University of West Bohemia at Pilsen
Faculty of Applied Sciences

Department of Computer Science and Engineering

Dissertation thesis

Algorithms for Line Clipping and Their Complexity

by
Ing. Duc Huy Bui

E-mail: bui@kiv.zcu.cz

URL: http://iason.zcu.cz/~bui

Supervisor: Prof. Ing. Vaclav Skala, CSc. Pilsen, October 1999

Table of contents

1.

2.

3.

INTRODUCTION 1
ALGORITHM COMPLEXITY 4
CLIPPING BY A RECTANGULAR WINDOW 6
3.1. COHEN-SUTHERLAND ALGORITHM ...c..ceiuteritenieeiieteeitenttenteeteesessaesieesseenseesesnsesseesseenseensesnsesssesmees 6
3.2. LSSB ALGORITHM FOR LINE SEGMENT CLIPPING ...eeruttertttenureeniteenieeeniteeniteenieeesisessseeesseesnseeessnesnsees 8
3.3, LIANG-BARSKY ALGORITHM.....tiittiitietirtenienieeniteteeteeeteeseesteesteenneenesanesanesueesseenseensessnesneesseesseens 12
3.4. LSB ALGORITHM FOR LINE CLIPPINGeettritriteiieiieteeiteeitenteenteeneenesnesanesmeesseenneensesnnesneesseenneens 14
3.5. ALGORITHMS USING THE SEPARATION FUNCTION (SF)..cccuiiiiiiiiieee et 16
3.5.1. The SF algorithm for line clippingcccoccimiiiiiiiiiiieiiee et 16
3.5.2. Modified SF QIGOTItRM................ccoooiiiiiiiiii e 20
3.5.3. EXPerimental FESUILSc.cccoiouiiiiiiiii et 22
3.6. NICHOLL-LEE-NICHOLL ALGORITHM FOR LINE SEGMENT CLIPPINGcc.ceeterttenieenieeieneenieenieenieens 24
CLIPPING BY A CONVEX POLYGON 26
4.1. CYRUS-BECK ALGORITHM ..ccceiiiiriiiiieiieiieitenieeeieete et eneeenesanesaeesseesaeenneemnesenesueesseenneenneennesanenunes 26
4.2, ECB ALGORITHM....tiiitiiiiiiiiientenitenitett et eetesiee st et ebeeenesenesanesaeesaeesatenseennesanesueesseenseeaneennesanesaees 29
4.3, O(LOG N) ALGORITHM ...eeuiieuiieuieniieteeteetestestesstesseeseessesssesseasseanseesesssesnsesseesseesseesesssesssessesssenns 31
4.3.1. Modified O(log N) @lGOFItAM................cc.cocoiiiiiieiieiiet e 33
4.3.2. EXPerimental FESUILScccooouiiiiiiiiii et 39
4.4, O(1) ALGORITHMuoeeiurieiureeiereesteesireessessssessssesssssesssssssesssssesssesssssesssssessesssssesssessssessssessssessssessses 42
4.4.1. The semidual SpACe FEPFESENEALION..................c.ccceeiiaiaiiiieeeeee et 42
4.4.2. SpaCE SUDIVISIONc..ccvveoveiiiiiiiieci ettt 43
4.4.3. The O(1) line clipping alGOTitm...................c..cc.ccoveiieiiiiiiiieiiece e 44
4.4.4. The O(1) line clipping algorithm using polar co-ordinate system...................cc.cccccooeuv.n... 45
CLIPPING BY A NON-CONVEX POLYGON 48
CLIPPING BY A NON-CONVEX AREA 53
POLYGON CLIPPING 57
CLIPPING BY A PYRAMID IN E* 60
8.1, DEFINITIONS .utteuitettetertententtentt et et eutestt et e e bt eanesenesanesaeenaeesseemseeasesueenseeseeaneennesanesaeenaeenseennennne 60
8.2. CS-3D ALGORITHM FOR LINE SEGMENT CLIPPING AGAINST A PYRAMIDcevvieiniiieniieniieenieeenanenn 61

8.3. PYRAMIDAL CLIPPING (PC) ALGORITHMcccvteiueerureenreennreessreenreesseeaseessesssesssessssessssessssesnns

8.3.1. Brief description of the QIGOFItAM......................c..cccoovviiiiiiiiiieie i
8.3.2. Details of the PC QIOTItRM................c..cccooviviiiiiiiiiiiieieeii et
8.3.3. Comparison between CS and PC algOFithIms................c..cccoooveveieiiiiiiiiiiieiieeeeieeieeeen,
8.4. LIANG-BARSKY ALGORITHM FOR LINE CLIPPING AGAINST A PYRAMIDcccovvinininiiiiiiiiienene
8.5. THE SF-3D ALGORITHMccoiiuiiiimiiiiiiiiiiiiiiinicitiec ittt
8.5.1. Comparison between LB-3D and SF-3D algorithms................cccccocoevvivciinceioiieiecn,

9. CLIPPING BY A CONVEX POLYHEDRON IN E’

82

0.1, CB-3D ALGORITHM ..uuviiiiiieeieiiiiieeeeeeeeeittteeeeeeeeeetaeeeeeeeeeeaaaeeeeeeeeeeestsseeeeseesasstsseeeeeeeeesstrseeaeeeeans

9.2. ALGORITHM BASED ON TWO PLANES USE ...eeiiiiiiiiiiriieeeeeeeiiiteeeeeeeeeeitreeeeeeeeesetnseeseeesssenssseeseseeans

0.3, O(A/ N) ALGORITHM .ccutiiiiuiieeiiieeiteeetteeeiteeetteesaeestseessseassseassseessseessseessseesssesasseesssaesssesssessseenes
0.4. 3D O(1) ALGORITHMceuviruiiiuienitenieenttetteiteettesttenteenteestesstesitesbtenseeneeentesatesutesseenbeenbeensesasesssesnees

10. CLIPPING IN HOMOGENEOUS CO-ORDINATES

.82
.83

.86
.88

92

11. SUMMARY

12. CONCLUSION AND FUTURE WORK

95

97

13. REFERENCES

14. AUTHOR’S PUBLICATIONS & RESEARCH WORK

14.1. RELATED PUBLICATIONS TO THIS THESIS ..ceeuuvtteeeritteeeiteeesiteeeestteessirteeesveeeessaseeessanseessnnseeens

14.2. RESEARCH WORK - VOLVIS VERSION FOR WINDOWS NTccoiiiiiiiiiiiiiiiieeeiiee e
15. APPENDICES : PUBLISHED, ACCEPTED AND SUBMITTED PAPERS..............ccccuueee.

A.1: FAST MODIFICATIONS OF COHEN-SUTHERLAND ALGORITHM FOR LINE SEGMENT AND LINE

CLIPPING IN B2t
A.2: FAST ALGORITHMS FOR CLIPPING LINES AND LINE SEGMENTS IN EZ.....oovoiiiieieeee e,
A.3: LINE CLIPPING ALGORITHMS IN B ...t
A.4: NEW FAST LINE CLIPPING ALGORITHM IN E2 WITH O(LGN) COMPLEXITY ...,
B.1: ALGORITHMS FOR LINE CLIPPING AND THEIR COMPLEXITYceccvteeveenireenereenreennreesssesssseenssessenes
B.2: ALGORITHMS COMPLEXITY AND ITS DECREMENToecviitieitieteereereeeeeeseesteeseessesssessnesseesseesseenns
C.1: TWO NEW ALGORITHMS FOR LINE CLIPPING IN E* AND THEIR COMPARISON...........coooveerreeannn.
C.2: A NEW ALGORITHM FOR PYRAMIDAL CLIPPING OF LINE SEGMENTS INE’.....ooiviiiieeeen.

C.3: NEW ALGORITHM FOR LINE CLIPPING AGAINST A PYRAMID IN E>..oovioeeeeeeeeee e

il

Preface

Clipping is essential technique in computer graphics, and as such it has been
studied very extensively in the past. Nowadays, the problem is very often considered as
solved. In many aspects, I must admit that this is indeed true. Nevertheless, as the
computational resources have developed dramatically in the last decade alot of
traditional approaches are now seen under very different circumstances. We are
confronted with large amounts of available data that we would like not only to visualize,
but also to make it as realistic and as fast as possible. Therefore, any improvement in
solving the clipping problem is always welcome. The main contribution of this thesis is
to summarize the work in the field of clipping over last two decades and present some
results I have made during my postgraduate study.

There is a hope that presented approaches and modifications could also help in

other fields of algorithm design.

iii

1. Introduction

Algorithms for Line Clipping and Their Complexity

Duc Huy Bui
University of West Bohemia

ABSTRACT

Clipping is one of the fundamental problems of the computational geometry with
applications in various areas of computer graphics, visualization and CAD system. This
work resumes the clipping problem solutions in E° and E°. It also demonstrates some
thoughts and connection between algorithm complexity, speed and influence of possible
pre-processing to the final algorithm complexity. Also, how some precise formulations
can lead to better and faster algorithms to decrease algorithm complexity, will be
shown.

Keywords: Line Clipping, Convex Polyhedron, Computer Graphics, Algorithm

Complexity, Geometric Algorithms, Algorithm Complexity Analysis.

1. Introduction

In the most general sense, clipping is the evaluation of the intersection between two
geometrical entities. These geometrical entities may be lines, line segments, rectangles,
polygons, polyhedrons, curves, surfaces and so on, or their assemblies. Clipping is
a very important stage in the viewing pipeline of the computer graphics. It involves
computing which part of a geometric primitive, such as a line segment or polygon is
visible with respect to a clipping region. The simplest case in 2D graphics is if the
clipping region is rectangular window and the primitive is a line or line segment. The
major application is computing the part of a scene visible with respect to a window.
Clipping is also often used to determine whether the cursor position is within a given
tolerance of a geometric primitive, by testing the visibility of the primitive against
a small rectangle that has the cursor position at its center.
There are three major approaches to the solution of the line clipping problem.
e The first one, known as the Cohen-Sutherland (CS) algorithm [Fol90a], uses
acoding scheme of the line segment end-points to quickly reject line
segments having both end-points outside a particular clipping boundary, and

quickly accept line segments totally inside the clipping region. In all other

1. Introduction

cases the line segment is cut by intersecting it with one of the boundaries that
it is known to cross, and the procedure is repeated with the curtailed line
segment.

The second approach, parametric clipping, was introduced by Cyrus and
Beck [Cyr79a] and by Liang and Barsky [Lia84a], where the line is
represented in parametric form. The values of the parameter corresponding
to the points where the extended line segment intersects the clipping
boundary are used to find the final clipped line segment.

The third approach solves the problem by eliciting among all possible
relationships between the line segment and the clip region, which particular
one has happened. The efficiency of the algorithm depends on the method
chosen to determine which position of line segment has occured.
Intersections or parameter values are found only for those cases where the
line segment actually intersects a boundary. This approach can be found in
the work of Nicholl, Lee and Nicholl [Nic87a] and Sobkow, Pospisil and
Yang [Sob87a] and in the optimal tree algorithm of Liang and Barsky
[Lia92a].

Commonly, the clipping problem in £” and in E’ can be classified as clipping by

orthogonal window, cube or viewing pyramid
convex polygon or polyhedron,
non-convex polygon or polyhedron

non-linear region or object

and as

line segment clipping
line clipping
polygon or polyhedron clipping

curve clipping

The rest of the thesis is organized as follows: Section 2 briefly introduces the

algorithm complexity terms, which is usually used to assess algorithms. Seven

following sections will subsequently describe the particular clipping algorithms. For

each category, we discuss the most often used algorithm followed by the new proposed

algorithm (if exists with experimental efficiency verification) that is more efficient.

1. Introduction

Section 10 mentions principles of clipping in homogeneous co-ordinates. Section 11
summarises algorithm complexities. The conclusion and expected future work will be
mentioned in section 12. The main references can be found in section 13. List of
published or accepted papers for publication with reached results can be found in
section 14. Published, accepted or submitted papers for publication are also enclosed in

appendices.

2. Algorithm complexity

2. Algorithm complexity

Before describing particular algorithms for line clipping, it is necessary to deal with
algorithm complexity. Algorithm complexity is very often used to compare different
algorithms in order to assess their properties. There are two major types of complexity:
the space complexity and the time complexity. The space complexity usually indicates
the memory required by the algorithm to solve the problem, whereas the time

complexity shows the computation speed of the algorithm. Let us consider a problem P

of size N and let [}, ..., I; denote all instances of problem P, and 7}, T5,..., Ty denote

the times required for the instances [, I,..., I; using algorithm A. There are three
following basic types of time complexity

e The worst case time complexity of algorithm 4

Tw(N) =max {T}, T5,..., Ty}
e The best case time complexity of algorithm A4
To(N) = min {T}, T>,..., Ty}
e The average case or expected time complexity of algorithm 4
T4(N) = 2 p;T;

where p; is the probability of instance /; occurring.

The time complexity without the specification implicitly denotes the worst case
time complexity because most of the time we are interested in the worst case behavior
of an algorithm.

Algorithm complexity is usually represented as a function of problem size using
one of four following notations:

e The first one, called big-O notation, set the upper limit of algorithm performance.
Function g: N — R is big-O of £ N = R, denoted g = O(f), if and only if there
exists a natural number N and a real constant ¢ > 0 such that g(N) <c*f(N) for all
N 2 Njy. In other words, function g grows no faster than a function f for sufficiently
large V.

e The second notation, Omega notation, set the lower limit of algorithm performance.
Function g: N — R is Omega of f: N — R, denoted g = €2(f), if and only if there

exists a natural number N, and a real constant ¢ > 0 such that g(N) >c*f(N) for all

2. Algorithm complexity

N 2 Ny. In other words, function g grows no slower than a function f for sufficiently
large V.

e The Theta notation is used for optimal algorithms. Function g: N — R is theta of
f: N = R, denoted g = @ (f), if and only if there exists a natural number Ny and real
constants ¢; > 0, ¢z > 0 such that ¢;*(N) <g(N) <c,*f(N) for all N >N,. In other
words, function g grows at the same rate as a function f for sufficiently large N.

e The fourth one, called small-o notation, is defined as follows: function g: N — R is
small-o of : N — R, denoted g = o(f), if and only if for all real constants ¢ > 0 there
is a natural number Ny such that g(N) <c*f(N) for all N > N,.

In the following text, the particular algorithms for line clipping will be described
in details. Currently, their complexity will be also shown and the big-O notation will be

often used for the most of mentioned algorithms.

3. Clipping by a rectangular window

3. Clipping by a rectangular window

The most frequent case in 2D graphics is line or line segment clipping against
arectangular window. Let us assume that we have aline segment with end-points
A(x4, y4) and B(xp, yp) and a clipping rectangle determined by two points (X, Vmin) and
(Xmass Vmay) in E°. The most famous and popular algorithm for clipping by rectangular
window in E° is the Cohen-Sutherland (CS) algorithm for line segment clipping and

Liang-Barsky (LLB) algorithm for line clipping.

3.1. Cohen-Sutherland algorithm

The CS algorithm is based on coding of the end-points of the given line segment.
According to the position against the clipping window, the end-point is encoded by the

four-bit code, see Figure 3.1.

Xmin D Xmax
001 € L—"" 1000 \ 1010
Yinax €4 / Code
0001 € 0000 Ay €5 0010

T
Yinin ©
0101 § — 0100 0110
/

Figure 3.1: Region codes used in CS algorithm.

The least significant bit of the code is set to “1” if the point is to the left of the
clipping window, i.e. x < x,;». The second bit indicates that the point is to the right of
the clipping window, i.e. X > Xy Similarly the third or fourth bit is set to “1” if the
point is below or above the clipping window, respectively. Let ¢, and ¢z denote the
codes of end-points 4 and B. It is obvious that if ¢4 = 0 and ¢z = 0 then the given line

segment is inside the clipping rectangle and is trivially accepted. In all the cases where

3. Clipping by a rectangular window

at least one bit is set to “1” in both codes ¢4 and c¢p, both end-points are outside the
appropriate clipping boundary and the line segment is trivially rejected. In the other
cases, the line segment intersects the appropriate clipping boundary and the intersection
point replaces one end-point. The procedure is repeated with the curtailed line segment

until it is rejected or accepted. The CS algorithm can be implemented by Algorithm 3.1.

global var Xmin, Xmax, Ymin» Ymax: real; {clipping window size}
{operators land and lor are bitwise and and or operators, respectively.}
{EXIT means leave the procedure}
procedure CS_Clip (xa, Ya, XB, y5: real);
var X, y: real;
C, Ca, Cp: integer;
procedure CODE (X, y: real; var c: integer); {implemented as a macro}
begin ¢ :=0;
if X <Xpin then ¢ ;=1 else if X > X, then ¢ :=2;
if y <ymin then c :=c + 4 else if y > ypc thenc :=c + §;
end {CODE};

begin CODE (x4, ya, ca); CODE (xg, yB, cB);
if (ca land cp) # 0 then EXIT; {the line segment is outside}
if (ca lor cg) = 0 then begin DRAW _LINE (x4, ya, Xg, y5); EXIT end;
{the line segment is inside the clipping rectangle}
repeat if cy # 0 then c = c4 else c = cp;

if (c land ‘0001°) # 0 then {divide line at the left edge}
begin y = ya + (Xmin - Xa)*(¥B - ya) / (XB - Xa);
X = Xmin
end
else if (cland ‘0010’) # 0 then {divide line at the right edge}
begin y :=ya + (Xmax - XA)*(¥B - Ya) / (X5 - Xa);
X = Xmax
end

else if (cland ‘0100’) = 0 then{divide line at the bottom edge}
begin X :=Xa * (Ymin - YA)*(XB - Xa) / (¥B - YA);
Y = Ymin
end
else if (cland ‘1000’) = 0 then {at the top edge}
begin X := XA + (Ymax - YA)*(XB - Xa) / (¥B - YA);
Y = Ymax
end;
if c =cx then begin x5 :=X; ys :=y; CODE (Xa, ya, ca) end
else begin xp :=x; yg :=y; CODE (X3, ys, cg) end;
if (ca land cp) # 0 then EXIT;
until (ca lor cg) = 0;
DRAW_LINE (xa, ya, X8, ¥B);
end {CS Clip};

Algorithm 3.1: Cohen-Sutherland algorithm.

3. Clipping by a rectangular window

It can be seen that the CS algorithm is very simple and robust. It enables the
detection of all the cases where the line segment is completely inside the given rectangle
and cases where the line segment has both end-points outside a particular clipping
boundary very quickly. In Figure 3.1, the segments 4B and CD are handled in a very
simple way. However the line segments EF and GH are not distinguished at all and full
intersection computations must be done. In the worst case, see line segment 1J, all
intersection points with each boundary line, on which the rectangle edges lie, are
computed whereas only two intersection points form the end-points of the clipped line

segment.

3.2. LSSB algorithm for line segment clipping

Detailed analysis of the CS algorithm and a question if there is any meaning of the
arithmetic sum of end-points’ codes resulted in the new algorithm (LSSB). It is based
on the CS algorithm but the arithmetic sum of end-points’ codes and a new coding
technique for the line segment direction are used in order to remove cases which the
original CS algorithm is unable to distinguish. The LSSB algorithm for line segment
clipping was developed, verified and published in Proceedings of the international
conference SCCG’97, see [Bui97a] and in The Visual Computer, see [Bui98a].

Let us assume characteristic situations from Figure 3.2 and let ca, cg denote CS
codes of line segment’s end-points; o,y,n,® areas denote corner areas and [3,0,£,0

denote side areas.

N
v
‘ : v
=\ _—
W C+CB’3 —
5 | 0 0
25
s c\)(%
¢
Tl/ £ 4%CB§5 CA*CBJ;

Figure 3.2: Arithmetic sum of end-points’ codes enables to classify cases.

3. Clipping by a rectangular window

By testing arithmetic sum of end-points’ codes we can distinguish the following
situations:

e One end-point of the line segment is inside the clipping rectangle and the second
one is in the side area (the cases cp +cp € {1,2,4,8}). In these cases, only one
intersection point with the known edge is computed.

e The end-points of the line segment are in the opposite side areas (the cases
ca+cp €{3,12}). In these cases, two intersection points are computed (the clipping
edges are already determined).

e One end-point of the line segment is in the corner area of the clipping rectangle and
the second one is in the side area (the cases cp + cg €{7,11,13,14}). In these cases,
one clipping edge (if exists) is already determined and an additional test will help to
discover if the second one is opposite or neighboring to the first.

e The cases when ¢y + cg €{5,6,9,10}. There are two possible situations:

a) The end-points of the line segment are in the near-by side areas, i.e. (3,p), (3,5),
(0,B), (0.%). Two clipping edges (if exist) are already determined.

b) One end point of the line segment is inside of the clipping rectangle and the
second one is in the corner area. The only one intersection point can lie on the
horizontal or vertical edge of clipping rectangle and we need one test more to
discover it.

e The end-points of the line segment are in the opposite corner areas (the cases
ca + cg =15). The comparison between directions of the given line and the clipping
rectangle’s diagonal decides which edges (horizontal or vertical) are used to
compute the intersection points first.

Distinguishing all those cases enables avoidance of unnecessary calculation and
gains considerable speed-up. Detailed description of the proposed LSSB algorithm is
shown in Algorithm 3.2.

Table 3.1 shows the theoretical and experimental comparisons between new
LSSB and CS algorithm for 21 different cases in Figure 3.3. All the cases can be
derived from those presented by symmetry or rotation. The coefficient of efficiency v

was computed as:
T CS

T

LSSB

VvV =

where T¢s, T ssp are times consumed by the CS and LSSB algorithms, respectively.

