Path planning in combined 3D grid and graph environment

Petr Bro?

Department of Computer Science and Engineering
University of West Bohemia
Pilsen, Czech Republic

On the other hand, discrete representation of the
Abstract examined space is much easier accessible and
measurable but the algorithm itself is in most saskie
In research literature and many scientific discigd, to the amount of raster elements to inspect) ving-t
solution to the common problem in path planningdar consuming. In addition, almost all methods for path
autonomous robot has been extensively developedinding and planning need either well-known or istat
Almost all explored techniques assume the robot hagnvironment which is not always available, either.
complete and detailed overview of the environmentsh
moving in. In addition to, many methods work oviee t A great improvement for this type of applicatiorsc
graph representation of this environment which ban be achieved with the combination of discrete arablr
very difficult to construct or obtain in the real environment approaches. Such a technique could use
applications. This paper introduces a hybrid tegh@i adaptive spatial structure as a graph with vertaed
combining graph and grid representations of an éxeadn edges evaluated according to the values from the
space and capable of planning paths in known,gligrti provided grid. Then it would be able to discoveeymo
known, unknown and dynamic environment at the priceoptimal path (optimal among all available trangioin
of the pseudo optimality of results. the graph) and, for example, continuously adaps thi
spatial structure to the actual state of envirornaamd
other dynamic influences.

1 Introduction : -
In this paper, we propose a possibility for path
General problem of finding and planning of an opiim planning over the combined environment represemtati
path is a highly explored topic in several scieéntfreas. which eliminates (or at least reduces) the disatipes
There are many approaches and techniques for golvinof mentioned conventional approaches at the prickeo
this task. They are in most cases based eitheraph@r pseudo optimality of results. The content of thegras
grid representation of the examined environment. Inas follows. Section 2 explains state of the aretbgr
other words, some algorithms for path planning deana with the best known techniques. Section 3 descrihes
graph-like geometric definition of the processeérec proposed path planning model and in the sectioou#,
(e.g., definition of all obstacles and forbiddera®) and actual solution and implementation is outlined. tec5
other algorithms assume the discrete representafidtte ~ shows the results gained by our solution and itice6,
surrounding environment is provided. Most of thesethe future work of the proposed path planning appino
techniques generally do not distinguish the din@msif is presented.
examined scene - they can be used either in 2DDor 3
applications without any difficult modifications.r&h
based approaches_ usually derive_special strucfroes 2 State of the art
the provided environment description and work with
them whereas the raster based approaches usuaflgtdo Path planning denotes a basic problem of finding an
need such pre-processing and search the pathlginect optimal path between two specified spots in anrabst
the provided grid. environment representation. In this context, optipzh
means a path satisfying one or more given objexf(tre
Both ways of environment representation have ctuciashortest, the cheapest or the fastest path, etc.).
and radical disadvantages. Graph representatianredl ~ Environment can be represented in a variety of vimays
environment is rarely available and its construcim- if the path planning algorithms are focusing mainly on
possible at all - very complicated and difficult. evaluated graphs and grids. There are many wage the
environments can be differentiated (dynamic/stattic
known/unknown environments, etc.) which implies a

similar distinction of path planning techniquesacling

1
pebro@students.zcu.cz to the types of environment they are able to woitk.w

Zapadoceska univerzita v Plzni Fakulta aplikovanych ved

First, let us introduce the approaches based on the
graph representation of the surrounding environment
Visibility graph technique [Her87] extends the basic
provided graph with edges connecting vertices taat
“see” each other whereas the source and destinatior
position is treated as an obstacle, too. New edges
(together with edges defining sides of each obs}aben
represent possible transitions and through thers, th
optimal path can be found. Example of such pre-
processing in 2D application can be seen in Fidure
edges of all obstacles (bricks pattern fillingarihg and
ending position (points labelled S and E) are cotete
according to their mutual visibility and over pddsi
transitions (thin lines and obstacles sides), thénal
path (dashed lines) is selected.

