
Západočeská univerzita v Plzni Fakulta aplikovaných věd

Path planning in dynamic environment using
an adaptive mesh

Petr Brož1,3
pebro@students.zcu.cz

Ivana Kolingerová1
kolinger@kiv.zcu.cz

Russel Ahmed Apu2
apu@cpsc.ucalgary.ca

Marina Gavrilova2
marina@cpsc.ucalgary.ca

Přemysl Zítka1
premysl@students.zcu.cz

1Department of Computer Science and Engineering

University of West Bohemia
Pilsen, Czech Republic

2Department of Computer Science
University of Calgary

Calgary, Canada

ABSTRACT
Solutions for the common problem of path planning in an abstract
environment have been extensively developed in many scientific
disciplines. However, almost all explored techniques assume the
environment does not change and that there is a complete and
detailed overview of this examined space. In addition to, many
methods for the path planning need to derive a specific graph
structure from the environment representation and it can be often
very difficult to construct or obtain this structure in some real
applications.

In our proposal, we introduce a general model for the real-time
path planning in a known, partially known, unknown and dynamic
environment. We provide a hybrid technique that combines a
graph and grid representation of the examined space and that is
trying to combine the advantages from both types of the
environment representation. The proposed path planning method
uses an adaptive mesh for its graph part to provide the capability
of the assimilation to the changing environment.

The presented method offers faster times for the path retrieval
then the classical raster based approaches and works in a dynamic
environment where the conventional graph based techniques fail.
On the other hand, there are still some higher memory
requirements of the proposed solution due to the necessary raster
representation of the examined environment.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: C# 2.0, D.3.3 [Programming
Languages]: Language Constructs and Features – abstract data
types, genericity.

General Terms
Algorithms, Measurement, Performance, Design,
Experimentation, Theory.

Keywords
Path planning, Motion planning, Adaptivity, Level of Detail
(LOD), Virtual reality, Computer graphics.

1. INTRODUCTION
The first methods for finding an optimal path in an abstract
environment were developed even before the information science
appeared. Therefore, there are many fast and efficient techniques
for solving this general task. These conventional methods are in
most cases subdivided according to the representation of the
examined environment they are able to work with. Some path
planning algorithms demand a graph-like definition of the
processed scene (e.g., geometrical definition of all obstacles and
other forbidden areas) and other algorithms assume the discrete
representation of the surrounding environment is available. The
graph based approaches often need to derive special graph-like
structures from the provided environment description and work as
lately as with this structure prepared whereas the raster based
approaches usually do not need such preprocessing and search the
optimal path directly in the provided grid representation of the
environment.

The path planning algorithms based on both types of the
environment representation have crucial and radical disadvantages
when they are to be used in the real applications. The graph
representation of the real environment is rarely available and its
construction is – if possible at all – very complicated and difficult.
On the other hand, the discrete representation of the examined
space is much easier accessible and primarily measurable but the
algorithm itself is in most cases (due to the amount of the raster
elements to inspect) very time-consuming. In addition, almost all
methods for the path finding and planning need well-known or
static environment which is not often available, either.

A great improvement for the mentioned applications of these path

3 Supported by the Ministry of Education of the Czech
Republic – project No. LC 06008

Západočeská univerzita v Plzni Fakulta aplikovaných věd

planning systems can be achieved with the combination of the
discrete and graph environment approaches. Such a technique
could use an adaptive spatial structure as a graph with its vertices
and edges evaluated according to the specific values from a
collaborative grid structure. It would be then able to discover a
pseudo optimal path (an optimal path among all available
transitions in the graph but not among the grid values) and, for
example, continuously adapt this spatial structure to the actual
state of the environment and other dynamic influences.

In this paper, we propose a possibility for the path planning over
the combined environment representation which reduces (or
eliminates) the main disadvantages of the mentioned conventional
approaches. We use an adaptive mesh to define all available
waypoints and transitions for searched paths and a simple 3D
matrix to store all raster based values. As the result, we provide a
path planning technique that is faster than the raster based
approaches and suitable for the applications in the dynamic
environment (preliminary version of our method, without the
adaptivity, has been published in [Bro06]).

