Path planning in dynamic environment using
an adaptive mesh

Petr Broz"*
pebro@students.zcu.cz

Marina Gavrilova®
marina@cpsc.ucalgary.ca

1Department of Computer Science and Engineering
University of West Bohemia
Pilsen, Czech Republic

ABSTRACT

Solutions for the common problem of path plannimgu abstract
environment have been extensively developed in nsamntific

disciplines. However, almost all explored techngj@ssume the
environment does not change and that there is gletenand
detailed overview of this examined space. In additio, many
methods for the path planning need to derive aifpegraph

structure from the environment representation aman be often
very difficult to construct or obtain this structuin some real
applications.

In our proposal, we introduce a general model far teal-time
path planning in a known, partially known, unknoamd dynamic
environment. We provide a hybrid technique that loinms a
graph and grid representation of the examined spadethat is
trying to combine the advantages from both types thoé
environment representation. The proposed path pignmethod
uses an adaptive mesh for its graph part to prawvidecapability
of the assimilation to the changing environment.

The presented method offers faster times for thh petrieval
then the classical raster based approaches and wogkdynamic
environment where the conventional graph basechiguabs fail.
On the other hand, there are still some higher mgmo
requirements of the proposed solution due to tleessary raster
representation of the examined environment.

Categories and Subject Descriptors

D.3.2 Language Classificationk C# 2.0, D.3.3 Programming
Language$: Language Constructs and Featureabstract data
types, genericity.

Ivana Kolingerovéll
kolinger@kiv.zcu.cz

Russel Ahmed Apu2
apu@cpsc.ucalgary.ca

Premysl Zitka®
premysl@students.zcu.cz

2Department of Computer Science
University of Calgary
Calgary, Canada

General Terms
Algorithms, Measurement,
Experimentation, Theory.

Performance,

Keywords
Path planning, Motion planning, Adaptivity, Levef ®etalil
(LOD), Virtual reality, Computer graphics.

1. INTRODUCTION

The first methods for finding an optimal path in abstract
environment were developed even before the infaomatcience
appeared. Therefore, there are many fast andeffitechniques
for solving this general task. These conventionathods are in
most cases subdivided according to the representaif the

examined environment they are able to work withm&gpath
planning algorithms demand a graph-like definitiof the

processed scene (e.g., geometrical definition lobladtacles and
other forbidden areas) and other algorithms assilmeliscrete
representation of the surrounding environment @ilable. The
graph based approaches often need to derive spgeiph-like

structures from the provided environment descripdad work as
lately as with this structure prepared whereas rster based
approaches usually do not need such preprocessthgearch the
optimal path directly in the provided grid represgion of the
environment.

The path planning algorithms based on both typesthef

environment representation have crucial and radiisaldvantages
when they are to be used in the real applicatidie graph

representation of the real environment is rarelgilable and its
construction is — if possible at all — very comatied and difficult.

On the other hand, the discrete representatiorh@fetxamined
space is much easier accessible and primarily maalsubut the
algorithm itself is in most cases (due to the amafrthe raster
elements to inspect) very time-consuming. In additialmost all

methods for the path finding and planning need -edwn or

static environment which is not often availabl¢hei.

A great improvement for the mentioned applicatiohthese path

% Supported by the Ministry of Education of the Grec
Republic — project No. LC 06008

Zapadoceska univerzita v Plzni

Fakulta aplikovanych ved

Design,

planning systems can be achieved with the comlpinatf the
discrete and graph environment approaches. Sudclaigue
could use an adaptive spatial structure as a gréphits vertices
and edges evaluated according to the specific safuem a
collaborative grid structure. It would be then ahtediscover a
pseudo optimal path (an optimal path among all |albbki
transitions in the graph but not among the gridues) and, for
example, continuously adapt this spatial structore¢he actual
state of the environment and other dynamic inflesnc

In this paper, we propose a possibility for thehpaianning over
the combined environment representation which reslugor
eliminates) the main disadvantages of the menti@moedentional
approaches. We use an adaptive mesh to definevailable
waypoints and transitions for searched paths arsihple 3D
matrix to store all raster based values. As thelrewe provide a
path planning technique that is faster than theerabased
approaches and suitable for the applications in dieamic
environment (preliminary version of our method, heiat the
adaptivity, has been published in [Bro06]).