Figure 2: An example of path planning with the
“Minkowski sum” method

Second, we are providing insight into the technique
based on the grid representation. Such a grid @an b
precomputed (if not provided) or modified at the
beginning of the algorithm. In reference to the
modification of the explored grid, gotential field
model [War90] can be used for filing the grid with
discrete values of a specific potential field ceglby all
obstacles — passing through the grid elements thigh
lowest potential values then ensures finding tha path
the maximal clearance among all obstacles. Mostkno
techniques for searching itself are for examfte (for
well-known environment; [Bat04]) andD* (for
unknown, partially known or changing environment;
[Ste94]) algorithms. Figure 3 documents the marafer
such path finding in the grid: obstacles from Fegurl
and 2 are now splitted into the grid and in thigdgr
optimal path between starting and ending posituilg
Pbelled S and E) over the grid cells is illustdate

Figure 1: An example of scene processing with the
“Visibility graph” technique

Minkowski sum [Ram96] is a similar approach that
(unlike the previous method) considers the shape o
passing object and “inflates” borders of obstaskedhat
the collision-free path can be solved. Example wfhs
pre-processing is presented in Figure 2: the same
obstacles as in Figure 1 are inflated with the uadif
obstacle (gray areas) and the collision-free pdé#siied
lines) between starting and ending position (sphere
labelled S and E) is selected. With the speciaicstre
prepared, both approaches can Dg&stra’s algorithm
[DPV04] or similar to find the appropriate path.

Figure 3: An example of the raster based path jtgnn

Zapadoceska univerzita v Plzni Fakulta aplikovanych ved

3 The proposed solution

To provide a suitable method for the applicatiorere
the mentioned techniques fail, we are focussingaon
general path planning technique that works in thankn,
partially known or unknown discrete environment asd
designed for the virtual reality with the suppofttbe
exploring avatars.

In the proposed solution, we come out of a genera
idea of a fictive terrain exploration with the hetf
autonomous robots that are controlled from a sjecif
kind of headquarters (HQ). These robots (also dalle

scouts or agents) are equipped with specific sensor

(dependent on the type of the application) and axepl
certain locations of the examined terrain accordinthe
orders from HQ. Such headquarters keep specifipgpa
maps" to sketch in the discovered obstacles androth
threats which are then periodically complemented an

updated with actual values measured by the scouts.

Agents are then guided to the unexplored locat@n®
the important locations according to the actuatest#
these maps. After certain time, the static obstaele
fully mapped throughout the explored space, thestaf
paths (in term of the maximal clearance among all
obstacles) are known and the scouts are then goiclgd

to locations with a suspicion of possible threkigure 4
represents an example of such environment expborati
in 2D application: 4 agents in the terrain collaotl send

Following the mentioned idea of the sensor based
terrain exploration with the autonomous agents, we
advance in the development of a general modelffer t
real-time and adaptive path planning that was Eoeck
by R. A. Apu in [AGO5]. The proposed model can be
used for both 2D and 3D applications (the only
difference lies in the undermentioned adaptive lgigge
structures) and works in a complex and dynamic
environment which is assumed to be provided in the
kaster representation and can be well known, pigrtia
known or even unknown. The described path planning
system is based on three main headstones:

« A graph-like spatial structure (hereafter referred
to as amesh that adapts itself to the examined
environment and defines all available positions
and crossings with its vertices and edges.

e« A grid structure for discrete representation of
certain environment hazards (hereafter referred to
as amap), e.g., proximity to an obstacle or
dynamic threats.

¢ An autonomous Al entity (hereafter referred to as
an agen) for the real-time space exploration and
influencing the mesh adaptation with its
behaviour.

The main approach uses two separate maps of the

the information about the obstacles (bricks patternsame size for the environment description. The €ire,

filling) and specific kinds of threats (angry fade) the
headquarters and there, the measured values agediog
into the obstacles map (impassable areas) andtlieto
threats map (a potential field of discovered threat

Figure 4: Preview of 2D terrain sensor-based egpion
with the autonomous robots

obstacles threats

called obstacles map represents danger weights as
proximities to the nearest obstacle in the mappgete
and the second one, calldtireats map, represents
potential fields of all located and observed thsaatthe
space. In the following, the algorithm keeps a mibsit

is ,widespread over each map“ and defines all attsl
paths the agents can travel during their explonafidis
mesh continuously copes with the changes in bothsma
and with behaviour of all agents. Such an adaptasgo
achieved by refinement of the mesh in the placdh wi
higher error values (calculated from the obstachesp
and threats map) and by merging of the mesh itethst
visited and unimportant places.

