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Abstrakt

Modelovani objektu a jejich zobrazovani patii k zékladnim Ukolim pocitacove grafiky.
V poslednich letech se stalo atraktivnim modelovani objekti pomoci implicitnich
funkci. Implicitni modelovéani je ¢asto uzivano v modelovacich programech zaloZenych
na CSG stromech hlavné z davodu, Ze implicitni funkce ptimo definuji objemova data.
Zobrazovani takto definovanych objekta je mozné bud’to algoritmy zaloZenymi
na principu sledovani paprsku popi. aproximacnimi algoritmy, které prevadeji implicitni
reprezentaci objekti na polygonani resp. trojuhelnikové sité. Takovy aproximacni
proces je obvykle nazyvan polygonizaci implicitni funkce. Zobrazovani
trojuhelnikovych siti je podporovano naprostou vétsinou beéznych grafickych
akceleratoru, tj. jedna se o soucasny standard. Prace s trojuhelnikovymi sitémi je rychla
a, narozdil od metod sledovani paprsku, je mozné provéadét libovolné pohledové
transformace sobjekty bez nutnosti opakovaného vyvolani zobrazovaciho agoritmu.
Trojuhelnikové sité jsou také podporovany profesiondnimi 3D modelovacimi
programy, tj. neni nic snazsiho, nez importovat vysledny polygonani model do vasi
oblibené aplikace a vyuZzit pro jeho dal i zpracovani jiz profesional nich nastroju.

Prezentovana disertacni prace je roz¢lenéna do tii zakladnich kapitol. V Gvodu je ¢tenér
sezndmen se z&kladnimi pojmy nutnymi ke spréavnému porozuméni probirané
problematice. Dalsi kapitola obsahuje podrobny vyklad pojmu polygonizace spolecné
sruznymi zpuasoby, jak vyhodnocovat aproximacni chybu. Zde jsou také piedstaveny
zakladni algoritmy uréené pro polygonizaci implicitnich funkci. Jednotlivé metody jsou
rozdéleny  podle svych vlasthosti na  objemové/povrchové  pristupy,
adaptivni/neadaptivni, s/bez schopnosti polygonizovat implicitné definované scény
sestavgjici z vice objekta. V dalSi kapitole je ¢tend sezndmen s agoritmy navrZzenymi
autorem predkladané prace. Poradi, ve kterém jsou jednotlivé metody predstavovany, je
dano poradim v jakém byly vyvinuty. V kazdé podkapitole je konkrétni agoritmus
vysvétlen, zhodnocen a jsou prezentovany vysledky dosazené béhem jeho testovani.
V zévéru prace je zhodnocen védecky prinos autorova dila a jsou nastinény mozné
sméry dalSiho vyzkumu.

Klicovou ¢asti disertacni prace je adaptivni algoritmus navrZzeny autorem, jehoz vyklad
je situovan v druhé poloviné prace. Prezentovany algoritmus adaptivné polygonizuje
implicitni objekty sdefinovanou piesnosti a navic je schopen zpracovat scény
sestéavgjici zvice téles. Algoritmus byl publikovan na nékolika mezinarodnich
konferencich pod pracovnim nazvem adaptive edge spinning algorithm.



Abstract

Both object modeling and visualization belong to the fundamental tasks of the computer
graphics. In recent years, implicit modeling has become attractive. Because of the fact
that the implicit surfaces conveniently define volumes, they are frequently used in CSG-
based solid modelers. The visualization of objects defined in such way is possible either
by direct rendering based on Ray-tracing principle or by approximation of the implicit
models by polygons, triangular mesh usually. Such approximation process is called
polygonization. The polygonal (triangular) meshes are supported by a wide range of
graphics hardware and, therefore, working with them is very fast as well as their
arbitrarily transformations are possible without repeated solution of the implicit
function. Programs for 3D graphics support polygonal meshes as well. It is not
complicated to import such object and also its additional modification is possible with
these professional tools.

The offered thesis is divided into three main chapters. An introduction contains
fundamental notions necessary for a reader to proper understanding of problems
presented. In the next chapter, polygonization term is described in detail including
definition of varied techniques how to measure an error of a polygonal approximation.
There are aso several basic algorithms used for polygonization of implicit surfaces
introduced in this chapter. The presented methods are separated according to their
properties into volume/surface approaches, adaptive/non-adaptive methods, able/non-
able to polygonize scenes consisting of more digoint implicit surfaces, etc. The next
chapter presents algorithms and new approaches proposed by the author of this thesis.
The algorithms are introduced in a chronological order of their developing. In each
section, aprinciple of a new algorithm is explained and concluded as well as
experimental results. The closing part of the thesis contains conclusion of the author’s
contribution and an outline of possible future work as well.

Key part of the thesisis an adaptive approach developed by the author that is situated in
second half of the work. The presented approach is able to polygonize unknown implicit
scenes with defined accuracy as well as scenes consisting of more digoint surfaces. Its
working name is adaptive edge spinning algorithm and it has been published on several
international conferences.
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Introduction

1. Introduction

The use of real functions of several variables for defining geometric objects is quite
common in mathematic and computer science. Functionally represented volumes and
surfaces appear to be useful in solid modeling, computer aided geometric design
(CAGD), animation, range data processing and volume graphics.

Implicit surfaces are two-dimensional, geometric shapes that exist in three-dimensional
space. An implicit surface is mathematically defined by the equation f(p) = 0, where
p =[x,y,z] is apoint in three-dimensional Euclidean space. An iso-surface is a similar
set of points for which f(p) = ¢, where c is the iso-contour value of the surface. An
implicit surface Sis characterized as a set of points whose potential f(x,y,z) equals a
threshold value denoted by T. More precise mathematical definition is described in [5]
or [43].

s={Mx.y.2)1 E*[f(x,y,2)1 T}. (1)

There are two different definitions for implicit objects. The first one [5], [7], [8] defines
an implicit object as f(p) < 0 and the second one, F-rep (functional representation) [22],
[34], [41], definesit as f(p) > 0. These inequalities describe a half spacein E3. An object
defined by these inequalitiesis usually called solid (or volume).

If fis an arbitrary procedural method (i.e. a ‘black-box’ function that evaluates p) then
the geometric properties of the surface can be deduced only through numerical
evaluation of the function.

The implicitly defined object can be bounded (finite in size), such as a sphere, or
unbounded, such as a plane. The value of f is often a measure of distance between p and
the surface. The measure is Euclidean if it is ordinary (physical) distance. For an
algebraic surface, f measures algebraic distance.

Because an implicit representation does not produce points by substitution, root-finding
has to be employed to render its surface. One such method is ray-tracing [17], which
generates excellent photo-realistic images of implicit objects. Alternatively, an image of
the function can be created with volume rendering.



Introduction

1.1. Relation to parametric surfaces

Both parametric and implicit methods are well developed in computer graphics.
Traditionally, computer graphics has favored polynomia parametric over implicit
surfaces because they are simpler to render and more convenient for geometric
operations such as computing curvature and controlling position and tangency.
Parametric surfaces are generally easier to draw, tessellate, subdivide, bound, and
navigate along.

An implicit surface naturally describes an object’s interior, whereas a comparable
parametric description is usually piecewise. The ability to enclose volume and to
represent blends of volumes provides a straightforward (although less precise) implicit
aternative to fillets, rounds, and other ‘free-form’ parametric surfaces that require care
in joining so that geometric continuity is established aong the seams. Consequently,
animations of organic shapes commonly employ implicit surfaces.

Point classification (determining whether a point is inside, outside, or on a surface) is
simpler with implicit surfaces, depending only on the sign of f. This facilitates the
construction of complex objects from primitive ones and simplifies collision detection.

Certain shapes may be described exactly in both parametric and implicit form, as
demonstrated for the unit circle, [9]. The three-dimensional caseis:

trigonometric x = (cos(a)cos(B), y = sin(a), z = cos(a)sin(B), ai [0,a], B [0,2n)

rational X = 4stiw, y = 2t(1-)/w, z = (1-t3)(1+s)/w,
for w = (1+5°)(1+t9), sti [0, 1]
implicit f(x.y,2) = X>+y*+7%-1 2)

Points on the parametrically defined sphere are readily found by substitution of « and g
into the equations for x, y, z (sSmilarly for s and t). By sweeping (o,3) through its
domain in E? points along the entire surface are conveniently generated for display,
piecewise approximation, etc. This natural conversion from the parametric (two-
dimensional) space of a surface to the geometric (three-dimensional) space of an object
is a fundamental convenience. There is no comparable mechanism for implicit surfaces
(unless the implicit equation is reduced to two explicit equations, asis possible for some
low degree algebraic surfaces).

The surface normal for a regular point on an implicit surface is computed as the unit-
length gradient; the normal to a parametric surface is usualy computed as the cross-
product of the surface tangents in the two parametric directions.

The class of algebraic surfaces subsumes that of rational parametric surfaces. Thus,
implicit surfaces are more likely to be closed under certain operations than their
parametric counterparts. For example, the offset surface from an implicit surface
remains an implicit surface, whereas the offset from a parametric surface is, in general,
not parametric. Because parametric and implicit forms have complementary advantages,
it is useful to convert from one form to the other.

-6-
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Conversion from parametric to the implicit form is known as implicitization, and may
be performed on any rational parametric surface (or curve). This is accomplished by
elimination of the parameters in the parametric form. For example, elimination of s and
t from the rational equationsyields theimplicit forminx,y, z

The conversion from implicit to parametric form is known as parameterization.
Associating a point (x,y,z) with its equivalent parametric position (sit) is known as
inversion. Parameterization is not always possible because implicit surfaces defined by
certain polynomials of fourth and higher degree cannot be parameterized by rational
functions. Conversion is always possible for non-degenerate quadrics and for cubics
that have asingular point, [9].

1.2. Continuity, Differentiability and Manifoldness

In order that normals are defined along an implicit surface, the function f must be
continuous and differentiable. That is, the first partial derivatives Fx = §if/fx, F, = /1y,
F,=1f/fz must be continuous and not all zero, everywhere on the surface. Such
afunction is known as analytic (or is considered anaytic in a region that is
differentiable). When given as an ordered triplet, the partials define the gradientNf of
the function. The unit-length gradient is usually taken as the surface normal.

F 0
n=(,.n,, z)=§F—5,7y%;whereJ=\/F5+F5+Ff- ©)

For a ‘black-box’ or other non-differentiable function, the gradient may be
approximated numerically using forward differences and some discrete step size A:

Nf(p) € (f(p +AX) - f(p), f(p +AY)- f(p), f(p +A2) - f(p))/ A, (4)

where Ax, Ay, and Az are displacements by A along the respective axes. For small A,
the error is proportional to A. If Nf iscomputed by central differences:

Nf(p) € (f(p +Ax) - f(p- AX), f(p+Ay)- f(p- Ay),f(p+A2)- f(p- Az))/2A, (5)

the error is proportional to A%, [9].

If the gradient is non-null at a point p, then p is said to be regular (or simple) and
Nf(p) is normal (perpendicular) to the surface at p. If, however, the gradient (or,

equivaently, the tangent vector) is indeterminate, the point is singular (also called
critical or non-regular), [32]. For example, the cone f(x,y,z) = -x*+y*+Z* is regular with

-7-
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the exception of a singularity at the origin S, see Figure 1. The normal at a singular
point is sometimes given as the average of the normals of surrounding vertices.

Figure 1. The apex of aconeisasingular point.

If the surface is regular and the second partial derivatives are continuous, then the
surface has continuous curvature (the surface is G continuous). Furthermore, if the
surface is regular, it defines a topological manifold and such implicit object is also
caled valid, [43].

The 2-manifold is a fundamental concept from algebraic and differential topology. It is
a surface embedded in E® such that the infinitesimal neighborhood around any point on
the surface is topologically equivalent (‘locally diffeomorphic’) to a disk. Intuitively,
the surface is ‘watertight’ and contains no holes or dangling edges. Typicadly, the
manifold is bounded (or closed). For example, a plane is a manifold but is unbounded
and thus not watertight in any physical sense. A manifold-with-boundary is a surface
locally approximated by either a disk or a half-disk. All other surfaces are non-
manifold, see Figure 2.

Figure 2. Manifold, manifold with boundary, and non-manifold surface, the picture is
taken from [9].

From the implicit function theorem it may be shown that for f(p) =0, where O is
aregular value of f and f is continuous, the implicit surface is a two-dimensional
manifold. The Jordan-Brouwer Separation Theorem states that such a manifold
separates space into the surface itself and two connected open sets: an infinite ‘outside’
and afinite ‘inside’, [9].

Consider two examples for which no manifold exists. The first is simply f(p) = 0. Here,
Nf is everywhere O, thereisno ‘inside’ nor ‘outside’ and no boundary between the two.
The second is a degenerate sphere f(x,y,z) = x*+y*+z%. Here, Nf = (2x,2y,27), which is
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null at the origin, the only point satisfying f. Intuitively, the ‘inside’ is degenerate.
Whether or not a surface is manifold concerns its polygonal representation.