2. STATE OF THE ART

Path planning in general denotes a basic problefinding an

optimal path between two specified spots in an rabst
environment representation. In this context, thdinogd path

means the path satisfying one or more given objesti(the
shortest, the cheapest or the fastest path, the wih the

maximal clearance among all surrounding obstaclés). The
mentioned abstract environment can be representadsariety of
ways but the path planning algorithms are focugimgnly on

evaluated graphs and 2D or 3D grids. There are mayg these
environments can be differentiated
known/unknown environments, etc.) which implies iailgr

distinction of the path planning techniques acamydp the types
of the environment they are able to work with.

2.1 Graph based methods

First, let us introduce the most known approacteseth on the
graph representation of the examined space Visibility graph
[Her87] technique extends the basic provided gencadt
definition of the environment with the edges coriimgcthe points
that can “see” each other whereas the source astinaion
position is treated as an obstacle, too. The neyeedtogether
with the edges defining the sides of each obstdhk) represent
the possible transitions and through them, thenmgitpath can be
found. An example of such preprocessing in a 20iegion can
be seen in Figure 1: the edges of all obstacldedfwith the
bricks pattern), the starting and ending positidhe (points
labelled with the letters S and E) are connectetraing to their
mutual visibility and over the possible transitioftise thin lines
together with the obstacles sides), the optimah fite dashed
lines) is found.

Figure 1: An example of the scene processing wi¢h t
Visibility graph technique

The Minkowski sum [Ram96] technique is a similar approach
that (unlike the previous method) considers thepshaf the
passing object and ,inflates” the borders of eabktacle so that
the collision-free path can be solved. An exampfe soch
preprocessing is presented in Figure 2: the samtacdbs as in
Figure 1 are inflated with the radius of the pagsibject (the
gray areas) and the collision-free path (the dadined) between
the starting and ending position (the spheres ledbelith the
letters S and E) is found. With the specific stouetprepared,
both approaches can use tbgkstra's algorithm [DPVO04] or

(dynamic/static, similar to find the appropriate path.

Figure 2: An example of the path planning with the
Minkowski sum method

2.2 Raster based methods

After the short introduction into the graph-baseethmds for the
path planning, we are providing insight into thehteiques based
on the grid representation. Such a grid can beopmpated (in

case it is not provided) or modified at the begmgniof the

Zapadoceska univerzita v Plzni

Fakulta aplikovanych ved

algorithm. In reference to the modification of tbeplored grid,
the potential field model [War90] can be used for filling the grid
with the discrete values of a specific potentialdigenerated by
all obstacles. Passing through the grid elementis thie lowest
potential values then ensures finding the path with maximal
clearance among all obstacles. The most known iggehs for
searching itself are for example the (for the well-known
environment; [Bat04]) and th®* (for the unknown, partially
known or changing environment; [Ste94]) algorithrRggure 3
shows the manner of such path finding in the gtié: obstacles
from Figure 1 and 2 are now splitted into the nasted in this
raster, the optimal path between the starting arting position
(the cells labelled with the letters S and E) ower grid cells is
outlined.

Figure 3: An example of the raster based path jbgnn

3. THE PROPOSED MODEL

To provide a suitable path planning model for thentioned
applications where the conventional approaches faé are
focussing on a general path planning technique ighatble to
work in the known, partially known or unknown distes
environment and that is designed for use in theiaireality with
the possible support of the exploring avatars.