2. STATE OF THE ART
Path planning in general denotes a basic problem of finding an
optimal path between two specified spots in an abstract
environment representation. In this context, the optimal path
means the path satisfying one or more given objectives (the
shortest, the cheapest or the fastest path, the path with the
maximal clearance among all surrounding obstacles, etc.). The
mentioned abstract environment can be represented in a variety of
ways but the path planning algorithms are focusing mainly on
evaluated graphs and 2D or 3D grids. There are many ways these
environments can be differentiated (dynamic/static,
known/unknown environments, etc.) which implies a similar
distinction of the path planning techniques according to the types
of the environment they are able to work with.

2.1 Graph based methods
First, let us introduce the most known approaches based on the
graph representation of the examined space. The Visibility graph
[Her87] technique extends the basic provided geometrical
definition of the environment with the edges connecting the points
that can “see” each other whereas the source and destination
position is treated as an obstacle, too. The new edges (together
with the edges defining the sides of each obstacle) then represent
the possible transitions and through them, the optimal path can be
found. An example of such preprocessing in a 2D application can
be seen in Figure 1: the edges of all obstacles (filled with the
bricks pattern), the starting and ending position (the points
labelled with the letters S and E) are connected according to their
mutual visibility and over the possible transitions (the thin lines
together with the obstacles sides), the optimal path (the dashed
lines) is found.

The Minkowski sum [Ram96] technique is a similar approach
that (unlike the previous method) considers the shape of the
passing object and „inflates“ the borders of each obstacle so that
the collision-free path can be solved. An example of such
preprocessing is presented in Figure 2: the same obstacles as in
Figure 1 are inflated with the radius of the passing object (the
gray areas) and the collision-free path (the dashed lines) between
the starting and ending position (the spheres labelled with the
letters S and E) is found. With the specific structure prepared,
both approaches can use the Dijkstra’s algorithm [DPV04] or
similar to find the appropriate path.

2.2 Raster based methods
After the short introduction into the graph-based methods for the
path planning, we are providing insight into the techniques based
on the grid representation. Such a grid can be precomputed (in
case it is not provided) or modified at the beginning of the

Figure 1: An example of the scene processing with the
Visibility graph technique

Figure 2: An example of the path planning with the
Minkowski sum method

Západočeská univerzita v Plzni Fakulta aplikovaných věd

algorithm. In reference to the modification of the explored grid,
the potential field model [War90] can be used for filling the grid
with the discrete values of a specific potential field generated by
all obstacles. Passing through the grid elements with the lowest
potential values then ensures finding the path with the maximal
clearance among all obstacles. The most known techniques for
searching itself are for example the A* (for the well-known
environment; [Bat04]) and the D* (for the unknown, partially
known or changing environment; [Ste94]) algorithms. Figure 3
shows the manner of such path finding in the grid: the obstacles
from Figure 1 and 2 are now splitted into the raster and in this
raster, the optimal path between the starting and ending position
(the cells labelled with the letters S and E) over the grid cells is
outlined.

3. THE PROPOSED MODEL
To provide a suitable path planning model for the mentioned
applications where the conventional approaches fail, we are
focussing on a general path planning technique that is able to
work in the known, partially known or unknown discrete
environment and that is designed for use in the virtual reality with
the possible support of the exploring avatars.

In the proposed solution, we come out of a general idea of a
fictive terrain exploration with the help of autonomous robots that
are controlled from a specific kind of headquarters (HQ). These
robots (also called scouts or agents) are equipped with specific
sensors (depending on the application they are used for) and
survey certain locations of the examined terrain according to the
orders from the HQ. Such headquarters then keep specific “paper
maps” to sketch in the discovered obstacles and other threats
which are then periodically complemented and updated with the
actual values measured by the scouts. The idle agents are then
guided to the unexplored locations or to the important locations
according to the actual state of these maps. After certain time, the
static obstacles are fully mapped throughout the explored space,
the safest paths (in terms of the maximal clearance among all
obstacles) are known and the scouts are then guided only to the

locations with a suspicion of the possible threats. Figure 4 shows
an example of such environment exploration in a 2D application:
4 agents in the terrain collect and send the information about the
obstacles (bricks pattern filling) and specific kinds of threats
(angry face) to the headquarters and there, the measured values
are stored into the obstacles map (impassable areas) and into the
threats map (a potential field of discovered threats).