1.3. Surface curvature

1.3.1. The Hessian

The Hessian form associated with a function f(x1,X2,...,Xn) is the matrix of second-order
partial derivatives of f with respect to x;:

*® 2 2
R
Shatx, T,
Hi)=¢c I O |
C g% 1%
L +
gm0, X, Tx, 5

(6)

iR ..|. g O

The Hessian indicates the rate of change in the gradient of f and will be useful for,
among other things, computing the curvature of implicit objects, [43].

1.3.2. The Gauss map

We know that for curves the curvature at a point p is measured by a number. For
surfaces, it is measured by a map.

Let M be an oriented codimension-1 sub-manifold in E™. Denote by N(p) the unit

normal vector to M at p. The Gaussmap, N:M ® S", associates to each pi M the point
N(p) on the unit n-dimensional sphere S", see Figure 3.

N(p2)

i NI

Figure 3. The Gauss map, taken from [43].
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Note that a submanifold is defined as follows, see [43] for details. A submanifold S of
another manifold M is asubset SI M with a manifold structure, such that the inclusion
map i:S® M, i(p)=p, is an embedding. If S'1 M™is an n-dimensional submanifold of an
mdimensional manifold M, with n<m, then the difference k=m—n is caled the
codimension of Sin M.

The derivative N¢of N (along its arguments X, y, z) is a measure of how the normal
vector is changing. Because N is a unit vector, N¢indicates the change in its direction,
and therefore N¢conveys information about the curvature of the surface, [43]. It is easy
to show that:

- N¢&p) isalinear operator on TyM, where TM is atangent plane at p.
- N¢gp) issef-adjoint.
Note that N€p) is sometimes called the Weingarten map in the literature.

1.3.3. The fundamental forms

For any self-adjoint linear transformation on a vector space with dot product there is a
real-valued function O(v) = N(v)>v called the Quadratic form associated with N.

The First fundamental form of M at p is the quadratic form F, associated with the
identity transformation on T,M.

F(v)=vov (7)

Therefore, this quadratic form defines the inner product in each tangent plane to the
surface. All the metric properties of the surface are connected to it.

The Second fundamental form of M is the quadratic form S, associated with the
Weingarten map N, at a point p.

S,(v) =N¢(v)>v ©))

A surface is completely determined up to rigid motion by its first and second
fundamentals forms, [32], [37].

If M =f*c) isaregular implicit surface in E™* with orientation given by the normal
vector field and v = (v,...,Vn+1) iS @ tangent vector to M at a point p, vi T,M, the second
fundamental form isrelated to the Hessian form of f. More precisely in matrix notation:

-10-
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1
S _—— T Hf 9
= O ©

1.3.4. Surface curvature

The second fundamental form allows us to investigate the curvature of a surface. The
Normal curvature of M at p in the direction v is defined by

k(v) =S, (v) =(N§(v)v), when|v|=1. (10)

In other words, k(v) is equal to the normal component of acceleration of any curve,
contained in M, passing through p with velocity v.

Because N{(p) is a sef-adjoint linear transformation of T,M, there exists an
orthonormal basis vs,...,vn, of ToM whose vectors, v;, are eigenvectors of N(p). The
eigenvalues ki(p),..., kn(p) of N(p) are caled principal curvatures of M at p and the
correspondent unit eigenvectors of N(p) are called principal directions. The principal
curvatures are stationary values of normal curvature k(p) and among them k(p) attains
its minimum and maximum values.

In general, we can diagonalize the Hessian matrix H to obtain the eigenvalues and
eigenvectors of N(p) . Alternatively, the following formulas allow us to compute the

principle curvatures ki and the principle directions v; directly from H, [43].

. _aHa+b"Hb+/[a"Ha- b"Hb)" +4{"Hb)’
| 2Rt |

(11)

8

INf [k, - a"Ha §
S T

INf|k; - a"Ha*

5 bTHa =
INf||k; - a"Ha -+

T -
b'Ha z

a, +b, , (12)

a, + b,

<
1
DO vO «O O O O O

fori =1, 2, where

-11-
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G Y s SN T, T AR ;T R

The trace and determinant of the Gauss map are important intrinsic properties of a
surface.

The mean curvature K(p) of M at p is 1/n times the trace of S(p):

S|

K(p) = - races(p) = - & k, () (1)

It isthe average value of the principal curvatures at p.
The determinant of S(p) is called the Gauss-Kronecker curvature K of M at p.

Ko () =detS(p) = O k, () (15

It isequal to the product of the principal curvatures.

1.4. Modeling of Implicit objects

1.4.1. Constructive Solid Geometry

With Constructive Solid Geometry (CSG), an object is evaluated ‘ bottom-up’ according
to a binary tree. The leaf nodes are usualy restricted to low degree polynomial
primitives, such as spheres, cylinders, ellipsoids, half-spaces, and tori. The internal
nodes represent Boolean set operations.

The primitives in CSG may be represented implicitly and combined by set-theoretic
Boolean operations, [48]. These operations may create hard-edged functions that
conventional polygonization algorithms cannot accurately approximate, see Figure 4.

-12 -
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Figure4. A corner of a cube modeled as intersection of six half-spaces.

The exact analytical definitions of the set-theoretic operations of functionally described
objects have been proposed in the theory of R-functions, [34], and applied for solving
problems of mathematical physics.

Let the geometric object G; be defined as f1(x,y,z) 3 0 and the geometric object G, be
defined asf(x,y,z) 3 0. The resultant object will have the defining function as follows:

R-union fa=f1|f2

R-intersection f;=f; & f5

R-subtraction  fz3=f1\f;

One of the possible analytical descriptions of R-functionsis:

f.|f, =ﬁ(fl+f2+\/ff+f22- 2af1f2),
f &f, :ﬁ(fﬁfz- JEZ+2- 2af1f2), (16)

where a=a(f;,f)) is an abitrary continuous function satisfying the
conditions-1 < a(fy,fy) £ 1, a(fy,f2) = a(fa,fr) = a(-f1,f2) = a(fy,-f2).

The expression for the subtraction operation is f; \ fo =f;&(-f2). Note that with this
definition of the subtraction, the resultant object includes its boundary. If a =1, the
functions (16) become:

fl |f2 = max(fl,fz)
f1 & fo = min(fy,fo) (17)

-13-
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Thisis the particular case, the functions are very convenient for calculations but have C*
discontinuity when f, =f,. If a =0, the functions (16) take the most useful in practice
form:

flf, =f+f, +f7 41,

fL&f,=f +f,- \Jf,7+f)° (18)

The functions above have C! discontinuity only in points where both arguments are
equal to zero. If C™ continuity is to be provided, one may use another set of
R-functions:

1t =8, 2 e )
fl&f2:?l+f2_ Vf12+fzzgf12+f22)r; (19)

The more examples of set-theoretic operations, such as blending (linear, hyperbolic,
super-elliptic), offsetting, bijective mapping, affine mapping, projection, Cartesian
product and metamorphosis can be found in [12], [16], [30], [31], [43].

1.4.2. Skeleton based modeling

The skeleton is a collection of elements, each of which generates a volume. Within an
implicit context, such avolume is called a skeletal primitive, which is denoted by fi(p),
for skeletal element i. Thus, f is a function from E* (or E? for illustrative purposes) to
E*, and, usually, is C* continuous. The implicit surface function may be a blend of these
primitives, i.e., f(p) = g(p, f1,f2,....fn) =0, and the implicit surface is the covering, or
manifold, of the skeleton, [7].

When used in a biological context, ‘skeleton’ usually refers to the rigid, mechanical
support system found in most animals. In such a system, a subordinate element rotates
with respect to a superior one.

Although an organism’s inner structure need not be organized hierarchically, for our
purposes we assume that a skeleton is topologically equivalent to a directed acyclic
graph. Such a graph, or tree, organizes the internal components of an object and is,
therefore, a powerful means for the representation and manipulation of the object. The
basic data structure for a skeleton, which we call an element (or, sometimes, limb), is
recursive and contains the following fields, [7]:
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- parent: pointer to element

- children: list of pointer to element
- transformation from parent: matrix

- geometry: geometric object

- ancillary data:

The transformation is Euclidean, allowing rotation and translation. Usually the
geometry is a tapered cylinder defined by two three-dimensional endpoints and their
associated radii.

Each skeletal element can readily define a surrounding volume, or primitive. Although

the collection of these volumes may yield a topologically complex surface, the skeletal
elements remain easily defined, articulated, and displayed.

D e

non-convex, non-convex,
three regions three regions, one hole

=D

non-convex, two regions convex, one ICgiOl‘l

Figure 5. A skeleton and possible resulting surfaces, taken from [7].

A skeleton is related to its resulting shape but its geometric complexity is not
necessarily comparable to that of the shape. For example, in Figure 5, the skeleton
contains a single loop. Depending on the radii associated with the skeletal elements, the
resulting surface can contain a hole or not, can be convex or not, and can consist of one,
two, or three convex regions.

The skeleton modeling is important for interactive modeling, [46], [44], [47] when
adesigner creates a shape by interactively defining the skeleton and various parameters
that control how the skeleton becomes a polygonized surface.
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2. Polygonization

For many applications it is useful to approximate an implicit surface with a mesh of
triangles or polygons (formally, a discrete set of piecewise-linear, semi-digoint
elements). Conversion of a functionaly specified implicit surface to a polygonal
approximation can require considerable computation, but is required only once per
surface and allows rendering of the surface by conventional polygon scan conversion.
For differentiable f, [35], this is always possible because all manifold surfaces may be
triangulated. Such mesh conversion is popularly known as polygonization.

In this chapter, an overview of existing polygonization algorithms is presented as well
as some techniques for measurement of approximation quality.

2.1. Approximation error

The approximation error is a measure of difference between the polygona model and its
mathematical description. In available papers, there is not emphasis on measurement of
the error. Therefore, the author has proposed severa possibilities how to evaluate this
difference. These techniques are used for comparison of algorithms properties in
following sections.

One way is to determine the distance of polygona mesh’'s elements from the real
(mathematically defined) surface. Let the distance between a point p and an implicit
surface be defined as follows:

dist(p) = min{|p-p,|: f(p,) = 0} (20)

Then, the average error in the vertices positioning (actually, it is the error of a root
finding algorithm) can be evaluated as:

N
a dist(p;)
Ea\/ - i=1 N , (21)

where p; isavertex in the triangulation and N is a number of vertices.
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The average error of the approximation by triangles can be determined as:

Y
a dist(c,)

Eat — =l Y , (22)

where ¢ is the centre of gravity of ani™ triangle and M is a number of triangles.

Figure 6. Approximation of an implicit object with atriangular net (contours and lines
in two-dimensional example); distance of point cy (the centre of gravity of a triangle)
from the real surface.

Determination of the exact (real) distance of the given point to the implicit surface is
computationally expensive and, therefore, several approximations are often used.

Each vertex coordinates are usually computed by an iteration process which is stopped
when the function value in the given point is less then some ¢. In such cases, the real
distance between the surface vertex and the implicit surface is approximated by the
Algebraic distance defined as:

dist, (p) = f (p) (23)

For normalized implicit functions, the Algebraic distance is equal to the real distance
(Euclidian distance in Euclidian space) but in majority, it isonly proportiona to the real
distance. For example, the Sphere implicit function is usually defined as:

r’-x?-y?-z*=0. (24)

The normalized version of the Sphere function is defined as:
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r- x?+y?+2z°*=0. (25)

The other approximation of the real distance is the Taubin’s distance, [39], defined as
follows:

f(p)
N )

dist. (p) = (26)

The Taubin’s distance is the first order approximation to the exact distance, but the
approximate distance is aso biased in some sense, [13]. If, for instance, adata point p is

close to a critical point of the function, i.e., [Nf (p)|» 0, but f(p)#0, the distance
becomes large which is certainly alimitation.

There is also another point of view how to measure approximation quality than
investigation of a distance from the real surface. Such approaches are proportional to
surface curvature estimation. Curvature error along an edge can be expressed as
adeviation of surface normal vectors at points of the edge, see Figure 7. Such curvature
error is called the Angle error of an edge.

Figure 7. Curvature error of the edge e is measured as deviation ax between surface
normals n; and n;.

The average angle error could be then determined by the following simple formula:

Qog

ay

S — 27
ang Q (27)

where Q is anumber of edgesin triangulation.

=
11

Another curvature error could be measured for a triangle as a deviation between the
triangle’s normal vector and the real normal vector of the implicit function determined
at the centroid of the triangle, see Figure 8. The second curvature error is called the
Centroid angle error of atriangle.
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Figure 8. Curvature error of the triangle tx is measured at centroid cy as deviation ay
between the triangle’s normal vector ny and the real norma vector of the implicit
function ng.

