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ABSTRACT  
Solutions for the common problem of path planning in an abstract 
environment have been extensively developed in many scientific 
disciplines. However, almost all explored techniques assume the 
environment does not change and that there is a complete and 
detailed overview of this examined space. In addition to, many 
methods for the path planning need to derive a specific graph 
structure from the environment representation and it can be often 
very difficult to construct or obtain this structure in some real 
applications. 

In our proposal, we introduce a general model for the real-time 
path planning in a known, partially known, unknown and dynamic 
environment. We provide a hybrid technique that combines a 
graph and grid representation of the examined space and that is 
trying to combine the advantages from both types of the 
environment representation. The proposed path planning method 
uses an adaptive mesh for its graph part to provide the capability 
of the assimilation to the changing environment. 

The presented method offers faster times for the path retrieval 
then the classical raster based approaches and works in a dynamic 
environment where the conventional graph based techniques fail. 
On the other hand, there are still some higher memory 
requirements of the proposed solution due to the necessary raster 
representation of the examined environment. 

Categories and Subject Descriptors 
D.3.2 [Language Classifications]: C# 2.0, D.3.3 [Programming 
Languages]: Language Constructs and Features – abstract data 
types, genericity. 

General Terms 
Algorithms, Measurement, Performance, Design, 
Experimentation, Theory. 

Keywords 
Path planning, Motion planning, Adaptivity, Level of Detail 
(LOD), Virtual reality, Computer graphics. 

1. INTRODUCTION 
The first methods for finding an optimal path in an abstract 
environment were developed even before the information science 
appeared. Therefore, there are many fast and efficient techniques 
for solving this general task. These conventional methods are in 
most cases subdivided according to the representation of the 
examined environment they are able to work with. Some path 
planning algorithms demand a graph-like definition of the 
processed scene (e.g., geometrical definition of all obstacles and 
other forbidden areas) and other algorithms assume the discrete 
representation of the surrounding environment is available. The 
graph based approaches often need to derive special graph-like 
structures from the provided environment description and work as 
lately as with this structure prepared whereas the raster based 
approaches usually do not need such preprocessing and search the 
optimal path directly in the provided grid representation of the 
environment. 

The path planning algorithms based on both types of the 
environment representation have crucial and radical disadvantages 
when they are to be used in the real applications. The graph 
representation of the real environment is rarely available and its 
construction is – if possible at all – very complicated and difficult. 
On the other hand, the discrete representation of the examined 
space is much easier accessible and primarily measurable but the 
algorithm itself is in most cases (due to the amount of the raster 
elements to inspect) very time-consuming. In addition, almost all 
methods for the path finding and planning need well-known or 
static environment which is not often available, either. 

A great improvement for the mentioned applications of these path 
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planning systems can be achieved with the combination of the 
discrete and graph environment approaches. Such a technique 
could use an adaptive spatial structure as a graph with its vertices 
and edges evaluated according to the specific values from a 
collaborative grid structure. It would be then able to discover a 
pseudo optimal path (an optimal path among all available 
transitions in the graph but not among the grid values) and, for 
example, continuously adapt this spatial structure to the actual 
state of the environment and other dynamic influences. 

In this paper, we propose a possibility for the path planning over 
the combined environment representation which reduces (or 
eliminates) the main disadvantages of the mentioned conventional 
approaches. We use an adaptive mesh to define all available 
waypoints and transitions for searched paths and a simple 3D 
matrix to store all raster based values. As the result, we provide a 
path planning technique that is faster than the raster based 
approaches and suitable for the applications in the dynamic 
environment (preliminary version of our method, without the 
adaptivity, has been published in [Bro06]). 

2. STATE OF THE ART 
Path planning in general denotes a basic problem of finding an 
optimal path between two specified spots in an abstract 
environment representation. In this context, the optimal path 
means the path satisfying one or more given objectives (the 
shortest, the cheapest or the fastest path, the path with the 
maximal clearance among all surrounding obstacles, etc.). The 
mentioned abstract environment can be represented in a variety of 
ways but the path planning algorithms are focusing mainly on 
evaluated graphs and 2D or 3D grids. There are many ways these 
environments can be differentiated (dynamic/static, 
known/unknown environments, etc.) which implies a similar 
distinction of the path planning techniques according to the types 
of the environment they are able to work with. 