Following the mentioned idea of the sensor based terrain
exploration with the autonomous agents, we advance in the
development of a general model for the real-time and adaptive
path planning that was pioneered by R. A. Apu in [AG05]. The
proposed model can be used for both 2D and 3D applications (the
only difference lies in the undermentioned adaptive graph-like
structures) and works in a complex and dynamic environment
which is assumed to be provided in the raster representation and
can be well known, partially known or even unknown. The
described path planning system is based on three main
headstones:

• A graph-like spatial structure (hereafter referred to as a
mesh) that adapts itself to the examined environment
and defines all reachable positions and transitions with
its vertices and edges.

• A grid structure for the discrete representation of certain
environment hazards (hereafter referred to as a map),
e.g., the proximity to an obstacle or the dynamic threats.

• An autonomous AI entity (hereafter referred to as an
agent) for the real-time survey of the explored space
and influencing the mesh adaptation with its behaviour.

The main approach uses two separate maps of the same size for
the environment description. The first one, called obstacles map,
represents the danger weights as the proximities to the nearest
obstacle in the mapped space and the second one, called threats
map, represents the potential field generated by all located and
observed threats in the examined terrain. In the following, the
proposed path planning model keeps a mesh that is „widespread“

Figure 3: An example of the raster based path planning

Figure 4: A preview of the 2D terrain sensor-based
exploration with the autonomous robots

Západočeská univerzita v Plzni Fakulta aplikovaných věd

over the examined space covered also by the mentioned mapping
structures. This mesh then defines all available waypoints and
transitions the agents can travel during their exploration and
continuously copes with the changes in both mapping structures
and with the behaviour of all agents. Such an adaptation is
achieved by refinement of the mesh in the places with higher error
values (calculated from the obstacles map and threats map) and by
merging of the mesh in the least visited and unimportant areas.

The algorithm itself is based on the real-time development of the
adaptive mesh during the particular iterations. According to the
presently recorded values in the maps, the mesh structure is
refined in the areas with the higher importance (the darked
locations in the obstacles map in Figure 4) and merged in the
areas with the lower importance (in the least visited graph
vertices). In the proposed solution, the adaptive mesh is used only
to define the available waypoints and transitions for the
movement and navigation of the agents, not for the visualization.
Therefore, T-vertices in the mesh do not bring any problems
typical for them in the visualisation of the meshes (they may cause
creases in the model). Foldovers in the mesh are not possible in
our case as the vertices are not moved, just refined.

In the mentioned fictive terrain exploration, the continuous
prospecting of the environment was a task for the robots but in
our current solution and demonstrating application, we assume the
obstacles in the environment are already completely explored –
that the obstacles map is filled with the IDT (Image Distance
Transform) technique based on the Voronoi diagrams [Rou98].
Concretely, the elements of the obstacles map are evaluated
according to their proximity to the nearest obstacle with the real
value from 0 (minimal proximity) to 1 (maximal proximity to the
nearest obstacle or the obstacle itself). The elements of the threats
map are then evaluated in a similar manner during the mesh
adaptation.

Single iteration of the mesh adaptation in the proposed path
planning system consists of the following general steps (similar as
in [AG05]):

1. Maps completion and updating

The current sensor readings are evaluated in the close
neighbourhood of each agent and the corresponding
map elements are updated or eventually complemented
with the measured values (but in the demonstrating
application, the environment surveying is accomplished
at the beginning of the program, as mentioned above).

2. Influence depletion and replenishment

An importance of the recorded values (so called
influence) of each vertex in the adaptive mesh is
partially depleted and then again partially replenished
according to the count and distance of the agents near
this vertex. The more agents are in the proximity of the
vertex, the bigger is the amount of the influence
replenishment (this ensures the mesh will „remember“
the important locations of the examined space; the least
visited places – the vertices with the lower influence –
are not important for the exploring and that is why the
adaptive mesh does not need to be refined around
them).

3. Error function evaluation and refinement

A specific error function with the values from the
obstacles map, threats map and the influences is
evaluated for each block (in [AG05], the blocks are
called clusters in a specific spatial structure ASM –
Adaptive spatial mesh) of the adaptive mesh and
according to the result, the clusters are merged, splitted
or left in their current state. Figure 5 represents a single
stage of the adaptive mesh for the 2D scene presented in
Figure 4: the mesh is refined in the important regions
(above the obstacles and nearby the threats) and
coarsened in less important regions.