The average centroid angle error of the approximation by triangles can be determined as
follows:

M
[]
a ax

— k=1
Ecangle - M ’

(28)

where M is anumber of triangles.

An alternative evaluation of the approximation error between the implicit model and its
triangular mesh is the comparison of their surface areas. The usage of this measurement
Is limited only to implicit functions we know or we can compute their surface area.
Surface area of an implicit model approximated by triangles can be determined as:

M
s,=as:. (29)
ti=1

where S is the surface area of thei" triangle and M is a number of triangles.

Then, therelative error of the approximated model can be computed as:

(30)

where S is the real surface area of the model defined by the implicit function. As the
model is approximated by triangles we can assumethat S, £ S.
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2.2. Triangulation quality

A quality of shape of triangles generated is usually measured by the following
criterions:

- Edge length criterion — a ratio between the shortest and the longest edge of
atriangle

- Angle criterion — aratio between the smallest to the biggest angle of atriangle

- Histogram of angles distribution —a number (or a percentage) of anglesin given
intervals

2.3. Exhaustive enumeration

Exhaustive enumeration operates on a set of samples of f arranged as aregular, typically
rectilinear lattice known as a scalar grid or voxel array. The samples may be
experimental, such as CAT and MRI scans, or computed, as in simulations of fluid
flow. The lattice is readily represented by a three-dimensional memory array, which can
be filled by a hardware scanner in constant time.

Once the samples are obtained, each transverse cell is polygonized. Given ¢; and ¢,
lattice neighbors of opposite sign, a surface vertex p is usualy computed using linear
interpol ation:

p =ac, +(1- a)c,, wherea =f(c,)/(f(c,) - f(c,)) f(c,).f(c,)* O (31)

This method is popularly known as ‘marching cubes or ‘marching tetrahedra’. The
standard Marching cubes (MC) and the Marching tetrahedra (MTE) algorithms [5], [7]
are often used for an iso-surface extraction. These methods can be performed both the
continuation schemes (see bellow) and the exhaustive enumeration approaches. The
process of polygonization consists of two principal steps. partitioning the space into
cells and the processing of each cell to produce polygons. Each cell is represented by a
cube or by atetrahedron. The implicit surface function is evaluated at corners.

A cdl istransverse if any of its edges intersects the implicit surface (one edge endpoint
evaluates negatively, the other positively). For each transverse edge, a surface vertex is
computed (by the Intermediate Value Theorem, a point p: f(p) = 0 must exist along a
transverse edge if f is continuous). Function f may be evaluated at arbitrary locations,
which allows methods such as binary sectioning to compute surface vertex locations
with arbitrary precision, unlike linear interpolation. These algorithms seek to minimize
the number of evaluations of f, which may be arbitrarily demanding to evaluate.
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The surface vertices belonging to the transverse edges of a cell are connected to form
one or more polygons (aternatively, patches may be produced). The edges of the
polygons lie within the faces of the cell. The order of vertex connectivity is often stored
in atable of polarity configurations of the cell corners. For a cube (8 corners) and a
tetrahedron (4 corners, i.e., a three-dimensional simplex) there are 256 and 16
possibilities, respectively. The 256 possible configurations of a cube can be reduced to
only 15 fundamentals and the others can be obtained by rotation and application of
symmetry. Figure 9a shows the basic 15 configurations of a cube and the configurations
of atetrahedron are shown in Figure 9b.
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© positive function
@ surface vertex
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Figure 9. @) The basic 15 configuration of a cube, b) the configuration of a tetrahedron,
taken from [5].

Because the tetrahedral edges include the diagonals of the cube faces, the tetrahedral
decomposition yields to a greater number of surface vertices per surface area than the
cubical polygonization does.

The Marching cubes and the Marching tetrahedra algorithms generate a triangular mesh
which is much influenced by a regular grid. Therefore, next adjustment of the mesh is
suitable.

The application of the Marching cubes agorithms includes electron motion,
computational electromagnetic, polypeptide visualization, biomedical visualization,
molecular modeling, etc.

2.4. Piecewise-Linear continuation
Piecewise-linear principles have been applied to implicit surfaces using a tetrahedral

cell and a cubic cell, [5], [40]. Beginning with a single transverse ‘seed’ cell, new cells
are propagated across transverse faces until the entire surface is enclosed.
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Because only transverse cells are generated, piecewise-linear continuation requires
O(N?) function evaluations, where N is a measure of the size of the object (thus, N
corresponds to the object’s surface area, [5], [7]), see Figure 10. In comparison,
exhaustive enumeration requires O(N®) samples. Compared with subdivision,
continuation appears less prone to under-sampling.

N

Figure 10. Continuation scheme, 2D example for illustration, taken from [5].

surface

Exhaustive enumeration yields all digoint surface components (with detectable size).
Continuation, however, produces a single component for each seed cell; to polygonize
al digoint surface components, continuation must be performed for each, using an
appropriate seed cell.

2.5. Predictor-Corrector continuation

Predictor-corrector methods [1], [19], [20], [21] apply directly to the surface, creating
elements (usually triangles or polygons) by joining an initial surface point with
additional points. New points are computed by displacement from a known point along
the tangent plane and then corrected (e.g., using Newton iteration) onto the surface.
These methods are problematic for surfaces because surface vertices are not intrinsically
ordered (unlike a one-dimensional contour), which complicates detection of global
overlap.

Figure 11. Continuation scheme, new triangles are directly generated on an implicit
surface.
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2.5.1. Marching triangles
The idea of the Marching triangles (MTR) algorithm, [19], consists of five steps:

Algorithm 1. Marching triangles principle.

Step O: Arbitrarily choose a starting point s in the neighborhood of the surface and find
the point p; that lies on the surface. Surround p; with a regular hexagon qp,...,g7 in
the tangent plane. Determine the points pa,...,p7 corresponding to the starting points
J2...,97 that lie on the surface (Figure 12a). The triangles (p1,pi,pi+1) are the first six
triangles of the triangulation. The ordered array of points pa,...,p7 form the first
actual front polygon® [To.

Step 1. For every point of the actual front polygon []o, determine the angle of the area
till to be triangulated and form front angles (Figure 12b).

Step 2: Check if any point p; of the actual front polygon is near:

a) toapoint of []o that is different from p; and its neighbors. Then divide the actual
front polygon []o into a smaller one and an additional front polygon (Figure
13a).

b) to apoint of any other front polygon [[m, m>0. Then unite the polygons [o, [m
to anew and larger actual front polygon (Figure 13b). Delete [ .

An
q |

circle in tangent plane
9

triangulated area

a)

ITi

triangulated area

b actual front polygon

b) near points

Figure 13. (a) Dividing the actual front
polygon (step 2a of the MTR agorithm) and
(b) uniting two front polygons

(step 2b of the algorithm).

Figure 12. Thefirst steps of the
Marching triangles algorithm, taken
from [19].

! the border of the triangulation
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Step 3: Determine a front point p; of the actual front polygon []o with a minimal front
angle. Surround p; with triangles with angles ~ 60°. Delete p; from the actual front
polygon []o and insert the new pointsinto the actual front polygon []o.

Step 4: Repeat steps 1-3 until the actual front polygon []o consists of only three points
that generate a new triangle. If there is another (nonempty) front polygon left, it
becomes the new actual front polygon []o and steps 1-3 are repeated. If there are no
more front polygons then the triangulation is finished.

2.6. Adaptive polygonization

Polygonization is a sampling process. If the spacing between samples is large with
respect to surface curvature, detail is lost. Resolution requirements may aso change
with viewpoint. Any fixed sampling rate may be excessive for relatively flat regions of
the surface and insufficient for relatively curved regions. If the cell size is inversely
proportional to local curvature, the resulting adaptive polygonization minimizes
polygon count while maintaining geometric accuracy. Both subdivision and
continuation may be performed adaptively, [1], [10], [36]. Accurate representation of
non-differentiable f, however, may require explicit computation of its singular points.

2.6.1. Adaptive Marching cubes

The estimate of the surface may be improved by subdividing those cubes containing
highly curved or intersecting surfaces. As is introduced in [10], using the polygon
resulting from an octree node, criteriafor subdivision of the node include:

- whether any edge of the cube intersects the surface,

- whether a maximum subdivision depth or a minimum cube size has been
reached,

- whether more than one polygon results from the cube,
- the planarity of the polygon, and
- thedivergence of vertex normals from the normal at the polygon center.

Given the polygon vertices, p;, their unit length normals n;, and the unit length normal n
at the polygon center, the planarity of the polygon can be estimated by:

max (vi - n), i T [1,nPoints] and v; the unit length vector (pi,pi+1), and the divergence of
the vertex normals can be estimated by:

min(n;-n), i1 [1,nPoints]
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Certain topological criteria, [18], warrant the subdivision of an adjacent cube. If the
edge of a parent cube connects two equally signed corners and the midpoint is
differently signed, as in Figure 14 left, then the three neighbors aong that edge should
be subdivided. For each face of a parent cube, if the four child corners that are
midpoints of the four edges of the face all agree in sign but disagree with the center of
the face, Figure 14 right, then the face neighbor should be subdivided. Without such
subdivision, a hole will appear in the surface.
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Figure 14. Conditions warranting subdivision of adjacent cubes; midpoint of an edge
(left) and midpoint of aface (right), taken from [10].

The generalized cylinder in Figure 15 was created by this adaptive agorithm.
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Figure 15. Adaptively subdivided generalized cylinder, taken from [10].

2.6.2. Adaptive Marching triangles

The algorithm introduced in [1] is based on the surface tracking approach. Starting from
a seed triangle on an implicit surface, the marching triangles agorithm iteratively
creates new triangles on the surface from the boundary edges. It is the improved version
of the method [20] with adaptivity depending on surface curvature.

The edges of the seed triangle are inserted into the list of boundary edges. New triangles
are created from the boundary edges and their new edges are appended to the end of the
list, referred as L. Each new generated triangle has to satisfy the Delaunay property: A
triangle T(Xk,Xk+1,Xp) can be added to the mesh boundary at edge e(Xk,Xk+1) if no part of
the surface of the existing mesh, i.e., no existing triangle, intersects the sphere centered
at cr circumscribing the triangle T(Xp,Xk,Xk+1) With the same orientation (see Figure 16).
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Figure 16. Creation of a new triangle T: the empty sphere criterion does not apply as
the sphere Sintersect another part of the mesh (at vertex x;) whose surface normals ny
and nt exhibits a different orientation than nr. The picture is taken from [1].

The algorithm proceeds as follows, iteratively analyzing each edge e(Xx,Xk+1) in the list:

Algorithm 2. Adaptive Marching triangles.

1. Create a new vertex x in the plane of the triangle T(xi,Xk,Xk+1) that contains the
edge e(Xk,Xk+1). This point will be used as afirst guess in the computation of the
surface vertex Xp.

2. Create a new surface vertex xp by projecting x onto the implicit surface
following the gradient of the field function Nf .

3. Apply the Delaunay surface constraint to the new triangle T(Xp,Xk,Xk+1) and
proceed as follows:

a) If T(XpX«Xk+1) passes the constraint, then add the triangle to the mesh and
stack the edges e(xp,xk) and e(Xp,Xk+1) to the list of edges L. that need to be
processed.

b) If T(XpXkXk+1) does not pass the constraint, check if one of the triangles
T(Xk-1.Xk:Xk+1)  and T (Xk,Xk+1,Xk+2) Satisfy the Delaunay surface constraint,
and modify the mesh accordingly if needed.

c) Otherwise, step over the edge e(xk,Xk+1) to the next candidate edge.
4. Close the cracks that may appear in the triangulation.

The method is implemented as a single pass through the edge list Le. Whenever the
mesh growing scheme fails, the edges are left in the edge list. At the end of the
algorithm, L forms an open contour in the polygonization. Enclosing of the left edgesis
in detail described in [1] and it is not necessary for understanding to the adaptive
polygonization principle that is described in the next paragraphs.

In [20] the point X, is computed by projecting a point x on the surface, where x is
created at a constant distance d from the edge e in the plane of the triangle T. Authorsin
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[1] used a better approach consists in adapting the parameter d to the local curvature of
the surface.

Anticipating the loca curvature of the field function consists of the three
following steps.

1. Geometry correction step. Let X, denote the mid point of the boundary edge e.
At first, the point xn, is projected onto the implicit surface in the direction of the
gradient Nf(x_) so as to fit to the local geometry of the implicit surface, see

Figure 17. This step creates a new point on the surface denoted as Xs.

Figure 17. Characterization of the surface point xs and the projected point Xp,
taken from [1].