2.1 Graph based methods 
First, let us introduce the most known approaches based on the 
graph representation of the examined space. The Visibility graph  
[Her87] technique extends the basic provided geometrical 
definition of the environment with the edges connecting the points 
that can “see” each other whereas the source and destination 
position is treated as an obstacle, too. The new edges (together 
with the edges defining the sides of each obstacle) then represent 
the possible transitions and through them, the optimal path can be 
found. An example of such preprocessing in a 2D application can 
be seen in Figure 1: the edges of all obstacles (filled with the 
bricks pattern), the starting and ending position (the points 
labelled with the letters S and E) are connected according to their 
mutual visibility and over the possible transitions (the thin lines 
together with the obstacles sides), the optimal path (the dashed 
lines) is found. 

 

 

The Minkowski sum [Ram96] technique is a similar approach 
that (unlike the previous method) considers the shape of the 
passing object and „inflates“ the borders of each obstacle so that 
the collision-free path can be solved. An example of such 
preprocessing is presented in Figure 2: the same obstacles as in 
Figure 1 are inflated with the radius of the passing object (the 
gray areas) and the collision-free path (the dashed lines) between 
the starting and ending position (the spheres labelled with the 
letters S and E) is found. With the specific structure prepared, 
both approaches can use the Dijkstra’s algorithm  [DPV04] or 
similar to find the appropriate path. 

 

 

2.2 Raster based methods 
After the short introduction into the graph-based methods for the 
path planning, we are providing insight into the techniques based 
on the grid representation. Such a grid can be precomputed (in 
case it is not provided) or modified at the beginning of the 

Figure 1: An example of the scene processing with the 
Visibility graph  technique 

 

Figure 2: An example of the path planning with the 
Minkowski sum method 
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algorithm. In reference to the modification of the explored grid, 
the potential field model [War90] can be used for filling the grid 
with the discrete values of a specific potential field generated by 
all obstacles. Passing through the grid elements with the lowest 
potential values then ensures finding the path with the maximal 
clearance among all obstacles. The most known techniques for 
searching itself are for example the A*  (for the well-known 
environment; [Bat04]) and the D*  (for the unknown, partially 
known or changing environment; [Ste94]) algorithms. Figure 3 
shows the manner of such path finding in the grid: the obstacles 
from Figure 1 and 2 are now splitted into the raster and in this 
raster, the optimal path between the starting and ending position 
(the cells labelled with the letters S and E) over the grid cells is 
outlined. 

 

 

3. THE PROPOSED MODEL 
To provide a suitable path planning model for the mentioned 
applications where the conventional approaches fail, we are 
focussing on a general path planning technique that is able to 
work in the known, partially known or unknown discrete 
environment and that is designed for use in the virtual reality with 
the possible support of the exploring avatars. 

In the proposed solution, we come out of a general idea of a 
fictive terrain exploration with the help of autonomous robots that 
are controlled from a specific kind of headquarters (HQ). These 
robots (also called scouts or agents) are equipped with specific 
sensors (depending on the application they are used for) and 
survey certain locations of the examined terrain according to the 
orders from the HQ. Such headquarters then keep specific “paper 
maps” to sketch in the discovered obstacles and other threats 
which are then periodically complemented and updated with the 
actual values measured by the scouts. The idle agents are then 
guided to the unexplored locations or to the important locations 
according to the actual state of these maps. After certain time, the 
static obstacles are fully mapped throughout the explored space, 
the safest paths (in terms of the maximal clearance among all 
obstacles) are known and the scouts are then guided only to the 

locations with a suspicion of the possible threats. Figure 4 shows 
an example of such environment exploration in a 2D application: 
4 agents in the terrain collect and send the information about the 
obstacles (bricks pattern filling) and specific kinds of threats 
(angry face) to the headquarters and there, the measured values 
are stored into the obstacles map (impassable areas) and into the 
threats map (a potential field of discovered threats). 