4. Orders execution

Each agent executes its orders – he finds an optimal
path to the given location with the provided cost
function or follows its already computed waypoints (if
the path cannot be travelled due to the refinements of
the mesh, it is recomputed to the first existing
waypoint).

5. Exploration

If all user’s objectives and goals are reached, the agents
ensure the exploration of the unvisited locations in the
examined space – they automatically plan the path to
the vertices with no values recorded. Steps 3, 4 and 5
are not accomplished in our current solution as the
demonstrating application prepares and fills the
mapping structures at its beginning and so there are no
unvisited locations that should by explored by the
agents.

After a certain time, the mesh is fully adapted to the static
obstacles and copes only with the dynamic influences – with the
threats. A pseudo optimal path for the user can then be computed
using Dijkstra’s algorithm with the specific cost function (there
are many ways to specify the cost functions and in addition to,
they can differ according to the type of the application). We are

Figure 5: A single stage of the adaptive mesh for the
same type of the explored terrain as in Figure 4

Západočeská univerzita v Plzni Fakulta aplikovaných věd

not focusing on the definition of these cost functions but an
example of that function (concretely the example of the function
used by the robots during their exploration) can be found again in
the [AG05].

4. EXPERIMENTS & RESULTS

4.1 Demonstrating application
We have implemented a simple application (in the C# language
with the Direct3D libraries) to provide the results and
comparisons of our algorithm. In this demonstrating application,
we generate a certain number of obstacles formed by the solid
spheres with different radii and we also add some abstract threats
represented by the small red cubes. During the program run, the
threats are directed to the random locations of the examined space
and the adaptive mesh is refined in each iteration. The obstacles
map is precomputed and filled with the corresponding values
before the main loop of the program. Therefore, the complexity of
this structure and its creation does not affect the qualities of the
real-time method itself. To demonstrate the adaptivity of the
algorithm, the optimal path is recomputed after each refinement of
the mesh.

An example of such a testing scene with 16 obstacles and 2 threats
is shown in the following images: Figure 6 shows the basic scene
only with the found path between two opposite corners of the
examined space, Figure 7 then shows the same scene together
with the actual state of the adaptive mesh (with the maximum
level of the mesh division equal to 4) and Figure 8 shows again
the same scene but this time with the weight values from the
obstacles map (the darker cubes define safer locations and the
lighter cubes define more dangerous locations).

4.2 Survey of the tests
For our survey, we have selected and measured the following
variables as the most characteristic and important parameters of
the proposed method:

• Clusters amount defines the count of the atomic
elements in the adaptive structure (in Figure 7, these are
the smallest cubes with all corners connected to each
other).

• Adaptation time determines the time needed for the
single iteration of the adaptive structure progression.

• Allocated memory defines the memory requirements of
our C# implementation (debug version).

• Path finding time denotes the time needed for finding
the optimal path between two constant spots in the
opposite corners of the explored space.

Figure 7: A snapshot of the scene from Figure 6 with the
adaptive mesh

Figure 6: An example of the random scene in the
demonstrating application

Figure 8: A snapshot of the scene from Figure 6 with the
values from the obstacles map presented

Západočeská univerzita v Plzni Fakulta aplikovaných věd

The mentioned parameters have been measured with the following
testing datasets to present the qualities and possible weak points
of our implementation:

• Dataset #1 describes the algorithm in the environment
consisting of 8 solid spheres (these obstacles fill about
3% in the volume of the examined space). The rank of
the grid used in this preset is equal to 32 (that means the
obstacles map contains 32 768 elements) and the
maximum level of the mesh division is set to 4 (the
smallest cluster in the mesh has one sixteenth of the
original width).

• Dataset #2 defines the same adjustment of the
algorithm as the dataset #1 (8 solid spheres with
different radii randomly dislocated in the examined
environment and filling again about 3% of the space,
32x32x32 elements in the grid) except that the
maximum division level is equal to 5.