2. Computation of the starting point. Let t be the unit tangent vector (see Figure
17) to the surface at the surface vertex position xs defined as:

_ & Nif(x,)

=< s 32
e, NG| (32)

The point x may be written as x=xs+dt where d is a variable distance parameter
computed as:

ek +1

By were o leusl 16l

d=—¢, where
2 3

: (33)

and the edges &1, &+1 are the neighboring edges of the edge ex.

The variable d is constrained with some limit vaue dn, and
|f d<dmin then dna/\/ = 3/4'd + 1/4'dmin.
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3. Computation of the new surface vertex. Let x and y denote the two points that
converge to the surface by following the gradient of the field function. The
algorithm may be written as follows:

a) Initializey with the starting point x.

b) While both points are on the same side of the implicit surface, i.e., f(x)
and f(y) are of the same sign, perform the following sub-steps.

- Evauate an approximation of the distance to the surface by the Taubin's
distance, equation (26).

- Compute the new location for point y, marching from x aong the
direction of the gradient vector Nf(x) .

=x- o[OINFO). (34
INFGA

where o isascaar factor.

- If f(x) and f(y) are of the same signs, store y in x and restart loop at
step b.

¢) When the algorithm reaches this step, x and y are on opposite sides of the
surface, so perform bisection over the line segment [X,y].

2.7. Surface refinement

One possible solution for polygonization of implicit object with sharp features is
refinement of an initial triangular mesh, [4], [24], [27], [28], [42]. Simple, efficient and
numerically stable algorithm is used for constructing of an initial mesh. Algorithms
based on the marching cubes principle are often used. A coarsely polygonized surfaceis
followed by subdivision of insufficiently accurate polygons. For example, if the center
of atriangle istoo distant from the surface, the triangle may be split at its center, which
is moved to the surface. Similarly, a triangle may be divided along its edges if the
divergence between surface normals at the triangle vertices is too great.

The agorithm introduced in [28] consists of following two steps. Given an implicit
surface f(x,y,z) = 0 and its initial polygonization then the mesh optimization procedure
isasfollows.

1. Construct the dual mesh consisting of the centroid of the original mesh, modify
the dual mesh by projecting its vertices onto the implicit surface, and find the
tangent planes at the vertices of the modified dual mesh.
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2. For each vertex, update its position by minimizing an error function equal the
sum of squared distances from the vertex to tangent planes at the neighboring
vertices of the modified dual mesh.

Figure 18. The initial mesh (left) created by the Marching cubes algorithm and its
optimized version (right), taken from [28].

The method has several limitations. The mesh optimization process does not change the
topology of an initial coarse mesh. Therefore, if fine topological details are not captured
by the initial mesh, the method may produce a wrong reconstruction of the implicit
surface. Another drawback of the method is a large number of calls of a function which
defines the implicit surface. If the function is very complex, the method becomes
computationally expensive.

2.8. Particle systems

Particle systems (physically based techniques) start from initial positions in space and
seek their equilibrium positions, i.e. positions where a potential function | f | is minimal
— on an implicit surface, [14], [15]. The desired polygona approximation is then
obtained by computing the Delaunay triangulation associated with the points.

The interpretation of the gradient of | f | as a force field implies the following equation
of motion for a unit mass particle:

d?x
dt?
where gis a positive real number representing friction proportional to velocity, [14].

+g%+sign(f)l§lf =0, (35)

Figure 19a shows the trajectories of a particle system associated with a two-dimensional
curve with 2 components and Figure 19b shows the final equilibrium positions of these
particles along the curve.
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Figure 19. Traectories (a) and final positions (b) of particles for 2D curve, taken
from [14].

Figure 20a shows the sample points on the surface of a sphere and Figure 20b shows the
polygonal approximation for the sphere.

a)

Figure 20. Sample points on the surface of a sphere (a) and polygonization of the
sphere (b), taken from [14].

2.9. Non-Manifold polygonization
Although a manifold-with-boundary may be specified by a continuous function, all

points off the zero set are of the same sign. Consequently, conventional polygonization
fails. A non-manifold can be implicitly represented by extending the definition of f to be
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the separation between arbitrary regions of space. A continuation method using this
schemeisgivenin[11].

Figure 21. Polygonized non-manifold, taken from [11].
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3. Novel polygonization approaches

In previous sections, an overview about implicit surfaces, their modeling and
polygonization has been introduced. The author's work will be presented in the
following text. This chapter starts with modifications of the Marching triangles
algorithm that has been mentioned in section 2.5.1. The following section contains an
introduction of the new polygonization method - Edge spinning (ES). The first version
of the algorithm is non-adaptive and its adaptive modification is presented next. The ES
algorithm is based on the similar principle as the Marching triangles method. The
ES approach has been implemented in a standard way as well as using an acceleration
technique. Thereinafter, the ES algorithm has been modified to be able to polygonize
implicit object with sharp features. A modification of the algorithm, to be able to
triangulate implicit scenes consisting of more disjoint surfaces, is presented finally.

Note that sequence of the following sections is chronological according to development
of the algorithms. In each section, the comparison and experimental results of the given
method are demonstrated. All experiments have been realized on a computer Athlon XP
2500+, 512MB DDRA400.

3.1. Marching triangles improvement

The original algorithm described in [19] contains some parts that can be implemented
more effectively. The most time-consuming part is the distances checking of the front
polygons points (Step 2 of the Algorithm 1). Our modification of the algorithm is
directed precisely towards achieving this step.

3.1.1. Decreasing the algorithm complexity

Thefirst distance check (FDC, step 2a of Algorithm 1) is of complexity:
O(3m* (m- 5))p O(m2 )’ (36)
where mis anumber of pointsin the actual front polygon.

The second distance check (SDC, step 2b of Algorithm 1) is of complexity:
O(m* u), (37)
where u is anumber of pointsin all the other front polygons.

Both distance checks, FDC and SDC, are evaluated at each step of the MTR algorithm
and, therefore, the final algorithm complexity is:
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Of(m? + m*u)*s)p O(m* (m+u)* s)» O(N?), (38)

where sis anumber of repetitions of the MTR a gorithm.

There is good to realize that the shape and structure of the actual front polygon is only
modified during the polygonization process and all the other front polygons stand
without any changes. Thereinafter, the actual front polygon’s shape is only modified in
one location where new points are included. The result of those causesis: the main part
of a sceneis static and only one local limited area is dynamically modified. Therefore,
the distance checking need only be performed for new points and Step 2 of the MTR
algorithm can be written as follows.

Step 2: Check if only the new points p; of the actual front polygon are near ... (both
steps a and b are without changes).

This means that the agorithm complexity for one step and one inserted point is
decreased and can be expressed for FDC as:

O(m), (39)
where mis anumber of pointsin the actual front polygon, and for SDC as:

O(u), (40)
where u is anumber of pointsin all the other front polygons.

Therefore, the final algorithm complexity is:

Of(m+u)*s)» o(N?) (41

where sisanumber of repetitions of the MTR algorithm.

The agorithm complexity of the MTR method was reduced by one level. Therefore, the
usage of the algorithm for polygonization of more detailed objects (with alarge number
of polygons as its output) was significantly increased. Nevertheless, our experiments
proved that the MC algorithm (surface tracking approach) is, for polygonization of
highly detailed objects, significantly speedier than this modified MTR method. The
reason is that the distance checking is still using large algorithm complexity for the
growing number of pointsin front polygons.

3.1.2. Acceleration

One possible solution is the subdivision of the computing area into smaller sub-areas.
Each sub-area contains only one part of a set of front polygons points. The average
number of points in sub-areas depends on the sub-areas’ size. Our main requirement is
to minimize the number of distance checks, i.e. a selection of the most restricted set of
points into which the actual front polygon can be divided or united.
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The actual front polygon is divided or united only if the distance between two specified
points is shorter than some limit distance o (more information in [19]). Therefore, the
most suitable choice for the size of the sub-areas side is g, i.e. the shape of sub-areasisa
cube. For this choice, the distance checks (FDC and SDC) can be accomplished only
with front polygons points which lie in adjacent sub-areas of the new point’s area.
Figure 22 shows a distance check for a new included point (for illustration only the E
example).

front polygon
!

(i-14+1) |(i,j+1) (i+1,4+1)
.

\ nearestiw v
G-15) |d 1 [ 1) subarea list of points
i1 i, 1 4
new point | <4 D &> D> j&>»f D’ &> D |
2 5 2 -

(-13-1) | Gg-1) (M\Q«7 3 4% DPije> P2 e P
0

|

neighboring subareas

A o
4 actual [front polygon
y polyg N

[« >

4 Pije» o]

X >

. o Figure 23. The data structure for the
Figure 22. Space subdivision scheme.  space subdivision scheme.

Each sub-area contains alist of front polygons points located inside. The data structure
used for the subdivision scheme is shown in Figure 23. Each front polygon also has its
own set of points (similar as above) and each point contains one pointer to its sub-area
and one pointer to its front polygon as well.

3.1.3. Edge detection

Detection of sharp edges is amodification of the MTR method (section 2.5.1) at the step
of finding location of a new point (in step 3 of the MTR agorithm, see Algorithm 1).
The principle of the algorithm is in knowledge of normal vectors at points p and g. The
point p already has its own accurate position and the point g lies in the tangent plane of
the point p. Then the algorithm is as follows.

Algorithm 3. Edge detection for the Marching triangles method.

1. Initidization, a = p, b = g, na ... normal vector in the point a, n, ... normal
vector in the point b.

2. ¢=0.5*(atb) ... binary subdivision between the points a, b.

L et the normal vector at the point ¢ be n¢, and a be the angle between vectors n,
and ne.

If a>winthenb=cesea=c.

5. If the distance between points a, b isless then some ¢, the desired point is b, else
return to step 2.
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Figure 24. The implicit object modeled as intersection of two spheres; polygonized
a) without edge detection; b) with edge detection algorithm.

3.1.4. Experimental results

The next experiments were accomplished on the implicit object Genus 3, Figure 25. Its
implicit function is described as follows:

£ =2 - - Gy - (/e P x)2 +v2 - e2plxe )2 4y2- 2)=0,  (@2)

where the parameters are =6, r,=3.5, r,=4, r1=1.2, x;=3.9.

Figure 25. The implicit object Genus 3.

Figure 26 shows the speed-up between the original MTR agorithm and the accelerated
one. It can be seen that speed-up grows with the resolution linearly in the range of
resolution used for experiments. The experiments proved that the proposed algorithm is
especially convenient for cases where highly detailed objects are to be generated.
Nevertheless, even for small resolution the proposed algorithm is significantly faster
than the original one [19].
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Figure 26. Speed-up between the original MTR agorithm and the accelerated version.

Table 1 contains the list of values which were obtained by the first experiment. It is
obvious that both modifications of the MTR agorithm generate comparable values
(number of triangles and vertices) only the computational timeis significantly different.

GENUS 3 [ N 160 | 240 | 400 630

Triangles || 15535| 34945 97785 244 295
Vertices 7763 17 468| 48 886 122 143
time [ms] 5147| 27600 340459| 2263275
Triangles || 15679| 35067| 97 867 244 103
Vertices 7835 17529| 48929 122 047
time [ms] 120 260 1001 2724

Original MTR
algorithm

Accelerated MTR
algorithm

Table 1. Values measured for both versions of the MTR agorithm.

The N variable, used in Figure 26 and in Table 1, represents a desired level of detail.
Specificaly, the average triangles edges length is proportional to N and to the
computing area’ s size aswell. With growing N, thetriangles' edges get shorter, i.e. each
side of the computing area is as though divided into N parts and length of such part is
the average edges length of generated triangles. The computing area’s size used in
experiments has been [<XminXma>,<YminYmax><ZminZmax>]=[<-16,16>,<-16,16>,<-
16,16>].

The histogram in Figure 27 illustrates that the triangular mesh generated by the
accelerated version of the MTR method consists of triangles with the similar shape
properties.

-36 -



Novel polygonization approaches

Number of angles [%)]

35
O Original
30 —
@ Accelerated
25
20 4
15 -
10 A

30-40 40-50 50-60 60-70 70-80 80-90 90-100

Angle's intervals in degrees

Figure 27. Histogram of the triangles shape (angle distribution) for the MTR
algorithms; generated for N=630, see Table 1.

3.1.5. Conclusion

The original Marching triangles algorithm has been significantly accelerated and its use
is also suitable for triangulation of more detailed implicit objects now.

Note that the presented approach in this section has been published in [vii] of the author
publications.

3.2. Edge spinning algorithm and its acceleration

In this section, the new algorithm for polygonization of the implicit surfaces will be
introduced. The Edge spinning (ES) method put emphasis on the shape of triangles
generated and on the polygonization speed as well. The algorithm is a variant of
marching triangles methods [1], [19], [20], [21], i.e. it is based on the continuation
(surface tracking) scheme.