3. Clipping by a rectangular window

procedure LSSB_Clip (x4, y4, X5 yg: real);

{EXIT means leave the procedure}
var Ax, Ay, k, m, r : real; c4, cp: integer;
procedure CODE (x,y: real; var c: integer); {implemented as a macro}
begin c .= 0;
if x < x,,;, then ¢ := [else if x > x,,, then ¢ := 2;
ify <yu,thenc:=c+ 4elseify > y,, thenc.=c + §;
end {CODE};

begin
CODE (x4, y4, c4); CODE (x3, ys cB);
if (¢4 land cp) <> 0 then EXIT; {the line segment is outside}
if (c4 lor cp) = 0 then {the line segment is inside the clipping rectangle}
begin DRAW_LINE(x,, v4 x5 yp); EXIT; end;
Ax i=Xp-X4, Ay :=Yp- V4,
case ¢4 + cp of {see Figure 3.2}
1:if ¢4 = [then begin x := X, V4 := (Xmin - X5)* Ay / Ax + yp end
else begin xp .= X, VB := (Xpmin - X4)* Ay / Ax + y4 end,;
3:begin k.= Ay / A, ya := (Xin - X4)* k + V4, X4 7= Xin,
YB .= (xmax - xB) *k+ VB, XB .= Xpmax
end;
S:begin k:=Ay/ A r = (Xpin-X4)* k+ y4,
if ¥ <y, then
case ¢, of
0: begin xp := x5 + (Yiin - v)/k; Y8 .= Yimin €nd;
S:begin x4 .:=x4t (Vmin-Va)/k; V4 = Vimin end;
else EXIT {the line segment is outside}
end
else case cp of
0: begin x5 = Xy, yp :=r end;

1: begin x3:= xp + (Vmin - VB)/K; YB:= Vimins X4°= Xmin, V4. = 1 end;
4: begin x4.= X4 + Vmin - Y4)/K: Y4:= Ymin) XB = Xmin, Y =1 end;

5: begin x4 .= X, v4 .= r end
end
end;
7:case ¢4 of
1:begin k.= Ay / Ax; y4 := (Xpin - x5) * k + yp;
if y4 < yuin then EXIT;{the line segment is outside}
X4 "= Xminy VB - = (xmax - xmin) *k+ Va5

if y5 < Yyin then begin xp:=Viin-ve)/k + Xmax, V8. =Vmin €nd else Xp: =Xpux

end;
{similarly for cases c4 = 2, 5, 6}
end;
15: case ¢4 of
5:if Ay *(xmax - xmin) < Ax*(ymax 'ymin) then
begin k := Ay / Ax; y4 .= (Xpin - X)* k + yp;

if v4 > Vmar then EXIT; {the line segment is outside}
yB.'= (xmax - xmin) *k+ Va5
if y5 < ynin then EXIT; {the line segment is outside}

10

3. Clipping by a rectangular window

if 4 <y, then begin x...= Viin- VA)/k + Xpmins Y47 =Vimins XB:=Xmax €nd
else begin x4 = Xp;
if Y5 > Vyyor then begin xp = (Vipax - V8)k + Xppaxs VB 7= Ymax €nd
else x3 := Xmax
end;
end else
begin m := Ax /Ay; X4 1= (Vmin - y5) ¥ m + xp,
if x4 > x4 then EXIT; {the line segment is outside}
X . = (ymax 'ymin) *m o+ x4,
if xp < x,,;, then EXIT; {the line segment is outside}
if x4 < x,i, then begln yA-':(xmin'xA)/m + Vmins X4 = Xminy YB °= Ymax €0d
else begin y, .= yin;
if x5 > X0 then begin yz:= (Xpax - X8)/M + Viax, X 0= Xmax €nd
else yp = yiax;
end;
end
{similarly for cases c4 = 6, 9, 10}
end;
{cases 2, 4, 8 are similar as case 1, cases 6, 9, 10 are similar as case 5}
{cases 11, 13, 14 are similar as case 7, case 12 is similar case 3}
end {of case c4 + cp};
DRAW_LINE (XA, Y4, XB, yB);
end {LSSB_Clip};

Algorithm 3.2: LSSB algorithm for line segment clipping.

It was theoretically proved that the LSSB algorithm is significantly faster than
the CS algorithm in all non-trivial cases and experimental results proved that the

expected speed up is in interval <1.00, 2.08>, see [Bui97a], [Bui98a] for details.

/ Sy S7 S8

S S9
S3 /

S
S5 S8 873 21
811 —

S Si4
e 512 — S16

S10 817 820
S19

815

Figure 3.3: Generic cases for comparison between LSSB and CS Algorithm.

11

3. Clipping by a rectangular window

Theoretical considerations Exp. results
CS LSSB % CS |[LSSB| v
= < £ x /[]ts]|= < £ x []| {s] t[s] | t[s]

si1| 210 0 O 0]1254 2 10 0 O 0]125,4]1,00(| 150,3|150,3]|1,00
s;2| 4 9 2 0 0]1322(4 9 2 0 0]132,2]1,00{ | 151,7/151,7]1,00
s3|1117 6 1 1300,00 8 12 6 1 1|223,9(1,34| | 238,4/210,7{1,13
sq4|12 17 6 1 1]306,7(9 12 6 1 1|230,6/1,33| | 238,91213,9|1,12
ss| 917 4 1 112820 7 11 5 1 1]|203,7/1,38| | 237,01206,1|1,15
Se |19 27 9 2 2/4946(12 12 8 1 2|275,1]1,80 | 355,4|245,4|1,45
s7121 33 14 3 3|608,8(13 13 10 2 2|299,9]|2,03| | 462,6/272,6/1,70
sg| 922 5 1 11340,3] 7 12 6 1 1|217,2(1,57| | 250,9(222,5(1,13
So |17 32 10 2 2|539,5(10 12 8 1 2|261,7| 2,06 | 361,2|258,9|1,39
S10|16 27 10 2 2/476,8/10 10 8 1 2]|239,3|1,99| | 327,5/237,9|1,38
s11|124 37 14 3 3|673,7[13 12 8 2 2|284,1|2,37| | 440,3|267,8|1,64
S2l 920 5 1 113179 7 11 6 1 1]206,0[1,54| | 240,3|211,9|1,13
si3/16 30 9 2 25081112 12 8 1 2|275,111,85| | 356,7|257,2|1,39
sS4l 920 4 1 113156 7 12 5 1 1]|214,9|1,47| | 249,01221,5|1,12
S15019 26 10 2 2[14857] 9 11 6 1 12194 2,21 | 327,5/210,0/1,56
si[11 19 5 1 113201 8 12 6 1 1]|223,9|1,43| | 240,3/221,5/1,08
S17124 39 15 3 3|698,4|12 12 9 2 1]259,9|2,69| | 442,91231,9|1,91
S| 31 49 20 4 4| 890,913 15 11 4 1]|309,4| 2,88| | 554,8|266,8|2,08
S19[16 32 10 2 2|532,8(11 10 9 2 1]|230,8]| 2,31 | 358,8/223,5|1,61
S»|24 42 15 3 3|732,0112 13 9 2 1|271,1| 2,70 | 465,9|245,4|1,90
S21|15 28 8 2 2|,476,7(11 10 7 2 1]|226,2| 2,11| | 353,5/222,5|1,59

Table 3.1: Comparison between LSSB and CS Algorithm.

3.3. Liang-Barsky algorithm

In many applications it is necessary to clip lines instead of line segments. The
well-known algorithm for the line clipping is the Liang-Barsky algorithm (LB) [Fol90].
It can be shown that CS algorithm is faster than the LB algorithm for line segment
clipping. However, for line clipping, the CS algorithm cannot actually be used because
the line has not any end-point. The LB is based on clipping of the given line by each
rectangle’s boundary. The given line which goes through the points A(x4 y4) and
B(xp, yp) is parametrically represented as follows: x(?) = x4 + Ax *¢,
yt) =ya+ Ay *i,
where: Ax = x5 — X4, Ay =yp-y4 1 € (—00+%)
It is necessary to find the interval of parameter value ¢, for which X, <x(1) <Xmax

and Ymin —<y(U —<ymax; ie. Xmin = XA <Ax *t —<xmax - X4 and Ymin = V4 <Ax *t —<ymax - V4.

12

3. Clipping by a rectangular window

Without loss of generality we can consider only the common inequality

prt<q
It is obvious that this inequality has the following solution:
o 12>q/p ifp <0
o 1<qp ifp >0
o V¢ ifp=0andqg>0
* not 7t if p=0andg <0
global var Xpin, Xmax, Ymin> Ymax: real; {clipping window size; given values}

procedure LB Clip (Xa, ya, X, yg: real);
var ty, th, AX, Ay : real;

function ClipT (p, q : real; var t, t; : real):boolean;
var r:real;

begin ClipT := true;
if p <0 then
begin r:=q/p;
if r > t; then ClipT := false
elseifr >t; then t;:==r
end
else if p>0 then
begin r:=q/p;
if r <t; then ClipT := false

elseifr <t then tr:=r
end

else if g <0 then ClipT := false
end {ClipT};

begin
t1:= —o0; t:=400; AX :=Xp - XA
if ClipT(—AX, XA - Xmin, t1, t2) then
if ClipT(AX, Xmax - Xa, t1, t2) then
begin
Ay ==Y - YA
if ClipT(—-Ay, YA - Ymins t1, t2) then
if ClipT(Ay, Ymax - Ya, t1, t2) then
begin Xxp := x5 + AX * t;;
yB:=yat Ay * t;
XA = XA+ AX ¥ tg;
YA = ya T Ay *ty;
DRAW_LINE(XA, Ya, XB, yB)
end

end
end { of LB Clip };

Algorithm 3.3: Liang-Barsky algorithm.

13

3. Clipping by a rectangular window

At the beginning the parameter ¢ is limited by interval (—og +o0) and then this
interval is subsequently curtailed by all the intersection points with each boundary line
of the clipping rectangle, see Algorithm 3.3. It can be seen that an additional trivial
rejection test (function ClipT) is used to avoid calculation of all four parameter values

for lines that do not intersect the clipping rectangle.

3.4. LSB algorithm for line clipping

The new LSB algorithm was suggested to clip lines against a rectangular window, see
[Bui97a], [Bui98a]. As mentioned above, the CS algorithm is faster than the LB
algorithm for line segment clipping but for line clipping the CS algorithm cannot
actually be used. Detailed analysis of the LB algorithm was made and understanding of
inefficient parts led to a new algorithm for line clipping denoted LSB algorithm. The
proposed LSB algorithm for line clipping is based on a new coding technique for line
slope. The comparison between slope of the given line and clipping rectangle’s diagonal
decides which edges (horizontal or vertical) should be used first to compute the
intersection points between the line and the clipping window, see Algorithm 3.4. This
comparison is used to avoid the calculation of the intersection points that do not lie on
the boundary edges of the clipping rectangle.

The theoretical comparison between new LSB and LB algorithm was made and it
is presented in the first part of Table 3.2. The second part of Table 3.2 contains
experimental results obtained for Pentium-75MHz/32MB RAM. Comparisons were
done for 10 generic different cases, see Figure 3.4. All the cases can be derived from
those presented by symmetry or rotation. The coefficient of efficiency v in Table 3.2
was computed as:

Ty

TLSB
where 77, Trsp are times consumed by the LB and LSB algorithms.
Table 3.2 shows that the LSB algorithm is significantly faster than the LB
algorithm theoretically as well as experimentally and the speed-up can be expected in

<1.2, 3.0>, see [Bui97a], [Bui98a] for details.

14

3. Clipping by a rectangular window

procedure LSB_Clip (x4 y4 X5 y5: real);
{EXIT means leave the procedure}
var Ax, Ay, k, m: real,

begin
Ax = XB-X4,
if Ax = 0 then begin
if (x4 < Xpim) O (X4 > Xmay) then EXIT; {the line is outside}
V4 °= Ymins VB °= Vmax; DRAW_LINE(x4, 4, xp, y5); EXIT
end;
Ay :=yp-ya
if Ay = 0 then begin
if (V4 < Vmin) OF (V4 > Vmay) then EXIT; {the line is outside}
X4 1= Xomins XB °= Xmaxs DRAW_LINE(xy4, y4, x5 yp); EXIT
end;
if Ax > (0 then
if Ay > 0 then
if (Ay*(xmax - xmin) < AX*()/max - ymm)) then
begin k.= Ay / Ax; v4 .= (Xmin - X)* k + yp;
if .4 > Vimay them EXIT; {the line is outside the clipping rectangle}
YB .= (xmax - xmin) *k+ BZB
if y3 < ymin, them EXIT; {the line is outside the clipping rectangle}
if y4 < Ypin then begin x4 .= (Viuin - Va)k + Xoiny Va4 °= Yonins XB 0= Xmax €0d
else begin x .= X,
if Y5 > Yiar then begin x5 := (Viax - v)k + Xmnaxs
YB = Vmax
end
else x3 := X
end
end
else
begin m := Ax /Ay; x4 := (Ymin - Y5)* m + xp,
if x4 > X4 then EXIT; {the line is outside of the clipping rectangle}
XB .= (ymax 'ymin) *m+ X4,
if x5 < X then EXIT; {the line is outside of the clipping rectangle}
if x4 < Xy, then begin v := (XpinX4)/M + Yininy X4 1= Xpwiny VB °= Vmax €0d
else begin y, = v,
if X3 > X0, then begin yp = (Xyax - X5)/M + Yipass
XB "= Xmax
end
else vg '= Vimax
end
end;
{similarly for the other cases}
DRAW_LINE(x4, y4, X5 V5);
end; {LSB_Clip}

Algorithm 3.2: LSB algorithm for line clipping.

15

3. Clipping by a rectangular window

le, I

19 18

l
3 I,

l]O

I

I

Figure 3.4: Generic lines for comparison between LSB and LB Algorithm.

Theoretical considerations Exp. results
LB LSB v LB |[LSB| v
= < £ x []ts] |= < £ x [] {s] t[s] | t[s]

l; |10 13 6 0 4/3056] 5 6 8 4 1|148,1|2,06] | 303,5]191,7| 1,58
I 115 14 10 4 4| 368,70 8 7 10 4 2|203,8/1,81| | 349,2|237,0| 1,47
I 116 14 10 4 4| 3754 7 8 8 4 1|183,9/2,04|| 351,1]216,3| 1,62
I+ |15 14 10 4 4| 368,70 8 8 10 4 2|215,011,71| | 349,2|248,1| 1,41
Is1| 9 9 5 0 3123200 4 5 6 3 1]123,3/1,88|| 241,3|1167,6| 1,44
Il |10 13 6 0 43056 4 5 6 3 1|123,3|2,48|| 303,4|167,1|1,82
719 9 5 0 3123200 5 6 8 4 1|148,111,57| | 241,3]191,2| 1,26
Is |12 13 10 4 212978 3 3 1 0 0] 56,0|5,32| | 297,6] 98,7| 3,01
lh| 3 3 2 0 0 583 1 2 1 0 0] 31,4/1,86]]| 101,7] 85,7/ 1,19
lol 3 6 3 0 Of 942(1 3 1 0 0] 42,6|2,21| | 134,4] 96,8(1,39

Table 3.2: Comparison between LSB and LB Algorithm.
3.5. Algorithms using the separation function (SF)

3.5.1. The SF algorithm for line clipping

Further study of line clipping problem against a rectangular window led to another

algorithm for line clipping that is more efficient, see [Bui99b]. The new separation

function algorithm (denoted SF algorithm) is based on anew coding technique for

vertices of the given clipping rectangle. It is obviously that the given line p divides the

whole plane into two half-planes, see Figure 3.5, defined by a separation function. If the

separation function is defined as:

F(xy)=a* + b*y + ¢

where a=Ay =yp-y4, b =-Ax =x4—xp5, ¢ =x*y4 - x4™ 5.

16

3. Clipping by a rectangular window

then the sign of the separation function value F(V)) (i € [1,4]) in the i-th vertex of the
rectangular window determines the half-plane in which the vertex lies. Using the value

of the separation function in all vertices we can distinguish 7 fundamental cases, see

Figure 3.6.
Xmin Xmax
upper
Vome V, e, half-plane v,
©a lower |
half-plane
ymin e3
vV, Vs
Q

Figure 3.5: Line p divides the plane into two half-planes.

Figure 3.6: Fundamental mutual positions between the line and clipping window.

This observation led naturally to the new SF algorithm. The basic steps can be
defined as:

e calculate the coefficients a, b, ¢ of separation function F for the given line p,

e use the separation function F to characterise the location of vertices of the

given clipping rectangle,

e determine the appropriate case,

e compute the intersection points with appropriate edges.

It can be seen that only the intersection points required for the output are
computed. Now, we will describe the classification process more in detail.

Let us denote ¢;, ¢, c¢3 cy4 values of the separation function in the clipping

rectangle’s vertices V7, Vs, V3, V4, respectively, see Figure 3.5.

17

3. Clipping by a rectangular window

There are two major cases to be distinguished:

e the vertices V; and V; lie on the different sides of line p, see Figure 3.6.a-d,
e the vertices V; and V; lie on the same side of line p, see Figure 3.6.e-f.

a) The vertices V; and V; are in the different sides of the line, i.e. ¢; * c; <0.
In this case, the sign of expression (c;*c,) determines whether V> and V, lie on
the same sides of line p (Figure 3.6.a-b) or not (Figure 3.6.c-d).

If the vertices V> and V, lie on the same side of line p, the additional test
c1*c,>0 determines on which edges the intersection points lie. If ¢;*c; >0 then
the intersection points lie on the edges e, and e;3, see Figure 3.6.a. Otherwise, the
intersection points lie on the edges ¢; and ey, see Figure 3.6.b.

In the case that V, and V, lie on the different sides of line p, if ¢;*c, >0
then the intersection points lie on the edges e, and e, see Figure 3.6.c.
Otherwise, the intersection points lie on the edges e; and e3, see Figure 3.6.d.

b) The vertices V; and V; lie on the same side of the line. In this case, if
ci1¥cr <0, 1i.e. V; and V5 lie on the different sides of the line, then the intersection
points lie on the edges e; and e,, see Figure 3.6.e. Otherwise, the additional test
cr*cy > 0 determines whether the whole line is outside of clipping rectangle, see
Figure 3.6.f, or the intersection points lie on the edges e; and e, see
Figure 3.6.g.

The complete SF algorithm can be implemented by the Algorithm 3.5.

procedure SF_Clip (Xa, Ya, X, yg: real);
{points A(xa, ya,) and B(xg, yg) determine the clipped line}
global var Xmin, Xmax> Ymin» Ymax: real; {co-ordinates of clipping window corners}
var t, Ax, Ay, ¢, ¢y, €2, C3, C4 : Teal;
begin Ax :=Xp - Xa;
if Ax =0 then
begin if (XA < Xmin) OF (XA > Xmax) then EXIT; {the line is outside}
YA = Ymins ¥B = Ymaxs
DRAW_LINE (x4, ya, X8, ¥8); EXIT {SF_Clip}

end;
Ay = YB - YA
if Ay =0 then

begin if (Yo < Ymin) OF (YA > Ymax) then EXIT; {the line is outside }

XA = Xmin> XB -~ Xmax;
DRAW_LINE (x4, ya, X, ¥); EXIT {SF_Clip}
end;

18

3. Clipping by a rectangular window

C:=XB*YA—XA*YB; C1:= AY * Xmin — AX #* Ymax T C;
Cr= Ay * Xmax — AX + Ymax tc 3= Ay * Xmax — AX + Ymin +c;
if (Cl* C3< 0) then
begin c4:= Ay * Xpin — AX * Ymin T+ C;
if (c2+ c4>0) then
if (c; # c2>0) then {case a}
begin yg 1= ya + (Xmax - Xa) * Ay / AX; X = Xmax
XA = XA T (Ymin — Ya) * AX/ AY; YA = Ymin
end
else {case b}
begin Xp :=Xa + (Ymax — Ya) * AX / AY; YB = Ymax;
YA = YA T Xmin - Xa) * Ay / AX; XA 7= Xmin
end
else {(cr+ca<0)}
if (c; = c2>0) then {case c}
begin t:=Ay/Ax;
¥B = YA T (Xmax = Xa) * £; XB = Xmax;
YA = YA T (Xmin - XA) * £ XA = Xmin

end
else begin t:=Ax/Ay; {case d}
XB = XA T (Ymax — YA) * £, YB := Ymax;
XA = XA+ (Ymin — YA) * £ YA ©= Ymin
end
end
else {(c1x c3> 0)}
begin if (c;+ c;<0) then {case e}
begin yp 1= ya + (Xmax - Xa) * Ay / AX; XB := Xmax;
XA = XA (Ymax — YA) = AX / Ay; YA ©= Ymax
end
else begin ci:= Ay« Xpin — AX * Ypin + C;
if (c; c4>0) then EXIT; {case f}
else {case g}
begin Xp: =Xt (Ymin—ya) *AX/AY; YB:=Ymin;
YATYA T (Xmin-XA)*AY/AX; XA =Xmin
end
end
end;

DRAW_LINE (x4, ya, XB, YB)
end {SF_Clip};

Algorithm 3.5: SF algorithm.

19

3. Clipping by a rectangular window

3.5.2. Modified SF algorithm

It can be seen that some modifications can be done to improve the efficiency of SF
algorithm.

a) The first modification is based on the observation that the co-ordinates of the
intersection points can be calculated from the separation function value of the clipping
window’s vertices. It is very simply to derive the following expressions:

o X=Xy T Vmax —Ya) » Ay = Xppin — €1/ Ay

(the intersection point on the top boundary)
® Y =Vat (Xmax - Xu) A/AX = Ypar + €/ Ax
(the intersection point on the right boundary)
. X =X4t Vmin—Ya) » A/AY = Xpyin — c/Ay
(the intersection point on bottom boundary)
. V =Va4t Kmin - X4) + /A = Yo + €1/ Ax
(the intersection point on the left boundary)

It can be seen that we can save one addition and one multiplication for each
intersection point by using these expressions.

b) The better results can be obtained while replacing the direct calculation of ¢y, ¢3, ¢4
by using the pre-calculated values as follows:

. C2=AY #Xppgy — X 5 Yo T ¢ =c1 + Ay =w

. 3= AV * Xpnax — AX # Yyin + ¢ =2+ Axh

o Cs= AV s Xpin — AX #Yyyin T ¢ =7 + Ax = h

where: W= Xmax — Xmin (the clipping window’s width)

h= Yimax — Vmin (the clipping window’s height)
¢) We can get further speed-up when applying the following replacements: instead of
two statements (c.= Xp* Y4 — Xq * Vg, C1-= AV * Xpin — AX + Yimax + €), We can use only one
(c1:= Ay « Xpin — X4) = AX + (Vmax— V4)) and instead of the condition (¢; * ¢3 <0), we can
use the condition (¢; * (c; + Ax +h) <0).

All of above mentioned modifications can be implemented by the MSF
algorithm, see Algorithm 3.6.

Since the conditions Ax = 0, Ay = 0 occur practically with zero probability and
the test of these conditions can be left out without lost of stability or correctness, the
further speed-up can be reached by removing this test. The shortened algorithm will be
reported as the MSF-1 algorithm.