The whole algorithm is based on real-time
development of the adaptive mesh in particulaattens.
According to the recorded values in the maps, mesh
structure is refined in the locations with a higher
importance (the darker locations in the obstaclap and
the threats map in the Figure 4) and it is mergethé
places with a lower importance (in the least visigeaph
vertices). In the proposed path planning systeme, th
adaptive mesh is used only to define the available
waypoints and transitions for the movement and
navigation of the agents, not for visualizationefidfore,
T-vertices in the mesh do not bring any problenpéci/
for them in the visualisation of meshes (they mayse
creases in the model). Foldovers in the mesh ate no

Zapadoceska univerzita v Plzni

Fakulta aplikovanych ved

possible in our case as vertices are not moved, jus 5. Exploration

refined.

In the mentioned fictive application, continuous
prospecting of the environment was a task of thmi®
but in our approach and demonstrating applicatiea,
assume the obstacles in the environment are coghplet

If all goals are reached, agents ensure an
exploration of unvisited locations in the examined
space — they automatically plan the path to the
vertices with no values recorded.

explored - the obstacles map is filled with weightshe
beginning of the algorithm with an IDT (Image Dista

Transform) technique based on the Voronoi diagrams
[Rou98]. Concretely, the elements of the obstaolep

are evaluated according to their proximity to tleanest
obstacle with the real value from 0 (maximal proxyn

to 1 (minimal proximity or the obstacle itself). &h

elements of the threats map are then evaluated in &
similar manner during the mesh adaptation.

One iteration of the mesh adaptation in the fictive
application consists of the following general steps
(similar as in [AGO05]):

1. Maps completion and updating

The current sensor readings are evaluated in theFigure 5: Example of the stage of the adaptive resh

close neighbourhood of each agent and the
corresponding map elements are updated or
eventually complemented with the measured values.

2. Influence depletion and replenishment

the same type of the explored terrain

With this approach, after a certain time, the missh
fully adapted to the static obstacles and copeg with

An importance of the recorded values (so calledy,, dynamic influences — threats. A pseudo optjadh

influence) of each vertex in the adaptive mesh is
partially depleted and then again partially

replenished according to the count and distance of,
the agents near this vertex. The more agents are in

the proximity of the vertex, the bigger is the amibu
of the influence replenishment.

3. Error function evaluation and refinement
The specific error function with the values frone th
obstacles map, threats map and influences
evaluated for each block (in [AGO05], the blocks are
calledengramsin a specific spatial structure ASM

— Adaptive spatial mesh) of the adaptive mesh anq,

according to the result, the blocks are merged
splitted or left. Figure 5 shows a single stag¢hef

for the user can then be computed using Dijkstra’s
algorithm with the cost function similar to the @lion
sed by robots during their exploration in [AGO05].

4 Our solution & implementation

This section provides an overview of our impleméata
_of the path planning model and closely describes th
'Smplementation details. Therefore, the readergésted
in the algorithm only can skip it. At this momewtr
solution does not fulfil the first mentioned reaarirent —
se of an adaptive spatial structure for the gnaatt —
and so it is degraded to the basic type of rasised
path planning methods. Implementation fundamerfitails

adaptive mesh for the 2D scene presented in s sirycture have been prepared and we will ntisiee

Figure 4: the mesh is refined in important regions
(above the obstacles and nearby the threat) an
coarsened in less important or unexplored regions.

generalization in the near future.

The main implementation of path planner is realized

in C# language and the whole proposal is desigoed f

4. Ordersexecution

providing high-level modularity — for each struatur

Each agent executes its orders — he finds an obtimq,equired by the proposed algorithm an interface is

path to the goal position with the provided cost
function or follows already computed waypoints (if

of the mesh, the path is recomputed to the lasf
waypoint).

prepared. Each interface defines basic operatibes t

X concrete implemented structure must provide. Fidhre
the path cannot be travelled due to the refinementgy, s

basic elements of scene mapping part:

RasterMap interface must be implemented by every
mapping structure used in the path planning algorit

In compliance with the interface definition, such
mapping structure must be able to provide weight of

Zapadoceska univerzita v Plzni

Fakulta aplikovanych ved

mapped space in a certain area or position. Classe-

ThreatsMap and ObstaclesMap implement this . Y Iraph=y>
interface while work in different wayThreatsMap | Mesh=\> el
keeps only a list of threats (instances of clasat th | erefetias .
implementsiThreat interface) andObstaclesMapclass = ' E’I'ags;“"‘ A
keeps 3D array for whole mapped space. 2 ClusterVWeight : Blocki
o engrams : V],] =l Field=