 

 

Following the mentioned idea of the sensor based terrain 
exploration with the autonomous agents, we advance in the 
development of a general model for the real-time and adaptive 
path planning that was pioneered by R. A. Apu in [AG05]. The 
proposed model can be used for both 2D and 3D applications (the 
only difference lies in the undermentioned adaptive graph-like 
structures) and works in a complex and dynamic environment 
which is assumed to be provided in the raster representation and 
can be well known, partially known or even unknown. The 
described path planning system is based on three main 
headstones: 

• A graph-like spatial structure (hereafter referred to as a 
mesh) that adapts itself to the examined environment 
and defines all reachable positions and transitions with 
its vertices and edges. 

• A grid structure for the discrete representation of certain 
environment hazards (hereafter referred to as a map), 
e.g., the proximity to an obstacle or the dynamic threats. 

• An autonomous AI entity (hereafter referred to as an 
agent) for the real-time survey of the explored space 
and influencing the mesh adaptation with its behaviour. 

The main approach uses two separate maps of the same size for 
the environment description. The first one, called obstacles map, 
represents the danger weights as the proximities to the nearest 
obstacle in the mapped space and the second one, called threats 
map, represents the potential field generated by all located and 
observed threats in the examined terrain. In the following, the 
proposed path planning model keeps a mesh that is „widespread“ 

Figure 3: An example of the raster based path planning 

 

Figure 4: A preview of the 2D terrain sensor-based 
exploration with the autonomous robots 
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over the examined space covered also by the mentioned mapping 
structures. This mesh then defines all available waypoints and 
transitions the agents can travel during their exploration and 
continuously copes with the changes in both mapping structures 
and with the behaviour of all agents. Such an adaptation is 
achieved by refinement of the mesh in the places with higher error 
values (calculated from the obstacles map and threats map) and by 
merging of the mesh in the least visited and unimportant areas. 

The algorithm itself is based on the real-time development of the 
adaptive mesh during the particular iterations. According to the 
presently recorded values in the maps, the mesh structure is 
refined in the areas with the higher importance (the darked 
locations in the obstacles map in Figure 4) and merged in the 
areas with the lower importance (in the least visited graph 
vertices). In the proposed solution, the adaptive mesh is used only 
to define the available waypoints and transitions for the 
movement and navigation of the agents, not for the visualization. 
Therefore, T-vertices in the mesh do not bring any problems 
typical for them in the visualisation of the meshes (they may cause 
creases in the model). Foldovers in the mesh are not possible in 
our case as the vertices are not moved, just refined. 

In the mentioned fictive terrain exploration, the continuous 
prospecting of the environment was a task for the robots but in 
our current solution and demonstrating application, we assume the 
obstacles in the environment are already completely explored – 
that the obstacles map is filled with the IDT (Image Distance 
Transform) technique based on the Voronoi diagrams [Rou98]. 
Concretely, the elements of the obstacles map are evaluated 
according to their proximity to the nearest obstacle with the real 
value from 0 (minimal proximity) to 1 (maximal proximity to the 
nearest obstacle or the obstacle itself). The elements of the threats 
map are then evaluated in a similar manner during the mesh 
adaptation. 

Single iteration of the mesh adaptation in the proposed path 
planning system consists of the following general steps (similar as 
in [AG05]): 

1. Maps completion and updating 

The current sensor readings are evaluated in the close 
neighbourhood of each agent and the corresponding 
map elements are updated or eventually complemented 
with the measured values (but in the demonstrating 
application, the environment surveying is accomplished 
at the beginning of the program, as mentioned above). 

2. Influence depletion and replenishment 

An importance of the recorded values (so called 
influence) of each vertex in the adaptive mesh is 
partially depleted and then again partially replenished 
according to the count and distance of the agents near 
this vertex. The more agents are in the proximity of the 
vertex, the bigger is the amount of the influence 
replenishment (this ensures the mesh will „remember“ 
the important locations of the examined space; the least 
visited places – the vertices with the lower influence – 
are not important for the exploring and that is why the 
adaptive mesh does not need to be refined around 
them). 