3.2.1. Data structures

The presented algorithm works only with the standard data structures used in computer
graphics. The main data structure is an edge used as a basic building block for the
polygonization. We use the standard winged edge and therefore, the resulting polygonal
mesh is correct and complete with neighborhood among al generated triangles. If a
triangle’ s edge lies on the triangulation border, it is contained in the list of active edges
(dynamically allocated list) and it is called as an active edge. Each point contained in an
active edge has two pointers to its left and right active edge (left and right directions are
in active edges’ orientation).
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3.2.2. Idea of the algorithm

Our agorithm is based on the surface tracking scheme and therefore, there are severd
limitations. A starting point must be determined and only one separated implicit surface
can by polygonized for such point. Severa digoint surfaces can be polygonized from
a starting point for each of them. The whole algorithm consists of the following steps.
Algorithm 4. Edge spinning principle.

1. Find astarting point po.
Create the first triangle Ty, see Figure 28.
Include the edges (ep,e1,€;) of thefirst triangle Ty into the active edges list.

Polygonize the first active edge e from the active edges list.

a ~ W N

Delete the actual active edge e from the active edges list and include the new
generated active edges to the end of the active edges list.

6. Check the distance between the new generated point prew and all the other points
lying on the border of already triangulated area (lying in all the other active
edges).

7. If the active edges list is not empty return to step 4

Figure 28. Thefirst steps of the Edge spinning algorithm.

3.2.3. Starting point

There are severa methods for finding a starting point on an implicit surface. These
algorithms can be based on some random search method as in [5] or on more
sophisticated approach. In [40], searching in constant direction from an interior of an
implicit object is used.

In our approach, we use a simple agorithm for finding a starting point. A starting point
is sought from any place in defined area in direction of a gradient vector Nf of an
implicit function f. The algorithm looks for a point po that satisfy the equation f(po) = 0.
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3.2.4. First triangle

The first triangle in polygonization is assumed to lie near a tangent plane of the starting
point po that is on the implicit surface.

Algorithm 5. Creating of thefirst triangle.

1. Determine the normal vector n = (ny,ny,n;) in the starting point po, see Figure 29.
n = Nf /|Nf||

2. Determine the tangent vector t asin [19].
If (ny>0.5) or (ny >0.5) thent = (ny, -ny, 0); elset = (-n,, 0, ny).

3. Usethe tangent vector t as afictive active edge and use the algorithm edge spinning
(described bellow) for computation coordinates of the second point p;. The pair of
points (po, p1) forms the first edge ey.

4. Polygonize the first edge ey with the edge spinning algorithm for getting the third
point p,. Points (po, pP1, P2) and edges (&, €1, &) form the first triangle To.

Figure 29. First triangle generation.

3.2.5. Root finding

The agorithm looks for a new points location by spinning of edges of already
generated triangles. Usually, the polygonization algorithms seek points coordinates
following the gradient of an implicit function, [19]. Differential properties, [35], for
each implicit function are different with the dependence on the modeling technique;
therefore, the computing of a gradient of function f is influenced by a maor error.
Because of these reasons, in our approach, we have defined these restrictions for finding
anew surface point prew:

- The new point pney IS SOught in a constant distance, i.e. on a circle; then each
new generated triangle preserves the desired accuracy (level of detail) of
polygonization — the average edge’'s length de. The circle radius is proportional
to the Je.
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The circle lies in the plane defined by the normal vector of triangle Tqq (See
Figure 30) and axis o of the actual edge €; this guarantees that the new generated
triangle iswell shaped (isosceles at |east).

D new
I A
L
\ Tn - "I_)-”ne\\

ew.” Shewl [

Figure 30. Theroot finding principle.

Then, the algorithm is as follows:

Algorithm 6. Root finding of the Edge spinning method.

1.

Set the point pney to itsinitial position; theinitial position is on the triangle’' s Tqq
plane on the other side of the edge e, see Figure 30. Let the angle of the initial
position be a=0.

Compute the function values f(pnew) = f(a), f(p’new) = f(@+Da) — initial position
rotated by the angle +Da, f(p”"new) = f(a-Da) - initial position rotated by the
angle -Da; the rotation axis isthe edge e.

Determine the right direction of rotation; if [f(a+Da)| < [f(a)| then +Da else -Da.

) Trew
D%

Figure 31. Angle between two triangles, the view isin direction of the edge’'s
Vector e.

Let the functional values be f;=f(a) and f,=f(atDa); update the angle
a =azDa.

If (f1 xf,) < 0 then compute the accurate coordinates of the new point prey by the
binary subdivison between the last two points corresponding to functional
values f, and fy; else return to step 4.
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6. Check if both triangles Tog and Thew do not cross themselves; if the angle
between these triangles b > by, (see Figure 31) then point prey iS accepted; else
point prew IS rejected and return to step 4.

3.2.6. Active edge polygonization

Polygonization of an active edge e consists of several steps. At first, the algorithm
checks adjacent active edges of the active edge e and determines which of following
cases appeared, see Figure 32.

If (ai < a”m_l) then casea); i=1,2.

If (a2 < a&iim 2) and (||pes - Pr_e2l| < diim 1) then case a); analogically for a;.
If (a2 > aiim 3) and (||pe1 - Pr_e2ll < diim_2) then case b); analogically for a;.
else case )

Note that the relations among limit angles are ajim 1 < &jim 2 < &lim 3.

Figure 32. The possible cases for polygonization of an active edge.

Possible cases which areillustrated in Figure 32 are:

a) In this case, algorithm creates a new one triangle and includes a new active edge

enew 10 the end of the active edges list.

b) In some situations, the length of certain edges can be shorter then tolerable limit. In

this case, algorithm must repair the length of the new edges €,an1 and €nens to
achieve better shapes of next triangles. The axis 0; (see Figure 32) is used as
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afictive active edge for the algorithm edge spinning and the new point prey iS
created as well astwo new triangles.
c) In al the other situations, the edge e is polygonized by the standard algorithm edge

spinning.

3.2.7. Distance test

To preserve the correct topology and the shape of the mesh triangles it is necessary to
perform the distance check between the new triangle and a border of aready
triangulated area. Therefore, each new generated point pney Must be checked for
distance with all the other points which lie in active edges. Let the point pmin be the
nearest point to this new point pney and distance between both pointsis d = ||Prew - Pminl|-
Further, let pmin NOt lie in the active edges which are in the neighborhood of both active
edges which contain the point prey. Then, there are two cases described in Figure 33.

a) If d < dim 3then the new point prew is replaced with the point pin.

b) If d<dim 4then anew triangle must be created between the new point ppew and one
of two active edges which contain the point pmin. , i.€. either the triangle (Pmin, Prews
Pr_min) O the triangle (Pi_min, Prew, Pmin), Se€ Figure 33b. The decision, which active
edge will be used, depends on angles a1, a,. The angles a;, i = 1, 2 arein interval
<0, > and therefore, the triangle with the angle a; that is better approximation of
angle 90° is chosen.

Note that the relation between distance limitsis dim 3 < djim_a.

The situation described in Figure 33 @) and b) is similar for both cases now. Point prew
is contained in four active edges ey, &, €3, €, and a border of already triangulated area
intersects itself on it. Solution of the problem will be introduced on case b) and solution
for case @) isanaogically. Let the four active edges be divided into pairs; the left pair is
(e3, &) and the right pair is (e, e4). One of these pairs will be polygonized and the
second one will be cached in memory for later use. The solution depends on angles B,
B2, see Figure 33b. If (B1<p2) then the left pair (es, &) is polygonized; else the right pair
(e1, &) of active edges is polygonized. In both cases, the second pair that is not
polygonized is deleted from the list of active edges and the point pney iS contained only
in one pair of active edges.

In Figure 33b, thefirst caseisvalid (B1<p>), i.e. the active edges (es, &) are polygonized
in order that depends on angles v, y2. If (y3<y2) then the active edge e; is polygonized at
first; else the active edge e, is polygonized first.
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Pret

b)

Figure 33. The possible cases for the distance test.

Now, the border of the triangulated area does not cross itself in the point pney and the
recently polygonized pair of edgesis removed from the active edges list. The previously
cached pair of edges must be returned into the list of active edges.

3.2.8. Acceleration

The original distance check algorithm takes more time if required scene details grow
(growing number of points on the triangulation border). In case that the new included
point can lie near to any point of the boundary, it is not possible to determine some
subset of candidates to the nearest point ahead.

trianngation border
o

(-Ljt1) |Gg+1) [+

o
BN nearest jﬁ)}t}p
RN\ P GEN)
new point
o B

(-1-1) |Gj-1) (N1
4 u)

=]

neighbdring subareas

|

X

Figure 34. The space subdivision scheme for the Edge spinning algorithm.
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Advantageous solution is dividing of space into sub-spaces (sub-areas), similarly as in
case of the Marching triangles algorithm described above. The date structure of the
point has to be extent of a pointer to its sub-area. Each sub-area contains its own list of
incidence points, similarly asin Figure 23.

Then, the nearest point must lie in the same sub-area like the new included point or in
the closest neighborhood. In order to validity of this theorem the next equation must be
valid aswell: 6 > §;im, Where o is the size of sub-areas (cube shape), see Figure 34, and
oiim IS the limit distance for distance check.

The original algorithm checks distances with the algorithm complexity O(N), where N is
anumber of points on the triangulation border. The accelerated distance test is of
algorithm complexity O(M), where M is a number of points in adjacent sub-areas and
M<<N. Figure 34 shows 9 possible sub-areas in E? case, there are 27 possible sub-areas
in E® case, see Figure 35.

a)

Figure 35. The algorithm has to perform the distance test among a) all points lying on
the triangulation border; b) only points lying in the adjacent sub-areas to the new point.

3.2.9. Experimental results

Experimental results are divided into three parts where at first, the quality of trianglesis
compared among Edge spinning, Marching triangles and Marching cubes algorithms.
Second experiment illustrates effectiveness of the space subdivision acceleration
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Figure 37. Histogram of angle distribution of triangular mesh, generated for Genus 3

object with average length of triangles edges set to 0.04 (it represents the desired level
of detail - LOD).

Acceleration by the space subdivision

In the next experiment, we will have a look a speed comparison between the
accelerated and the original ES algorithm. If we divide the computational time into two
parts, the polygonization time and the distance check time, Figure 38 shows the
percentage ratio of time with and without acceleration. It is obvious that the time,
needed for distance checking, was significantly decreased.

Polygonization time Polygonization time
6,8% 70,3%

Distance test time Distance test time
a) 93,2% b) 29,7%

Figure 38. The time ratio between the Polygonization time and the Distance test time of
the ES algorithm; a) without the space subdivision scheme, b) with the space
subdivisions equal to 100.

Table 2 contains computing times measured with various space subdivisions as well as

speed-up achieved. For better illustration, the values from the Table 2 are graphicaly
shown in Figure 39.
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subdivision N/A 10 20 30 40 50 60 70 80 90| 100
time [ms] 12609 | 7791 5969 | 4056 | 3024 || 2563 | 2284 | 2143 2033 || 1993 1943
speed-up 1,00| 1,62| 2,11 3,11 4,17 4,92| 552| 5,88| 6,20| 6,33| 6,49

Table 2. Computational time and speed-up achieved in dependence on space
subdivisions used. Genus 3 object, 331 414 triangles, 165 703 vertices, polygonization
area [<Xmin,Xmax>, <ymin,ymax>, <Zmin,Zmax>] = [<'16,16>, <'16,16>, <'16,16>]

7,00

6,00

5,00

4,00

Speed-up

3,00

2,00 -

1,00 -

0,00 T T T T T T T T T T
NJA 10 20 30 40 50 60 70 80 90 100

Space subdivision

Figure 39. Comparison of speed-up depending on space subdivision used.

The results proved that this acceleration technique is effective and simple for
implementation as well.

Comparison between the Edge spinning and the M ar ching cubes algorithms

Our next experiment is amed at detailed comparison of Edge spinning and the
Marching cubes algorithms. The measured values from the experiment are in Table 3.
The space subdivisions for the Edge spinning algorithm has been equal to 100 and the
polygonization area has been the same as in previous test. The values have been
achieved with a variable lowest level of detail (LOD) because we want the number of
generated triangles to be similar. Note that for the Marching cubes agorithm, the LOD
value represents a size of cube cells. The experiment has been performed on implicit
objects Genus, Jack, Morph and Spiral whose pictures are shown in Figure 40.

Table 3 contains the number of triangles and vertices generated. The value Angle err is
proportional to surface curvature and means the average deviation between surface
normal vectors a points sharing an edge. For the Edge spinning agorithm, it
corresponds to aer given at the beginning of the polygonization. The value Centroid
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angle err represents the deviation between the normal vector of a triangle and the
function normal vector computed at the centroid of the triangle. Note that the real

normal vector is measured numerically from the implicit function at a given point.

i Genus 2: Jack i 3. Morph E 4. Spiral

Figure 40. Implicit objects used in the experiment.