Basic elements of adaptive mesh part are shown in| g yahods ® i:byte
Figure 7: Generic classMesh implements IGraph @ Descendarts(v v): En{ @ [:byte
interface (presented in Figure 8) and so providesich W Meshi) /K wte
operations for passing the graph such as passing al W MeshiBlockweight Clus) = Methods
vertices or passing the descendants of the specifie | ' Vertices(: Enumersble <G Engram()
vertex. Engram class is for internal use of thdesh ' Iy et TJS s
class and the delegate labelBbckWeight defines the . ' _
only way for adaptation of the mesiBlockWeight is a | BlockWeight A

specific kind of a safe pointer to the function and | Plegats
requires method that is able to compute weighteofain
area of mapped space. Genericity of tesh class
ensures that the class works with any type of eesti
Only condition for each class of vertex is implenagion
of thelVertex interface presented in Figure 8.

block : Block

part for adaptive mesh

Figure 8 documents top-level elements of proposed
path planning algorithm. Main clagdspatcher requires

above all instance of adaptive mesh class implemgnt ,-ve;;:em
the generic interfacéGraph and list of instances for oo cias
mapping the examined space (instances of a clas: Iy
implementing théRasterMap interface). =l (RS =l Fields

agerts : List=Agert=

dampeningCoef : float

¢ depletingCoef : float

graph : Mesh="ertex> |

o¢ influence : flost
=l Properties
ﬁ} Influence { get; set; 3 flost

.) =)]
::t:r:;te #¥ maps : List=IRasterhap=
[IRasterMap S = Methorts
= Methods Interface [W Dispatcher()
W Distance(float x, float v, float 7). -
W ThreatCoefficient() : flaat = hethods - -~
| =
@ WeightiBiock b) : flnat ?:::'I‘:I:; . A
| % WeightPoint p): flaat [Wertex &
() IRastermap = Methads i
, IRasterhap y -Ohs’t et = i Vertices() IERImerabl Properties
(- aclesMal £ \ =
ThreatsMap Elles b - 3 - 1 e
Class ﬁj Position { get; 1 Point
T Welpht { get; set;) float
= Figlds - F"ildz - ot = Methods
¥ thrests : List<Threat= ﬂ’ d;‘tmanéez' fost],] e Descendants() | IEnumerable=!liertex=
) : "
= Methads ¥ height : float
2% ~Threatzhap() ¥ maxDistance : float
W InsertThreat(IThrest threat) ¢ punctuality © int -
 RemoveThrest(Threat tes @ wicth : float Figure 8: Class diagram of interfaces and clagsé
S =l Methods main path planner

e Wizight(Block k) @ flost

¢ ~Ohstaclesha
i Weight(Point) flost = B0

& EvaluateMap(ObstacleSpanning obstacl...
W Obstacleshap(ObstacleSpanning obstac .
47 Setvaluelindex i, float value) : void

~% VisitedPostion(ndex) kool The proposed model provides solution for
© Weight(Block b): flost applications in known, partially known or unknown
b Wieight(Poirt) : flost

5% VWithinBounds(index i) boal discretized environment at the price of the pseudo

Figure 7: Class diagram of interfaces and clagsdse

¥l

optimality of the final path. It comes to this, thtis

consequent path is optimal “only” with respect he t

Figure 6: Class diagram of interfaces and classései

¢ adaptive mesh.
mapping part of path planner

Zapadoceska univerzita v Plzni Fakulta aplikovanych ved

5 Experiments & results 1200 ¢

To survey our current solution, we have prepardeisa 10007

application that creates a space with obstaclesuspd
the proposed technique for finding the path betwtagn
constant positions. Figure 9 shows the discovesedigio
optimal path in the space with the obstacles inftinan
of spheres with different radii. In the zoom, treme
scene snapshot with weight markers is presentghitéli
markers represent a low level of danger and darke N N N
markers represent a high level of danger). Rank of the non-adaptive mesh []

[ee]
o
o

(o2}
o
o

400 -

N
(=]
o

Elapsed time for the path finding
[ms]

0

The obstacles map is precomputed at the beginring o
the algorithm and so the rank of this map (a cadrihe
grid elements in each dimension) does not affextithe
needed for the path planning itself. On the othemdh
rank of (for the present) non-adaptive mesh haseatg
impact on this time. Functional dependence of the
elapsed time on the mesh rank is evaluated ane e
in the figure 10. The considered example finds th ra '
the same scene as in Figure 9 with obstacles mdp ra 9
equal to 64. The computer configuration is disposgh .
AMD Athlon XP 1.67 GHz and 512 MB DDR RAM.