3. Error function evaluation and refinement 

A specific error function with the values from the 
obstacles map, threats map and the influences is 
evaluated for each block (in [AG05], the blocks are 
called clusters in a specific spatial structure ASM – 
Adaptive spatial mesh) of the adaptive mesh and 
according to the result, the clusters are merged, splitted 
or left in their current state. Figure 5 represents a single 
stage of the adaptive mesh for the 2D scene presented in 
Figure 4: the mesh is refined in the important regions 
(above the obstacles and nearby the threats) and 
coarsened in less important regions. 

4. Orders execution 

Each agent executes its orders – he finds an optimal 
path to the given location with the provided cost 
function or follows its already computed waypoints (if 
the path cannot be travelled due to the refinements of 
the mesh, it is recomputed to the first existing 
waypoint). 

5. Exploration 

If all user’s objectives and goals are reached, the agents 
ensure the exploration of the unvisited locations in the 
examined space – they automatically plan the path to 
the vertices with no values recorded. Steps 3, 4 and 5 
are not accomplished in our current solution as the 
demonstrating application prepares and fills the 
mapping structures at its beginning and so there are no 
unvisited locations that should by explored by the 
agents. 

 

 

After a certain time, the mesh is fully adapted to the static 
obstacles and copes only with the dynamic influences – with the 
threats. A pseudo optimal path for the user can then be computed 
using Dijkstra’s algorithm with the specific cost function (there 
are many ways to specify the cost functions and in addition to, 
they can differ according to the type of the application). We are 

Figure 5: A single stage of the adaptive mesh for the 
same type of the explored terrain as in Figure 4 
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not focusing on the definition of these cost functions but an 
example of that function (concretely the example of the function 
used by the robots during their exploration) can be found again in 
the [AG05]. 

4. EXPERIMENTS & RESULTS 

4.1 Demonstrating application 
We have implemented a simple application (in the C# language 
with the Direct3D libraries) to provide the results and 
comparisons of our algorithm. In this demonstrating application, 
we generate a certain number of obstacles formed by the solid 
spheres with different radii and we also add some abstract threats 
represented by the small red cubes. During the program run, the 
threats are directed to the random locations of the examined space 
and the adaptive mesh is refined in each iteration. The obstacles 
map is precomputed and filled with the corresponding values 
before the main loop of the program. Therefore, the complexity of 
this structure and its creation does not affect the qualities of the 
real-time method itself. To demonstrate the adaptivity of the 
algorithm, the optimal path is recomputed after each refinement of 
the mesh. 

An example of such a testing scene with 16 obstacles and 2 threats 
is shown in the following images: Figure 6 shows the basic scene 
only with the found path between two opposite corners of the 
examined space, Figure 7 then shows the same scene together 
with the actual state of the adaptive mesh (with the maximum 
level of the mesh division equal to 4) and Figure 8 shows again 
the same scene but this time with the weight values from the 
obstacles map (the darker cubes define safer locations and the 
lighter cubes define more dangerous locations). 

 

 

 

 

4.2 Survey of the tests 
For our survey, we have selected and measured the following 
variables as the most characteristic and important parameters of 
the proposed method: 

• Clusters amount defines the count of the atomic 
elements in the adaptive structure (in Figure 7, these are 
the smallest cubes with all corners connected to each 
other). 

• Adaptation time determines the time needed for the 
single iteration of the adaptive structure progression. 

• Allocated memory defines the memory requirements of 
our C# implementation (debug version). 

• Path finding time denotes the time needed for finding 
the optimal path between two constant spots in the 
opposite corners of the explored space. 