In the proposed solution, we come out of a genigledh of a
fictive terrain exploration with the help of autanous robots that
are controlled from a specific kind of headquart@gt®). These
robots (also called scouts or agents) are equipptd specific

sensors (depending on the application they are @sgdand

survey certain locations of the examined terraicoeding to the
orders from the HQ. Such headquarters then keegfisptpaper

maps” to sketch in the discovered obstacles anérathreats
which are then periodically complemented and uptiatih the

actual values measured by the scouts. The idletagar then
guided to the unexplored locations or to the immurtiocations
according to the actual state of these maps. Aterin time, the
static obstacles are fully mapped throughout thelcegd space,
the safest paths (in terms of the maximal clearamceng all
obstacles) are known and the scouts are then guidldto the

locations with a suspicion of the possible threBigure 4 shows
an example of such environment exploration in aapplication:
4 agents in the terrain collect and send the inddion about the
obstacles (bricks pattern filling) and specific dénof threats
(angry face) to the headquarters and there, thesuned values
are stored into the obstacles map (impassable)aaedsinto the
threats map (a potential field of discovered thgpat

threats .

Figure 4: A preview of the 2D terrain sensor-based
exploration with the autonomous robots

obstacles

Following the mentioned idea of the sensor baseadaite
exploration with the autonomous agents, we advancehe
development of a general model for the real-timd adaptive
path planning that was pioneered by R. A. Apu iIGD5]. The
proposed model can be used for both 2D and 3D egijais (the
only difference lies in the undermentioned adapivaph-like
structures) and works in a complex and dynamic renment
which is assumed to be provided in the raster sgmtation and
can be well known, partially known or even unknowfhe
described path planning system is based on threegn ma
headstones:

* A graph-like spatial structure (hereafter refertecas a
mesh that adapts itself to the examined environment
and defines all reachable positions and transitigitis
its vertices and edges.

e Agrid structure for the discrete representatiogartain
environment hazards (hereafter referred to asag),
e.g., the proximity to an obstacle or the dynariedats.

e An autonomous Al entity (hereafter referred to as a
agenf for the real-time survey of the explored space
and influencing the mesh adaptation with its betarvi

The main approach uses two separate maps of the siam for
the environment description. The first one, calbbdtacles map
represents the danger weights as the proximitiethéonearest
obstacle in the mapped space and the second dtes taeats
map, represents the potential field generated byadhted and
observed threats in the examined terrain. In tHieviing, the
proposed path planning model keeps a mesh thatidespread”

Zapadoceska univerzita v Plzni

Fakulta aplikovanych ved

over the examined space covered also by the memtiorapping
structures. This mesh then defines all availablgpeimts and
transitions the agents can travel during their exgiion and
continuously copes with the changes in both mappgingctures
and with the behaviour of all agents. Such an admpt is
achieved by refinement of the mesh in the placéls gher error
values (calculated from the obstacles map andtgreap) and by
merging of the mesh in the least visited and uniti@ areas.

The algorithm itself is based on the real-time dgwment of the
adaptive mesh during the particular iterations. okding to the
presently recorded values in the maps, the measlctste is

refined in the areas with the higher importancee (tharked
locations in the obstacles map in Figure 4) andgetbrin the
areas with the lower importance (in the least esitgraph
vertices). In the proposed solution, the adaptieshris used only
to define the available waypoints and transitiors the

movement and navigation of the agents, not forvibealization.

Therefore, T-vertices in the mesh do not bring g@mgblems

typical for them in the visualisation of the mesftbgy may cause
creases in the model). Foldovers in the mesh argossible in

our case as the vertices are not moved, just kfine

In the mentioned fictive terrain exploration, th@ntinuous

prospecting of the environment was a task for tit®ots but in
our current solution and demonstrating applicatiea assume the
obstacles in the environment are already completgplored —
that the obstacles map is filled with the IDT (IneaDistance
Transform) technique based on the Voronoi diagrfiReu98].

