modifications that
allowed us to reduce the computation time of the basic version 10×. This means that we
ended up in the order of minutes where we started in the order of hours. Notice that we did
not applied any brute-force acceleration approaches through the hardware so far.

We designed our method following an analogy with the computer graphics. Similar to
the computer graphics, we decompose the scene to small and uniform elements. In our case,
we use patches that are parts of a plane. Since the plane is parallel to the plane at which we
evaluate optical field samples, we are able to calculate efficiently an optical field generated
by the patch. We handle patches as the whole, i.e., the patch is the smallest detail that we
process. This has two important side effects. Firstly, we can use a ray-casting to approximate
visibility of the whole patch. Secondly, we can trade lower computational time for tiny details
that cannot by recognised by the viewer anyway. Thus, we can generate low-detail previews
quickly.

The major disadvantage of our method is caused by the original design. Our method
decomposes the scene to patches. If a surface of an object consists of large parts of planes
that are perpendicular to the plane at which we evaluate the optical field samples, we cannot
capture the scene properly. We just create a structure that blocks the light at these planes
but we do not add any emitter. In this work we address this issue by proposing a solution
that adds the emitter. The solution neither modifies the algorithm nor requires additional
precalculated data. The only glitch of the solution is overlapping that may manifest itself as
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an intensity artifact. This glitch can be removed by properly defining a light emitted by the
patch. We, however, did not address it because it is an issue of a digital diffuser which is out
of the scope of this work.

Our method requires that the whole optical field fits into the memory because it employs
the 2D fast Fourier transform (FFT) to calculate an optical field of a patch. If it is not
fulfilled, we may experience serious efficiency loss because the 2D FFT accesses the whole
field. We addressed this issue by introducing the frequency masking that limits a number
of executions of FFT and hence we can afford to execute the 2D FFT using the external
memory.

Another issue of using FFT is the fact that FFT assumes periodicity of the input. As
a consequence, we calculate an infinite number of copies of the scene. These copies might
disturb the viewer due to perspective deformation. Since the periodicity assumption is es-
sential component of FFT, we cannot avoid the copies. We, however, can reduce them by
calculating more optical field samples. This, however, increases memory consumption.

Even though we proposed various modification of the method in order to accelerate it,
there is still space for the future work. We employ FFT to calculate efficiently the optical
field of a patch but this causes some issues of the method. Since the patch is a special case
of a plane, with a high probability there could be another, slightly less efficient approach to
optical field calculation for that special case. Also, we may continue our work on acceleration
using a distributed environment or a hardware such as the programmable hardware or the
graphical processing unit (GPU). Furthermore, our method will definitely benefit from any
research about digital diffusers. With ability to define quickly a patch that emits light in
a custom direction, our method will be able to handle surface other than the diffuse ones
without almost any modification.

Besides the proposed method, which is the major contribution, we contributed to acceler-
ation of the method proposed by Martin Janda. Our goal was to reduce the calculation time.
We proposed an acceleration through graphical processing unit (GPU). For that purpose, we
reorganised the original algorithm such that we were able to facilitate the mesh processing
ability of GPU. As a result, we achieved a significant speedup.

Besides that, we designed an approximation that can be used by the reduced occlusion
method, which was designed by Martin Janda as well. We designed the approximation such
that it can be implemented efficiently on a programmable hardware. The major feature is
that the approximation uses a fixed point arithmetics and it does not impose any significant
limitations to the scene, i.e., it can be used for larger optical fields and closer objects then
other approximations. Even if implemented on CPU, it yields a speedup. Hence, in both
minor contributions we achieve the goal of reducing the calculation time.

Unlike the proposed method, we cannot suggest to continue the research in a direction of
pure geometry based renderers because it is rather a matter of small adjustment and fixes.
This is caused by a fact that the geometry-based methods are extremely slow because they
have to process too many elements. Nevertheless, the possible way out of it could be through
a detail control. Using this, it is be possible to significantly decrease the number of elements
as we have shown by proposing our new method.

In this thesis we presented a new method. We combined two trends of digital hologram
generation. We showed that such an approach is possible. As a side-effect, we created a
method that intentionally decreases the detail of the scene through which we can control the
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calculation time. Hence, similar to the computer graphics, we have shown that we can gain
speed by counting on limited ability of the human visual system.
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2009.
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tion. J. Opt. Soc. Am. A, 25(12):3038–3096, 2008.