• Dataset #3 specifies the configuration with 16 obstacles
in the examined space (filling about 6% of the explored
environment), with the rank of the obstacles map equal
to 64 and the maximum level of the mesh division set to
4.

• Dataset #4 again defines the same adjustment of the
previous dataset (16 obstacles filling about 6% of the
examined environment, 64x64x64 elements in the grid
used for the obstacles map) except that the maximum
division level is set to 5.

First of all, we present the functional dependence of the clusters
amount on the particular iterations of the program (for all
mentioned datasets) in Figure 9. At the very beginning of the main
loop, we can see a rapid growth of the clusters amount as the
adaptive mesh refines itself around the obstacles. The remaining
behaviour of this dependence highly varies due to the movement
of the threats in the scene. When the threat shifts off from the near
obstacles, it raises the weight value of the previously unimportant
locations and so evokes a new refinement of the mesh around
these locations. Such situations then evoke the peeks of the
clusters amount that are visible in all mentioned dependencies in
Figure 9.

The environment of the testing application changes itself in an
absolutely random way as the threats are directed to the random
locations in it. Though, it is possible to discover some events in
the application from the presented dependencies. We can take a
look for example at the graph for the dataset 2 in Figure 9: the
growths in the behaviour (during the iterations 150-200, 350-500,
600-700, 780-800 and 920-980) are owing to the threats that
smooth away from the nearest obstacles and so invoke the mesh
refinement in the previously unimportant locations. In Figure 9,
we can also see the datasets 2 and 4 are much more varying than
the datasets 1 and 3 but there is a clear explanation for it. With the
higher level of maximum mesh division, there are more clusters
reacting on the threats movement.

Figure 10 shows the time requirements of each single mesh
adaptation. There are presented the moving average (8 periods)
values instead of the original values. Apparently, the time
complexity of the adaptation depends mainly on the maximum
level of the mesh division. Also in these graphs, the peeks can be
explained with the behaviour of the threats. When the threats shift
away from the near obstacles, they fill more elements of the grid
with higher values and so there are more areas for the refinement.

Amount of the clusters during the program run

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800 900 1000

Program iteration

A
m

ou
n
t o

f
th

e
 c

lu
st

e
rs

Dataset #3 (O:16, G:64, D:4) Dataset #4 (O:16, G:64, D:5)

Amount of the clusters during the program run

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700 800 900 1000

Program iteration

A
m

o
u

nt
 o

f t
he

 c
lu

st
er

s

Dataset #1 (O:8, G:32, D:4) Dataset #2 (O:8, G:32, D:5)

Figure 9: A clusters count dependent on the program
iterations

Západočeská univerzita v Plzni Fakulta aplikovaných věd

Finally, Figure 11 provides common insight into the memory
requirements of our implementation. The measured values are
approximate due to the garbage collector used in the C# programs.
High and constant amount of the memory is required for the grid
structure (for the rank of the grid equal to 32, program must
allocate the memory for the 32x32x32 matrix consisting of the
float values) and so the step changes in the dependencies are
caused only by the mesh adaptation itself.

4.3 Obstacles count independence
The demonstrating application was also used to survey the
algorithm independence of the obstacles amount. We have defined
other adjustments of the algorithm similar to the presets from the
subsection 4.2 and we have measured the properties of our
solution for 256, 512, 1024 and 2048 obstacles randomly
dislocated throughout the space. The concrete values are again
defined in the parentheses behind each preset in the legends – ‘O’
stands for the obstacles count, ‘G’ stands for the rank of the grid
and ‘D’ stands for the maximum level of the mesh division.

Figure 12 shows the functional dependence of the clusters amount
and the particular iterations of the program for these new
configurations. The presented graphs indicate that the clusters
count is not directly dependent upon the obstacles amount. The
differences in these graphs are caused by the topology of all
obstacles in the scene that is randomly generated for each dataset.
The same situation of this separateness occurs in Figure 13 with
the functional dependence of the mesh adaptation times and in
Figure 14 with the dependence of the time for finding the path.
Figures 13 and 14 are again presented in the form of the moving
averages due to the oscillating measured values. The considerated
obstacles are preprocessed in the grid and that is the only part of
our solution that is affected by the count of the obstacles.