Concretely, the elements of the obstacles map ssduaed

according to their proximity to the nearest obstaglth the real
value from O (minimal proximity) to 1 (maximal prioxity to the

nearest obstacle or the obstacle itself). The etesraf the threats
map are then evaluated in a similar manner durirey mesh
adaptation.

Single iteration of the mesh adaptation in the psmg path
planning system consists of the following generaps (similar as
in [AGO05]):

1. Mapscompletion and updating

The current sensor readings are evaluated in theecl

Error function evaluation and refinement

A specific error function with the values from the
obstacles map, threats map and the influences is
evaluated for each block (in [AGO05], the blocks are
called clusters in a specific spatial structure ASM —
Adaptive spatial mesh) of the adaptive mesh and
according to the result, the clusters are mergaltes

or left in their current state. Figure 5 represensingle
stage of the adaptive mesh for the 2D scene pexbémt
Figure 4: the mesh is refined in the important oegi
(above the obstacles and nearby the threats) and
coarsened in less important regions.

Orders execution

Each agent executes its orders — he finds an odptima
path to the given location with the provided cost
function or follows its already computed waypoififs

the path cannot be travelled due to the refinemefts
the mesh, it is recomputed to the first existing
waypoint).

Exploration

If all user’s objectives and goals are reached atjents
ensure the exploration of the unvisited locatiamshie
examined space — they automatically plan the path t
the vertices with no values recorded. Steps 3,d &n
are not accomplished in our current solution as the
demonstrating application prepares and fills the
mapping structures at its beginning and so thezenar
unvisited locations that should by explored by the
agents.

neighbourhood of each agent and the corresponding
map elements are updated or eventually complemented
with the measured values (but in the demonstrating
application, the environment surveying is acconmgs
at the beginning of the program, as mentioned gbove

Influence depletion and replenishment

An importance of the recorded values (so called
influence) of each vertex in the adaptive mesh is
partially depleted and then again partially repdaed
according to the count and distance of the ages&s n
this vertex. The more agents are in the proximitthe
vertex, the bigger is the amount of the influence
replenishment (this ensures the mesh will ,remefnber

Figure 5: A single stage of the adaptive meshHer t

same type of the explored terrain as in Figure 4

the important locations of the examined spacejehst
visited places — the vertices with the lower influe —
are not important for the exploring and that is whg

After a certain time, the mesh is fully adapted the static
obstacles and copes only with the dynamic influsneavith the
threats. A pseudo optimal path for the user can treecomputed

adaptive mesh does not need to be refined aroundusing Dijkstra’s algorithm with the specific cosinttion (there

them).

are many ways to specify the cost functions andddition to,
they can differ according to the type of the amilmn). We are

Zapadoceska univerzita v Plzni

Fakulta aplikovanych ved

not focusing on the definition of these cost fuos but an
example of that function (concretely the examplehef function
used by the robots during their exploration) caridusd again in
the [AGO5].

4. EXPERIMENTS & RESULTS

4.1 Demonstrating application

We have implemented a simple application (in thel&@¥uage
with the Direct3D libraries) to provide the resultand
comparisons of our algorithm. In this demonstratipgplication,
we generate a certain number of obstacles formethéysolid
spheres with different radii and we also add sobstract threats
represented by the small red cubes. During theranagun, the
threats are directed to the random locations oE#aenined space
and the adaptive mesh is refined in each iterafldre obstacles
map is precomputed and filled with the correspogdilues
before the main loop of the program. Therefore citraplexity of
this structure and its creation does not affectghalities of the
real-time method itself. To demonstrate the adéptief the
algorithm, the optimal path is recomputed aftethe@inement of
the mesh.

An example of such a testing scene with 16 obieatel 2 threats
is shown in the following images: Figure 6 shows basic scene
only with the found path between two opposite cosnef the

examined space, Figure 7 then shows the same s$ogather

with the actual state of the adaptive mesh (with thaximum

level of the mesh division equal to 4) and Figursh®ws again
the same scene but this time with the weight vafues the

obstacles map (the darker cubes define safer towatand the
lighter cubes define more dangerous locations).