The values Alg dist avg, Euc dist avg, Taub dist avg measure the approximation quality
as an average distance of atriangle from the real implicit surface. They are measured at
agravity centre of each triangle. The distance is either algebraic (Alg dist avg) or real
Euclidian (Euc dist avg) or the Taubian [39] (Taub dist avg).

Edge spinning

Marching cubes

| Genus Jack Morph Spiral Genus Jack Morph Spiral

LOD 0,04 0,02 0,03 0,04 0,05 0,02 0,03 0,05
Triangles 331414 332580( 117 342 191442 334816( 327 208 134 552| 201 908
Verices 165 703 | 166 290 58 671 95 723|| 167 404 163 606 67 274 100 954
Angle error 7,89E-03 (| 1,02E-02 || 1,29E-02 || 1,32E-02 || 8,12E-03 || 1,06E-02 || 1,26E-02 || 1,40E-02
Centroid angle err. | 1,84E-03 | 1,80E-03 | 2,73E-03 || 3,11E-03|f 2,29E-03 || 3,17E-03 || 3,87E-03 || 4,70E-03
Alg dist avg 0,16 || 2,50E-04 || 7,25E-04 || 6,68E-04 0,2 3,27E-04 || 8,32E-04 || 8,64E-04
Euc dist avg 1,08E-04 | 8,63E-05| 1,64E-04 || 2,26E-04 || 1,41E-04 || 1,16E-04 || 1,90E-04 || 2,86E-04
Taub dist avg 1,08E-04 | 8,64E-05| 1,64E-04 |[ 2,26E-04 || 1,41E-04 || 1,15E-04 || 1,90E-04 || 2,87E-04
Angle criterion 0,86 0,86 0,85 0,85 0,37 0,37 0,37 0,36
Edge length crit. 0,91 0,91 0,90 0,90 0,53 0,53 0,53 0,52
Time [ms] 1892 3345 941 2243 1692 2053 831 1943
Avg time [ms] 5,71 10,06 8,02 11,72 5,05 6,27 6,18 9,62
Time ratio ES/MC 1,13 1,60 1,30 1,22 --- --- ---

Time ratio MC/ES 0,89 0,62 0,77 0,82

Table 3. Vaues from the experiment measured by the Edge spinning and the Marching

cubes algorithms on various implicit objects.

Note that the algebraic distance (function value) strongly depends on the given implicit
function and it is only proportional to the real distance. It is only useful for comparing
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algorithms properties on the same objects. The Euclidian distance has been measured
between atriangle centroid and its corresponding surface point; note that it is computed
numerically, see Algorithm 9 on page 53 for details. For the given implicit functions, it
can be seen that the Taubian distance is a good approximation of the real distance.

The value Angle criterion means the criterion of the ratio of the smallest angle to the
largest angle of atriangle and the value Edge length criterion means the criterion of the
ratio of the shortest edge to the longest edge of atriangle. These values show the quality
of resulting triangles generated.

The value Time shows the measured computational time of each algorithm and the value
Time avg represents an average time needed for creating of one thousand triangles. Time
ratio values represent a speed comparison between the both algorithms.

Note that all the criteria mentioned above have been defined in section 2.1 and will be
used in the same meaning in following section as well.

3.2.10. Conclusion

In this section, the new principle for polygonization of implicit surfaces has been
presented. The algorithm marches over the object’s surface and computes the accurate
coordinates of new points by spinning the edges of already generated triangles. The
Edge spinning algorithm generates triangular meshes of excellent quality and the
polygonization speed is, with using the space subdivision scheme, comparable with the
well-known Marching cubes agorithm. The space subdivision scheme seems to be an
effective way for speed-up of such type of geometric algorithms.

Usage of the Edge spinning algorithm is limited for implicit surfaces which comply C*
continuity which is a common problem of surface tracking approaches.

Note that the presented approaches of this section have been published in [iv], [viii] and
[iX] of the author publications.

3.3. Adaptive Edge spinning algorithm

Many polygonization algorithms adaptively or non-adaptively create polygonal meshes
without a proper definition of an approximation error that is requested in result. Usualy,
the algorithms allow to user to set alevel of detail (min/max size of triangles, number of
divisions in axes, etc.) which only has a little relation to the resulting approximation
quality. The quality strongly depends on ratio between size of implicit objects and size
of triangles, size of computational area, etc.

Our algorithm defines the approximation error that is proportional to surface curvature
estimation, see variable ag in section 3.3.1. The desired error is given at the beginning
of the computation and it is preserved for all triangles during the whole polygonization.
The resulting polygonal mesh consists of well shaped and adaptively sized triangles and
moreover, it preserved the given approximation quality as well.
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In this section, the adaptive extension of the Edge spinning algorithm will be presented.
The method approximates an implicit surface by a triangular mesh according to local
estimation of surface curvature. The polygonal mesh is created with respect to preserve
given approximation error as well as to achieve the best possible shape of triangles
generated.

3.3.1. Principle of the algorithm

The algorithm is based on the surface tracking scheme as methods mentioned in
previous sections. Its principle and basic steps are analogical to the original non-
adaptive Edge spinning method.

Because the adaptive approach operates with triangles of different size, some steps
inside are different from the origina method and will be described in following
sections.

The whole algorithm consists of the following steps.

Algorithm 7. Adaptive Edge spinning principle.
1. Initialize the polygonization:
a) Find the starting point po and create the first triangle To.
b) Include the edges (ep,e1,&2,) Of thefirst triangle Ty into the active edges list.
2. Polygonize thefirst active edge e from the active edges list.

3. Update the AEL; delete the currently polygonized active edge e and include the
new generated active edge/s at the end of the list.

4. If the active edgeslist is not empty return to step 2.

Note that at the beginning of polygonization, there are two variables important for
computation:

- LODna —the maximal length of triangles edges, i.e. maximal level of detail;

- aer — desired accuracy of approximation, i.e. desired maximal angle between
normal vectors a points lying on the same edge of a triangle; this variable
represent a measure of dependence on surface curvature.

The whole polygonization is controlled by these criteria and new triangles generated are
created adaptively to preserve the accuracy.

3.3.2. Root finding with curvature estimation

New generated points are sought on acircle as in the original algorithm but the finding
circleradiusis proportional to the estimated surface curvature now.

The surface curvature radius r. between points pi, p2 with their normal vectors nj, n,
see Figure 41, is estimated by the ssmple formula:
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r. = d , (43)
a

where d is the distance between the points p;, p2 and a is the angle between the surface

normals ny, Na.

Figure 41. The circle ¢ with radius r. of surface curvature between points p;, p. and
estimation of radiusr, of finding circle according to desired approximation error aey.

The new radius r, of the finding circle is then computed as follows.

r, =kx, x [25{1- COSa ¢ ), (44)

where k is a constant, r. is the estimated radius of surface curvature and ae is the
required approximation error given at the beginning of the polygonization process.
Because it is an estimation, we used the k = 0.8 constant just to be surer that the new
triangle will satisfy the desired accuracy.

Note that this formula has been derived from the second cosine theorem
c® =a’ +b?- 2xbscosa With the presumption a = b = r., see Figure 41. The initia
radius ry of the circle ¢; is proportional to the length of the current active edge e to
anew triangle Tnrey be equilateral.

Limitations of the final radius:
if (r2 < rmin) then ra = rpn,
If (r2 > rmax) then ra = ryax,

where o, =51, ad 'max is a limit value derived from the maximal level of detail

L ODmax Which edges of the new triangle have to satisfy.

For creating of a new triangle, the radius of surface curvature r. is evaluated three times
among pairs of points (P1, Pinit), (P2, Pinit), (Ps: Pinit), Where p1, p2 are points of the
current active edge e, ps is its midpoint and pinit is the point of intersection of the circle
c1 with the plane defined by the triangle Toq4, See Figure 42. The fina r. is taken as
minimum from these three.

Determination of the point pney lOcation is then analogical to Algorithm 6.
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Figure 42. The finding circle radius estimation.

3.3.3. Root finding on a sharp edge

Let us assume that the standard edge spinning root finding algorithm presented above
has found the point pney. The algorithm then determines the surface normal vector Npey
at this point and computes the angle a between normal vectors npey and ns. The vector
Nsis measured at mid-point s of the active edge e, see Figure 43. If the angle a is greater
then some user-specified threshold ajim edge (Iimit edge angle) then the algorithm will
look for a new edge point as follows.

s

\
implicit \surface

Figure 43. The principle of root finding algorithm for sharp edges.

Algorithm 8. Edge detection for the Edge spinning method.

1. Compute coordinates of the point pini; as an intersection of the three planes,
tangent planes t; and t,, and the plane in which the seeking circle c lies, see
Figure 43.
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2. Apply the straight root finding algorithm described in section 3.3.4 and find the
new point p’ naw.

Note that the algorithm needs an accurate determination of surface normal vectors, i.e.
accurate computation of a function gradient. Therefore, implicit objects should be
modeled by F-Rep, [34], because objects defined by min/max operations are not good
differentiable, [27], [35].
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Figure 44. A square modeled as intersection of four half-spaces; left: by min/max
operations; right: by the F-Rep operations; taken from [27].

The gradient array of a square, modeled by min/max and F-Rep operations, isillustrated
in Figure 44. The picture shows that the min/max operations create objects with poor
differential properties.

3.3.4. Straight root finding algorithm

The algorithm starts from an initial point pini: (See Figure 45) and supposes that the
implicit surfaceis at least C° continuity.

implicit
surface

Figure 45. Principle of root-finding in straight direction.

The algorithm continues as follows.

Algorithm 9. Straight root finding algorithm.

1. At point pinit, compute the surface normal vector niy; that defines the seeking
axiso.

2. Compute coordinates of point p’int With distance d from point pi,i; in direction
Ninit * Sign( f(pinit) ); where d is the step length.

3. Determine function valuesf, f' at points Pinit, P’init-
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4. Check next two cases.
a) If these points lie on opposite sides of implicit surface, i.e. (f*f')<0;
compute the exact coordinates of the point prew by binary subdivision
between these points.

b) If the points pinit, P’init lie on the same side of the surface then pinit = p’init and
return to step 2.

3.3.5. Polygonization of an active edge
Polygonization of an active edge e consists of several following steps.
Algorithm 10. Active edge polygonization.
1. Usethe Edge spinning algorithm to find a new point prey in front of the edge e.

2. Determine angles as, a, in front of points p;, p2 of the current edge e,
see Figure 46.

3. Perform neighborhood test.
Perform distance test.

Neighborhood test

If the point prew has been found, there are two cases illustrated in Figure 46. Decision
between cases a) and b) depends on relation among angles a;, a», an, see Figure 46. Let
the angle a be min(a,ay). If (a < asape) then case a) else case b), see Figure 46. The
limit shape angle is determined as asae = an + p/6, so the space for next triangles
should be at least p/6; this constant just affect a shape of next generated triangles.

step 2) Do
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Figur e 46. Polygonization of the active edge e.
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If the point prew is NOt found, angle a,, is not defined and the limit angle asape Should be
just less then p; we have chosen asape = 2/3 * p.

a) Inthis case, a new triangle t.ay is created by connecting the edge e with one of its
neighbors, see step 2a.

b) The new triangle tney IS created by joining the active edge e and the new point prew,
see step 2b.

In both cases, a bounding sphere is determined for the new triangle t.ey. The bounding
sphere is the minimal sphere that contains all three points of the triangle, i.e. the centre
of the sphereliesin the plane defined by these three points.

Note if there is not a new triangle (the point prew does not exist and case a) has not
appeared) the bounding sphere of the active edge e is used. The next procedure is
analogical for all cases.

Distance test

To preserve the correct topology, it is hecessary to check each new generated triangle if
it does not cross a surface already generated. It is sufficient to perform this test between
the new triangle and a border of already triangulated area (i.e. active edgesin AEL).

The algorithm will make the nearest active edges list (NAEL) to the new triangle thew.
Each active edge which is not adjacent to the current active edge e and which crosses
the bounding sphere of the new triangle (or the edge €), is included into the list, see
Figure 48, step 2. The extended bounding sphere is used for the new triangle created by
the new point prey (Case b) because the algorithm should detect a collision in order to
preserve well-shaped triangles. The new radius of the bounding sphere is computed as
r, = c*r; and we used the constant ¢ = 1.3.

If the NAEL list is empty then the new triangle tney IS finally created and the active
edges list is updated.

In case @), Figure 46 step 2, the current active edge e and its neighbor edge e are
deleted from the list and one new edge eney is added at the end of the list. The new edge
should be tested if it satisfies the condition of the surface curvature. If it does not then
the new triangle will be split along the edge ey, See section bellow.

In case b), Figure 46 step 2, the current active edge e is deleted from the list and two
new edges enen1, Enenz are added at the end of the list.

Note that if there is no new triangle to be created (the point pney does not exist and case
a) in Figure 46 has not appeared) the current active edge e is moved at the end of the
AEL list and the whole Algorithm 7 will return back to step 2.