20

3. Clipping by a rectangular window

procedure MSF_Clip (x4, ya, XB, yp: real);

{points A(xa, ya,) and B(Xg, yg) determine the clipped line}
global var Xpin, Xmax, Ymin» Ymax> D, W: real;

{corners’ co-ordinates and size of clipping window}

var t, Ax, Ay, ¢y, ¢, C3, C4 : Teal;

begin AX :=Xp - Xa;
/* {tests if line is vertical or horizontal }
if Ax =0 then
begin if (XA < Xmin) OF (XA > Xmax) then EXIT; {the line is outside}
YA = Ymins ¥B = Ymaxs
DRAW_LINE (x4, ya, X8, ¥8); EXIT {MSF_Clip}

end;
Ay = YB - YA
if Ay =0 then

begin if (ya < Ymin) OF (YA > Ymax) then EXIT; {the line is outside}
XA = Xmin, XB -7 Xmax,

DRAW_LINE (x4, ya, X, y5); EXIT {MSF_Clip}

end;
/*{end of the section to be removed for MSF-1 algorithm}
C1:= Ay * (Xmin — Xa) = AX * (Ymax = YA): = crt Ay« w;

if c;+ (co+ Ax+h) <0 then
begin c4:=c;+ Ax+h;
if (c2+ c4>0) then
if (c; = c2>0) then {case a}
begin yp := Ymax + €2/ AX; XB 1= Xmax;
XA = Xmin — €4/ AY; YA = Ymin
end
else {case b}
begin Xp := Xmin — C1 / AY; YB = Ymax;
YA = Ymax tc / AX; XA = Xmin
end
else {(c2+c4<0)}
if (c; # c2>0) then {case c}
begin t:=1.0/Ax;
YB = Ymax tCo+t; XB = Xmax,
YA = Ymax + Cp =* t; XA = Xmin

end
else begin t:=1.0/Ay; {case d}
XB = Xmin — C1 * 1; YB = Ymax;
XA = Xmin — C4 * t; YA = Ymin
end
end
else {(c1* c3> 0)}
begin if (c; + ¢, <0) then {case e}

begin yp := Ymax + €2/ AX; XB = Xmax;
XA = Xmin — €1 / AY; YA = Ymax
end
else begin cs:=c;+ Ax:h;

21

3. Clipping by a rectangular window

if (c;+ c4>0) then EXIT; {case f}

else {case g}
begin Xp = Xmin—Ca/ Ay, VB = Ymin;

YA = Ymax T €1/ AX; XA = Xpmin
end
end
end;
DRAW_LINE (x4, ya, XB, ¥B)
end { of MSF Clip };

Algorithm 3.6: MSF algorithm.

3.5.3. Experimental results

For experimental verification of the LB and LSB algorithms and the proposed SF, MSF
and MSF-1 algorithms, all fundamental cases were tested and 8.10° different lines were
randomly generated for each considered case, see Figure 3.7 and Figure 3.8.

Let us introduce the coefficients of efficiency Vvisz Visr, Vuse.s as:

where Trp, Trsp, Tusr, Tausr-1 are times consumed by the LB, LSB algorithm and
the modifications MSF and MSF-1 algorithms of the SF algorithm (the MSF-1
algorithm is the MSF algorithm without testing of conditions Ax = 0, Ay = 0).

Table 3.3 shows experimental results obtained for Pentium II-350MHz/64MB
RAM/512KB CACHE, similar results were also obtained for Pentium-75MHz/32MB
RAM and Pentium PRO-200MHz/128MB RAM. This table shows that the LSB and
MSF algorithms are significantly faster than the LB algorithm in all cases. It can be
seen that the speed-up varies from 1.3 to 1.87 for all common cases. The common case
is the case when the given line is neither horizontal nor vertical (cases p;-p7).

The MSF-1 algorithm is based on the fact that strictly horizontal or vertical lines
are highly impossible in normal situations. The speed-up of the MSF-1 algorithm can be

expected from 1.7 to 2.16 for all common cases, see Table 3.3.

22

3. Clipping by a rectangular window

Ps

P1

P3

P4

P2

Ps

p7

Figure 3.7: The common cases.

P12
P9

Ps

P1o

Pn

Figure 3.8: The special cases (horizontal or vertical).

Pentium I
350MHz/64MB RAM
case| visa VMSF | VMSF-1
1 1.63] 187 2.16
2 1.55| 1.59] 1.70
3 1.65 1.74] 1.87
4 1.30] 1.53] 1.68
5 142 149 1.72
6 1.81] 1.87] 2.16
7 1.37] 149 1.72
8 262 262 1.52
9 1.16] 1.16] 0.75
10 1.26] 1.26] 0.94
11 219 220 1.55
12 217, 219 175

Table 3.3: Comparison between LSB, MSF, MSF-1and LB algorithm.

23

3. Clipping by a rectangular window

3.6. Nicholl-Lee-Nicholl algorithm for line segment clipping

Nicholl, Lee and Nicholl have created a better 2D line segment clipper ([Nic87a],
[Fol90a]) than the CS algorithm. Although the Nicholl-Lee-Nicholl (NLN) algorithm
has great many cases, the basic idea is simple enough that understanding one case lets
us generate all the others. Consider a line segment AB that is to be clipped. We first
determine where point 4 lies. If we divide the plane into the same nine regions used in
the CS algorithm, see Figure 3.1, then point 4 must lie in one of these regions.
By determining the position of point B relative to the lines from 4 to each of corners,
we can determine which edges of the clipping rectangle the line segment 4B intersects.

Suppose that point A lies in the lower-left corner region, as in Figure 3.9. If
point B lies below y,,;, or to the left of x,,;,, then the line segment AB cannot intersect the
clipping rectangle (this amounts to checking the Cohen-Sutherland outcodes). The same
is true if point B lies to the left of the line from A to the upper-left corner or if point B
lies to the right of the line from 4 to the lower-right corner. Many cases can be trivially
rejected by these checks. We also check the position of point B relative to the line from
A to the lower-left corner. We will discuss the case when B is above this line, as shown
in Figure 3.9. If point B is below the top of the clipping rectangle, it is either inside the
clipping rectangle or to the right of it. Hence the line segment AB intersects the clipping
rectangle either at its left edge or at both the left and right edges. If B is above the top of
the clipping rectangle, it may be to the left of the line from A4 to the upper-left corner
and the line segment AB is rejected. If not, it may be to the right of the right edge of the
clipping rectangle. This later case divides into the two cases: B is to the left of the line
from A to the upper-right corner and to the right of it. The regions in Figure 3.9 are
labeled by edges cut by a segment from A to any point in those regions; LT, for
example, means the line from 4 to any point in this region intersects both the left and
top edges of the clipping rectangle.

The remaining cases, when 4 is inside the clipping rectangle or in one of the side
regions, are similar. Thus, it is worthwhile to recognize the symmetries of the various
cases and to write a program to transform three general cases (4 is inside the clipping

rectangle, in the corner or in the side region) into nine different cases.

24

3. Clipping by a rectangular window

/ LT B LT
S LR ~
LR
L L
5 BR

/S

Figure 3.9: The regions determined by the lines from A4 to the corners.

In summary, for line clipping against a rectangular window, the CS algorithm is
efficient when the outcode testing can be done cheaply (for example, by doing bitwise
operations in assembly language) and trivial acceptance or rejection is applicable to the
majority of line segments. For lines that cannot be trivially rejected by CS algorithm
because they do not lie in an invisible half-plane, the rejection tests of LB algorithm are
clearly preferable to the repeated clipping required by CS algorithm. The NLN
algorithm is generally preferable to either CS or LB algorithm but does not generalize to
3D, as does CS and LB algorithms. The new LSSB algorithm was developed, verified
and tested for clipping line segments and it claim the superiority over the CS algorithm.
For clipping lines against a rectangular window, the new LSB and MSF algorithm claim
the superiority over the LB algorithm for all cases. Experiments proved that the
speed-up could be considered up to 1.6 times on the average for the L.SB algorithm. The
MSF and MSF-1 algorithms were also implemented as the modifications of the SF
algorithm. The speed-up of MSF-1 algorithm can be considered up to 1.86 times on the

average for all common cases.

25

4. Clipping by a convex polygon

4. Clipping by a convex polygon

Many algorithms for line or line segment clipping by convex polygon has been
proposed, see references, nevertheless the Cyrus-Beck (CB) algorithm is the most often

used because it is very simple to implement and numerically stable.

41. Cyrus-Beck algorithm

Let the convex clipping polygon be given by N points
x; =[x, y]" ,i=0 .. ,N-I
where: points xy and xy are identical, x; and y; are co-ordinates of the vertex x; (column
notation is used), n; is the normal vector of the edge e; (x; x;:;) and points out of the
convex polygon. The given line p is determined by two points:
xa = [xa yal" . xp = [x5 y5l"
The given line can be parametrically represented as follows:
X() =x4+ (xp-x4) *t,
or
X(t) = x4 + Ax *1¢,
) =yat Ay *t,
where: Ax = x5 —Xx4, Ay =yp -4,

t € (—oo +0) (for line clipping) or ¢ € <0, 1> (for line segment clipping)

Let us consider the vector x(7) - x; from vertex x; to one point on line p. We must
find the parameter value ¢ at the intersection of line p with the edge e;, i.e. we have to
solve the following equation:

' [x(t)-x] =0
First, substitute for x(2):
n,-T[xA + (xp-x4) ¥t-x]=0
Next, group terms and distribute the dot product:
n' [xs-x;] +nt [xg-x4] ¥t=0
Let s = x5 - x4 be the vector from x4 to xp then we can write:

T
_n [x -x,]

4 T
n's

26

4. Clipping by a convex polygon

Note that this gives a valid value of ¢ if and only if the denominator of the
expression is nonzero. Therefore, the algorithm must check that

n; #0 (i.e. the normal should not be /0, 0]7)

s #0 (1.e. x4 #Xp)

n;'s # 0 (i.e. line p and the edge e; are not parallel. If they were parallel then
either the entire line must be rejected or the algorithm moves to the next vertex).

We calculate the parameter value ¢ for all intersections between the given line p
and each edge of the clipping polygon. The next step is to determine which (if any) of
the values correspond to the internal intersections of the given line with edges of the
clipping polygon, i.e. we need to determine whether the intersection lies on the clip
boundary. The intersections are characterized as “potentially entering” (PE) or
“potentially leaving” (PL) the clipping polygon, as follows: if moving from x4 to xp
causes us to cross a particular edge to enter the edge’s inside half-plane, the intersection
is PE. If it causes us to leave the edge’s inside half-plane, it is PL. Notice that with this
distinction, two interior intersection points of a line intersecting the clip polygon have
opposing labels, see Figure 4.1. On another view, intersections can be classified as PE
or PL on the basis of the non-orientated angle between s and n;: If this angle is less than
90°, the intersection is PL. If it is greater than 90°, it is PE. This information is
contained in the sign of the dot product of s and n;. Notice that ns is merely the
denominator of expression for the parameter value 7, which means that, in the process of

calculating, the intersection can be trivially categorized.

Figure 4.1: Line clipping by convex polygon.

27

4. Clipping by a convex polygon

With this categorization, we can do the final step in the process. We must choose
a (PE, PL) pair that defines the clipped line. The portion of the given line p that is
within the clipping polygon is bounded by the PE intersection with the largest 7 value
called 7, and the PL intersection with the smallest ¢ value called #,,. The range
(tmin> tmax) then defines the clipped line segment. If #,;, > t,4 then no portion of line p is
within the clipping polygon and the entire line is rejected. The values of #,,, and #,,,, are
then used to calculate the corresponding x and y co-ordinates.

The CB algorithm can be implemented as Algorithm 4.1.

procedure CB_Clip (x4 Xx5);
var Ly boao t K real;
i : integer;
{m; is a normal vector of edge e; (x; x;-;)}
{n; points out of the convex clipping polygon}
{all vectors n; are precomputed}

begin

Lnin' = —00; byay:= +00; {for line segment t,,;,. = 0; tyge:= 1}
i:=0;
S I=Xp-Xy,
while i < N do {N is the number of edges of the clipping polygon}
begin

§:.=X; - Xy, { siis the vector from x, to x; }

k:=n;s;

if £ <> 0 then

begin ¢ .= nl-T s;/ k;

if k> 0 then ¢,,,,;= min (7, 1,y
else 1., = max (1, tyn)

end

else Special case solution;

i:=itl;
end;

if 1> oy then EXIT; {the given line is rejected}
X . =X4+ 8 *tyans
Xg = Xg TS bpin)
DRAW_LINE(xy4 x5)
end { CB_Clip };{EXIT means leave the procedure}

Algorithm 4.1: Cyrus-Beck algorithm.

The CB algorithm relies on a brute force as it computes intersections of all edges
(or lines on which the edges lie) with the given line or with a line on which the given
line segment lies, therefore it has O(N) complexity. It leads to ineffective algorithm, as

N-2 computed intersection points are lost because the only two can be valid.

28

4. Clipping by a convex polygon

In algorithm design there is a very old rule “Make tests first and then compute”.
There were several attempts to find an intersection detection method. One of them,
known as an ECB (Efficient Cyrus-Beck) algorithm, used the separation function that is
represented by the implicit function of the given line or by the cross product of two

vectors and brought a significant increase of speed to the CB algorithm.

4.2. ECB algorithm

In the Figure 4.2, it is obvious that line p intersects the edge xx; of the given polygon if
and only if the vector s lies between two vectors sy and s;. Let £ and 7 denote the
z co-ordinate of the cross products as follows:

E=[sxsi]., n=[sxsi1]:, i=0 .., N-I

where N is number of edges.

Figure 4.2: Line p intersect the edge xox; < [s x 850/. * [s x 51/.< 0.

It is possible to show that line p given by the end-point x4 and by the vector s

intersects the edge x;x;-; if and only if the following condition is valid:
(E>0) xor (n>0),1e. E*n<0

The above expressions are independent on polygon orientation. It means that
edges needn’t to be ordered. That is the main idea of the ECB algorithm, which is based
on the presumption that a line can intersect a convex polygon at most in two points. The
ECB algorithm implementation is shown in the Algorithm 4.2. It can be seen that the
ECB algorithm only detects whether the given line intersects the clipping polygon’s
edge and then computes intersection points, while CB algorithm computes all possible

intersection points with all edges. With cross product used as a separation function

29

4. Clipping by a convex polygon

experiments proved the speed-up can be expected in <1.37, 2.85>, for details see
[Ska93b]. It is necessary to point out that the detection function can be replaced by the

implicit function of the given line with better speed-up.

procedure ECB_Clip (x4, X3);
{N is the edge number of the clipping polygon}
var L Lnaw 11, 1 Teal;

i, J, k : integer;

begin

k:=0,i:=N-1;j:=0;
S . =Xp-Xy4,
Er=[s x (xXn.1-X4)]2; {z co-ordinate of the cross product}
while (7 < N) and (k < 2) do
begin

§;0= X5 - Xy, { s; is the vector from x4 to x; }

n=1/[s xs;]-; {z co-ordinate of the cross product}

if £* 17 <0 then {intersection exists}

begin {save edge index having intersection}

k:=k+1;
index ;=1
end
else if £ * 17 = 0 then Special case solution
else Intersection point does not exist;

‘é = ‘77).

i=j;

ji=jtl
end;
if £ = 0 then EXIT; {the given line is rejected}

{ k = 2 Intersections exist — edges saved in index ;}
nin'= —00; byay:= +00; {for line segment t,,,;,. = 0; tyyar. = 15}
i.=index;, t;;=det[x;- x| Xi-Xi+1]/ det[s | x;- X i+1] ;
i :=1indexy, t,:= det[x;- X4 | X;-Xx ;1] /det[s | x;-x 1] ;
{recompute end-point if changed}
if 1, > t, then { swap ¢; <> ¢, values ?}
begin
if t; <ty O 15> 1,4, then EXIT;{the line segment is rejected}
ift;<t,,thenxgz:=x,+s *t;
ift,>t,,,thenx, . =x4+s*t
end
else begin
if 1> <ty o1 t; > 1, then EXIT;{the line segment is rejected}
ift,<t,.thenxp:=x4+s *t
ift;>t,,thenx, . =x4+s *
end;
DRAW_LINE(xy4 x5)
end {ECB_Clip};

Algorithm 4.2: ECB algorithm.

30

4. Clipping by a convex polygon

4.3. Of(log N) algorithm

The ECB algorithm does not use the important property of the given clipping polygon:
known order of vertices (polygon’s vertices are given as ordered), thus it has the
complexity O(N). This remark led to the thought that such knowledge could be used to
decrease the algorithm complexity.

It can be shown that the testing of whether a line intersects the convex polygon
is the dual problem to the testing of whether a point is inside of the convex polygon if
dual representation is used, see [Kol94a]. It is very well known that the problem testing
if a point is inside of the convex polygon has optimal complexity of O(log N). This has
naturally led to the question if there is aline clipping algorithm with O(log N)

complexity. Let us assume the situation from Figure 4.3.

Figure 4.3: Line p divides the plane into two haft-plane with different sign of F(x).

It can be seen that if we select an index k as follows:
k=[N/2J

then we need only /log N steps to find which edges are intersected on each chain of the
edge segments, see Figure 4.3. Although some other cases are alittle bit more
complicated, it can be shown that the whole algorithm is of O(log N) complexity, see
Algorithm 4.3. It is necessary to point out that for effective implementation values F(x;)
should be stored in separate variables because they are used several times.

This approach enabled to speed up line clipping significantly and it is faster than
CB algorithm even for N> 3 (for N = 100 the speed up is over 10 times). See [Ska94a]

for more details and analysis.

31

4. Clipping by a convex polygon

procedure CLIP 2D log (x4, xp); {initiation for a clipping window xy:= Xy }

function macro F(x): real; {implemented as an in-line function }
begin F.=A4 *x+ B *y+ C; end;

function Solve (7,/): real,;
begin
{finds two nearest vertices on the opposite sides of the given line p}
while (j-i) >2 do {j >i always}
begin k:= (i +j) div 2; {shift right }
if (F(x;)* F(xy) <0) thenj .= kelsei.=k;
end { while };
{gives the value ¢ for an point of line p with the given segment x; x; }
Solve := Intersection (p , x;, X;);
end { Solve };

begin
{determine 4, B, C values for the F(x) }
A =YY=y B:= X2 — Xy, C:= X7 *yg — X2 *yl,'
ir=0/j:=n
while (j-i) >2 do
begin k:= (i +j) div 2;{shift to the right}
if (F(x;)* F(x) < 0) then
begin ¢, := Solve (i, k) ; {finds an intersection on x,x, chain}
f; := Solve (k, j); {finds an intersection on x,x, chain}

/* {for line segment clipping include three following lines}
if £, > 1, then begin 1:=t,; t,;=1;; ;.= 1 end;

t;=max(0, t));t>=min(/, t;); {compute <t;, t,> N <0,1>}
if <t;, t,> = O then EXIT; { exit procedure CLIP 2D log }

*/
DRAW _LINE(x(t;), x(t2))
end {if };
if (F(x;) > 0) then
begin
if F(x;) < F(x;) then
if F(x;+;) < F(x;) thenj =k {Delete x,x, chain}
else i:=k {Delete x,x, chain}
else
if F(x;) < F(x+;) then j:=k {Delete x,x, chain}
else i:=k {Delete x,x, chain}
end else
begin {similarly for opposite line orientation}
end

end {while}
end {CLIP 2D log}

Algorithm 4.3: O(log N) algorithm.

32

4. Clipping by a convex polygon

4.3.1. Modified O(log N) algorithm

It can be seen that the above mentioned O(log N) algorithm must indeed spend log N
steps even for the case when the given line does not intersect the clipping convex
polygon. The trying to eliminate these unnecessary steps resulted in the modified
O(log N) algorithm, see [Bui99a]. Now, we are going to describe the modified O(log N)
algorithm in more details. Again, let us suppose that we have a clipping convex polygon

counter-clockwise oriented and line p is determined by two points:

x4 = [xa yal" . xp = [xp y5]"
The convex polygon is represented by N points
x; =[x, y] ,i=0, .. N-I

where: points xy and xy are identical (column notation is used), x; and y; are co-ordinates
of the vertex x;.
The notation m is used for a polyline from X; to xy, i.e. it is a chain of line segments
from x; to x;y.
Let us define the separation function F(x) in the form
F(x)=Ax + By +C
where F(x)= 0 is an equation for the given line p and assume that the line has the

orientation shown in Figure 4.4, x is defined as x = /x, y/".

Figure 4.4: Separation function F(x) of line p and oriented distance d of point x from p.

It can be seen in Figure 4.4, the oriented distance d of point x from line p can be
determined as

_Ax+By+C

N A* + B?

d

33

4. Clipping by a convex polygon

It means that the value of the function F(x) is actually proportional to the

distance d of point x from the given line p. First of all, let us consider the chain x x ,

where 0 <i <j < N. There are two following possible cases:

In the first case, the points x; and x; are on the opposite sides of line p,

i.e. F(x;) * F(x;) < 0, there must be just one intersection point with line p on the

chains x,x , (because the given polygon is convex), i.e. there must exist an index m

so that F(x,) * F(x,u+1) <0 i <m <], see Figure 4.5. It is obvious that in this case
the intersection point can be found in O(lgM) steps using binary search over

vertices, where M is number of line segments in the chain x x | .

Unfortunately, in the second case when points x; and x; are on the same side of
line p, the situation is more complex to solve. Let us concentrate on point xj, where
k= (i+j)div2. The condition F(x; * F(x;) < 0 shows that point x; is on one side
of line p, whereas x; and x; are on the opposite side. This also derives that there must

be just one intersection point on the chains x x, and x, x, for each chain, because

the given polygon is convex. The intersection point on each chain can be again
found in O(lgM) steps using binary search over vertices, where M is a number of
line segments in the given chain, see Figure 4.6. The worse case will happen when
all of three points x;, x; and x; lie on the same side of line p. It is possible to

distinguish all three fundamental sub-cases supposing the previously shown

orientation of the separation function F(x).

m+1

x; and x; are on the opposite sides of p x; and x; are on the same side of p

Figure 4.5 Figure 4.6

34

4. Clipping by a convex polygon

a) Point x; is the closest point to line p, i.e. F(x;) = min {F(x,;), F(x;), F(x)}. In this
case, if F(x;+;) < F(x;) then the chain x ,x, can intersect line p, see Figure 4.7. This
condition actually expresses that we are getting closer to line p, i.e. the oriented
distance d is smaller, therefore, the chain K can be removed by the assignment
J=k. When this condition is not true, the whole chain x x is on one side of line p,

i.e. there is no intersection point on this chain and the chain is rejected, see

Figure 4.8.

i+1

F(xiv1) < F(x;) = x,x, isremoved F(xiv) > F(x;) = x x, isrejected

Figure 4.7 Figure 4.8

b) Similarly for the case when point x; is the closest point to line p, i.e.
F(x)) = min {F(x)), F(x)), F(xy)}, see Figures 4.9-4.10, the intersection points can lie
only the chain x x , or do not exist at all. The condition F(x;.;) < F(x;) decides that

the chain x x, can be removed and the index i must be changed to k,see Figure 4.9.

i

F(x;.;) < F(x) = x,x, isremoved F(x;.)) > F(x) = xx, isrejected

Figure 4.9 Figure 4.10

35

4. Clipping by a convex polygon

¢) A little bit more complex situation is shown by Figure 4.11-4.12, where point x; is

the closest point to line p, i.e. F(xy) = min {F(x;), F(x), F(x;)}. In Figure 4.11 the

chain x,x, can be removed, whereas in Figure4.12 the chain xx, can be

removed. Therefore, index j or index i, respectively, must be changed to k. Theses
cases can be distinguished by using criterion F(x;:;) < F(x;). Actually we must
distinguish whether we are getting closer to the given line p or not.