¢

&‘-“ \t

Figure 6: An example of the random scene in the
demonstrating application

2,

Figure 7: A snapshot of the scene from Figure & it
adaptive mesh

Figure 8: A snapshot of the scene from Figure & wie
values from the obstacles map presented

4.2 Survey of the tests

For our survey, we have selected and measuredoileving
variables as the most characteristic and imponpanameters of
the proposed method:

e Clusters amount defines the count of the atomic
elements in the adaptive structure (in Figure &s¢hare
the smallest cubes with all corners connected th ea
other).

* Adaptation time determines the time needed for the
single iteration of the adaptive structure progmess

e Allocated memory defines the memory requirements of
our C# implementation (debug version).

* Path finding time denotes the time needed for finding
the optimal path between two constant spots in the
opposite corners of the explored space.

Zapadoceska univerzita v Plzni

Fakulta aplikovanych ved

The mentioned parameters have been measured withltbwing
testing datasets to present the qualities and lpessieak points
of our implementation:

Dataset #1describes the algorithm in the environment
consisting of 8 solid spheres (these obstacleslitiut

3% in the volume of the examined space). The rdnk o
the grid used in this preset is equal to 32 (theaums the
obstacles map contains 32 768 elements) and the
maximum level of the mesh division is set to 4 (the
smallest cluster in the mesh has one sixteentthef t
original width).

Dataset #2 defines the same adjustment of the
algorithm as the dataset #1 (8 solid spheres with
different radii randomly dislocated in the examined
environment and filling again about 3% of the space
32x32x32 elements in the grid) except that the

maximum division level is equal to 5.

« Dataset #3specifies the configuration with 16 obstacles

in the examined space (filling about 6% of the exrgd
environment), with the rank of the obstacles mapakq
to 64 and the maximum level of the mesh divisiantee
4.

« Dataset #4again defines the same adjustment of the

previous dataset (16 obstacles filling about 6%hef

examined environment, 64x64x64 elements in the grid
used for the obstacles map) except that the maximum

division level is set to 5.

First of all, we present the functional dependeoténe clusters
amount on the particular iterations of the progréior all
mentioned datasets) in Figure 9. At the very bagipiof the main
loop, we can see a rapid growth of the clustersusmnas the
adaptive mesh refines itself around the obstadles. remaining
behaviour of this dependence highly varies duéhéorhovement
of the threats in the scene. When the threat sbiiffsom the near
obstacles, it raises the weight value of the presfipunimportant
locations and so evokes a new refinement of thehnaesund
these locations. Such situations then evoke théspeé the
clusters amount that are visible in all mentionegahdencies in
Figure 9.

The environment of the testing application chanigeslf in an

absolutely random way as the threats are directetid random
locations in it. Though, it is possible to discowamme events in
the application from the presented dependenciescévetake a
look for example at the graph for the dataset Figure 9: the
growths in the behaviour (during the iterations-PB0, 350-500,
600-700, 780-800 and 920-980) are owing to theathrehat
smooth away from the nearest obstacles and so éntlok mesh
refinement in the previously unimportant locatiofrs.Figure 9,

we can also see the datasets 2 and 4 are muchvamyiag than
the datasets 1 and 3 but there is a clear exptamfatr it. With the

higher level of maximum mesh division, there arerencusters
reacting on the threats movement.