Figure 11: Memory requirements of our implementation
dependent on the particular iterations

Memory requirements during the program run

22

23

24

25

26

27

28

29

30

31

32

0 100 200 300 400 500 600 700 800 900 1000

Program iteration

A
llo

ca
te

d
 m

em
or

y
[M

B
]

Dataset #3 (O:16, G:64, D:8) Dataset #4 (O:16, G:64, D:16)

Memory requirements during the program run

22

23

24

25

26

27

28

29

30

31

32

0 100 200 300 400 500 600 700 800 900 1000

Program iteration

A
llo

ca
te

d
m

e
m

or
y

[M
B

]

Dataset #1 (O:8, G:32, D:8) Dataset #2 (O:8, G:32, D:16)

Figure 10: A time complexity of the mesh adaptation
dependent on the program iterations

Particular adaptation times during the program run

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

Program iteration

A
da

p
ta

tio
n

 t
im

e
 [m

s]

Dataset #3 (O:16, G:64, D:8) Dataset #4 (O:16, G:64, D:16)

Particular adaptation times during the program run

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900 1000

Program iteration

A
da

pt
at

io
n

tim
e

 [
m

s]

Dataset #1 (O:8, G:32, D:4) Dataset #2 (O:8, G:32, D:5)

Západočeská univerzita v Plzni Fakulta aplikovaných věd

4.4 Non-adaptive mesh comparison
We also own an implementation of the proposed path planning
technique with the regular mesh - it provided us the opportunity to
compare this old solution to our current implementation.

Figure 15 shows two selected configurations from the subsection
4.3 together with the results from the two equivalent adjustments
of the old algorithm with the regular mesh (in this case, ‘G:64’
means the regular mesh consisting of 64x64x64 clusters). The
times for the regular mesh stay around the value 400ms whereas
the times for finding the path in the adaptive mesh strongly vary
(average time for the preset #2 is about 45ms and for the preset #4
about 200ms) but they never achieve the time needed by the old
algorithm. Figure 16 then presents the values measured
simultaneously with the path planning times for Figure 15 (values
are interpolated by the polynomial regression of the third grade)
and demonstrates the identical results in the path optimality for
these techniques. In this context, the path optimality is evaluated
according to the highest danger weight in the waypoints on the
found path where this optimality grows with the descending
maximal weight (Figure 16 shows this maximal weight during the
program run).

Path planning time during the iterations

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600 700 800 900 1000
Program iteration

T
im

e
 [

m
s]

Dataset #4 (Adapt. mesh, O:2048, G:64, D:16)
Dataset #2 (Adapt. mesh, O:512, G:64, D:16)
Dataset #2 (Reg. mesh, O:512, G:64, D:16)
Dataset #4 (Reg. mesh, O:2048, G:64, D:16)

Figure 15: Path planning times dependent on the particular
iterations of the program

Clusters count during the program run

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600 700 800 900 1000

Program iteration

C
lu

st
er

s
a

m
ou

nt

Dataset #1 (O:256, G:64, D:16) Dataset #2 (O:512, G:64, D:16)
Dataset #3 (O:1024, G:64, D:16) Dataset #4 (O:2048, G:64, D:16)

Figure 12: Clusters counts in the particular iterations of the
program

Path finding time during the iterations

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800 900 1000

Program iteration

P
a

th
 f

in
di

ng
 ti

m
e

 [
m

s]

Dataset #4 (O:2048, G:64, D:16) Dataset #3 (O:1024, G:64, D:16)
Dataset #2 (O:512, G:64, D:16) Dataset #1 (O:256, G:64, D:16)

Figure 14: Path finding times dependent on the particular
iterations of the program

Figure 13: Mesh adaptation times dependent on the
particular iterations of the program

Adaptation times during the program run

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800 900 1000

Program iteration

A
d

ap
ta

tio
n

 t
im

e
 [m

s]

Dataset #4 (O:2048, G:64, D:16) Dataset #3 (O:1024, G:64, D:16)

Adaptation times during the program run

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800 900 1000

Program iteration

A
da

pt
at

io
n

 ti
m

e
 [m

s]

Dataset #1 (O:256, G:64, D:16) Dataset #2 (O:512, G:64, D:16)

Západočeská univerzita v Plzni Fakulta aplikovaných věd

The measurements show the proposed path planning method is a
suitable alternative for the path planning in dynamic
environments: it is faster than the raster based approach and it is
usable in the applications where the graph based techniques fail.
On the other hand, there are still high memory requirements due
to the 3D matrix for the grid used in our solution.