It is very easy to derive the similar conditions for those cases when line p has an

opposite orientation. Therefore, the modified O(log N) algorithm contains the following

basic steps:

The algorithm starts withi = 0; j = n- [
If points xy and Xx,,.; are on the opposite sides of line p, i.e. F(xy) * F(x,.;) < 0 then

and the second one is on the chains

one intersection point is on the edge x, x,

X

,x,_, and can be found in O(log N) steps.
If points xy and x,,_; are on the same side of line p, the algorithm continues with the

process to subsequently shorten the chain x x . This process is repeated until the

whole chain is rejected or F(x;) * F(x;) < 0. If this condition becomes true we will

obtain two chains x,x, and x, x , which intersect line p and binary search over

vertices can be used again as situation is similar situation in Figure 4.5.

Now it can be seen that all parts of the described algorithm are of complexity

O(logM), where M is a number of edges in the given chain because we have used the

binary search over vertices of the clipping convex polygon for all steps. Therefore the

algorithm has O(logN) complexity and it is described by Algorithm 4.4.

X,

F(xir1) > F(xy)= x x, is removed F(x+1) < F(xy)= x,x, isremoved

Figure 4.11 Figure 4.12

36

4. Clipping by a convex polygon

procedure MOD_CLIP 2D log (x4 Xxp);
{N+1 points x; = [x; y;]' (i=0, ... N, xy = xy) represent the convex polygon }
{line p or line segment is determined by two points x4 = [x,4, vt x5 = [xp v5]'}

function macro F(x): real, { implemented as an in-line function }
begin F:=A4 *x + B *y + C; end,;

function INTERSECTION(p, x; , x;): real;{implemented as an in-line function}
begin INTERSECTION := ((x; —x;) * (vi—y4) — ;=) * (xi—x4)) /

(=) * (vp—ya) — ;=) * (xp—x4));
end {INTERSECTION};

function SOLVE (7, j, i GT 0): real;
{finds two nearest vertices on the opposite sides of the given line p}
{i GT 0isaboolean parameter indicating whether F(x;) > 0}
begin if i GT 0 then while (j-i) >2 do {j >i always}
begin k:= (i +j)div 2; {shift to the right}
if F(x;)) <0 thenj .= kelsei .=k
end {while}
else while (j-i) >2 do {j >i always}
begin k:= (i +j)div 2; {shift to the right}
if F(x;) <0 theni.=kelsej =k
end {while};
{compute the value 7 of an intersection point of line p with the polygon edge x; x;}
SOLVE = INTERSECTION (p, x; , x);
end { SOLVE };

begin {determine the 4, B, C values for the separation function F(x)}

A =Y4—)VB, B:= Xp — X4, C:= X4 *yB —XB *yA,'
i:=0, Jj:=N-I;
Fc := F(x;) ; {proportional distance of the closer point}
{for the polygon orientation shown in Figure 4.4}
if Fc > 0 then
begin {for the orientation of line p shown in Figure 4.5}

ifFCXN_j) < 0 then

begin {see Figure 4.5}

t; .= SOLVE (0, N-1, TRUE) ; {find an intersection on XX, _, }

t; := INTERSECTION (p, xx.; , Xp); {intersection on

/* {for line segment clipping include three following lines}
if £, > 1, then begin 1.=1t,; t,;=1;; ;.= end;
ti:=max(0, t;);t>:=min(/, t;); {compute <t;, t,> N <0,1>}
if <t;, t,> = O then EXIT; {exit MOD_ CLIP 2D log}*/
DRAW_LINE(x(?;), x(t))
EXIT {exit procedure MOD CLIP 2D log}
end {if};
if F(xy.;)) < Fc then
begin Fc .= F(xy.));
i closer j =FALSE {vertex x; is closer than vertex x;}
end else i closer j:= TRUE; {vertex x; is closer than vertex x;}

X, edge}

n—1

37

4. Clipping by a convex polygon

while (j-i) >2do

begin
k.= (i+]J)div2; { shift to the right }
if F(x;) <0 then
begin { see Figure 4.6}

t; := SOLVE (i, k£, TRUE); {find an intersection on XX, }
t; := SOLVE (kj, FALSE); {find an intersection on x,x, }

/* {for line segment clipping include 3 following lines}
if ; > ¢, then begin 7.= t,; t,:=1;, t;:=t end;
t;:=max(0, t;);t:=min(1, t,); {compute <t;,t,>N<0,1>}
if <t;, t;> = then EXIT;{exit MOD_ CLIP_2D log}*/
DRAW_LINE(x(#;), x(t2))
EXIT {exit procedure MOD CLIP 2D log}
end {if};
if F(x;) > Fc then { Figures 4.7-4.10}
begin

if i closer jthen { Figures 4.7-4.8}
if F(x;-;) < F(x;) then
j := k {remove chain (k)}; {Fig. 4.7}
else EXIT {Fig. 4.8}
else if F(x;.;) < F(x) then
i .=k { remove chain (i, k); {Fig. 4.9}

else EXIT {Fig. 4.10}
end
else {Figures 4.11-4.12}
begin
if F(xk+1) > F(xk) then
begin j := k; { remove chain (k,))}; {Fig. 4.11}
i_closer j:=FALSE {vertex x; is closer than x;}
end
else
begin i .= k; { remove chain (i, k);} {Fig. 4.12}
i closer j:=TRUE {vertex x; is closer than x; }
end;
Fe:=F(xy);
end

end { while }
end
else {fc < 0}
begin { for an opposite orientation of the line situations are solved similarly }

end
end {MOD CLIP 2D log}

Algorithm 4.4: Modified O(log N) algorithm.

38

4. Clipping by a convex polygon

4.3.2. Experimental results

The new modified O(logN) algorithm was verified experimentally on Pentium Pro,
200MHz, 128MB RAM, 512KB CACHE. The proposed algorithm has been tested
against the Cyrus-Beck (CB) and the O(logN) algorithms on data sets (10%) of line
segments with end-points that have been randomly and uniformly generated inside
a circle in order to eliminate an influence of rotation. Convex polygons were generated
as N-sided convex polygons inscribed into a smaller circle.

To compare these algorithms, let us introduce coefficients of the efficiency v as
where: Tcp, Trogn, T are execution times needed by the CB, O(logN) and the modified
O(logN) algorithms, respectively.

The Table 4.1 and Table 4.2 present the obtained results. In these tables, the
second row shows the number of polygon edges and the first column the percentage q of
intersecting lines.

It can be seen that, see Table4.1, the modified O(logN) algorithm is
significantly faster then CB algorithm, specially for the high N. This is expectable
because the algorithm runs with O(logN) complexity, whereas the complexity of CB
algorithm is O(N).

Table 4.2 shows that the modified O(logN) algorithm relatively improves the
O(logN) algorithm significantly, especially for the cases when the given line does not

intersect the clipping polygon. CB

VcB N

q 3 4 5 6 7 8 9 10 30 50 100

0%| 2.85] 3.85] 4.67| 5.68| 5.48] 6.15| 7.00] 8.33| 20.85| 30.84| 36.01

10%| 293| 3.18| 3.97| 4.82| 5.48| 5.37| 6.97| 8.33| 18.48| 27.67| 33.42

20% | 3.04| 3.18| 4.00| 4.85| 4.76| 6.33| 6.08| 7.24| 19.02| 27.57| 33.83

30%| 2.33] 3.15] 4.00] 4.18] 4.76| 4.61| 5.23| 7.03| 16.26]| 24.58| 31.51

40%| 2.33] 2.39| 3.00] 3.50] 4.11| 4.64| 5.25| 6.23| 16.59| 24.56| 29.76

50%| 2.33] 2.36| 3.47| 3.61| 4.14| 4.08]| 4.60| 5.61| 14.87| 24.67| 31.45

60%| 2.16] 2.39| 3.00| 3.50| 4.11| 4.16] 4.60| 5.00| 13.33| 20.47| 29.71

70%| 1.97| 2.36| 2.69| 3.08| 3.62| 4.16| 4.82| 5.00] 12.30| 20.47| 27.96

80%| 1.75] 2.08| 2.69| 2.80| 3.29| 3.69| 4.18| 5.00| 12.32| 19.03| 27.96

90%| 191] 191| 2.40| 2.57| 3.02| 3.80| 3.83] 498| 11.28| 18.76| 26.56

100% | 1.54| 1.73| 2.40| 2.57| 3.29| 3.80| 3.85| 5.00| 10.56| 17.48| 25.12

Table 4.1: Comparison between the CB algorithm and the modified O(logN) algorithm.

39

4. Clipping by a convex polygon

VLogN N

q 3 4 5 6 7 8 9 10 30 50 | 100

0%|1.41| 1.63| 1.81| 1.96| 1.67| 1.82| 2.00| 1.33]| 1.41]| 1.39| 1.49

10%|1.57| 1.48] 1.67| 1.67| 1.85] 1.58] 2.00] 1.30] 1.25] 1.35] 1.40

20%|1.81| 1.52| 1.85| 1.85] 1.58| 2.00] 1.74| 1.29| 1.42| 1.33] 1.48

30%|1.48| 1.48| 1.82] 1.58| 1.74| 1.48| 1.61| 1.26| 1.22| 1.31| 1.31

40%]1.52| 1.11| 1.36| 1.36] 1.48| 1.48| 1.61| 1.11] 1.24] 1.31| 1.30

50%(1.67| 1.25| 1.74| 1.50] 1.50| 1.42| 1.42| 1.12| 1.11| 1.29] 1.44

60%|1.45] 1.25| 1.39] 1.39] 1.50] 1.42| 1.42] 1.00| 1.08] 1.00| 1.30

70%|1.54| 1.36] 1.35] 1.32| 142| 1.44| 1.45| 1.00| 1.00| 1.00| 1.27

80%]1.25| 1.10| 1.35| 1.20| 1.31| 1.29| 1.40| 1.00] 1.08| 1.01| 1.22

90%1.40] 1.09] 1.29] 1.20] 1.20] 1.11| 1.28] 1.00| 1.00| 1.07| 1.22

100%|1.22] 1.00] 1.31| 1.18| 1.40| 1.11| 1.28] 1.00] 1.00| 1.00| 1.20

Table 4.2: Comparison between O(logN) and the modified O(logN) algorithm.

40

35

25 /
20 //
; 4

m V/ 4

Efficiency coefficient

O I T T T T T T T T T
3 4 5 6 7 8 9 10 30 50 100

Number of polygon edges

0% —m—20% —4—40% ——60% —%— 80% —e— 100% Intersection

Graph 4.1: Comparison between CB and the modified O(logN) algorithm.

40

4. Clipping by a convex polygon

N NN

o

1.4 -

1.2

Efficiency coefficient

3 4 5 6 7 8 9 10 30 50 100
Number of Polygon edges

0% —m—20% —&a—40% —o— 60% —%— 80% —e— 100% Intersection

Graph 4.2: Comparison between the O(logN) and the modified O(logN) algorithm.

Graph 4.1 and Graph 4.2 give us the graphical presentation of obtained results.

As mentioned above, the test whether a line intersects the convex polygon is the
dual problem to the test whether apoint is inside of the convex polygon. Since
an algorithm for testing of whether a point is inside of the convex polygon with O(1)
expected complexity was developed in [Ska94b], it led to a question whether a line
clipping algorithm with O(1) expected run-time complexity exists and what would be
the complexity of pre-processing. Such algorithm was developed recently, see next

paragraph.

41

4. Clipping by a convex polygon

4.4. O(1) algorithm

The O(1) algorithm is based on the dual space representation and on non-orthogonal
space subdivision, see [Ska96b]. Therefore, it is necessary to describe these techniques
before we will present the algorithm.
4.4.1. The semidual space representation
Any line r € E” can be described by an equation
ax+by+c=20

and rewritten as

y=kx+gq if | k| <1 b#0
resp.

x=my+p if |m|<I a#0
It means, that line » € E can be represented using an asymmetrical model of dual space
representation as a point D(r) = [kq] € D(E’) or D(r) = [mp] € D(E’) respectively.
This representation model has very interesting properties and usage that can be found in
[Sto89a], [Kol94a], [Nie95a], [Zac95a].

The problem is that dual space representation for a convex polygon is infinite.
Therefore we will split the dual space representation to two complementary dual spaces.
Let us consider a modified rhomb box that contain the given polygon, see
Figure 4.13.a). It can be seen that g, resp. p values are limited.

Now, the given line » € E can be represented as
y=kx+q if | k| <1
and
x=my+p if |m| <1

If both representations are used then &, resp. m values are limited. Then values
[k, g], resp. [m, p] are from the limited area <-/, I> x <-h, h> in both space
representations. We will denote those two limited spaces semidual spaces, see

Figure 4.13.

42

4. Clipping by a convex polygon

(6,1)

P
N[~
YN\
AN
T INIAL
(3.5 \s
| D)
3 V‘b) .
2 1.5
——— —
3 2 3 T | 2 k
. 2.5
- > a4
e 25) 43}
3 -+ =3
eZ
o\ 2 T X
s+ @9 s/ Ne» @
6 bounding box 1.2 ‘,6
i o b)
a)
6,1)
m a5
P
P
N
\ /
! \\ —
87|65\ 4 1P AERE N KA LB P
- |\ DG

4.4.2. Space subdivision

D)

<)

Figure 4.13: The semidual space representation.

A space subdivision technique is used to detect the region in which a point D(r) lies.

The semidual spaces for (k, g), (m, p) respectively are subdivided into small rectangles.

Each rectangle is a dual representation of a region “butterfly” in £, see Figure 4.13a).

For each rectangle it is possible to pre-compute a list of polygon edges that

interfere in semidual space with the given rectangle. Such list is called the Active Edge

List (AEL).

It is necessary to point out that the number of edges in AEL depends on the

geometric shape of the given polygon and also on the fineness of the subdivision in

43

4. Clipping by a convex polygon

(k, q), (m, p) spaces respectively. If the rectangles are small enough (i.e., the subdivision

is fine) then each list contains no more than two edges of the given polygon.

Experimental results show that subdivision in the direction ¢, p respectively, is
more significant than subdivision in the direction k, respectively m, see [Ska96d] for

details.

4.4.3. The O(1) line clipping algorithm
The algorithm for line clipping with an O(1) processing time complexity consists of the

following steps:

e Pre-compute the AELs for the clipping polygon (this pre-computation is made once

for all clipped lines),
e determine if the (k, g) or (m, p) semidual space will be used for the given line,

e compute values [k, g], [m, p] respectively of the given line,

e find a rectangle containing point D(7),

e for all members of the AEL, test and compute the intersections with the given line if
they exist.

Because all steps of the algorithm have an O(1) complexity, the algorithm on the

whole also has an O(/) complexity. The detailed algorithm is described by
Algorithm 4.5.

The COMPUTE function is based on the CB algorithm and is performed only
for edges included in the AEL associated with the selected REGION(,).

It can be shown that computation of the AELs for all regions (pre-processing) is

of O(N*n;*n,) and O(N*n,,*n,) complexity, where:

e N is the number of edges of the given polygon,
e 1y, ny are the number of subdivisions in the direction & and g, respectively ,
® 1y, hy, are the number of subdivisions in the direction m and p, respectively.

It was theoretically and experimentally proved that the algorithm has O(l)
expected run-time complexity with pre-processing complexity O(N°), see [Ska96b],
[Ska96d] for details.

44

4. Clipping by a convex polygon

procedure CLIP 2D Ol (x4, xp);

begin
ko :=ny/ (2%h); ki:=m/2; kz:=n,/(2%h), ky:=ny/2;
ty ;= +oo; t :=-o0; {initialisation - interval <{y, t; > = J}
Ax 1= xp-x4; Ay =y -yu4,
if | Ax | >| 4y | then {(k,q) semidual space}

begin k := Ay/Ax; q := yp - k*xp;
ir=int((q+h)*ky) +1; j:=int((k+1) *k)+1I;
test := false;
{test all members of the AEL for region(i,j);compute the appropriate value of 7}
test := COMPUTE (REGION(i,j), ty, t;) {if intersections exist then fest = true}
end
else
begin m := Ax/Ay, p := xp - m*yp;
ir=int((p+h)*ky)+1; j:=int(m+1) *ky + I,
test := false;
{test all members of the AEL for region(i,j);compute the appropriate value of 7}
test := COMPUTE (REGION(Z,), ty, t;) {if intersections eXist then fest = true}
end;
if line segment clipping then < {y,t,> := <ty t;> N <0,1>;
test :=testand (< 1y, t; > # D),
if fest then { an intersection exists }
begin x).= x4 + Ax * o Vo:=y4 + Ay * o
X =x4+ Ax ¥y yvii=yq4t+ Ay *t
end;
end {CLIP 2D Ol1}

Algorithm 4.5: O(1) algorithm.

4.4.4. The O(l) line clipping algorithm using polar co-ordinate system
Another way to solve the line clipping problem against a convex polygon with O(1)
run-time complexity is by using the polar co-ordinate system and the space subdivision
in (p, @) plane [Ska99a]. Let (p, ¢) is polar co-ordinate of system origin’s projection on
the given line, see Figure 4.14. For simplicity, let us suppose that p #0. It can be seen
that (p, @ unambiguously determines line p and so it can be used to represent line p in
polar co-ordinate system. If we transform the convex polygon to the polar co-ordinate
system representation we get an image in (p, @) co-ordinates, see Figure 4.15, where
each region represents a set of (p, ¢) values of the clipped line that intersect the same
edges, in our case edges e; and ey.

It can be seen that if the space subdivision technique is used we can directly
determine edges that are intersected by the given line p regardless to the number of

edges of the given polygon for infinite subdivision in (p, @) space. It means that if the

45

4. Clipping by a convex polygon

subdivision is coarser we will have to test more than two edges, see Figure 4.15. In
other words, an algorithm that has O(7) run-time complexity can be designed by using

this principle, see Algorithm 4.6.

A
X,
&
>
r X, X
€
X 2 X

35 S0 R (N (0

62 113 |24 35 }46 |15
25\ /36\ A4\ 25\ 36\ /14 /25
’ p/3 /2p/3 m 4p/3 5p/3 2n @

(p,9)

Figure 4.15: The (p, @) space subdivision.

The COMPUTE function is again based on the CB algorithm and is performed
only for edges included in the AEL associated with the selected REGION(,j).

46

4. Clipping by a convex polygon

It can be shown that computation of the AELs for all regions (pre-processing)

runs in O(N* n,* n,) time, where:

e N is the number of edges of the given polygon,
e 1, isthe number of subdivisions in the direction p,

e 1, is the number of subdivisions in the direction ¢.

procedure POL_CLIP 2D O1 (x4, x5);

begin
qp:=ny/r;, qy = ny/ (2*Pi);
ty ;= +oo t :=-o0; {initialisation - interval <, t; > = J}
Compute (p, @) co-ordinates of line p,
i=prgp Tl Jim ¥, L

{test all members of the AEL for region(i,j);compute the appropriate value of #}
COMPUTE (REGION(,j), to, t1)
if line segment clipping then <17,¢,> .= <tyt;> N <0,1>;
if <1y, t; ># < then DRAW_LINE(x(%y), x(t;)) {an intersection exists}
end {POL CLIP 2D O1}

Algorithm 4.6: O(1) algorithm using polar co-ordinate.

47

5. Clipping by a non-convex polygon

5. Clipping by a non-convex polygon

In technical practice, many times we need clip lines or line segments by the non-convex
polygon. Clipping by non-convex polygon is relatively more complex than clipping by
convex polygon, because the line can intersect the polygon in more than two points.
Therefore, this section is devoted to the clipping problem against non-convex polygon.
Algorithm for line clipping against a non-convex polygon is based on the parametric
representation of lines or line segments [Ska89a]. It can be seen that, there are some

special cases that are necessary to be considered, see lines p», p; and p, in Figure 5.1.

P pPs; P

Figure 5.1: Line clipping against non-convex polygon.

Let us suppose that we have a non-convex polygon that is clockwise or
counter-clockwise oriented and represented by N+ points
x; = [x; yi]T ,i=0,..,N
where: points x, and xy are identical (x; and y; are co-ordinates of the vertex x;). Line p
passes two points:
x4 = [xa yal" . xp = [x5 y5l"
and is parametrically represented as

X(t) =x4+ (xp-x4) *t

48

5. Clipping by a non-convex polygon

where ¢ € (—ag +c0) (for line clipping) and ¢ € <0, /> (for line segment clipping).
For simplicity let us assume that:
e The polygon should not have holes.
e The polygon vertices should not coincide.
e Two successive polygon edges should not lie on the same line.
but the algorithm can be modified to circumvent these constrains.
If we represent i-th polygon edge parametrically as follows:
x(q) =x; + (xi1—Xx;) *qwhereq €<0,1),i=0,1, ..., n-1
then the intersection point of line p with i-th edge can be found by solving the following
linear equation system:
X(t) =x4+ (xp-x4) *t
xX(q) = xi + (X1 —X) *q
Co-ordinates of all intersection points of the given line with the non-convex
polygon therefore will be determined by the parameter value 7. But it is necessary to
take into consideration the following special cases:
e Line p passes or touches a polygon vertex.
e A polygon edge lies on line p.
Let us define s; = X3 — X5, 2 = X4 —Xp and §3 = Xp-; — Xz
In the first case, there are only two possibilities, see Figure 5.2. In sub-case a)
(/s1xs2]..[s3x s>].> 0) only one parameter value 7 is generated, whereas in sub-case b)
([s;xs2]..[s3xs2].< 0) double parameter value ¢ is generated. In both sub-cases, the

parameter value ¢ corresponds to the location of given polygon vertex on line p.

a) line p passes the vertex x; b) line p touches the polygon at x;

Figure 5.2: The vertex x; lies on line p.

49

5. Clipping by a non-convex polygon

Quite different situation arises when a polygon edge lies on line p. In that case,
there are four possible sub-cases that are illustrated in the Figure 5.3. It is impossible to
directly decide how parameter value ¢ should be generated and therefore a special
attribute associated to the parametric value must be generated. The additional attribute
depends on the sign of the z co-ordinate of the cross product result of the vectors s; and
s> or 53 and s>, respectively. Therefore, the intersection point will be specified not only
by the parameter value ¢ but also by the additional attribute. For the case, when the
polygon edge does not lie on the given line, it is unnecessary to determine the additional
attribute and it will be set to empty (.). Otherwise, the attribute is + or — according to

the sign of the z co-ordinate of the cross product [s;x s,] or [s; x s], respectively.

X X X X
P ; > %y P : > %,
t- I- t- +
Xk Xp) X
P B 52y p \ > %2y
1+ 1+ 1+ -

Figure 5.3: The edge xx;; lies on line p.

After determining all intersection points with their additional attribute, the
generated parametric values will be sorted together with their attributes. In next step, the
sorted set of generated values will be reduced according to the rule in Table 5.1. The
final result will be the set of parametric values that in pairs determine the segments of
line p which are inside the given non-convex polygon. For line segment clipping it is
necessary to make intersection of all pairs of obtained parameter values ¢ with the

interval <0, />. Above described algorithm can be illustrated in Algorithm 5.1.