Figure 7: A snapshot of the scene from Figure 6 with the 
adaptive mesh 

Figure 6: An example of the random scene in the 
demonstrating application 

Figure 8: A snapshot of the scene from Figure 6 with the 
values from the obstacles map presented 



Západočeská univerzita v Plzni  Fakulta aplikovaných věd 

The mentioned parameters have been measured with the following 
testing datasets to present the qualities and possible weak points 
of our implementation: 

• Dataset #1 describes the algorithm in the environment 
consisting of 8 solid spheres (these obstacles fill about 
3% in the volume of the examined space). The rank of 
the grid used in this preset is equal to 32 (that means the 
obstacles map contains 32 768 elements) and the 
maximum level of the mesh division is set to 4 (the 
smallest cluster in the mesh has one sixteenth of the 
original width). 

• Dataset #2 defines the same adjustment of the 
algorithm as the dataset #1 (8 solid spheres with 
different radii randomly dislocated in the examined 
environment and filling again about 3% of the space, 
32x32x32 elements in the grid) except that the 
maximum division level is equal to 5. 

• Dataset #3 specifies the configuration with 16 obstacles 
in the examined space (filling about 6% of the explored 
environment), with the rank of the obstacles map equal 
to 64 and the maximum level of the mesh division set to 
4. 

• Dataset #4 again defines the same adjustment of the 
previous dataset (16 obstacles filling about 6% of the 
examined environment, 64x64x64 elements in the grid 
used for the obstacles map) except that the maximum 
division level is set to 5. 

First of all, we present the functional dependence of the clusters 
amount on the particular iterations of the program (for all 
mentioned datasets) in Figure 9. At the very beginning of the main 
loop, we can see a rapid growth of the clusters amount as the 
adaptive mesh refines itself around the obstacles. The remaining 
behaviour of this dependence highly varies due to the movement 
of the threats in the scene. When the threat shifts off from the near 
obstacles, it raises the weight value of the previously unimportant 
locations and so evokes a new refinement of the mesh around 
these locations. Such situations then evoke the peeks of the 
clusters amount that are visible in all mentioned dependencies in 
Figure 9. 

The environment of the testing application changes itself in an 
absolutely random way as the threats are directed to the random 
locations in it. Though, it is possible to discover some events in 
the application from the presented dependencies. We can take a 
look for example at the graph for the dataset 2 in Figure 9: the 
growths in the behaviour (during the iterations 150-200, 350-500, 
600-700, 780-800 and 920-980) are owing to the threats that 
smooth away from the nearest obstacles and so invoke the mesh 
refinement in the previously unimportant locations. In Figure 9, 
we can also see the datasets 2 and 4 are much more varying than 
the datasets 1 and 3 but there is a clear explanation for it. With the 
higher level of maximum mesh division, there are more clusters 
reacting on the threats movement. 

 

Figure 10 shows the time requirements of each single mesh 
adaptation. There are presented the moving average (8 periods) 
values instead of the original values. Apparently, the time 
complexity of the adaptation depends mainly on the maximum 
level of the mesh division. Also in these graphs, the peeks can be 
explained with the behaviour of the threats. When the threats shift 
away from the near obstacles, they fill more elements of the grid 
with higher values and so there are more areas for the refinement. 
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Finally, Figure 11 provides common insight into the memory 
requirements of our implementation. The measured values are 
approximate due to the garbage collector used in the C# programs. 
High and constant amount of the memory is required for the grid 
structure (for the rank of the grid  equal to 32, program must 
allocate the memory for the 32x32x32 matrix consisting of the 
float values) and so the step changes in the dependencies are 
caused only by the mesh adaptation itself. 

 

 

4.3 Obstacles count independence 
The demonstrating application was also used to survey the 
algorithm independence of the obstacles amount. We have defined 
other adjustments of the algorithm similar to the presets from the 
subsection 4.2 and we have measured the properties of our 
solution for 256, 512, 1024 and 2048 obstacles randomly 
dislocated throughout the space. The concrete values are again 
defined in the parentheses behind each preset in the legends – ‘O’ 
stands for the obstacles count, ‘G’ stands for the rank of the grid 
and ‘D’ stands for the maximum level of the mesh division. 