5. CONCLUSION & FUTURE WORK
We have outlined the possible model for the path planning system
that eliminates the described disadvantages of the conventional
approaches applied in the virtual reality. We have measured the
most important properties of our implementation and provided the
gained dependencies, some of them compared to the results of the
conventional approach. The provided method can be used in 2D
and 3D applications and works in the known, partially known or
unknown and dynamic environment. In comparison with the
regular mesh, the method with the adaptive mesh needs only
about 10-50% of the original time for finding the optimal path (on
equal optimality results).

5.1 Possible trends
The proposed solution is still under development and there are
many possible ways to improve this model for the real-time path
planning. In a few following points, we are denoting the most
important and the most interesting ones:

• An enhancement of the method for filling the obstacles
map according to the scene description – In our
solution, we use an unoptimized code for filling the
obstacles map. If we want our solution to be usable in
computer defined and abstract environment, we must
assume the scene will be provided in one of the
common description formats. Then it would be better to
improve the way the mapping structure is created and
filled from this scene representation.

• An enhancement of the adaptive structure: the way the
adaptive structure copes with the changes in the mapped

space is an important factor of the algorithm’s
performance. In the measured dependencies from the
section 4 it is obvious that the main effect of our
solution appears from the mesh adaptation process. The
topology and adaptation behaviour of this structure are
the main points we want to focus on in the future.

• Interleaving the waypoints of the found path with a
specific curve is another step to make the path planning
results look more human-like and so to make them more
useful. While creating this curve, we must keep the
collision-free property of the found path and that will be
another way of the development we are going to take.

6. REFERENCES
[Bro06] P. Brož. Path Planning in Combined 3D Grid and

Graph Environment. Proceedings of the 10th Central
European Seminar on Computer Graphics, 2006.

[AG05] R.A. Apu, M. Gavrilova. Adaptive Spatial Memory
Representation for Real-Time Motion Planning.
Proceedings of the 8th International Conference on
Computer Graphics and Artificial Intelligence, 2005.

[Her87] J. Hershberger. Finding the Visibility Graph of a Simple
Polygon in Time Proportional to its Size. Annual
Symposium on Computational Geometry, Proceedings
of the third annual symposium on Computational
geometry, 1987.

[Ram96] G.D. Ramkumar. An Algorithm to Compute the
Minkowski Sum Outer-face of Two Simple Polygons.
Annual Symposium on Computational Geometry,
Proceedings of the 12th annual Symposium on
Computational Geometry, 1996.

[War90] C.W. Warren. Multiple Path Coordination using
Artificial Potential Fields. Proceedings of the IEEE
International Conference on Robotics and Automation,
1990.

[Ste94] A. Stentz. Optimal and Efficient Path Planning for
Partially-Known Environments. Proceedings of the
IEEE International Conference on Robotics and
Automation, 1994.

[Rou98] J. O’Rourke. Computational geometry in C (2nd edition)
(http://maven.smith.edu/~orourke/books/compgeom.htm
l). Cambridge University Press, 1998.

[DPV04] S. Dasgupta, C.H. Papadimitriou, U.V. Vazirani. Paths
in graphs
(http://inst.cs.berkeley.edu/~cs170/sp04/notes/
dijkstra.pdf).

[Bat04] Ch. Batten. Algorithms for Optimal Assembly
(http://www.mit.edu/~cbatten/work/ssbc04/
optassembly-ssbc04.pdf).

Figure 16: Proximities to the nearest obstacles on found
paths during the program iteration

Proximities to the obstacles on the found path

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

0 100 200 300 400 500 600 700 800 900 1000

Program iteration

P
ro

xi
m

ity
 d

an
ge

r

Dataset #2 (Adapt. mesh, O:512, G:64, D:16)
Dataset #4 (Adapt. mesh, O:2048, G:64, D:16)
Dataset #2 (Reg. mesh, O:512, G:64, D:16)
Dataset #4 (Reg. mesh, O:2048, G:64, D:16)