Amount of the clusters during the program run

Dataset #1 (O:8, G:32, D:4)- Dataset #2 (O:8, G:32, D)

3000

2500

2000+

1500+

1000+

Amount of the clusters

500

0 100 200 300 400 500 600 700 800 900 1090
Program iteration

Dataset #3 (0:16, G:64, D:4)— Dataset #4 (0:16, G:64, D:%)

2500

2000+

1500+

1000+

Amount of the clusters

500

0 100 200 300 400 500 600 700 800 900 1090
Program iteration

Figure 9: A clusters count dependent on the program
iterations

Figure 10 shows the time requirements of each eingesh
adaptation. There are presented the moving ave@ageriods)
values instead of the original values. Apparentlye time
complexity of the adaptation depends mainly on rieximum
level of the mesh division. Also in these graphs, peeks can be
explained with the behaviour of the threats. Whenthreats shift
away from the near obstacles, they fill more elemer the grid
with higher values and so there are more areahéorefinement.

Zapadoceska univerzita v Plzni

Fakulta aplikovanych ved

Particular adaptation times during the program run
Dataset #1 (0:8, G:32, D:4) —— Dataset #2 (0:8, G:38) D
140
120
@
£ 1004
(o}
£ 80
c
=)
g 60
Q
©
2 40
20+
0 T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000
Program iteration
Dataset #3 (0:16, G:64, D:8) —— Dataset #4 (0:16, G826) ‘
250
__ 200
(4]
E
[
£ 1501
=
S
<
£ 100+
5]
o
<
50
0 T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1090
Program iteration

Memory requirements during the program run
Dataset #1 (0:8, G:32, D:8)~ Dataset #2 (0:8, G:32, D:1)6)
32
31
o 30
22
=
o
g 28
£ 27
o
S 26
8
525
< 24
23
22 T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1090
Program iteration
Dataset #3 (O:16, G:64, D:8) Dataset #4 (O:16, G:64, D:16)
32
31
'g 301
2 99
>
o 4
g 28
£ 271
2 26
©
8 251
< 244
23 A
22 T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1090
Program iteration

Figure 10: A time complexity of the mesh adaptation
dependent on the program iterations

Finally, Figure 11 provides common insight into theemory
requirements of our implementation. The measurddegaare
approximate due to the garbage collector useddrCih programs.
High and constant amount of the memory is requioedhe grid
structure (for the rank of the grid equal to 32pgvam must
allocate the memory for the 32x32x32 matrix coisistof the
float values) and so the step changes in the deperes are
caused only by the mesh adaptation itself.

Figure 11: Memory requirements of our implementatio
dependent on the particular iterations

4.3 Obstacles count independence

The demonstrating application was also used to esurthe

algorithm independence of the obstacles amounth&Ve defined
other adjustments of the algorithm similar to tmesgts from the
subsection 4.2 and we have measured the propesfiesur

solution for 256, 512, 1024 and 2048 obstacles aaryl

dislocated throughout the space. The concrete sadue again
defined in the parentheses behind each preseeitegiends — ‘O’
stands for the obstacles count, ‘G’ stands forrémk of the grid
and ‘D’ stands for the maximum level of the meskision.

Figure 12 shows the functional dependence of thetets amount
and the particular iterations of the program foeséh new
configurations. The presented graphs indicate that clusters
count is not directly dependent upon the obstaatesunt. The
differences in these graphs are caused by the dgpodf all
obstacles in the scene that is randomly generateelaich dataset.
The same situation of this separateness occurggurd-13 with
the functional dependence of the mesh adaptatimestiand in
Figure 14 with the dependence of the time for figdthe path.
Figures 13 and 14 are again presented in the fdrmeomoving
averages due to the oscillating measured values c@hsiderated
obstacles are preprocessed in the grid and thiaeisnly part of
our solution that is affected by the count of thetacles.