50

5. Clipping by a non-convex polygon

Attribute)))
Situation Action
t; tivg tiv2
* j = ..
. > | save(t; tivg); i=i+2
+ i | o | save(l;, i12); i=i+2;
VSR change attribute of 7;to +
+ + /(\,. T > | save(t;, t:p);i=i+3
+ . /\ R save(t; tiv2); i=i+2;
ot - change attribute of 7;to .
. T “ | save(t;, tiv2); i=it+2;
T L - change attribute of #;to -
i} + i . save(t;, ti+2); i=i+2;
AP A change attribute of #;to .
: - X’ - > | save(t;, ti2); i=it3
+ \ R save(t; tiv2); i=i+2;
+ T change attribute of #;to +
+ + Y_F T » | save(t; tj:2); i=i+3
+ . i] /\ . save(t; tiv2); i=i+2;
+ - | | change attribute of /; 0 .
+ + * . save(t;, tiv)); i=i+1;
A+ T change attribute of #;to .
¥ >
+ - * # save(t; tivy); i=i+2
} [] | save(t;, t;42); i=it2;
A change attribute of 7; to -
i} + / > save(t; tiv2); i=i+2;
1‘ : "\/ change attribute of #;to .
- - : — > | save(t; ti2); i=it3
- + >
- + * f save(t;, tiv)); i=i+2
i} i} * . save(t;, tiv)); i=i+1,;
A change attribute of #;to .

* marks all cases, i.e. +, -, .

Table 5.1: Reduction rule for generated parameter values.

51

5. Clipping by a non-convex polygon

procedure NonConvex_Clip (x4, Xxp);
{N is the edge number of the clipping non-convex polygon}

var i k:integer;
begin

k:=N-I;

i:=0,

S =X — X1, §$> . = Xp-Xy4,

while (i < N) do

begin
§3°=X; — Xy, { s3 is the vector from x; to x; }
Compute (7);
if x; lies on p then
begin

if /[s; x 55 /.= 0 then {the edge x;x; lies on p}
Generate (¢ with sign(/s; x s> /) as attribute)
else if [s;xs,/.=0then {the edge x; ;x; lies on p}
Generate (¢ with sign(/s; x s> /) as attribute)
else if [s;xs5/..[s3x52/.<0then {x; touchesp}
Generate (7, 1 with empty attribute)
else {p passes x;}
Generate (¢ with empty attribute)

end

else if the intersection between line p and the edge xyx; exists then
Generate (7 with empty attribute);

§;.= 83,
k:=1i
i:=itl

end;

Sort (generated parameter values ?);
Reduce (sorted parameter values ¢);
{determine sequent segments}

ir=1;
while (7 < Intersection number) do
begin
DRAW _LINE(x(;), x(t;-1)) ;{for line clipping}
{for line segment clipping
if max(0, t;) < min(/, t;-;) then
DRAW_LINE(x(max(0, t;)), x(min(/, t;+1))); }
ir=i+2;
end

end {NonConvex Clip};

Algorithm 5.1: Algorithm for line clipping against non-convex polygon.

The presented algorithm 5.1 enables to clip a given line or line segment against

anon-convex polygon. It is obviously that the principle of ECB algorithm, see

section 4.2, can be applied to get more efficiency. Moreover, the O(/) algorithm can be

also modified for clipping by non-convex polygon.

52

6. Clipping by a non-convex area

6. Clipping by a non-convex area

So far the presented algorithms have solved the line clipping by convex or non-convex
polygon, i.e. by areas that are bounded by linear edges. But plenty of applications
require clipping over areas that are formed by linear edges and arcs, see Figure 6.1.
Provided a non-convex area is given by its vertices in the clockwise or
counter-clockwise order and if the edge is not linear then information whether the right
or left part of the circle is to be taken from the actual vertex, see Figure 6.1. It is also
assumed that all vertices have different co-ordinates, that no vertex lies on an edge or

arc and that two edges or arcs might have only a vertex as a common point.

Orientation
to the left

Orientation
to the right

K

C‘pass”

Figure 6.1: Clipping by non-convex area that is formed by linear edges and arcs.

Contrary to the linear edge case, line p can intersect the arc edge in two points. It
partially increases the complexity of the given problem.
The given line is described by the parametric equation:
X(t) =x4+ (xp-Xx4) *t
The procedure for finding all intersection points is similar to the algorithm for
line clipping against non-convex polygon, but now in case of arc edge it is necessary to
solve the following equation system:
X(t) =x4+ (xp-x4) *t
x—xc) . (x—xc) =r’

where x¢ = [x¢, y]” is the centre of the given arc and r is the radius of this arc.

33

6. Clipping by a non-convex area

To solve this equation system with regard to variable ¢, a quadratic equation
at’ + bt + ¢ = 0 will be obtained, where:
a=(xp -xA)T.(xB -Xy)
b=2%(xg-x4)".(x4—Xc)
¢ = (%4 —Xc)'.(X4—xc) -1
In the case that line p intersects or touches the given circle two solutions are
obtained, not necessarily different, as:

. —bt.b*-4ac

12 —
2a

Now it is necessary to determine which part of the circle forms the boundary of
the given area. Because the border is oriented it can be discerned whether the arc is on
the right or on the left to the connection of x; and x;; points. If line p is considered then
it must be decided which intersection point ought to be taken. It is obvious that only the
point that lies on the proper arc can be considered. It means that:

o if'the left arc is considered then point x(z) will be taken into consideration if and

only if /s3xs/.> 0

e if the right arc is considered then point x(?) will be taken into consideration if
and only if [s3 x5 /. <0
assuming that x(2) #xy, §3 = X3+ — Xp and s = x(1) — Xj.

Of course some special situations must be solved again, e.g. when the given line
passes or touches the vertex x;. In those cases the tangent vectors s;, s, and §; are
determined as:

o s;=[vi—yc xc—xi/ T for the arc X.1x; with centre x¢

S =[xk —Xpt, Vi — vet] for the linear edge

o ;= [Xp—X4 yp—yal
o s3=[vi—ye xc—xi/ T for the arc XX+ with centre x¢

3 = [Xk—Xpt, Vi — vet] for the linear edge

Using tangent vectors, we can decide whether the single or double parameter
value should be generated and determine the corresponding attribute.

If the arc is oriented to the right then the sign of tangent vector must be changed
in some situations.

The whole algorithm for line clipping by non-convex area is shown in

Algorithm 6.1.

54

6. Clipping by a non-convex area

procedure Area Clip (x4, X3p); {N is the number of area’s vertices}
procedure Compute_Tangent(x;, x>, 7, 1);
begin if x; x; is linear then begin s .=x,—x;; r.=[sxs,/.end
else {x; x; isthe arc}
begin s = [yir—yc, xc —xk]T; r:=[sxs;]. {[xc yc]T is arc’s centre}
ifr=0then ifsthenr:=s Ts; elser .= -s TsZ
else if the arc is oriented to the right then r := -r
end
end

begin k:=N-I; i:=0; $2=Xp-X4,
while (i < N) do
begin if x; lies on p then
begin Compute Tangent (x;, x; b, True);
Compute Tangent (x;.;, x;, a, False);
if x; x; is linear then
begin Compute Value (¢);
if a.b < 0 then {p touches x;}
Generate (7, f with empty attribute)
else ifab> 0then {p passesx;}
Generate (¢ with empty attribute)
else if a= 0 then{the edge x; ;x; lies on p}
Generate (¢ with attribute sign b)
else {the edge x;x; lies on p}
Generate (¢ with attribute sign a)
end
else {x;x; is the arc}
begin Compute Values (7, 1,);
if a.b < 0 then {p touches x;}
Generate (75, 1;, t,* with empty attribute)
else ifab> 0then {p passesx;}
Generate (7;, 1,* with empty attribute)
else {the edge x;.;x; lies on p}
Generate (¢; with attribute sign b,
t>* with empty attribute)
end
end
else
begin if x; x; is linear then
begin Compute Value (¢);
if an intersection point in inside of <x; x;) then
Generate (1 with empty attribute)
end
else {x;x;is the arc}
begin Compute Values (¢,, 1,);
Generate (7%, 1,* with empty attribute)
end
end
k:=ii:=itl
end;

55

6. Clipping by a non-convex area

Sort (generated parameter values ?);
Reduce (sorted parameter values ¢);
{determine sequent segments}

ir=1;
while (7 < Intersection number) do
begin
DRAW _LINE(x(;), x(t;-,)) ;{for line clipping}
{for line segment clipping
if max(0, t;) < min(/, t,-;) then
DRAW _LINE(x(max(0, t;)), x(min(/, t;+1))); }
ir=i+2;
end

end {Area Clip};
{* means if the intersection point lies on the proper side of the arc x; x; }

Algorithm 6.1: Algorithm for line clipping against non-convex area.

It is obvious that the presented algorithm for line clipping by non-convex area
can be modified for the case when the area is formed by linear segments and quadratic
arcs. In this case it is necessary to define conveniently the quadratic arcs. Generally all
quadratic curves are described by the function f(x,)) together with their tangent vectors
as:

fxy) = ax’ + by’ + 2exy + 2dx +2ey + g =0
and
s=[f.#]

If the given area consists of some holes it is necessary to apply the presented

algorithm for all the given holes themselves and merge the obtained parameter values

together appropriately, see [Ska89b] for more details.

56

7. Polygon Clipping

7. Polygon Clipping

An algorithm that clips a polygon must deal with many different cases. One concave
polygon can be clipped into two or more separate polygons. Generally, the task of
clipping seems rather complex. Each edge of the polygon must be tested against each
edge of the clipping polygon, new edges must be added, and existing edges must be
discarded, retained, or divided. Multiple polygons may result from clipping a single
polygon. We need a systematic way to deal with all these cases. There are many
algorithms for the polygon clipping (see references), but the Sutherland-Hodgman (SH)
algorithm is the most often used.

Sutherland and Hodgman's polygon-clipping algorithm [Sut74a] uses
a divide-and-conquer strategy: It solves a series of simple and identical problems that,
when combined, solve the overall problem. The simple problem is to clip a polygon
against a single infinite clip edge. Four clip edges, each defining one boundary of the
clip rectangle, successively clip a polygon against a clip rectangle. It is necessary to
point out that SH algorithm is originally suggested for polygon clipping against
a rectangular window but its principle can be used to clip polygons against a convex
polygon.

Note the difference between this strategy for clipping a polygon and the
Cohen-Sutherland algorithm for clipping a line: The polygon clipper clips against four
edges in succession, whereas the line clipper tests the outcode to see which edge is
crossed, and clips only when necessary.

The algorithm works by moving around the polygon from x, to x; to x,, (xy and
X, are identical) taking into account the relationship between successive vertices and the
clip boundary. For each vertex pair, either zero, one, or two vertices are added to the
output list of vertices.

There are four possible test cases need to be examined, see Figure 7.1. For each
case, we will assume the polygon edge to be clipped is from vertex S to P.

e C(Case a: Wholly inside visible region - save end-point P
e (ase b : Exit visible region - save the intersection /
e C(Case c : Wholly outside visible region - save nothing

e Case d : Enter visible region - save intersection / and end-point P

57

7. Polygon Clipping

The SH algorithm can be implemented by Algorithm 7.1. In this
implementation, it has a couple of assumptions:
e accepts an array in_v of polygon vertices and creates an array out v
e procedure OUTPUT(out_v,v,out length) places vertex v into out v and updates the
number of vertices into out_ length
e function INTERSECT(S,P.clip_boundary) returns the intersection of segment (SP)
with clip_boundary.
Function INSIDE(point,clip boundary) returns true if the point is inside the clip
boundary where inside is defined to be to the left of the clip boundary (if the polygon is
counter-clockwise oriented). More specific, inside is to the left when looking from the
first point of the clip boundary to the second. function INSIDE uses the cross product of

two vectors formed by using the point and the clip boundary.

Inside 4 Qutside Inside | Outside
S 2
P S v ! P
a) SP is inside. b) SP exits the visible region.
Inside 1 Outside Inside /' Outside
AP p N
I
A S A
¢) SP is outside. d) SP enters the visible region.

Figure 7.1: Four possible cases of relationship between polygon edge and clip

boundary.

58

7. Polygon Clipping

type vertex=array[l..2] of real;
boundary=array|[1..2] of vertex;
vertex_array|l..max] of vertex;

procedure clip poly(in_v : vertex_ array; {input vertex array}
var out v : vertex array; {output vertex array}
in_length : integer; {length of in_v}
var out_length : integer; {length of out v}

clip_boundary : boundary); {clip boundary}
var [P.S:vertex;
] : integer;
begin out length :=0;
S :=in_v[in_length];
forj:=1 to in_length do
begin
P :=in v[j];
if INSIDE(P,clip_boundary) then
if INSIDE(S,clip_boundary) then
OUTPUT(out_v,P.outlength)
else begin
1 .= INTERSECT(S,P,clip_boundary);
OUTPUT(out_v,lout length);
OUTPUT(out_v,P.out length)

end
else
if INSIDE(S,clip_boundary) then
begin
1 :=INTERSECT(S,P,clip_boundary);
OUTPUT(out_v,lout length)
end
S :=P;

end
end {clip poly};

Algorithm 7.1: Sutherland-Hodgman Algorithm.

Because clipping against one edge is independent of all others, it is possible to
arrange the clipping stages in a pipeline. The input polygon is clipped against one edge
and any points that are kept are passed on as input to the next stage of the pipeline. By
this way, four polygons can be at different stages of the clipping process
simultaneously. This is often implemented in hardware.

It can be seen that the SH algorithm runs in O(M*N) time, where M,N are
number of vertices of each polygon. For clipping a non convex polygon against
a convex polygon, Rappaport proposed an algorithm [Rap91a] that runs in O(M*LogN)
time. Moreover, an algorithm with O(M+N) complexity for clipping a convex polygon

against a convex polygon was published by Toussaint, see [Tou85a] for more details.

59

8. Clipping by a pyramid in E3

8. Clipping by a pyramid in E?

Previously described algorithms enable the line or line segment clipping against
a rectangular window, a (convex or non-convex) polygon or an area in E°. It is very
easy to extend Cohen-Sutherland algorithm and Liang-Barsky algorithm for the line
clipping against a canonical parallel or perspective view volume (cube or pyramid,
respectively) in E° [Fol90a]. In this section we will focus on the clipping algorithms
against a pyramid, which represents the visible region of an observer in the perspective
projection. Many algorithms for clipping lines or line segments in E° have been
published, see [Cyr78a], [Lia83a], [Lia84a], [Fol90a], [Ska96a], [Ska97a], [Ska97c¢] for
main references. For along time the CS algorithm and its extensions to E® (see
[Fol90a]) were the only line segment clipping algorithms found in most textbooks. The
LB algorithm proposed for line clipping can be also used for the line segment clipping,
but it is slower than the CS algorithm. It is possible to say that algorithms for a line
clipping can be modified for a line segment clipping but those modifications are
generally slower than algorithms originally developed for the line segments clipping.
Let us assume that we have a line or line segment with end-points 4A(x4, v, z4)
and B(xp, yp zp) and a unitary clipping pyramid. The unitary clipping pyramid is
defined at the set of all points (x, y, z) such that —z <x <zand —z <y <z (z 2 0). The
intersection of the pyramid and the given line or line segment is a continuous portion of
the line or line segment (if not empty), and so it can be represented by two end-points.
Therefore, we must determine whether the intersection is empty and if not compute the
co-ordinates of its end-points. Before describing particular algorithms, it is necessary to

mention some common definitions:

8.1. Definitions

The planes x = -z, x = z, y = -z and y = z are called the right, left, bottom and top

boundaries of the unitary pyramid, respectively. We will say that:

e apoint or a line segment is visible, if it lies entirely inside the given pyramid,

e a point, a line or line segment is invisible, if it lies entirely outside the given
pyramid,

e a line or line segment is partially visible, if it lies partly inside the given pyramid

and partly outside.

60

8. Clipping by a pyramid in E3

If a line or line segment is invisible, then no part of the line or line segment
appears in the output, the line or line segment is said to be rejected by the clipping
algorithm. The boundaries of the pyramid divide the Cartesian positive half-space
(z 20) into 9 regions. Regions that are bounded by only two boundaries are called the
corner regions and regions which are bounded by three boundaries are called the edge

regions, see Figure 8.1.

Top-Right
//////////// Comer
Top 7

Edge

Right
Top-Left Edge
Corner

Inside
Pyramid
=
X Bottom-Right
Corner
Bottom
Edge

Corner

Figure 8.1: Subdivision of the positive haft-space into regions.

8.2. CS-3D algorithm for line segment clipping against a pyramid

The CS-3D algorithm is very well known algorithm. It is the extension of the
CS algorithm for line segment clipping against a rectangular window in E-. It is simple
and robust. It enables to detect all the cases when the line segment is completely inside
of the given pyramid and some cases when the line segment is outside of the given
pyramid, see Figure 8.2. The CS-3D algorithm uses a coding system to distinguish
several cases. This approach divides the problem into a manageable number of cases
and leads to a shorter program. However the coding system can be the cause of
inefficiency. Some comparisons must be performed to encode the location of the line
segment. Further comparisons on the encoding are then needed before the appropriate
calculation of an intersection is done. Moreover, in some cases, all intersection points of
the line segment with each pyramid’s boundary plane are computed, but only two
intersection points are needed, see the line segment EF in Figure 8.2. The CS-3D

algorithm can be implemented by Algorithm 8.1.

61

8. Clipping by a pyramid in E3

procedure CS Clip 3D (xa, Ya, Za, XB, VB, Zp: real);
var X,Yy, 7, t: real;
C, Ca, Cp: integer; {operators land, resp. lor are bitwise and, resp. or operators }
procedure CODE (x, y, z: real; var c: integer); {implemented as a macro}
begin ¢ :=0;
ifx<-zthenc:=1 elseif x>z then c :=2;
ify<-zthenc:=c+4elseify>zthenc:=c+8
end { of CODE };
begin CODE (XA, YA, Za, CA); CODE (XB, ¥B, ZB, CB);
if (ca land cp) # 0 then EXIT; {the line segment is outside the pyramid}
if (ca lor cg) = 0 then {the line segment is inside of the pyramid}
begin DRAW_LINE (x4, ya, Za, XB, ¥B, Zs); EXIT end;
repeat if c, # 0 then c = c, else ¢ = cp;
if (c land ‘0001°) # 0 then
begin t:=(za +Xa)/ ((Xa —XB) - (Zp - Z4));
Z:=7A t1t*(z - Za); X :=-Z; Y =ya +t*(yB - ya)
end
else if (cland ‘0010’) # O then
begin t:=(za - Xa) / ((XB —Xa) - (ZB - 24));
Z:=72Att*(Zg - Za); X =27, Y :=ya +t*(yB - Ya)
end
else if (cland ‘0100’) = 0 then
begin t:=(za +ya)/ ((ya—y8) - (Zs - Z));
Z = 7p + t¥(zp - Zp);X = Xa T t*(Xp - Xp)Y = -Z
end
else if (cland ‘1000’) # 0O then
begin t:=(za-ya)/((y—ya) - (zB - 24));
7:= ZaHt*(Zp - Z4);X:= XA T t*¥(Xp - Xp);y:=Z
end;
if ¢ =cy then begin x, :=X; ya :=y; zs := Z; CODE (x4, ya, Za, Ca) end
else begin xp := x; yg :=y; zg := z; CODE (X3, ys, Zs, cg) end;
if (ca land cp) # 0 then EXIT
until (ca lor cg) = 0;
DRAW_LINE (XA, YA, Za» XB, VB> ZB)
end {CS Clip 3D};

Algorithm 8.1: Cohen-Sutherland-3D algorithm.

E

Figure 8.2: Line segment clipping against a pyramid.

62

8. Clipping by a pyramid in E3

8.3. Pyramidal clipping (PC) algorithm

In order to efficiently to clip line segments against a given pyramid in E°, a new
algorithm called Pyramidal clipping algorithm was developed, verified and tested. The
Pyramidal clipping algorithm (PC) uses a similar approach as Nicholl-Lee-Nicholl
algorithm [Nic87a] that was derived for E” case only. This algorithm is robust, reliable
and convenient for all applications if line segment clipping in £ is to be used.
8.3.1. Brief description of the algorithm
Let us assume that two points A(x4, y4, z4) and B(xp ys, zp) are given and we wish to
compute the intersection of the line segment 4B with the unitary clipping pyramid. For
simplicity we assume that both points 4 and B are in the positive half-space. The
end-point A therefore can lie inside of the pyramid, in an edge region or in a corner
region. For each of these cases, we can divide the positive half-space into certain
number of sub-regions, see Figures 8.3-8.5. These sub-regions are bounded by the
pyramid’s boundaries and planes determined by point A and one edge of pyramid.
These planes will be denoted p;, 02, p3, ps, clockwise from the top-left edge, see
Figures 8.3-8.5. All other cases can be obtained from one of these cases in
Figures 8.3-8.5 by rotating the scene around the z axis.

With the above definitions the PC algorithm can be described by the following
basic steps:
e characterize the location of point 4 among the 9 regions,
e characterize the location of point B among the appropriate sub-regions,

e compute the intersection points according to above characterization.

™ P e

Roifcwm-Laf ey

Egoe Bounckay

Figure 8.3: Sub-regions for the case when point A4 lies inside the pyramid.

63

8. Clipping by a pyramid in E3

The main advantage of this approach is that we can determine which pyramid
boundaries are intersected and therefore avoid unnecessary computation of invalid

intersection points.

Figure 8.4: Sub-regions for the case when point 4 is in left edge region.

i
W& o

s "I"-'_I-
:T:r'l' e

.]_f[.“-:-T 7

-,
g

Figure 8.5: Sub-regions for the case when point 4 is in top-right corner region.

8.3.2. Details of the PC algorithm

The proposed PC algorithm will be explained in more detail by the top-down approach.
At the beginning we must determine whether the end-point 4 of the given line segment
is beyond the right boundary, beyond the left boundary or between those two

boundaries. The main procedure, in Pascal-like code is:

64

8. Clipping by a pyramid in E3

procedure PC_Clip(xa, Ya, Za, XB, VB, Zp: real);
var Ax, Ay, Az, k, m, r: real

begin
if XA < -ZA then
case I {point 4 is beyond right boundary}
else if x4, <=z, then
case II {point 4 is between 2 boundaries}
else
case III {point 4 is beyond left boundary}

end {PC_Clip};

We will use the EXIT instruction in the following parts of algorithm to denote
the end of the procedure and to avoid “else if” sequences unnecessary for algorithm

explanation.

1. Point A is beyond the right boundary.

If point B is also beyond the right boundary, it is not necessary to further characterize
point A, because the line segment is invisible. Therefore, we must check whether
point B is beyond the right boundary before proceeding on. After that, we must test
whether point A4 lies either in the corner region or in the edge region. This section of

algorithm can be implemented as follows:

begin {case I}
if xg < -z then EXIT; {Line segment is rejected}
if ya >z then

case I 1 {point 4 is in the top-right corner region}
else if yp >= -z, then

case 1 2 {point 4 is in the right edge region}
else

case 1 3 {point A4 is in the bottom-right corner region}

end {case I};

L.1. Point A is in the top-right corner region and point B is not beyond the right
boundary.