»
Figure 11 demonstrates using of the proposed path 5 ‘ ,
= 4

Figure 10: Elapsed time for the path finding deamnd
on the rank of the used non-adaptive mesh

planning system in 2D applications and indicates th
dependence of the path optimality on the rank &f th
mesh. Optimality of the path increases with the
punctuality of the mesh (Figure 11 presents exasnfue
the ranks 24, 36 and 48). Increase of the rankidaigs
the growth of the memory usage.

a8
o8 il

AN
o @

Figure 11: The discovered path for the differenksaof

Figure 9: Mapped space with the obstacles and found the adaptive mesh

path (in the zoomed snapshot with weight markers)

Zapadoceska univerzita v Plzni Fakulta aplikovanych ved

6 Conclusion & future work References
We have proposed hybrid and real-time path plannindAG05] R.A. Apu, M. Gavrilova. Adaptive Spatial

technique for real applications with the ability tead Memory Representation for Real-Time Motion
information about environment through the specific Planning. Proceedings of the 8th International
devices equipped with sensors. The provided method Conference on Computer Graphics and
be used in both 2D and 3D applications and works in Artificial Intelligence, 2005.
known, partially known or unknown environment. We [Her87] John HershbergeFinding the Visibility Graph
cooperate on research with authors of this tectmniqu of a Smple Polygon in Time Proportional to its
the team from the University of Calgary. Sze. Annual Symposium on Computational
Geometry, Proceedings of the third annual
In the future, we are going to improve several paft symposium on Computational geometry, 1987.
the algorithm solution: [Ram96]G.D. Ramkumarin Algorithm to Compute the
Minkowski Sum Outer-face of Two Smple
» Enhancement of a method for filling the obstacles Polygons. Annual Symposium on
map according to the scene description: In our Computational Geometry, Proceedings of the
solution, we use unoptimized code for filling the twelfth annual symposium on Computational
obstacles map. If we want our technique to be geometry, 1996.
usable in computer defined and abstract[War90] C.W. WarrenMultiple Path Coordination using
environment, we must assume the scene will be Artificial Potential Fields. Proceedings of the
provided in one of the description formats. So it IEEE International Conference on Robotics and
would be better to improve the way the map grid Automation, 1990.
is created and filed from this scene [Ste94] Anthony StentzOptimal and Efficient Path
representation. Planning for Partially-Known Environments.
Proceedings of the [IEEE International
» Enhancement of the adaptive structure: The way Conference on Robotics and Automation, 1994.
the adaptive structure copes with changes in[Rou98] J. O’Rourke Computational geometry in C (2.
mapped space is another great factor of algorithm edition) (http://maven.smith.edu/
performance. Topology and adaptation behaviour ~orourke/books/compgeom.html). Cambridge
of this structure are main ways we want to focus University Press, 1998.
on. [DPV04] S. Dasgupta, C.H. Papadimitriou,
U.V. Vazirani.Pathsin graphs
» Interleaving the waypoints of the found path with (http://inst.cs.berkeley.edu/~cs170/sp04/notes/
a specific curve is another step to make the path dijkstra.pdf).
planning results look more human-like. While [Bat04] Ch. BattenAlgorithms for Optimal Assembly
creating this curve, we must keep the collision- (http://www.mit.edu/~cbatten/work/ssbc04/
free property of found path and that will be optassembly-ssbc04.pdf).

another way of development we are going to take.

Acknowledgements

This work was done in cooperation with the Univigrsi
of Calgary in Canada. | would like to thank to DA.
Gavrilova and Mr. R. A. Apu for providing me the
starting knowledge, 2D implementation of their $iolo
and advices to continue in this project. | woulsloalike
to thank to Dr. I. Kolingerova from the Universitf
West Bohemia, Pilsen, Czech Republic, for supexisi
and help with the paper preparation.

Zapadoceska univerzita v Plzni Fakulta aplikovanych ved