Zapadoceska univerzita v Plzni

Fakulta aplikovanych ved

Clusters count during the program run

—'—Dataset #1 (0:256, G:64, D:16)— Dataset #2 (0:512, G:64, D:IT-)—
—— Dataset #3 (0:1024, G:64, D:15) Dataset #4 (0:2048, G:64, D:1G}
4000
3500
= 30001 1 \\/’\
=]
(=] B \’
g 2500 / ~ -~
»] \
AV e
3 1500
o
10004 \\f\"\
SOO—W ™
0~ : : : : : : : : :
0 100 200 300 400 500 600 700 800 900 1000

Program iteration

Figure 12: Clusters counts in the particular ifera of the
program

Adaptation times during the program run

Dataset #1 (0:256, G:64, D:16)— Dataset #2 (0:512, G:64, D:]JG)

-3
<]
=]

Adaptation time [ms]
w B o
(=] (=3 o
o o o

)
=3
=]

0 100 200 300 400 500 600 700 800 900 1040
Program iteration

i
1)
=]

o

— Dataset #4 (0:2048, G:64, D:16)- Dataset #3 (0:1024, G:64, D:16)

-3
=3
=3

Adaptation time [ms]
B o
o [=3
o o

]
=3
=3

3001
4 J)
e

v

=
153
=3

0 100 200 300 400 500 600 700 800 900 1040
Program iteration

Figure 13: Mesh adaptation times dependent on the
particular iterations of the program

Path finding time during the iterations

— Dataset #4 (0:2048, G:64, D:16)~ Dataset #3 (0:1024, G:64, D:
Dataset #2 (0:512, G:64, D:. Dataset #1 (0:256, G:64, D:. |

600

5001

w B

=} o

=} =}
! !

Path finding time [ms]

=

o

[}
!

/
200 /JW\ M\JV,

S
<
by
<
e

o

0 100 200 300 400 500 600 700 800 900 1000
Program iteration

Figure 14: Path finding times dependent on theqadar
iterations of the program

4.4 Non-adaptive mesh comparison

We also own an implementation of the proposed péddhning
technique with the regular mesh - it provided wsdpportunity to
compare this old solution to our current impleméata

Figure 15 shows two selected configurations from ghbsection
4.3 together with the results from the two equiktladjustments
of the old algorithm with the regular mesh (in te&se, ‘G:64’
means the regular mesh consisting of 64x64x64 als)st The
times for the regular mesh stay around the vall@m#0whereas
the times for finding the path in the adaptive mssbngly vary
(average time for the preset #2 is about 45ms anthé preset #4
about 200ms) but they never achieve the time nebgetie old
algorithm. Figure 16 then presents the values nmedsu
simultaneously with the path planning times forufag15 (values
are interpolated by the polynomial regression ef tthird grade)
and demonstrates the identical results in the patimality for
these techniques. In this context, the path optiyne evaluated
according to the highest danger weight in the waypoon the
found path where this optimality grows with the cesding
maximal weight (Figure 16 shows this maximal weidtting the
program run).

Path planning time during the iterations

Dataset #4 (Adapt. mesh, 0:2048, G:64, D:16
— Dataset #2 (Adapt. mesh, 0:512, G:64, D:1§

Dataset #2 (Reg. mesh, 0:512, G:64, D:16)
— Dataset #4 (Reg. mesh, 0:2048, G:64, C

450
400+ £ ”'MV’WMWV‘MWM‘”—M

3501

300
5
E 250
5}
£ 200
=

150

100+
504

0 100 200 300 400 500 600 700 800 900 1000
Program iteration

Figure 15: Path planning times dependent on thigcpéar
iterations of the program

Zapadoceska univerzita v Plzni

Fakulta aplikovanych ved

Proximities to the obstacles on the found path

— Dataset #2 (Adapt. mesh, 0:512, G:64, D:16)
— Dataset #4 (Adapt. mesh, 0:2048, G:64, D:16)
Dataset #2 (Reg. mesh, 0:512, G:64, D:16)

Reg. mesh, 0:2048, G:64, D:16)

Dataset #4

0,95

0,94
0,85

°° '\‘><"—\ —
—
0,75*-/

0,74

Proximity danger

0,65
0,6

0,55

05

400 500 600 700 800 900
Program iteration

0 100 200 300 1000

Figure 16: Proximities to the nearest obstacle®and
paths during the program iteration

The measurements show the proposed path plannitigppcthes a
suitable alternative for the path planning in dy@am
environments: it is faster than the raster basquogeh and it is
usable in the applications where the graph basgthigues fail.
On the other hand, there are still high memory irements due
to the 3D matrix for the grid used in our solution.