If the NAEL list is not empty then the situation has to be solved. The point pmin with the
minimal distance from the current edge e is chosen from the NAEL list, see Figure 48,
step 3.
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implicit surface

Figure 47. A problem of thin implicit objects.

This point has to satisfy a condition of thin objects as well. The current active edge e
and the point pmin should not lie on the opposite sides of the implicit surface. Figure 47
illustrates the wrong situation.
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Figure 48. Solving of distance test.
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If the correct point pmin is found, the new triangle tney has to be changed and will be
formed by the edge e and the point pmin, i.€. by points (Pe1,Pmin,Pe2); the situation is
described in Figure 48, step 3. The point pmin IS owned by four active edges €new1, €nenzs
€min1, Eminz and the border of already triangulated area intersects itself on it. Thisis not
correct because each point that lies on the triangulation border should has only two
neighborhood edges (left and right).

Solution of the problem is to triangulate two of four edges first. Let the four active
edges be divided into pairs; the left pair be (émin1, €new2) and the right pair be (enews,
eminz). One of these pairs will be polygonized and the second one will be cached in
memory for later use. The solution depends on angles am;, amg, see Figure 48, step 3. If
(am1 < am) then the left pair is polygonized; else the right pair is polygonized.

In both cases, the recently polygonized pair is automatically removed from the list and
the previously cached pair of edges is returned into the list. The point pmin iS contained
only in one pair of active edges and the border of the triangulated area is correct, see
Figure 48, step 4.

Note that the polygonization of one pair of edges consists just of joining its end points
by the edge and this second new triangle has to fulfill the empty NAEL list as well;
otherwise the current active edge e is moved to the end of AEL list.

3.3.6. Splitting the new triangle

This process is evaluated only in cases when the new triangle has been created by
connecting of two adjacent edges, i.e. situation illustrated in Figure 46, step 2a. If the
new edge does not comply a condition of surface curvature the new triangle should be
split. That means, see Figure 49; if the angle a between surface normal vectors ny, n, at
POINtS Pe1, Perz IS greater than some limit agit iim then the new triangle will be split into
two new triangles, see Figure 49, step 2.

Figure 49. Splitting of the new triangle.

The point prew IS a midpoint of edge eney and it does not lie on the implicit surface. Its
correct coordinates are additionally computed by the straight root finding algorithm
described in section 3.3.4.
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3.3.7.

Our first experiment is amed at comparing dependence of approximation quality on
variable Angle error ae (an input variable, given at the beginning of polygonization,
see Algorithm 7). The Adaptive Edge spinning algorithm change size of triangles
generated according to it and resulting approximation quality strongly depends on it as
well, see Table 4.

Experimental results

| Angle error set Qg

| 0,08 0,04 0,02
Triangles 32 246 75 650 182 502
Verices 16 119 37 821 91 247
Angle error 3,17E-02 2,30E-02 1,47E-02
Centroid angle error 7,60E-03 5,26E-03 3,29E-03
Alg dist avg 1,66 0,69 0,28
Euc dist avg 1,10E-03 4,52E-04 1,81E-04
Taub dist avg 1,10E-03 4,53E-04 1,82E-04
Angle criterion 0,72 0,74 0,75
Edge length criterion 0,82 0,83 0,84
Time [ms] 671 2013 4276

Table 4. Values of the object Genus 3 with the variable angle error set ae.
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Figure 50. The histogram of triangles shape quality in dependence on angle error value.
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The histogram in Figure 50 shows that the shape of triangles is not much influenced by
the angle error variable and the Adaptive Edge spinning algorithm generates about 70%
of triangles with anglesin interval <50,70> degrees.

An another test is aimed at comparison of a surface approximation quality with the
same starting LOD values for al polygonization methods, Adaptive edge spinning,
Marching triangles and Marching cubes. The test is performed on the Jack object,
introduced in [5] and it shows advantages of the adaptive approach.

a) b) )

Figure 51. The Jack object generated by the @) Edge spinning, b) Marching triangles
and ¢) Marching cubes algorithms. Details are zoomed for better illustration.

The adaptive Edge spinning algorithm shrinks the size of triangles in regions of higher
curvature and therefore, the number of triangles is greater than that of generated by the
other non-adaptive algorithms. The precision of polygonization is higher by about one
order of magnitude, see Table 5.

| Edge spinning || Marching triangles || Marching cubes
LOD 0,16 0,16 0,16
Triangles 34 256 6 107 6 552
Vertices 17 130 3055 3278
Angle err 3,33E-02 7,47E-02 7,54E-02
Centroid angle err 7,10E-03 1,40E-02 2,13E-02
Alg dist avg 2,39E-03 1,32E-02 1,67E-02
Euc dist avg 8,29E-04 4,62E-03 5,93E-03
Taub dist avg 8,30E-04 4,66E-03 5,97E-03
Angle criterion 0,700 0,729 0,377
Edge length criterion 0,806 0,828 0,536
Time [ms] 1442 70 71
Time avg [ms] 42,09 11,46 10,83

Table 5. Values of the Jack object measured with the constant level of detail for all
methods. Note that the Adaptive edge spinning algorithm has had the angle error value
(aer) setto 0,04
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Figure 52a shows the object generated by the adaptive algorithm, so the number of
triangles generated is higher in dependence on the surface curvature. In case of non-
adaptive approaches, some parts of an object could be lost because the algorithm just
connects thinner parts by large triangles depending on a given lowest level of detail;
an example is shown in Figure 52b. The resulting image generated by the Marching
cubes algorithm is shown in Figure 52c.
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Figure 52. The Genus 3 object generated by the @) Adaptive edge Spinning algorithm;
b) Marching triangles algorithm; and c) Marching cubes agorithm.

Adaptive Non-adaptive Marching Marching

GENUS 3 Edge spinning || Edge spinning triangles cubes

LOD 0,16 0,016 0,016 0,016
Triangles 75 650 2 096 678 2 455 489 2 735 836
Verices 37 821 1048 335 1227 740 1367914
Angle error 2,30E-02 3,16E-03 2,92E-03 2,84E-03
Centroid angle error 5,26E-03 7,26E-04 6,88E-04 8,91E-04
Alg dist avg 0,69 2,53E-02 2,19E-02 2,49E-02
Euc dist avg 4,52E-04 1,70E-05 1,47E-05 1,72E-05
Taub dist avg 4,53E-04 1,70E-05 1,47E-05 1,72E-05
Angle criterion 0,74 0,90 0,72 0,37
Edge length criterion 0,83 0,94 0,82 0,53
Time [ms] 1993 20179 67 737 20 549

Table 6. Genus object polygonized by given algorithms with the same minimal level of
detail. Note that the Adaptive edge spinning algorithm has had the angle error value
(@er) setto 0,04

There is an opposite point of view to adaptive approaches and our next experiment is
aimed at it. Table 6 contains values measured on Genus 3 object by the Adaptive edge
spinning, non-adaptive Edge spinning and Marching triangles algorithms. The non-
adaptive approaches have had the level of detail set to that minimal possible for the
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adaptive method, i.e. they generate triangles of minimal size possible for the adaptive
approach. In such case, the adaptive method generates as many triangles needed to
achieve a desired accuracy and it minimizes a computational time as well as a number
of triangles generated. To the contrary, the non-adaptive approaches generate
unnecessarily huge number of trianglesin flat regions and therefore, the accuracy is also
unnecessarily high aswell asthe computational time is expensive.
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Figure 53. Histogram of angle distribution according to valuesin Table 6.

The histogram in Figure 53 shows angle distribution of triangular meshes generated by
the given algorithms. In case of triangles shape quality, non-adaptive approaches have
an advantage because these generate triangles of nearly constant size; therefore it is
easier to achieve equilateral triangles. It is obvious that the classica Edge spinning
algorithm generates triangular meshes of excellent quality but the adaptive approach is
also very good although it musts operate with triangles of different size. The both edge
spinning methods and the Marching triangles algorithm generate the most number of
triangles with angles in interval <50, 70> degrees. The poorest triangular mesh is
generated by the Marching cubes method.

Next experiment shows polygonization of simple implicit functions with sharp features.
Figure 54 shows an object modeled as intersection of two spheres. The implicit object
complies only the C° continuity and it is correctly polygonized by the proposed
Adaptive edge spinning method. The picture a) is polygonized without the edge
detection, i.e. the limit edge angle ajim edqe IS €qual to p and the picture b) is
polygonized with limit edge angle equal to p/4, see section 3.3.3 for details.
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Figure 54. Intersection of two spheres generated by the Adaptive Edge spinning
algorithm; with and without edge detection.

3.3.8. Conclusion

The new adaptive approach for polygonization of implicit surfaces has been presented
in this section. The agorithm marches over the object’s surface and computes the
accurate coordinates of new points by spinning the edges of already generated triangles.
Size of new triangles generated depends on the surface curvature estimation. We used
the estimation by deviation of angles of adjacent points because it is simple and fast for
computation. Our experiments proved its functionality as well. Other estimation
techniques can be found in [3], [23], [42].

The algorithm can polygonize implicit surfaces which comply C' continuity, thin
objects and some non-complex objects of C° continuity (an object should have only
sharp edges, no sharp corners or more complex shapes).

The main advantage of our algorithm, in comparison to other methods, [1], [23], is its
controlling of approximation quality during computation. The whole process is directed
to achieve the desired accuracy given at the beginning and the algorithm maintains this
requirement in all places of an implicit object (high/low curvature). It means that the
resulting polygona mesh does not consists only of well-shaped triangles, but moreover,
the mesh satisfies predefined requirements of accuracy as well.

The presented approaches in this section have been published in [i], [ii], [iii] of the
author publications.

3.4. Solving of Sharp features

Our previously developed methods have been able to polygonize implicit surfaces
which comply C' continuity or have only simple sharp edges; no corners or more
complicated shapes. A computation of a gradient vector (normal vectors) in areas of
sharp features is influenced by a major error and surface approaches become unstable in
such regions, see Figure 55.
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Figure 55. An edge of the Yutaka model. The Edge spinning algorithm become
unstable in the region of the sharp edge and started to generate the already polygonized
surface again.

In order to solve problem of sharp features we used a simple technique how to bypass it.
Our technigue supposes that an object is modeled by the F-Rep [22], which gives to it
good differential properties, see Figure 44. It allows us to assume that an implicit
surface has sharp edges only in its zero-set, i.e. at points x; that satisfy equation
f(xi) = 0. If the agorithm will look for some iso-value e, the equation will change to
f(x;) = e and the implicit surface is then C* continuous, see Figure 56.

a) b)

Figure 56. A cube modeled by the F-Rep as intersection of six half-spaces and
polygonized with @) e=0 — classica approach, surface with sharp features and
b) e = 0.1, smooth surface.

The discussed implicit surface property allows us to construct an initial mesh that
satisfies a desired accuracy according to surface curvature and consists of well-shaped
triangles as well.

When the initial mesh is created, the algorithm has to find new positions of surface
vertices x; on the origina implicit surface, i.e. e =0, f(x;) = 0. There are vary agorithms
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that work with an initial mesh and iteratively adapt it to get more precise approximation,
see section 2.7 for more details. In order to verify our approach, we have proposed only
asimple algorithm. The points x; follow their gradient Nf(x;) to find the new positions.
This method is similar to particle systems approaches, [15], but it has an opposite order
of steps; the triangulation is created at first and then the points are projected onto the
implicit surface.

The agorithm is similar to the straight root finding algorithm, see Algorithm 9, with
difference that the surface normal vector is computed in each step.

Let the initial mesh be created. Then the next procedure continues as follows.
Algorithm 11. Projecting the points of an initial mesh onto the original implicit surface.
1. Sete=0.
2. For each point x; compute its new normal vector n;.
3. Move the point to its new position x;’ in the normal vector direction,
xi' =xi +d* sign(f) ni,
where d isa step and sign(f;) is the signum function of the function valuef; in the
point X;.
4. Determine function valuesf;, fi’ at points x;, X;’.
5. Check next two cases.
a) If these pointslie on opposite sides of implicit surface, i.e. (fi*f;’) < 0; compute
the exact coordinates of the point x; by binary subdivision between these points.
b) If thepointsx;, X’ lie on the same side of the surface then x; = x;" and return to
step 2.

3.4.1. Experimental results

In this section, several complex implicit objects with sharp features will be properly
polygonized by the Adaptive Edge spinning approach using the technique proposed
above. Triangulations of some examples are shown in Figure 57 and corresponding
formulas can be found in Appendix C.