• M. Janda, I. Hanák, and V. Skala. HPO hologram synthesis for full-parallax recon-
struction setup. In 3DTV Conference proc.. Piscataway : IEEE, 2007. pp. 1–4, 2007.

• M. Janda, I. Hanák, and V. Skala. Digital HPO hologram rendering pipeline. In
EG2006 short papers conf. proc., pp. 81–84, 2006.
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Used Symbols and Notation

Table B.1: A notation of symbols used text-wide.

notation description
· A dot product
∗ A piece-wise multiplication
? A convolution
j An imaginary number, j2 = −1
x A scalar or a complex number
x A vector, x = (xx, yx, zx)
x̂ A normalised vector, x̂ = x

|x|
X A matrix
X[i] An i-th element of a table X
X X in a frequency domain, i.e, an angular spectrum
<{x} A real part of a number x
={x} An imaginary part of a number x

Table B.2: Symbols used by state of the art.

symbol description
κ The recording plane, κ : z = 0
κξ A plane parallel with the recording plane, κ : z = ξ
λ A wavelength
ν A result of the visibility check, ν ∈ {0, 1}
φ A value proportional to the phase, the phase is 2πφ
ϕ A phase
ρη A plane parallel with the XZ-plane, ρη : y = η
σ Fresnel approximation scale factor
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Table B.3: Symbols used by the reduced detail method.

symbol description
Dx Sampling step of optical field in the X-axis
Dy Sampling step of optical field in the Y-axis, usually equals to Dx

edlo A d-th patch that corresponds to the cell glo
glo A cell of the visibility grid
hi An i-th intersection of a ray and the mesh
k Wavenumber, k = 2π

λ
nhi A normal a the intersection hi
pdlo A d-th pillar that corresponds to the cell glo
Sn A horizontal slice, intersection of the scene and the plane ρnDy
tlo A member of the visibility map T
U Optical field values, usually a matrix of complex numbers
U An angular spectrum of an optical field U or a sample of the angular spectrum
u(x, y) A sample of a continuous optical field U at (x, y, 0)
u(p) A sample of a continuous optical field U at p and p respectively
umn A sample of a discrete optical field
umn A location of the sample of a discrete optical field
zhi A distance of the intersection hi along the Z-axis
η Index of a frequency in the frequency domain that corresponds to the X-axis.
κ The recording plane, κ : z = 0
κξ A plane parallel with the recording plane, κ : z = ξ
λ A wavelength
φ A value proportional to the phase, the phase is 2πφ
ψ Index of a frequency in the frequency domain that corresponds to the Y-axis.
ρη A plane parallel with the XZ-plane, ρη : y = η
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Parameters of Testing Scenes

Table C.1: Parameters of scenes used to verify functionality of proposed methods. The scenes
are scaled to fit a rectangle 2.0×2.0 mm, i.e., 4, 096×4, 096 samples, sampling step 0.5 µm.
The scene scales proportionally with the rectangle.

Scene # triangles Depth [mm] Figure
Bunny 61,747 [6.0, 7.0] Fig. C.1(a)
Chess 42,566 [6.0, 7.0] Fig. C.1(b)
Plane 2 6.0 Fig. C.1(c)
Primitives 972 [6.0, 30.5] Fig. C.1(d)
Primitives2 1,964 [6.0, 9.1] Fig. C.1(e)
StillLifeBunny 84,580 [9.0, 11.0] Fig. C.1(f)

Table C.2: A meaning of a symbol in superscript used for some scenes. The symbol defines
the sampling step, the resolution of the calculated optical field and the maximum size of the
orthogonal projection of the scene.

Symbol Resolution of Projection of Sampling step
the optical field the scene

none 4, 096× 4, 096 2.0× 2.0 mm 0.5 µm
† 1, 024× 1, 024 0.5× 0.5 mm 0.5 µm
‡ 6, 144× 6, 144 43.0× 43.0 mm 7.0 µm
* 2, 048× 2, 048 1.0× 1.0 mm 0.5 µm
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Figure C.1: Orthogonal projections of used scenes.
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