5. CONCLUSION & FUTURE WORK

We have outlined the possible model for the pasimping system
that eliminates the described disadvantages ofctimentional
approaches applied in the virtual reality. We haveasured the
most important properties of our implementation pravided the
gained dependencies, some of them compared t@sés of the
conventional approach. The provided method candeel in 2D

and 3D applications and works in the known, pdytikhown or

unknown and dynamic environment. In comparison wittle

regular mesh, the method with the adaptive mestismemly

about 10-50% of the original time for finding thetional path (on
equal optimality results).

5.1 Possible trends

The proposed solution is still under developmerd #rere are
many possible ways to improve this model for thal-tine path
planning. In a few following points, we are dengtithe most
important and the most interesting ones:

e An enhancement of the method for filling the oblgsc
map according to the scene description — In our
solution, we use an unoptimized code for fillinge th
obstacles map. If we want our solution to be usable

computer defined and abstract environment, we must

assume the scene will be provided in one of the
common description formats. Then it would be better
improve the way the mapping structure is createdl an
filled from this scene representation.

¢« An enhancement of the adaptive structure: the \ay t
adaptive structure copes with the changes in thepeth

space is an important factor of the algorithm’s
performance. In the measured dependencies from the
section 4 it is obvious that the main effect of our
solution appears from the mesh adaptation prodéms.
topology and adaptation behaviour of this structane

the main points we want to focus on in the future.

Interleaving the waypoints of the found path with a
specific curve is another step to make the pathntay
results look more human-like and so to make thememo
useful. While creating this curve, we must keep the
collision-free property of the found path and tit be
another way of the development we are going to.take

6. REFERENCES

[Bro06]

[AGO5]

[Her87]

P. Broz.Path Planning in Combined 3D Grid and
Graph Environment. Proceedings of the f0Central
European Seminar on Computer Graphics, 2006.

R.A. Apu, M. Gavrilova. Adaptive Spatial Memory
Representation for Real-Time Motion Planning.
Proceedings of the '8 International Conference on
Computer Graphics and Artificial Intelligence, 2005

J. HershbergeFinding the Visibility Graph of a Smple
Polygon in Time Proportional to its Sze. Annual
Symposium on Computational Geometry, Proceedings
of the third annual symposium on Computational
geometry, 1987.

[Ram96] G.D. Ramkumar.An Algorithm to Compute the

[War90]

[Ste94]

[Rou98]

Minkowski Sum Outer-face of Two Simple Polygons.
Annual Symposium on Computational Geometry,
Proceedings of the ¥2 annual Symposium on
Computational Geometry, 1996.

C.W. Warren. Multiple Path Coordination using
Artificial Potential Fields. Proceedings of the IEEE
International Conference on Robotics and Automation
1990.

A. Stentz.Optimal and Efficient Path Planning for
Partially-Known Environments. Proceedings of the
IEEE International Conference on Robotics and
Automation, 1994.

J. O'RourkeComputational geometry in C (2™ edition)
(http://maven.smith.edu/~orourke/books/compgeom.htm
I). Cambridge University Press, 1998.

[DPV04] S. Dasgupta, C.H. Papadimitriou, U.V. Vani. Paths

[Bat04]

in graphs
(http://inst.cs.berkeley.edu/~cs170/sp04/notes/
dijkstra.pdf).

Ch. BattenAlgorithms for Optimal Assembly
(http://lwww.mit.edu/~cbatten/work/ssbc04/
optassembly-ssbc04.pdf).

Zapadoceska univerzita v Plzni

Fakulta aplikovanych ved