Figure 12 shows the functional dependence of the clusters amount 
and the particular iterations of the program for these new 
configurations. The presented graphs indicate that the clusters 
count is not directly dependent upon the obstacles amount. The 
differences in these graphs are caused by the topology of all 
obstacles in the scene that is randomly generated for each dataset. 
The same situation of this separateness occurs in Figure 13 with 
the functional dependence of the mesh adaptation times and in 
Figure 14 with the dependence of the time for finding the path. 
Figures 13 and 14 are again presented in the form of the moving 
averages due to the oscillating measured values. The considerated 
obstacles are preprocessed in the grid and that is the only part of 
our solution that is affected by the count of the obstacles. 

 

Figure 11: Memory requirements of our implementation 
dependent on the particular iterations 
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Figure 10: A time complexity of the mesh adaptation 
dependent on the program iterations 
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4.4 Non-adaptive mesh comparison 
We also own an implementation of the proposed path planning 
technique with the regular mesh - it provided us the opportunity to 
compare this old solution to our current implementation. 

Figure 15 shows two selected configurations from the subsection 
4.3 together with the results from the two equivalent adjustments 
of the old algorithm with the regular mesh (in this case, ‘G:64’ 
means the regular mesh consisting of 64x64x64 clusters). The 
times for the regular mesh stay around the value 400ms whereas 
the times for finding the path in the adaptive mesh strongly vary 
(average time for the preset #2 is about 45ms and for the preset #4 
about 200ms) but they never achieve the time needed by the old 
algorithm. Figure 16 then presents the values measured 
simultaneously with the path planning times for Figure 15 (values 
are interpolated by the polynomial regression of the third grade) 
and demonstrates the identical results in the path optimality for 
these techniques. In this context, the path optimality is evaluated 
according to the highest danger weight in the waypoints on the 
found path where this optimality grows with the descending 
maximal weight (Figure 16 shows this maximal weight during the 
program run). 
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Figure 13: Mesh adaptation times dependent on the 
particular iterations of the program 
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The measurements show the proposed path planning method is a 
suitable alternative for the path planning in dynamic 
environments: it is faster than the raster based approach and it is 
usable in the applications where the graph based techniques fail. 
On the other hand, there are still high memory requirements due 
to the 3D matrix for the grid used in our solution. 

5. CONCLUSION & FUTURE WORK 
We have outlined the possible model for the path planning system 
that eliminates the described disadvantages of the conventional 
approaches applied in the virtual reality. We have measured the 
most important properties of our implementation and provided the 
gained dependencies, some of them compared to the results of the 
conventional approach. The provided method can be used in 2D 
and 3D applications and works in the known, partially known or 
unknown and dynamic environment. In comparison with the 
regular mesh, the method with the adaptive mesh needs only 
about 10-50% of the original time for finding the optimal path (on 
equal optimality results). 

5.1 Possible trends 
The proposed solution is still under development and there are 
many possible ways to improve this model for the real-time path 
planning. In a few following points, we are denoting the most 
important and the most interesting ones: 

• An enhancement of the method for filling the obstacles 
map according to the scene description – In our 
solution, we use an unoptimized code for filling the 
obstacles map. If we want our solution to be usable in 
computer defined and abstract environment, we must 
assume the scene will be provided in one of the 
common description formats. Then it would be better to 
improve the way the mapping structure is created and 
filled from this scene representation. 

• An enhancement of the adaptive structure: the way the 
adaptive structure copes with the changes in the mapped 

space is an important factor of the algorithm’s 
performance. In the measured dependencies from the 
section 4 it is obvious that the main effect of our 
solution appears from the mesh adaptation process. The 
topology and adaptation behaviour of this structure are 
the main points we want to focus on in the future. 

• Interleaving the waypoints of the found path with a 
specific curve is another step to make the path planning 
results look more human-like and so to make them more 
useful. While creating this curve, we must keep the 
collision-free property of the found path and that will be 
another way of the development we are going to take. 
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Figure 16: Proximities to the nearest obstacles on found 
paths during the program iteration 
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