If point B is above the top boundary, the line segment is invisible and no further
computation is needed. Therefore, we need to check this condition first, and then
characterize point B so that we can distinguish between the case when point B is beyond
the left boundary and the case when point B is inside of the pyramid or in the bottom
edge region, see Figure 8.5. The following pseudo-code shows how it can be

implemented:

65

8. Clipping by a pyramid in E3

begin {case I 1}
if ys > zg then EXIT; {Line segment is rejected}

if xg > zp then case I 1 a
{Point B is in the left edge or in the bottom-left corner region}
else case [1 b

{Point B is inside of the pyramid or in the bottom edge region}
end {case I 1};

1.1.a) Point A is in the top-right corner region and point B is in the left edge region or
in the bottom-left corner region.

If point B is above the plane p;, the line segment is rejected, see Figure 8.5. Therefore,
we must check this condition first, and then distinguish the case when point B is in the
left edge region and the case when point B is in the bottom-left corner region. In the
case of the left edge region, one intersection point lies on the pyramid’s left boundary.
The location of point B against the plane p, will specify that the second intersection
point lies on the top or on the right boundary. By this way only the appropriate
intersection point is computed. In the case of bottom-left corner region, the comparison
of point B against the plane p; is performed first to eliminate the case when the line
segment is rejected. After that, we compare the position of point B against the plane py,
to determine location of the first intersection point (on the bottom or on the left
boundary). At the end, a similar comparison with the plane p, is performed to determine

the second intersection point. An implementation can be as follows:

begin {casel 1 a}
AX ;=X —Xa, Ay ;=Yg —Ya; AZ =7 — 74,
if (xa—2zA)*(Az-Ay) > (ya-za)*(Az-Ax)) then EXIT; {Line segment is rejected}
{first intersection point computation}
if yg > -zp then t;| := (xo—24)/(Az-AX) {B is in the left edge region}
else {B is in the bottom left corner region}
begin
if (xa1+2zA)*(Az+Ay) >(yatza)*(Az+AX)) then EXIT;
if (za-xA)*(Ay+AZ) > (zatya)*(Az-AX)) then
t1 := (xaA—za)/(Az-AX) {intersection with left boundary}
else t; ;= -(yat+za)/(Az+Ay) {intersection with bottom boundary}
end;
{second intersection point computation}
if (xa1t2a)*(Az-Ay) > (za-ya)*(Az+AX)) then
ty = (ya—za)/(Az-Ay) {intersection with top boundary}
else 1 :=-(xa+zA)/(AZ+AX) {intersection with right boundary}
end {casel 1 a};

66

8. Clipping by a pyramid in E3

1.1.b) Point A is in the top-right corner region and point B is inside of the pyramid or
in the bottom edge region.

In the case when point B is inside of the pyramid, the position of point B against the
plane p, specifies whether the intersection point lies either on the top or on the right
boundary. In the case when point B is in the bottom edge region, the comparison of
point B against the plane p; must be performed first to eliminate the situation when the
line segment is rejected. If the line segment 4B is not rejected by the clipping algorithm
then one intersection point lies on the bottom boundary. The other intersection point lies
on the top or on the right boundary according to the position of point B against the

plane p,. This section can be implemented as follows:

begin {case [1 b}
AX =X —Xa; Ay = yp—Yya; AZ:=7Zp —Za;
{first intersection point computation}
if yg <-zp then {B in bottom edge region}
begin
if (XatzA)*(Az+Ay)>(yatza)*(Az+AX)) then EXIT;
t) = -(yatza)/(Az+Ay)
end
elset; :=1; {B is inside the pyramid}

{second intersection point computation}
if (xa1za)*(Az-Ay) > (za-ya)*(Az+AX)) then
ty = (ya—za)/(Az-Ay) {intersection with top boundary}
else t) :=-(Xp*7za)/(AZ+AX) {intersection with right boundary}
end {case I 1 b};

L.2. Point A is in right edge region and the point B is not beyond the right boundary.
We need to distinguish the cases, when point B is bellow the bottom boundary (point B
is in bottom-left corner region or in the bottom edge region), or above the top boundary

(point B is in top-left corner region or in the top edge region) or between top and bottom

boundaries. An implementation can be as follows:

begin {case I 2}
ifyg< -zgpthencase I 2 a
{point B is in the bottom-left corner or in the bottom edge region}
else if yg<=zgthencasel 2 b
{point B is in the left edge region or inside of the pyramid}
else case [2 ¢
{point B is in the top-left corner or in the top edge region}
end {case I 2}

67

8. Clipping by a pyramid in E3

1.2.a) Point A is in the right edge region and point B is in the bottom-left corner or in
the bottom edge region.

The location of point B against the plane p; helps us to eliminate the case when the line
segment is rejected. If point B is in the bottom edge region then the intersection points
are on the right and the bottom boundaries. If point B is in the bottom-left corner region
then one intersection point lies on the right boundary and the second intersection point’s
location (either on the left or on the bottom boundary) is determined by the location of

point B against the plane py.

begin {case I 2 a}
if ((xatza)*(Az+Ay) > (yatza)*(Az+AX)) then EXIT;
{first intersection point computation}
if xg > 73 then {point B in the bottom-left corner }
if (za-xpA)*(Az+AY) > (zatya)*(Az-AX)) then

t1:=(xa—2zA)/(AZ-AX) {intersection with left boundary}
else t;:=-(yatza)/(Az+Ay) {intersection with bottom boundary}
else {point B in bottom edge region}
t1:= -(yatza)/(Az+Ay); {intersection with bottom boundary}

{second intersection point computation}
ty := -(Xa1tza)/(Az+AX)

end {case I 2 a};

1.2.b) Point A is in the right edge region and point B is inside of the pyramid or in the
left edge region.
In this case, one intersection point is on the right boundary and the second one (if

point B is in the left edge region) is on the left boundary, see following pseudo-code:

begin {case 1 2 b}
{first intersection point computation}
t = -(XA+ZA)/ (AZ+AX);
{second intersection point computation}
if xg > 7 then t; := (xo—24)/(Az-AX) {point B in left edge region}
else t,:=1

end {case I 2 b};

1.2.c) Point A is in the right edge region and point B is in the top-left corner or in the

top edge region: similar to case [2 a.

68

8. Clipping by a pyramid in E3

1.3. Point A is in the bottom-right corner region and point B is not beyond the right

boundary.

This case is similar to case I 1.

I1. Point A is between the left and the right boundaries.
In this case, we need to characterize the location of point 4 to specify that, if point 4 lies
inside of the pyramid or in an edge region. The following pseudo-code shows how it

can be done:

begin {case II}

if yo > za then case II 1 {point 4 is in the top edge region}
else if ys < -zj thencase Il 2 {point A4 is in the bottom edge region}
else case II 3 {point A4 is inside the pyramid}

end {case Il};

We need to consider only the case when point A4 is inside the pyramid (case II 3).
The cases, when point 4 is in the top (case II 1) or bottom edge region (case Il 2), are

similar as the case when point 4 is in the right edge region (case 1 2).

11.3. Point A is inside the pyramid.

If point B lies in an edge region then the boundary, on which the intersection point lies,
is determined, see the Figure 8.3. And the appropriate intersection point is computed. If
point B lies in a corner region then a comparison of point B with an appropriate plane p;
is necessary before the appropriate intersection point is computed. An implementation

can be illustrated as follows:

begin {case II 3}

if xg < -zg then {case II 3 a-c}
if yp > zp then case Il 3 a {point B is in the top-right corner region}
else if yg >= -zg then case I 3 b
{point B is in the right edge region}
else case I 3 ¢
{point B is in the bottom-right corner region}
else if xg > zp then {case II 3 d-f}
if yg > zp then case 11 3 d

{point B is in the top-left corner region}

69

8. Clipping by a pyramid in E3

else ifyg < -zp then case Il 3 e
{point B is in the bottom-left corner region}
else case I 3 f
{point B is in the left edge region}
else {case II 3 g-i}
if yg > zp then case I 3 g
{point B is in the top edge region}
else if yg < -zp then case Il 3 h
{point B is in the bottom edge region}
else case I 3 i

{B is inside pyramid, whole line segment is visible}
end {case Il 3};
Now, we need to consider only the two cases when point B is in top-right corner
region, i.e. case II.3.a or in the right edge region, i.e. case I1.3.b. It can be seen that the

other cases are similar.

11.3.a) Point A is inside of the pyramid and point B is in top-right corner region.
The comparison of point B with the plane p, specifies which boundary (top or right) to
be used to compute the intersection point. An implementation can be as follows:

begin {case Il 3 a}
if (xa1za)*(Az-Ay) > (za-ya)*(Az+AX)) then
t1 :=(ya—2za) / (Az-Ay) {intersection with top boundary}
else t; == -(xp+7z4)/(AZ+AX); {intersection with right boundary}
th:=0;
end {case Il 3 a};

The cases case Il 3 c,case Il 3 dandcase Il 3 e aresimilartocase Il 3 a.

11.3.b) Point A is inside of the pyramid and point B is in right edge region.
computed. The following pseudo-code shows how it can be implemented:

begin {case Il 3 b}
t1 := -(xa1za)/(AZ+AX);
t, =0

end {case Il 3 b};

The cases case Il 3 f, case Il 3 gandcase I 3 h can be solved similarly.

I11. Point A is beyond the left boundary.

This case can be solved similarly to the case when point 4 is beyond the right boundary

(case I).

70

8. Clipping by a pyramid in E3

Finally, we can easily compute the end-points of the output line segment from
the parameter value ¢ as follow:
X = t*AX + Xa;
y = t*Ay + ya;
Z =t*AzZ+ zp
It can be seen that all possible cases were solved and the complete algorithm can
be got by substitution all procedures by appropriate codes.
8.3.3. Comparison between CS and PC algorithms
To be able to compare the CS-3D algorithm with the proposed PC algorithm and
evaluate the efficiency of the PC algorithm, we introduce a coefficient of efficiency v

as:

- Tes sp

TP(;

14

where: Tes3p, Tpe denote the time consumed by the CS-3D algorithm and by the
proposed PC algorithm, respectively.

For experimental verification, 80.10° different line segments were randomly
generated for each of the considered cases, see Figure 8.6-7. The tests were performed
on the HP Vectra XA Pentium-Pro, 200MHz, 128MB RAM, 256 KB CACHE. The
obtained results are presented in Table 8.1, which shows that the PC algorithm is
significantly faster in all considered non-trivial cases (when the line segment is not
entirely inside of the pyramid). In the case that the line segment is inside of the clipping
pyramid the efficiency of the PC algorithm is as good as the efficiency of the CS-3D
algorithm. It can be seen that the speed-up varies from 1.17 to 2.07 approximately for
all other cases, see Table 8.1.

y

AN

S,
/Z

X /
Figure 8.6: Generated line segments. Figure 8.7: Generated line segments.

71

8. Clipping by a pyramid in E3

case | CS-3D PC v
s1 137.86| 137.58 1.00
s2 136.81| 113.30 1.21
s3 227.86| 158.57 1.44
s4 228.24| 158.63 1.44
s5 227.03] 179.95 1.26
s6 315.22| 238.02 1.32
s7 409.78| 252.36 1.62
s8 22571 181.26 1.25
s9 319.56| 196.54 1.63
s10 309.89| 194.18 1.60
s11 402.91| 252.31 1.60
s12 227.31| 19214 1.18
s13 319.89| 248.63 1.29
s14 230.60| 196.87 117
s15 309.18| 149.34 2.07
s16 226.15| 163.24 1.39
s17 398.46| 248.35 1.60
s18 493.02| 280.77 1.76
s19 315.77| 240.60 1.31
s20 409.95| 262.64 1.56
s21 319.56| 240.00 1.33

Table 8.1: Comparison between CS-3D and PC algorithm.

72

8. Clipping by a pyramid in E3

8.4. Liang-Barsky algorithm for line clipping against a pyramid

As has been mentioned, in many applications it is necessary to clip lines instead of line
segments. Therefore, LB algorithm was also extended to 3D for line clipping against
a pyramid, see [Fol91]. The LB-3D algorithm is based on clipping of the given line by
each boundary of the pyramid. The given line which passes points A(x., y4, z4) and
B(xp, yp, zp) is parametrically represented as follows:

X(t) = x4 + Ax *1¢,

y) =yat+ Ay ¥4,

Z(t) =z4 + Az *1,

where A =xp—x4, Ay =yp-y4 Az=2zp-z4 I € (—0+0)

At the beginning of computation the parameter ¢ is unlimited and then this interval
is subsequently curtailed by all the intersection points with each boundary plane of the
clipping pyramid, see Algorithm 8.2.

It can be seen that an additional trivial rejection test (function CLIPt) is used to
avoid calculation of some parametric values for lines that do not intersect the clipping
pyramid.

A weakness of the LB-3D algorithm is the need to compute the parameter ¢ of
intersection points that are not part of the result. For example, see line p in Figure 8.8,
all four parametric values, representing intersection points with each boundary of
pyramid, are computed, but only two are valid.

Top
y boundary

Top-left
egde Y

Bottom-left

Left
egde °

boundary

Figure 8.8: Line clipping against a viewing pyramid.

73

8. Clipping by a pyramid in E3

procedure LB-3D Clip(xa, ya, Za, XB, ¥B, Z5: real);
{two points A(Xa.,ya.Za), B(Xg,ys.Zg) determine the clipped line}

var ty, t, Ax, Ay, Az: real;

function CLIPt(p, q : real; var t;, t, : real):boolean;
var r:real;
begin CLIPt:= true;
if p <0 then
begin r:=q/p;
if r > t; then CLIPt:= false
else if r >t then t;:=r
end
else if p>0 then
begin r:=q/p;
if r <t; then CLIPt:= false
elseifr <t, then to:=r
end
else if q <0 then CLIPt:= false
end { of CLIPt };

begin
)= —o0; tp:= +o0;
AX = Xp - Xa; AZ :=Zp - Za;
if CLIPt(-AX-Az, Xa + Za, t1, t;) then
if CLIPt(AX-AZ, ZA - XA, 11, tz) then

begin
Ay = yB - Ya;
if CLIPt(-Ay-Az, ya+za, t1, t;)then
if CLIPt(Ay-Az, zZa- ya, t1, t)then
begin xp =X + AX * ty;
yB:=yat Ay * ty;
7B = Za + AZ * ty;
XA = XA T AX * Ay
YA = ya+ Ay * 1y
Zp = ZA T Az F 1y
DRAW_LINE(XA,yA-ZA, XB,YB.ZB)
end
end

end {of LB-3D Clip };

Algorithm 8.1: The LB-3D algorithm.

74

8. Clipping by a pyramid in E3

8.5. The SF-3D Algorithm

Some considerations how to improve the efficiency of the LB-3D algorithm resulted
into a new algorithm for line clipping, which is denoted as SF-3D algorithm. The
separation function algorithm (SF-3D) for the line clipping in E° is an extension of SF
algorithm for line clipping in E. It is based on a coding technique for vertices of the
given clipping pyramid. Let us denote p as the plane, which passes the origin and line p.
Plane p divides the whole space into two regions.

Let us define the separation function as:

fxy,z) =a*x + b*y+c*z+d
where a=ys*zp-yp*zy, b =z *xp - zp™xy,
¢ =Xx4*yp-x5%y4 d = 0 (plane p passes the origin).

The sign of the separation function evaluated at a vertex determines the region
in which the vertex lies. Using the value of the separation function for all vertices we
can distinguish several possible cases, see Figure 8.9-8.19.

This analysis led to the SF-3D algorithm for E° case as a straightforward
extension of the SF algorithm for E°. The basic steps can be defined as:

e calculate the coefficients a, b, ¢ of separation function,

e using the separation function to characterize the location of vertices of the given
clipping pyramid,

e determine the appropriate case,

e compute the intersection points with appropriate boundaries.

It can be seen that only the intersection points required for the output are
computed.

We will describe now the classification process more in detail. Let us denote ¢,
¢y, ¢3, ¢4 as values of the separation function of the clipping pyramid’s vertices V;, V>,
Vs, V4, see Figure 8.8.

There are two major cases to be distinguished:

e the vertices V; and V3 lie on the different sides of plane p, i.e. ¢; * ¢3 <0, see
Figures 8.9-8.12,

o the vertices V; and V; lie on the same side of plane p, see Figures 8.13-8.19.

75

8. Clipping by a pyramid in E3

a) The vertices V;, V; are in the different sides of plane p. In this case, the sign of
expression (c;*cy) determine whether V;, V> lie on the different sides of plane p (the
first two cases) or not (the two following cases). If V/;, V5 lie on the different sides of
plane p (c;*c,<0), then one intersection point lies on the top boundary of clipping
pyramid (Figures 8.9-8.10). Otherwise, it lies on the left boundary of clipping
pyramid, see Figures 8.11-8.12.

To determine the location of the second intersection point, we use the condition
(cr*cy < 0). If (c;1*cy< 0) then V;, V, lie on the different sides of plane p and the
second intersection point lies on the right boundary of clipping pyramid, see
Figures 8.10-8.12. Otherwise, }J; and V, lie on the same side of plane p and the
second intersection point lies on the bottom boundary of clipping pyramid, see

Figures 8.9-8.11.

Figure 8.11 Figure 8.12

b) The vertices V;, V; lie on the same side of plane p. In this case, if (c;*c; <0), i.e.
V1, V5 lie on the different sides of plane p, then the intersection points lie on the top
and the left boundaries, see Figure 8.13. Otherwise, the additional test (c;*c,< 0)

determines that the intersection points lie on the bottom and the right boundaries,

76

8. Clipping by a pyramid in E3

see Figure 8.14. In the case when (c;*c, < 0) is false, we need to test if the vertex V;
lies on the plane p (c; = 0). When the vertex V; does not lie on the plane p, the
whole line is outside of clipping pyramid. For the case when the vertex V; lies on

the plane p we need to distinguish two following sub-cases:

The vertex V/, also lies on the plane p (c; = 0), the condition (c; = () determines that
the origin O lies on line p. For this case, one additional test must be done to
distinguish between the case when the whole line is invisible (Figure 8.15) and the
case when only half of the line is visible (Figure 8.16). If the origin does not lie on
line p (c3 # 0), the whole line is outside of clipping pyramid.

When the vertex V> does not lie on the plane p (c; #0), if (c2*c,>= 0) the whole
line is outside of clipping pyramid, see Figure 8.19. Otherwise, one intersection
point lies on top-right edge of the clipping pyramid and the additional test
(c2*c3 < () determines if the second intersection point lies on the left boundary

(Figure 8.17) or the bottom boundary of the clipping pyramid (Figure 8.18).

Figure 8.13 Figure 8.14

Figure 8.15 Figure 8.16

77

8. Clipping by a pyramid in E3

The complete SF-3D algorithm can be implemented by the Algorithm 8.3.

It can be seen that, before calculating the intersection point between line p and
one boundary of the pyramid, we always need to test whether line p is parallel to that
boundary, see function CaleT in Algorithm 8.3. In the parallel case, the intersection
point lies in the infinite, see Figure 8.20. However, the parallelism of line p with some
pyramid’s boundaries is highly impossible in normal situations. Moreover, the
conditions with ¢; = 0 occur practically with zero probability, therefore, the test of
these conditions (part {Special cases} in Algorithm 8.3) has no influence to the

algorithm efficiency.

Figure 8.20: p is parallel to left boundary.

78

8. Clipping by a pyramid in E3

procedure SF-3D_Clip (xa, Ya, Za, XB, ¥B, Zp: real; var t, t, : real);
{input : two points A(Xa, Ya, Za), B(xg, yB, Zg) determine the clipped line}
{output : t;, t, : parameter values of intersection points}

var Ax, Ay, Az, a,b,c,cy, o, C3, Cy, 1, S: Teal;
function CalcT (ay, s, a2, s : real) : real; {implemented as macro}
begin if (s;=s;) then if (Az> 0) then CalcT:= +x else CalcT:= -
else CalcT :=(a; - a3) / (s —s1)
end;
begin t|:=+o0; t):=-0; {empty interval <t;, t, >}
AX = Xp - Xa; Ay =y - ya; AZ = 7Zp - Za;
A = YA*ZB — YB *ZA, b T ZA*XB —ZB*XA;, C T XA*YB — XB* YA,
ci:=-at+b+c; c:=atb+c; c:=a-b-+c; cy:i=-a-b+c;
if (Cl* C3< 0) then
begin if (c;+ c;<0) thent; := CalcT(ya, Ay, za, Az) {Figure 9-10}
else t; ;= CalcT(xa, AX, Za, Az); {Figurell-12}
if (c;+ ¢4 <0) then t; := CalcT(-xa, -AX, zp, Az) {Figure 10-12}
else t; ;= CalcT(-ya, -Ay, za, Az) {Figure 9-11}
end
else if (c;+cy<0) then {Figure 13}
begin t;:= CalcT(ya,Ay,za,Az); tr:= CalcT(x,AX,Zs,AZ) end
else if (c; + ¢4 < 0) then {Figure 14}
begin t;:= CalcT(-ya,-Ay,za,AZ); ty:= CalcT(-Xa,-AX,z4,AZ) end
else begin if (c; <> 0) then EXIT{SF-3D Clip};{Special cases}
if (c;=0) then
begin
if (c; <> 0) then EXIT{SF-3D_Clip};
if Az <0 then
begin Ax:= -Ax; Ay:= -Ay; Az:= -Az end;
if (Ax>Az) or (Ax<-Az) or (Ay>Az) or (Ay<-Az)
then EXIT {SF-3D Clip} {Figure 15}
else begin {Figure 16}
t1:= CalcT(0,0,z4,AZ);
ty:= CalcT(0,Az,0,Az)
end
end
else begin
{Figure 19} if (c2+ c4>=0) then EXIT{SF-3D Clip};
{Figure 17} if (c2+c3<0) then t; := CalcT(xa, AX, Za, AZ);
{Figure 18} else t; := CalcT(-ya, -Ay, za, Az);
ty := CalcT(-xa, -AX, Za, AZ)
end
end;
r:=2za+tAzZ*t; S:=zaA+AZ* ty;

if (r <0) then if (s <0) then EXIT else if (Az > 0) then t;:= +o else t;:= -
else if (s <0) then if (Az> 0) then t,:= + else t:= -0

end {of SF-3D Clip};

Algorithm 8.3: SF-3D algorithm

79

8. Clipping by a pyramid in E3

The result of the SF-3D algorithm can be:
e line p is totally outside of the clipping pyramid and ¢;=+00; t,=-c0, i.e. <}, > is
empty
e a line segment (a part of line p that is inside of the clipping pyramid) is generated
and its end-points can be determined as:
Xp =Xx4 + Ax ¥ty
yB:=yat Ay *iy
Zp =24+ Az ¥ 15,
X4:=x4 + A ¥y
yar=yat Ay Fu
Zy =z T Az ¥y
e ahalf-line (a part of line p that is inside of the clipping pyramid) is generated. In this
case, the only one value of #;, resp. f, is limited, the second one is unlimited and the
only one valid end-point can be determined as:
Xq:=Xx4 T Ax ¥t ift;z+oo
yar=yat ¥,
Zy =24+ Az ¥ ty;
resp.
Xp=Xx4+ A ¥ty if th# o0
yBi=yat Ay * ity
Zp =24+ Az ¥ o)
Now the half-line can be represented as:
X(t):=x4+ Ax *t; if t;# Fo0
Yt):=ya+ Ay *o
7Z(t) =za+ Az * t;
where:
e {< 0,00) ift, =+
(—0,0> ift,=-o0
resp.
X(t):=xp+ Ax *t; if t,# to0
() :=ypt Ay ¥t
Z(t) ;=zp+ Az *t;

80

8. Clipping by a pyramid in E3

where:
<0,00) ift, =4
te .
(=0,0> ift =—o0
8.5.1. Comparison between LB-3D and SF-3D algorithms
The new proposed SF-3D algorithm was verified experimentally on Pentium II,
350MHz, 64MB RAM, 512KB CACHE for evaluation of the SF-3D algorithm against

the LB-3D algorithm. Some typical cases were tested and 80.10° different lines were

randomly generated for each considered case, see Figure 8.21.

Let us introduce the coefficients of efficiency v as:

T,
v = LLB-3D

TS'F—3 D

Where T}5.3p, Tsr.3p are times consumed by the LB-3D and SF-3D algorithms.

Figure 8.21: Generated lines for comparison between LB-3D and SF-3D algorithm.

The experimental results are presented in Table 8.2. This table shows that the
SF-3D algorithm is significantly faster than the LB-3D algorithm in all considered

cases. It can be seen that the speed-up varies from 1.29 to 1.90 approximately.

case | Ty g.3p [S] | Tsrspls] 1%
p1 118.846 62.473 1.90
P2 137.747| 101.648 1.36
p3 137.143| 106.044 1.29
P4 134.121| 101.923 1.32
Ps 96.593 62.527 1.55

Table 8.2: Comparison between LB-3D and SF-3D algorithm.

81

9. Clipping by a convex polyhedron in E3

9. Clipping by a convex polyhedron in E?

In technical practice, many applications need to clip lines or line segments not only
against the viewing pyramid but also against the volumetric objects. In computer
graphics, the volumetric objects are usually represented as polyhedrons. In this section,
we are going to describe algorithms for line clipping against a polyhedron in more

detail.

9.1. CB-3D algorithm

Algorithms for line clipping in E’ are mostly based on the Cyrus-Beck (CB-3D)
algorithm and its modifications, see [Cyr78a]. Algorithm 9.1 illustrates a shortened

version of the CB-3D algorithm.

procedure CB Clip 3D (x4, xp);
{ n; is a normal vector of the i-th facet }
{ n; must point out of the convex polyhedron }
{ !!"all normal vectors n; are precomputed !! }
begin
toin =0, tygy =1, §:= Xp-X4,
{ for the line clipping tyin = -0 typax 1= +00; }

for i:=1to Ndo { N is a number of facets }
begin
T
E:=sny S; = Xi= XA,
if £<> 0 then
begin
t:= S,'Tn,'/ é:,

if £> 0 then ¢, '= min (¢, tyu)
else t,;, = max (t, tym)

end

else Special case solution;{ line is parallel to a facet }

i=i+1
end;
if L0 >ty then EXIT; { 1! <t tyex > = }
{ recompute end-points of the line segment if changed }
{ for lines points x4 , xg must be always recomputed }
ift,,, <Ithenxg:=x4+S8 *lpu:
ift,;, > 0thenx 4 :=x4 +5 *t,,;
DRAW _LINE (x4, xg);

end { CB Clip 3D };

Algorithm 9.1: CB-3D algorithm for line clipping by a convex polyhedron.

82

9. Clipping by a convex polyhedron in E3

The main advantages of the CB-3D algorithm are its numerical stability and
simplicity. The algorithm is based on the direct intersection computation of a line with
a plane in E°.

It is obvious that the algorithm runs with O(N) time complexity and so with
increasing number of facets of the given polyhedron the efficiency of the CB-3D
algorithm decreases because many invalid intersection points are computed.

The main disadvantage of the CB-3D algorithm is a direct line intersection
computation for all planes which form the boundary of the given convex polyhedron. It
means that /V - 2 intersection computations are wasted if N is a number of facets of
the given convex polyhedron. That is substantial because the average number of facets
of the given polyhedron is very high (a number of facets might easily reach for a sphere
approximation value 70%). Therefore, it is necessary to find an effective method for
selection of facets that might be intersected by the given line. Such attempts have been

done at our laboratory that resulted in the following algorithms.

9.2. Algorithm based on two planes use

Let the convex polyhedron P is defined by triangular facets (generally it is not
necessary). We need to find an effective test whether line p intersects a facet of the
given polyhedron P, see Figure 9.1, and then compute intersection points, see [Ska96a].

It can be seen that any line p in E° can be defined as an intersection of two
non-parallel planes p; and p», see Figure 9.2. It means that if line p intersects the given
facet then planes p; and p, intersect the given facet, too, but not vice versa, see
Figure 9.3. Line p' that is defined as the intersection of p; and ps planes does not

intersect the facet.

Figure 9.1: Line clipping by convex polyhedron in E°.

83

9. Clipping by a convex polyhedron in E3

o]

NG
O N

P2 %o
P2 P4
P pl
Usage of two planes for line definition Possible kinds of intersection
Figure 9.2 Figure 9.3

It is possible to test all facets of the given polyhedron against p; and p> planes. If both
planes p; and p; intersect the given facet then compute detailed intersection test. The
intersection of the given plane p; and the facet (triangle) exists if and only if exist two
vertices x4 and xp of the triangle so that

sign(Fixy)) #sign(Fixp))
where Fi(x) = a;x + b;y + ¢; z + d; is an equation for the i-th plane p;, i=1,2.

The substantial advantage is that p; and p, planes can be taken parallel with any
co-ordinate axes. Those planes are usually called ,,diagonal®“. Using these planes we
save one addition and two multiplications for each separation function evaluation.

It can be seen that the separation function F;(x), F>(x) resp. are computed more
times than needed because each vertex is shared by many triangles. Therefore it is
convenient if the values sign(F;('xy)) are precomputed ('x; is the k-th vertex of the i-th
facet) and stored in a separate vector, see Algorithm 9.2. This modification significantly
improves the efficiency of the algorithm. It is possible to select planes p; and p, as two
,diagonal “ planes in order to avoid singular cases, see [Ska96a] for detail description.
The algorithm can be easily modified for non-convex polyhedron and expected

speed-up is up to 3,17. Nevertheless, this algorithm is still of O(N) complexity.

84

9. Clipping by a convex polyhedron in E3

procedure CLIP_ 3D MOD (x4, xp);

begin

toin = 0; by = 1,8 = XB-X4;
{ for the line clipping tyin = -0 tyax := +00; }
{p;:Fz(x) =a;xtciztd; =0 pg.’Fg(x) :b2y+022+ d> :0}
for k.= 1to N, do { N, number of vertices }
Oy .=sign(F;(x), { Qisa vector of integer or char types }
fori.=/to Ndo { N number of facets }
begin
{ 'x; means a k-th vertex of the i-th triangle }
{ INDEX(i, k) gives the index of k-th vertex of the i-th triangle, }
{i.e. X =XNDEXGH }
if Oinpex(,0) = Oinpex(,7) then
if Onoexi0) = Ompex2) then goto 1;
{do nothing p; does not intersect the i-th triangle}
if sign(Fo(xinpex(,0)) = sign(F>(Xinbexq 7)) then
if Sigl’l(Fg(xINDEX(i,O))) = SigH(FZCXINDEX(“))) then goto 1;
{ both planes p;, p, intersect the i-th triangle }
{detailed test finds a value #,,,, or t,x }
{using a single step of the CB algorithm}
{ n; must point out of the given convex polyhedron }
E:=5sn;
if £<> 0 then
begin s; :=x;- x4,
t:= s,-Tni/ f,
if £> 0 then ¢, '= min (¢, tyu)
else t,;, = max (t, tym)
end
else Special case solution;{ line is parallel to a facet }
ir=i+1
end;
{ if tyin > twax then no intersection point exists }
if t,n <tya then DRAW _LINE (X(tin), X(tnax))

end { of CLIP 3D MOD };

Algorithm 9.2: An efficient algorithm for line clipping by convex polyhedron.

85

9. Clipping by a convex polyhedron in E3

9.3. O(J/N) algorithm

Finding a facet candidate for the intersection point is a quite complex task and
without knowing the "order" of facets, an algorithm will be generally of O(N) expected
complexity. Let us select any triangle (facet) 7 with two following properties:

o the given line does not lie on 7

o the given line does not intersect 7)

Any point inside of the triangle 7, e.g., a centre of the facet x; (x, = 2 x,/3)
and the given line unambiguously define the plane p;, on which the line li]es, see
Figure 9.4. It can be seen that more efficient strategy for testing triangles can be
developed if we know facets that are intersected by this plane. If non-convex
polyhedron is considered then two or more separate “rings of triangles* are necessary to
solve but only one will be detected and solved. Therefore, this algorithm is restricted to

convex polyhedra.

Definiton of the plane p,

Figure 9.4

In many applications, data structures (modified winged edge) that define
a convex polyhedron contain information about neighbours of the given triangular facet,
see Figure 9.5. It is obvious that we can easily detect which edge of the given triangle 7
is intersected by the selected plane p;. In the next step we can take its neighbour, which
has a common edge with the triangle 7, etc. Only the facets reached by this neighbour

construction have to be taken into consideration, i.e. have to be tested against p,.

86

9. Clipping by a convex polyhedron in E3

Using "knowledge of order" we will have to test significantly less triangles
than N. However, in the worst case we will have to test all N facets. It means that the
algorithm is of O(N) complexity in the worst case, see [Ska97a] for details.

Let us consider a surface of a convex polyhedron, e.g. a sphere approximation.

Number of intersected facets by a plane p; can be estimated as of VN expected in
average. This algorithm is briefly described in Algorithm 9.3. It is necessary to point out
that there are some small obstacles in solving singular cases, especially if the plane p;
intersects the triangle in vertex, etc. The presented approach can be easily modified for
non-triangular facets if get_next procedure is modified properly. The expected speed-up

for polyhedron with 500 facets is about 4,5-4,9 against CB-3D algorithm.

procedure SQRT CLIP (x4, x5);
begin
5= Xp-X4,
toin =07 o -= 1; {for the line clipping t,,= -00; tyax - = +00; }
{finds a convenient facet 7 and plane p; through x4, xp, x7}
COMPUTE (x4 x5 k, p1);
{computes coefficients of the orthogonal plane to p»}
COMPUTE_ORTHOGONAL (x4 x5 02);
ko .= k; {save index of first facet}
i := -1, {set index of previous facet}
repeat
if TEST (7, p,) then {test the facet 7; against the plane p,}
begin {a single step of the CB algorithm}
S sTnk; {n; must point out of the given convex polyhedron}
if £<> 0 then
begin s; .= x5 - x4,
t:= Sank/ é:,
if £> 0 then t,,, -= min (¢, t,.)
else t,;, .= max (t, tym)
end
else Special case solution {line is parallel to a facet}
end;
{get next facet to 1y intersected by plane p;}
{different from previous facet t; }
j:=get next (k, i),
i=k k:=j;
until £ = k();
{if tyin > tmax then no intersection point exists}
if 1, <tnax then DRAW _LINE (X(%0), X (tnax));
end { SQRT CLIP };

Algorithm 9.3: O(¢ JN) algorithm.

87

9. Clipping by a convex polyhedron in E3

f T v TC
D_ A X |Y |z
d
A_Blcp blc d
C_|a b
B_|a =

g Table of Table of Table of
triangles vertices coordinates

Data structure with information about neighbours

Figure 9.5

9.4. 3D O(1) algorithm

Let the given polyhedron P € E® is projected to E*, see Figure 9.6 (only the
front facets are shown) and line p is the projection of plane p, (the given line lies on
plane p;). This line intersects many facets (triangles), in our case line p intersects the
facets 9,11,12,13,14,15,16,17,18,19. The plane p, described as

y=hx+gq

Let us assume the semidual representation for (k,q) values. Then the semidual

space can be split into small rectangles using space subdivision technique. Each

rectangle in semidual space represents an infinite ,,butterfly* zone in E° space. There
are AFL lists (Active Facets List) of facets associated with each ,,butterfly* zone. The
AFL list contains information on all facets that interfere with the zone. The AFL list can

be implemented by a list of pointers but such implementation would be quite memory
demanding as its length can be estimated as O(\/ﬁ). Therefore, it is more convenient

to use binary maps [Ska93b]. This technique is based on a binary vector in which the
i-th bit is set to ,,1* if the i-th facet is in the AFL list. Using this technique, the memory
requirements are small and the intersection operation is implemented as the bitwise

operation and.

88

9. Clipping by a convex polyhedron in E3

Using this approach we can expect that 4 - 6 facets will be necessary to test in

detail if semidual space is subdivided enough. It is necessary to point out that we must
prepare both (k,q) and (m,p) semidual representations for all three planes p; ,i =1,2.3,
i.e. AFLy,...,AFL; list, j = 1,...,6. It means that we need six semidual representations
altogether. For each clipped line we must select two planes p, and p, and appropriate

semidual representations, i.e. (k,q) or (m,p) , for each selected plane. The algorithm can

be described by Algorithm 9.4.

¥ semidual representation q
8T of the convex hull 8
of triangular facets N
i of the polyhedron P !
AN
AN
"IN/
P 1
| R -
g8x 3 2 1 i 2 k
1 - (D)
2 = AFL for the line p 2l
- £9,11,12,13,14, -
fis 15,16,17,18,19} =3
- T A
T 5 N\,
y N
6 + rhomb box ’,6
8+ o

Figure 9.6: Semidual representation of convex polyhedron.

In Algorithm 9.4, function Detail E’ Test is based on the CB algorithm that is
performed only for those facets that are included in the final set Q. It is obvious that the
algorithm complexity does not depend on the number of polyhedron facets but on the
length of the set Q. If the rectangles are “small enough” then 4 - 6 facets can be
expected in the final set QQ nearly for all cases. Since all steps in Algorithm 9.4 have
O(1) complexity the whole algorithm has O(1) expected complexity, too. It is necessary
to point out that number of members in AFL list depends on subdivision in (%,q), (m,p)
spaces respectively and also on geometric shape of the given polyhedron, see Ska96b].

Experimental results proved that the O(I) algorithm is faster than CB-3D
algorithm when the number of facets is greater than 24 (if at least 1000 lines are

processed). For detailed analysis, see [Ska96c].

89

9. Clipping by a convex polyhedron in E3

global constants:
a - size of bounding rhomboid box for the given polyhedron P,
N, - number of subdivision for g axis in semidual space representation,
Ny - number of subdivision for £ axis in semidual space representation,
for all other spaces assume N, = N,,, Ny = N, .

procedure CLIP 3D Ol (x4, xp);

begin
Select two planes p, and p, , i, #i, forthe givenline peE :
kk := 1,
fori: = i, i>do {planeindex i€ {1,2,3}}
begin
COMPUTE line equation of p;; { projected plane p, ax+by+c=0}
{ index of the AFL; list }
{ AFL, is the (£ ¢q) semidual space for xy plane }
{ AFL,; is the (m,p) semidual space for xy plane, etc. }
if |[Ax| > |Ay| thenj ;= 2% - [elsej := 2%i;
{ index zone determination }
ii:=(q+a)*Ny/(2%)+1; jj:=(k+1)*Ne/2+1;
Qu == AFL[iijjl; kk.=kk + I;
end;
Q=Q; N Qz;
fori .= 1to Ndo { N - number of polyhedron facets }
if Q[i] = I then Detail E? Test (facet;, p);
end

Algorithm 9.4: 3D O(1) algorithm.

Nevertheless the algorithm has not “clear” O(1) complexity. In spite of high
effort this algorithm has not been derived in the Cartesian co-ordinate system.
Nevertheless the O(l) run-time complexity can be also got by using the space
subdivision in spherical co-ordinate system [Ska99b]. In spherical co-ordinate system,
the plane X that passes the system origin and contains the given line p is unambiguously
determined by the two angles ¢ and 9, see Figure 9.7. On plane %, if (p, ¢’) is polar
co-ordinate of system origin’s projection on line p then (p ¢’) unambiguously
determines line p. Therefore, an arbitrary line in E° can be represented by four values
(o @', @, 9. Now, it is very clear that we can use the infinite space subdivision for
(o @, @, 9 to get the O(l) run-time complexity. Number of members in AFL list
depends not only on subdivision in (p, @, @, 9 space but also on geometric shape of
the given polyhedron.

It can be shown that computation of the AFL for all regions (pre-processing)

runs in O(N* n,* ny,* n,* ng time, where:

90

9. Clipping by a convex polyhedron in E3

e N is the number of edges of the given polygon,

® 1n,, ngis the number of subdivisions in the direction ¢ and &, respectively,

® 1, n, 1s the number of subdivisions in the direction p and ¢, respectively.

Using the pre-constructed AFL then we can clip lines or line segments in O(1)

expected time, see Algorithm 9.5. The COMPUTE function is based on the CB-3D

algorithm and is performed only for facets included in the AFL associated with the

selected region (i,j,k,1).

procedure Spher CLIP 3D O1 (x4, x35);

begin

end

qp:=n,/r;, qo 1= ny/ (2*Pi); q, = ny/Pi; qg:= ng/ Pi;

ty ;= +oo t) ;= -o0; { initialisation - interval <ty,t; > =J }
Compute (¢, 9) co-ordinates of plane X passing the origin and containing line p,
Compute (p, ¢’) polar co-ordinates of line p in plane X,

i:=8%qe+1; ji=@¥q, t L k=@ *qy +1; l:=p*q,+ 1

{test all facets in the AFL for region(i,j, k,/);compute the appropriate value of ¢}
COMPUTE (AFLIij, k1], to, t1)

if line segment clipping then <#y,1,> := <tyt;> N <0,1>;

if <1y, t; ># < then DRAW_LINE(x(?y), x(t;)) {an intersection exists}

Algorithm 9.5: O(1) algorithm using spherical co-ordinate.

Convex
polyhedra

Figure 9.7: (¢, 9) representation of plane X containing line p.

91

10. Clipping in homogeneous co-ordinates

10. Clipping in homogeneous co-ordinates

There are two reasons to clip in homogeneous co-ordinates. The first has to do with
efficiency: It is possible to transform the perspective-projection canonical view volume
into the parallel-projection canonical view volume, so a single clipping procedure,
optimized for the parallel-projection canonical view volume, can always be used.
However, the clipping must be done in homogeneous co-ordinates to ensure correct
results. A single clipping procedure is typically provided in hardware implementations
of the viewing operation. The second reason is that points that can occur as a result of
unusual homogeneous transformations and from use of the rational parametric splines
[Fol90a] can have negative W co-ordinate and can be clipped properly in homogeneous
co-ordinate but not in 3D.

With regard to clipping, it can be shown that the transformation from the

perspective-projection canonical view volume to the parallel-projection canonical view

volume is:
1 0 0 0
Iy 0 1 0 0 .
= O 0 1 — Zmin |, Zmin *
l—Zmin l—Zmin
0 0 1 0

Figure 10.1 shows the results of applying matrix M to the perspective-projection
canonical view volume. By using matrix M, we can clip against the parallel-projection
canonical view volume rather than against the perspective-projection canonical view

volume.

A y A y ’
\‘B

\4

min 1]

Figure 10.1: Side views of normalized perspective view volume before and after

application of matrix M.

92

10. Clipping in homogeneous co-ordinates

Therefore, the clipping against the perspective-projection canonical view volume
can be represented as multiplication with matrix M. Clippar. M (Clipp,a- represents the
clipping against the parallel-projection canonical view volume).

The 3D parallel-projection view volume is defined by —/ <x <1, -1 <y <1,
0 <z<1. We find the corresponding inequalities in homogeneous co-ordinate by
replacing x by X/W, y by Y/W, and z by Z/W, which results in

-1 <XW<I, —1 <YW<I, 0<Z/W<1

It can be seen that, we must consider separately the cases of W > 0 and W < 0. In
the first case, we can multiply the inequalities by ' without changing the sense of the
inequalities. In the second case, the multiplication changes the sense. This result can be
expressed as

W>0:-W<X<W, —-W<Y<W, 0<zZ<w (10.1)
W<0:-W=>X2>W, -W2>Y2>W, 0=>z2>w (10.2)

In many cases, only the region given by the Equation (10.1) needs to be used,
because prior to application of M, all visible points have W > (0 (normally W = 1I).
However, it is sometimes desirable to represent points directly in homogeneous
co-ordinate with arbitrary W co-ordinate. Hence, we might have a W < (), meaning that
the clipping must be done against the regions given by Equations (10.1) and (10.2).
Figure 10.2 shows these as region R; and region R,, and also shows why both regions

must be used.

Region R, P,

XorY
— >

b\

Projection of P,
and P,onto W=Iplane

Figure 10.2: Points P; and P, both map into the same point on the W = [plane.

93

10. Clipping in homogeneous co-ordinates

Let us assume two points P; and P, whose homogeneous co-ordinates differ by
a constant multiplier. These homogeneous points correspond to the same 3D point (on
the W = I plane of homogeneous space) although P; is in region R; and P; is in region
R,. If clipping were only to region R, then point P, would be discarded incorrectly.

There are two solutions to problem of points in region R». The first is to clip all
points twice, once against each region, but doing two clips is expansive. A better
solution is to negate points that have negative W, and then to clip them. Similarly, we
can clip properly a line whose end-points are both in region R, by multiplying both
end-points by —/, to place the points in region R;.

Another problem arises with lines such as P;P,, shown in Figure 10.2, whose
end-points have opposite values of . The projection of line onto the W = [plane is
two segments, one of which goes to +oo, the other to -oco. The solution now is to clip
twice, once against each region, with the possibility that each clip will return a visible
line segment. A simple way to do this is to clip the line against region R;, to negate both
end-points of the line, and to clip against region R;. This approach preserves one of the
original purposes of clipping in homogeneous co-ordinates: using a single clipping

region, see [Bli78a] for further discussion.

Invisible =X
segment
ofline N 4 & W=1 plane
—
X
W=-X

Figure 10.3: Line P; P, projects onto two line segments.

94

11. Summary

11. Summary

In this thesis we have explored the fundamental algorithms for line clipping problem in
E’ and E°. Some newer algorithms and approaches to improve the algorithms have been
shown, too. Algorithms CS, LB, CB and their 3D extension are most often used and can
be found in most textbooks. The others have been developed in the Computer Graphics
Laboratory of Department of Computer Science and Engineering at the University of
West Bohemia. The author has assisted in their verification and testing. The author is
also co-author of LSSB, LSB, modified O(log N), SF, PC and SF-3D algorithms.
Algorithms LSSB and LSB are also original and have been published in Proceedings
of the international conference SCCG’97, Slovak republic [Bui97a] and in The Visual
Computer, Springer Verlag [Bui98a]. Modified O(log N) algorithm has been published
in Proceedings of the international conference SCCG’99, Slovak republic [Bui99a].

Table 11.1 and Table 11.2 give an overview of mentioned algorithms and their

complexity.
2D clipping algorithms Complexity
Cohen-Sutherland algorithm O(N)
LSSB algorithm O(N)
Liang-Barsky algorithm O(N)
LSB algorithm O(N)
SF algorithm O(N)
Cyrus-Beck algorithm O(N)
ECB algorithm O(N)
O(log N) algorithm O(log N)
Moditied O(log N) algorithm O(log N)
O(1) algorithm expected O(1)
Sutherland-Hodgman algorithm O(M*N)

Table 11.1: Complexity of presented clipping algorithms in E°.

95

11. Summary

3D clipping algorithms Complexity
CS-3D algorithm O(N)
PC algorithm O(N)
LB-3D algorithm O(N)
SF-3D algorithm O(N)
CB-3D algorithm O(N)
Algorithm based on two planes use O(N)

o(JN Jalgorithm expected O(JN)
O(1) algorithm expected O(1)

Table 11.2: Complexity of presented clipping algorithms in E°.

It is necessary to point out that some selected algorithms has been tested on
Pentium II, 350MHz, 64MB RAM, 512KB CACHE and Pentium III, 500MHz,
64MB RAM, 512KB CACHE just at the last moment and the experimental verification

proved trend of increasing.

96

12. Conclusion and Future work*

12. Conclusion and Future work’

It is well known that the fundamental problem in algorithm design is to use all known
data properties as much as possible in order to get an algorithm with better efficiency. If
this factor is used in algorithm design it is possible not only to improve algorithms
property but sometimes also to change the algorithms complexity. This contention is
proved very clearly in this thesis by analyzing algorithms for line clipping. Generally,
we can say that if we want to improve an algorithm for the given problem, we need to
consider the following issues:

o the trade-off between memory, run-time and pre-processing complexities,

e which kind of pre-processing complexity (time or memory) we can expect if we

need faster solution of the given problem,

e the use of pre-processing or parallel and distributed.

The presented algorithms proved that applying these approaches can bring
a significant speed-up even with the known algorithms. We have concentrated in detail
on the problem of line clipping in E” and E°. It is clear that the mentioned approaches
can be applied not only in the clipping problem solution but also in many other areas of
computer graphics. The problem is how we can apply them. We would like to draw
attention to this problem in the next period. We also intend to integrate our algorithms
to the MESA, which is a graphics library and can be used in many computer graphics

applications.

" Some figures in this thesis were taken up from the used sources

97

13. References

13. References

Some papers are available in on-line version from http://herakles.zcu.cz/publication.htm

[Aho74a]

[And89a]

[And91a]

[Aro89a]

[Bal94a]

[Bal94b]

[Ben79a]

[Bli78a]

[Bui97a]

[Bui98a]

[Bui98b]

[Bui99a]

[Bui99b]

Aho,A.V., Hopcroft,J.E., Ullman,J.D.: The Design and Analysis of
Computer Algorithms, Addison Wesley, 1974.

Andreev,R.: Algorithm for Clipping Arbitrary Polygons, Computer
Graphics Forum, Vol.8, No.3, pp.183-192, 1989.

Andreev,R., Sofianska,E.: New Algorithm for 2-Dimensional Line Clipping,
Computers & Graphics, Vol.15, No.4, pp.519-526, 1991.

Arokiasamy,A.: Homogeneous Coordinates and The Principle of Duality in
Two Dimensional Clipping, Computers & Graphics, Vol.13, No.l,
pp-99-100, 1989.

Balaban,l.J.: An Optimal Algorithm for Finding Segments Intersections,
MGV, Vol.3, Nos.1/2, pp.403-410,1994.

Ballo,M.: A New Approach to Non Self-intersecting Polygon Clipping,
MGV, Vol.3, Nos.1/2, pp.111-122,1994.

Bentley,J.L.: An Introduction to Algorithm Design, Computer, pp.66-87,
1979.

Blinn, J.F., NewellLM.E.: Clipping Using Homogeneous Coordinates, ACM
Computer Graphics, Vol.12, No.3, pp. 245-251, 1978.

Bui,D.H., Skala,V.: Fast Modifications of Cohen-Sutherland algorithm for
Line Segment and Line Clipping in E*, SCCG 97 International Conference
proceedings, Bratislava-Budmerice, pp.205-212, 1997.

Bui,D.H., Skala,V.: Fast Algorithms for Clipping Lines and Line Segments
in E%, The Visual Computer, Vol.14, No.1, pp.31-37, 1998.

Bui,D.H., Skala,V.: Line Clipping Algorithms in E*, SCG'98 Proceedings of
Seminars on Computational Geometry, Kocovce, pp.52-57, 1998.

Bui,D.H., Skala,V.: New Fast Line Clipping Algorithm in E* with O(IgN)
Complexity, SCCG’99 International =~ Conference proceedings,
Bratislava-Budmerice, pp.212-219, 1999.

Bui,D.H., Skala,V.: Two New Algorithms for Line Clipping in E* and Their
Comparison, TR 108/99, University of West Bohemia, Plzen, 1999.

98

13. References

[Bui99c]

[Bui99d]

[Bur88a]

[Che88a]

[Cyr78a]

[Day92a]

[Day96a]

[Don9%4a]

[Dor90a]

[Duv93a]

[Duv9é6a]

[Fel83a]

[Fol90a]

[Fun90a]

Bui,D.H., Skala,V.: A New Algorithm for Pyramidal Clipping of Line
Segments in E3, TR 109/99, University of West Bohemia, Plzen, 1999.
Bui,D.H., Skala,V.: New Algorithm for Line Clipping against a Pyramid in
E3, TR 110/99, University of West Bohemia, Plzer, 1999.

Burkert,A., Noll,S.: Fast Algorithm for Polygon Clipping with 3D
Windows, Eurographics '88 International Conference proceedings, Nice,
pp-405-419, 1988.

Cheng,F., Yen,Y.KA Parallel Line Clipping Algorithm and its
Implementation, Parallel Processing for Computer Vision and Display
International Conference proceedings, 1988.

Cyrus,M., Beck,J.: Generalized Two and Three Dimensional Clipping,
Computers & Graphics, Vol.3, No.1, pp.23-28,1978.

Day,J.D.: An Algorithm for Clipping Lines in Object and Image Space,
Computers & Graphics, Vol.16, No.4, pp.421-426,1992.

Day,J.D.: Image Space Algorithms for Line Clipping, WSCG 96
International Conference proceedings, Plzen, pp.47-54, 1996.

Donovan,W., Hook,T.V.: Direct Outcode Calculation for Faster Clip
Testing, Graphics Gems IV, pp.125-131, 1994.

Dorr,M.: A New Approach to Parametric Line Clipping,
Computers & Graphics, Vol.14, No.3, pp.449-464, 1990.

Duvanenko,V.J., Robbins,W.E., Gyurcsik,R.S.: Simple and efficient 2D and
3D Span Clipping Algorithms, Computers & Graphics, Vol.17, No.1,
pp-39-54, 1993.

Duvanenko,V.J., Robbins,W.E., Gyurcsik,R.S.: Line Segment Clipping
Revisited, Dr Dobbs Journal, Vol.21, No.1, pp.107-112, 1996.

Feliziani,S., Franchina,V.: An Algorithm for Rectangular Clipping, Pixel.
Computer Graphics, CAD/CAM, Image Process., Vol.4, pp.37-40, 1983.
Foley,D.J., van Dam,A., Feiner,S.K., Hughes,J.F.: Computer Graphics
Principles and Practice, Addison Wesley, 2nd ed., 1990.

Fung,K.Y., Nicholl,T.M., Tarjan,R.E., Van Wyk,C.J.: Simplified Linear
Time Jordan Sorting and Polygon Clipping, Information Processing Letters,
Vol.35, pp.85-92, 1990.

99

13. References

[Gre98a]

[Gut78a]

[Han84b]

[Her88a]

[Hua96a]

[Hub90a]

[Hub93a]

[Kai90a]

[Kil87a]

[Kol94a]

[Kol97a]

[Kra92a]

[Kuz95a]

[Lew78a]

[Lia83a]

Greiner,G., Hormann,K.: Efficient Clipping of Arbitrary Polygons, ACM
Transaction on Graphics, Vol.17, No.2, pp.71-83, 1998.

Guttmann,H., Weiss,J.: Clipping in the View of Decentralization of
Computer Graphics, Interactive Techniques in Computer Aided Design
International Conference proceedings, Bologna, pp.235-240, 1978.
Hanrahan,P.: A Note Concerning Polygon and Line Clipping, Technical
Report, No.8, NYIT Computer Graphics Lab, 1984.

Herman,I., Reviczky,J.: Some Remarks on the Modelling Clip Problem,
Computer Graphics Forum, Vol.7, No.4, pp.265-272, 1988.

Hua,S., Tokuta,A.: Generalized Clipping of a Polygon Against a 2D
Arbitrary Window and 3D Non-Convex Volume, WSCG'96 International
Conference proceedings, Plzei, pp.257-266, 1996.

Hubl,J., Herman,l.: Modelling Clip: Some More Results, Computer
Graphics Forum, Vol.9, No.2, pp.101-107, 1990.

HublLJ.: A Note on 3D-Clip Optimisation, Computer Graphics Forum,
Vol.12, No.2, pp.159-160, 1993.

Kaijian,S., Edwards,J.A., Cooper,D.C.: An Efficient Line Clipping
Algorithm, Computers & Graphics, Vol.14, No.2, pp.297-301,1990.
Kilgour,A.: Unifying Vector and Polygon Algorithms for Scan Conversion
and Clipping, Eurographics '87 International Conference proceedings,
Amsterdam, pp.363-375, 1987.

Kolingerova,l.: Dual Representation and Its Usage in Computer Graphics,
PhD Thesis (in Czech), University of West Bohemia, Plzen, 1994.
Kolingerova,l.: Convex polyhedron-line intersection detection using dual
representation The Visual Computer, Vol.13, No.1, pp.42-49, 1997.
Krammer,G.: A Line Clipping Algorithm and Its Analysis, Computer
Graphics Forum, Vol.11, No.3, pp.253-266, 1992.

Kuzmin,Y.P.: Bresenham's Line Generation Algorithm with Built-in
Clipping, Computer Graphics Forum, Vol.14, No.5, pp.275-280, 1995.
Lewis,H.R., Papadimitriou,C.H.: The Efficiency of Algorithms, Scientific
American, pp.96-108, 1978.

Liang,Y.D., Barsky,B.A.: An Analysis and Algorithms for Polygon
Clipping, CACM, Vol.26, No.11, pp.868-876, 1983.

100

13. References

[Lia84a]

[Lia92a]

[Lia92b]

[Mai92a]

[Mat85a]

[Mer84a]

[Nar96a]

[Nic87a]

[Nic9la]

[Nie95a]

[Pre85a]

[Rap9la]

[Rog85a]

Liang,Y.D., Barsky,B.A.: A New Concept and Method for Line Clipping,
ACM Transaction on Graphics, Vol.3, No.1, pp.1-22, 1984.

Liang,Y.D., Barsky,B.A.: The Optimal Tree Algorithm for Line Clipping,
Technical paper distributed at Eurographics'92 Conference, Cambridge,
1992.

Liang,Y.D., Barsky,B.A., Slater,M.: Some Improvements to a Parametric
Line Clipping Algorithm, Technical Report, No0.92/688, University of
California at Berkeley, 1992.

Maillot,P.G.: A New, Fast Method For 2D Polygon Clipping: Analysis and
Software Implementation, ACM Transaction on Graphics, Vol.11, No.3,
pp-276-290, 1992.

Mathew,A.J.: Polygonal Clipping of Polylines, Computer Graphics Forum,
Vol.4, No.4, pp.407-414, 1985.

Meriaux,M.: A Two-Dimensional Clipping Divider, FEurographics '84
International Conference proceedings, Copenhagen, pp.389-395, 1984.
Narayanaswami,C.: A parallel polygon- clipping algorithm, The Visual
Computer, Vol.12, No.3, pp.147-158, 1996.

Nicholl, T.M., Lee,D.T., NichollLR.A.: An Efficient New Algorithm for 2D
Line Clipping: Its Development and Analysis, ACM Computer Graphics,
Vol.21, No.4, pp.253-262, 1987.

NicholLR.A., Nicholl, T.M.: A Definition of Polygon Clipping, Technical
Report, No.281, Computer Sci. Dept.,University of West Ontario, 1991.
Nielsen,H.P.: Line Clipping Using Semi-Homogeneous Coordinates,
Computer Graphics Forum, Vol.14, No.1, pp.3-16, 1995.

Preparata,F.P., Shamos,M.l.: Computational Geometry: An Introduction,
Springer Verlag, New York, 1985.

Rappaport,A.: An Efficient Algorithm for Line and Polygon Clipping,
The Visual Computer, Vol.7, No.1, pp.19-28, 1991.

Rogers,D.F., Rybak,L.M.: A Note on An Efficient General Line Clipping
Algorithm, [EEE Computer Graphics & Applications, Vol.5, No.l,
pp-82-86, 1985.

101

13. References

[Sch98a]

[Sha92a]

[Ska89a]

[Ska89b]

[Ska93a]

[Ska93b]

[Ska93c¢]

[Ska%4a]

[Ska94b]

[Ska95a]

[Ska96a]

[Ska96b]

[Ska%6c]

[Ska96d]

Schneider,B.O., Welzen,J.V.: Efficient Polygon Clipping for an {SIMD}
Graphics Pipeline, IEEE Transactions on Visualization and Computer
Graphics, Vol.4, No.3, 1998.

Sharma,N.C., Manohar,S.: Line Clipping Revisited: Two Efficient
Algorithms Based on Simple Geometric Observations,
Computers & Graphics, Vol.16, No.1, pp.51-54, 1992.

Skala,V.: Algorithms for 2D Line Clipping, CGI'89 Conference
Proceedings, pp.121-128, 1989.

Skala,V.: Algorithms for 2D Line Clipping, EG'89 Conference Proceedings,
pp-355-367, 1989.

Skala,V.: Algorithm for Line Clipping in E* for Convex Window (in
Czech), Algorithms'93 Conference Proceedings, Bratislava, 1993.

Skala,V.: An Efficient Algorithm for Line Clipping by Convex Polygon,
Computers & Graphics, Vol.17, No.4, pp.417-421, 1993.

Skala,V.: Memory Saving Technique for Space Subdivision Technique,
Machine Graphics and Vision, Vol.2, No.3, pp.237-250, 1993.

Skala,V.: O(Ig N) Line Clipping Algorithm in E?, Computers & Graphics,
Vol.18, No.4, pp.517-524, 1994.

Skala,V.: Point-in-Polygon with O(1) Complexity, 7R 68/94, University of
West Bohemia, Plzen, 1994.

Skala,V., Kolingerova,l., Blaha,P.. A Comparison of 2D Line Clipping
Algorithms, Machine Graphics and Vision, Vol.3, No.4, pp. 625-633, 1995.
Skala,V.: An Efficient Algorithm for Line Clipping by Convex and
Non-convex Polyhedrons in E*, Computer Graphics Forum, Vol.15, No.1,
pp.61-68, 1996.

Skala,V.: Line Clipping in E’ with Suboptimal Complexity O(1),
Computers & Graphics, Vol.20, No.4., Pergamon Press, pp.523-530, 1996.
Skala,V., Lederbuch,P., Sup.B.: A Comparison of O(1) and Cyrus-Beck
Line Clipping Algorithms in E? and E*, SCCG 96 International Conference
proceedings, June 5-7, Bratislava-Budmerice, pp.27-44, 1996.

Skala,V., Lederbuch,P.: A Comparison of a New O(1) and the Cyrus-Beck
Line Clipping Algorithms in E?, COMPUGRAPHICS'96 International
Conference proceedings, Paris, pp.281-287, 1996.

102

13. References

[Ska97a]

[Ska97b]

[Ska97c¢]

[Ska99a]

[Ska99b]

[Ska99c¢]

[Sla94a]

[Sob87a]

[Soj96a]

[Sto89a]

[Sut74a]

[Tou85a]

[The89a]

[Vat92a]

Skala,V.: A Fast Algorithm for Line Clipping by Convex Polyhedron in E°,
Computers & Graphics, Vol.21, No.2, pp.209-214, 1997.

Skala,V.: Algorithms Complexity and Line Clipping Problem Solutions,
invited talk, Proceedings of EDU+COMPUGRAPHICS'97, Algarve,
Portugal, pp.30-34, 1997.

Skala,V.: Line Clipping Algorithm Complexity in E? and E* | invited talk,
SCCG’97 International Conference proceedings, Bratislava-Budmerice,
1997.

Skala,V.: Non-Orthogonal Co-ordinates in Computer Graphics,
GRAPHICON 99 International Conference proceedings, Moscow, Russia,
pp-45-50, 1999.

Skala,V.: Non-linear Co-ordinate Systems, Syllabuses of the Talk at the
University of Loannina, Greece, May 1999.

Skala,V.: Algorithm Complexity in Computer Graphics, Talk at the
University of Girona, Spain, June 1999.

Slater,M, Barsky,B.A..: 2D Line and Polygon Clipping Based on Space
Subdivision, The Visual Computer, Vol.10, No.7, pp.407-422, 1994.
Sobkow,M.S., Pospisil,P., Yang,Y.-H.: A Fast Two-dimensional Line
Clipping Algorithm via Line Encoding, Computers & Graphics, Vol.11,
No.4, pp.459-467, 1987.

Sojka,E.: Two Simple and Efficient Algorithms for Jordan Sorting and
Polygon Cutting and Clipping, COMPUGRAPHICS'96 International
Conference proceedings, Paris, pp.241-252, 1996.

Stolfi,J.: Primitives for Computational Geometry, Report 36, SRC DEC
System Research Center, 1989.

Sutherland,l.LE., Hodgman,G.W.: Reentrant = Polygon Clipping,
Communications of the ACM, 1974.

Toussaint, G.T.. A Simple Linear Algorithm for Intersecting Convex
Polygons, The Visual Computer, Vol.1, pp.118-123, 1998.

Theoharis,T., Page,l.: Two Parallel Methods for Polygon Clipping,
Computer Graphics Forum, Vol.8, No.2, pp.107-114, 1989.

Vatti, B.R., A Generic Solution to Polygon Clipping, Communications of
the ACM, Vol.35, No.7, pp.56-63, 1992.

103

13. References

[Zal98a]

[Zac95a]

[Zac96a]

[Zac89a]

[Zwa95a]

Zalik,B., Gombosi,M., Podgorelec,D.,: A Quick Intersection Algortihm for
Arbitrary Polygons, SCCG 98 International Conference proceedings, April
23-25, Bratislava-Budmerice, pp.195-204, 1998.

Zacharias,S.: Duality and Complexity (in Czech), TR 81/95, University of
West Bohemia, Plzen, 1995.

Zacharias,S.: Projection in Barycentric Coordinates, WSCG 96 International
Conference proceedings, Plzen, pp.409-418, 1996.

Zachrisen,M.: Yet another Remark on the Modelling Clip Problem,
Computer Graphics Forum, Vol.8, No.3, pp.237-238, 1989.

Zwaan,M., Reinhard.E., Jansen,F.: Pyramid Clipping for Efficient Ray
Traversal, Eurographics Rendering Workshop, 1995.

104

14. Author’s publications & research work

14. Author’s publications & research work

14.1. Related publications to this thesis

[Bui97a]

[Bui98a]

[Bui98b]

[Bui99a]

[Bui99b]

[Bui99c]

[Bui99d]

[Bui99e]

[Bui9of]

Bui,D.H., Skala,V.: Fast Modifications of Cohen-Sutherland algorithm for
Line Segment and Line Clipping in E%, SCCG'97 International Conference
proceedings, Bratislava-Budmerice, pp.205-212, 1997.

Bui,D.H., Skala,V.: Fast Algorithms for Clipping Lines and Line Segments
in B, The Visual Computer, Vol.14, No.1, pp.31-37, 1998.

Bui,D.H., Skala,V.: Line Clipping Algorithms in E?, SCG'98 Proceedings of
Seminars on Computational Geometry, KoCovce, pp.52-57, 1998.

Bui,D.H., Skala,V.: New Fast Line Clipping Algorithm in E* with O(IgN)
Complexity, SCCG’99 International Conference proceedings,
Bratislava-Budmerice, pp.212-219, 1999.

Bui,D.H., Skala,V.: Two New Algorithms for Line Clipping in E* and Their
Comparison, TR 108/99, University of West Bohemia, Plzen, 1999,
submitted to GPKO’2000, International Conference, Kroczyce, Poland,
2000.

Bui,D.H., Skala,V.: A New Algorithm for Pyramidal Clipping of Line
Segments in E3, TR 109/99, University of West Bohemia, Plzen, 1999,
submitted to The Visual Computer, Springer Verlag.

Bui,D.H., Skala,V.: New Algorithm for Line Clipping against a Pyramid in
E3, TR 110/99, University of West Bohemia, Plzei, 1999, submitted to
Computers & Graphics, Pergamon Press.

Bui,D.H., Skala,V.: Algorithms for Line Clipping and Their Complexity,
I&IT"99 International Conference proceedings, Banska Bystrica, Slovakia,
1999.

Bui,D.H., Skala,V.: Algorithms Complexity and Its Decrement, CE&I 99

International Conference proceedings, Kosice, Slovakia, 1999.

In all publications listed above the author’s contribution is about 50%.

105

14. Author’s publications & research work

14.2. Research work - VolVis version for Windows NT

VolVis is a Volume Visualization System that unites numerous visualization methods
within a comprehensive visualization system, providing a flexible tool for the scientist
and engineer as well as the visualization developer and researcher.

The underlying principle behind VolVis is to provide as diverse an array of
algorithms and capabilities as possible. This makes the VolVis system useful within any
field, which has the need to manipulate, render and measure volumetric data including
medicine, biology, geology, and physics.

VolVis is developed primary by the research group headed by Prof. Arie
Kaufman at the State University of New York at Stony Brook for the UNIX system.

More information about VolVis can be found at the VolVis homepage that is at
the URL: http://www.cs.sunysb.edu/~vislab/start volvis.html.

In this project the kernel of system is analyzed and partly converted to the
MS Windows NT by our research group headed by Prof. Vaclav Skala. The aim of this
project is to obtain the information how this type of programming packages can be
implemented and verify the function of kernel of the system. The first version of system
has been devolved to Prof. Arie Kaufman. Prof. Arie Kaufman and his research group

will improve this version further and the whole system can be received from him.

106