Novel polygonization approaches

LR
KA

S

AR
SERAIA

e
s

i

s
AN
A O T
SRR
000

‘b
5
ROV
= V‘V"‘ VA""
Oy
vy

i
%
=
e
R
S
S

5

o
)

S
o
SRS

4!

o
s

ez
AN R P
VAYAATETAT S E s
A
R ANER R o

= WA XZ T
R SAVAYE A e e
NaL L

Figure 57. Objects generated by the Adaptive edge spinning algorithm, with usage of
the introduced technique, @) the Y utaka object - taken from [27], b) the Rabbit modeled
by the F-Rep [22] and c) the Eclipse model.

Figure 58 shows the implicit model of a tap with its normal vectors array. The Tap
object consists of sharp edges as well.

Figure 58. A tap generated by the Adaptive edge spinning algorithm; also with usage of
the introduced trick, a) itstriangulation, b) the array of normal vectors.

Note that the objects Tap and Rabbit have been modeled with use of the implicit
modeling module, [41], which is a pat of the MVE (Modular Visuaization
Environment) developed at University of West Bohemia, [25].

Table 7 contains values measured on complex implicit objects visualized in figures
above. It is obvious that the Taubian distance is not good enough for such complex
objects as the approximation of the real distance.
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| yutaka rabbit eclipse tap

e 0,1 0,1 6,0 0,1
LOD 0,32 0,32 0,32 0,32
Triangles 111173 48 529 31233 38184
Vertices 55 648 24 268 15 627 19 094
Angle err 5,31E-02 4,55E-02 6,94E-02 4,40E-02
Centroid angle err 1,43E-02 1,06E-02 3,15E-02 1,00E-02
Alg dist avg 9,76E-02 9,79E-02 9,32E-01 9,37E-02
Euc dist avg 1,42E-03 2,06E-03 1,11E-03 3,03E-03
Taub dist avg 8,85E-02 1,77E-01 2,29E-02 6,10E-02
Angle criterion 0,649 0,662 0,618 0,684
Edge length criterion 0,772 0,780 0,748 0,796
Time [ms] 10 175 7841 6519 7741
Time avg [ms] 91,52 161,57 208,72 202,72

Table 7. Values generated by the Edge spinning algorithm.

Note that the average time values for creating of one thousand triangles are higher in
comparison with the ssmpler models because the one call of the function takes more
time.

3.4.2.

The Edge spinning algorithm can polygonize variety of implicit surfaces whose size and
degree of continuity is not known ahead. It is possible with use of the introduced
technique when the epsilon value instead of the zero value of an implicit function is
used for computation. In that case, the implicit model has better differential properties.

Conclusion

Figure 59. a) the origina Olympic Rings object b) polygonized with e = 10 and
c) visualization after projection back toe= 0.

Of course there must be a limitation. There is no exact way how to predict value of
epsilon. It depends on a size of an object, sharpness of edges, etc. Moreover, for higher
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epsilon, an implicit object could change its topology, see Figure 59. In such cases, the
projection phase cannot work properly.

The presented approaches in this section have been sent for publication, see [xi] of the
author publications.

3.5. Detection and polygonization of disjoint implicit surfaces
in a given area

In this section, a new method how to detect, count, and polygonalize more digoint
implicit surfaces will be introduced. The agorithm uses the Edge spinning method for
polygonization of each component, so there is necessary to detect a starting point for
each of them.

Because of an implicit function can be an arbitrary unknown algebraic function, thereis
no other way how to detect more digoint surfaces in a defined area than use of
exhaustive search approach (described for the Marching cubes and tetrahedra methods
in section 2.3).

Figure 60. The polygonization area divided by the regular grid that contains three
implicit objects. Grid cells intersected by the implicit function are highlighted.

Our agorithm divides the given polygonization area by the regular grid. An important
note is that a size of grid cells need not to be proportional to extracted object detail but
it should only be proportional to the size of the smallest object that is wanted to be
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visualized. The size of grid cellsis only needed for detection of implicit componentsin
a scene, it has no relation to object detail and this is the main difference from the
Marching cubes approaches. Therefore, a number of grid divisions is much lesser for
our algorithm than for Marching cubes method as well as a computational time.

L et the polygonization area be defined in space as [-X, +X ; -y, +Y ; -z, +Z] and a number
of division in each axis be M. Then the algorithm works as follows.

Algorithm 12. Polygonization of more digoint surfaces in defined area.
1. Usethe Edge spinning algorithm to polygonalize the first object in the area.

2. Create a function grid — find and mark all grid cells intersected by the implicit
function.

3. Create a triangulation grid — find and mark all grid cells intersected by the
triangular mesh.

4. Check if there is a marked function grid cell that has an unmarked equivalent
and even unmarked neighborhood in the triangulation grid.

a) If YES—thereisanew implicit component and continue as follows.
- Find anew starting point in the given cell.
- Usethe ES method for triangulation of the component.
- Returnto step 3.

b) 1f NO —thereis no other component — end of polygonization.

Notes:

- step 2-—agrid cell ismarked if at least two of their corners have opposite signs of
the function; important note is that this step is performed just once and in case of
complex functions it saves computational time

- step 3 — if the size of grid cells is greater than or equal to the longest edge of
atriangle then it is enough to marked a grid cell when a point of a triangle is
located in there

- step 4 —the neighborhood in E2 means 26 adjacent grid cells to the given one

- step 4a—anew starting point in the given cell is sought by the binary subdivision
between two cell’ s corners with opposite signs.

3.5.1. Experimental results

Experimental results in this section are aimed at polygonization of unknown implicit
scenes consisting of more digoint surface components. The Adaptive Edge spinning
algorithm (AES) will be compared with the Marching cubes method — exhaustive search
(MCE).

Thefirst sceneisillustrated in Figure 61 and contains two entwined spirals.
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| Adaptive Edge spinning Marching cubes
_l Spiral Olympic rings Spiral Olympic rings
Subdivisions 50 50 400 300
LOD 0,16 0,16 0,08 0,11
Angle error set 5,00E-02 5,00E-02 - -
Triangles 134 316 147 346 131776 230572
Verices 67 163 73673 65 892 115 286
Angle error 3,11E-02 2,97E-02 2,45E-02 2,51E-02
Centroid angle error 7,01E-03 6,96E-03 8,10E-03 7,48E-03
Alg dist avg 1,79E-03 1,88E-02( 2,65E-03 1,51E-02
Euc dist avg 5,91E-04 1,47E-03| 8,70E-04 1,18E-03
Taub dist avg 5,93E-04 1,47E-03| 8,76E-04 1,18E-03
Angle criterion 0,70 0,69 0,36 0,37
Edge length criterion 0,81 0,80 0,52 0,53
Time [ms] 6 453 7 375 42 844 27 422
Avg time [ms] 48,04 50,05 325,13 118,93

Table 8. Values generated by the Edge spinning and the Marching cubes algorithms.

The measured values from the experiment are contained in Table 8. The level of detall
for both algorithms has been set so that a number of triangles as well as the
approximation quality to be similar. In such case, the Marching cubes method is much
slower then the Edge spinning algorithm and moreover, it generates poor triangular
mesh, see histogram of angle distributionsin Figure 63.
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Figure 63. Histogram of triangles shape quality.
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3.5.2. Conclusion

The presented approach in this section makes possible polygonization of more digjoint
implicit surfaces in a defined area. The agorithm is not limited to a given
polygonization method but then, its use is possible for all other surface approaches that
need a starting point at the beginning. The agorithm works well, it is able to found and
polygonize all implicit components in a given region and the computationa time is
much less than in case of Marching cubes method — exhaustive search. All advantages
of surface approaches are preserved.
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4. Conclusion and future work

All the polygonization algorithms developed so far have always had severa
disadvantages. The volume approaches (methods based on the Marching cubes and
tetrahedra principle) usualy generate polygonal meshes consisting of badly-shaped
triangles. Due to the next processing, these meshes have to be further modified:
improvement of the shape of triangles, reduction of the number of triangles in regions
with a low curvature, etc. The reason why they are still in use is the fact that these
methods are numerically stable. On the contrary, the surface approaches (methods based
on the Marching triangles principle) generate well-shaped triangular meshes consisting
of triangles shaped close to equilateral. These methods are limited by their high
numerical sensitivity to the properties (continuity, differentiability, etc.) of the given
implicit model and are not able to polygonize implicit objects consisting of more
digoint surfaces.

In the presented dissertation thesis, there are several new approaches for polygonization
of implicit surfaces introduced, based on the Edge spinning principle. The first of them
is the non-adaptive algorithm that generates triangular meshes of high quality and its
polygonization speed is comparable with the well-known Marching cubes algorithm.

The adaptive modification of the given approach has been developed in the next
research. The algorithm generates triangles of size according to the local surface
curvature estimation. The curvature is estimated by deviation of surface normal vectors.
This technique is simple and fast for computation as well as effective in results. A size
of triangles varies to preserve the approximation error given at the beginning of
polygonization and this is the main advantage in comparison to other methods. The
whole process is directed to achieve the given accuracy and the algorithm maintains this
requirement in all places of an implicit object (high/low curvature). It means that the
resulting polygonal mesh does not consists only of well-shaped triangles, but moreover,
the mesh satisfies predefined requirements of accuracy as well.

The Edge spinning algorithm has a common deficiency of surface approaches, i.e. it is
sensitive to implicit functions of only C° continuity. A computation of a gradient vector
(normal vectors) in areas of sharp features is influenced by a maor error and surface
approaches become unstable in such regions. Therefore, we have proposed a simple
technique how to bypass this problem. The method depends on modeling technique F-
Rep that gives to resulting objects good differential properties.

The last part of the thesis is aimed at implicit scenes consisting of more digoint
surfaces. In case of unknown implicit functions, there is only the volume based
Marching cubes algorithm — exhaustive search able to polygonize all surfaces in the
defined area. Surface approaches need a starting point for computation and such point
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has to be found for each digoint component. We have designed such algorithm and
unknown complex scenes can be triangulated by surface approaches of higher quality of
details and much faster then in case of use of exhaustive search now.

In our future research, we want to improve the ability of the Edge spinning algorithm to
polygonize implicit objects of C° continuity with proper edge detection and edge
extraction in the resulting polygonal mesh.
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Implicit functions codes

Boolean operations — F-Rep
doubl e uni onAB(doubl e A, doubl e B)

{

return (A + B + sqrt( A*A + B*B );
}
doubl e intersecti onAB(doubl e A, doubl e B)
{

return (A + B - sqgrt( A*fA + B*B );

}
doubl e di fferencesAB(doubl e A double B)

{

return intersecti onAB(A, -B)
}
Sphere

doubl e conmon_sphere(doubl e cl1, double c2, double c3, double rad,
doubl e x, double y, double z) {
doubl e s, al, a2, a3;

al = (cl-x)*(cl-x);
a2 = (c2-y)*(c2-y);
a3 = (¢3-2)*(c3-2);
s = rad*rad - al - a2 - a3;
return s;
}
Eclipse
doubl e eclipse(double x, double y, double 2z)
{
doubl e sla = comon_sphere(-30.0,8.0,0.0, 31.0, x, Yy, 2);
doubl e s1b = comon_sphere( 30.0,8.0,0.0, 31.0, x, Yy, 2);
doubl e slc = common_sphere( 0.0,10.0,-3.0, 7.0, 2.0*x, vy, 2);
doubl e s1d = intersecti onAB(sla, slb);
double s1 = differencesAB(sld, slc);
return (sl)
}
Genus

doubl e genus(doubl e x, double y, double 2z)

{
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doubl e rx 6, ry =3

double r1 1.2, x1 =
doubl e y2 SQR(Y);
double r12 = SQR(rl);
doubl e g1 SQR(rz)*SQR(rz)*SQR(2) ;

doubl e g2 (1- SQR(x/rx) - SQRyY/ry) );

doubl e g3 ( SQR(x-x1) +y2 - rl1l2 ) * ( x*x +y2 - ri12);
doubl e g4 ( SQR(x+x1) + y2 - r12);

return (-gl + g2*g3*g4);

5 rz = 4
3.9;

}

Yutaka

doubl e yut aka(doubl e x, double y, double z) {
float x1 (float)x;
float y1 (float)y;
float z1 (float)z;
float tar = (yl1+15.0f)/15. Of;
x1 /= tar*tar;
z1 /= tar*tar;
doubl e angle = 4*Pl *y1/ 30. Of ;
float xt x1*cos(angle) + zl*sin(angle);
fl oat yt y1;
fl oat zt -x1*sin(angle) + zl*cos(angle);
float rect = intersectionAB(intersectionAB(3 - fabs(xt), 15 -
fabs(yt)), 1 - fabs(zt));
float rect3 = 4 - xt*xt - (yt-5)*(yt-5)/4;
x1 =x; yl =y, z1 = z;
tar = (yl+14)/10;
x1 /= tar*tar;
z1 /= tar*tar;
float sphere = 5 - x1*x1 - (yl+10)*(y1+10) - z1*z1
float f1 = intersectionAB(rect, -rect3);
float f2 = sphere
float fff = unionAB(fl, f2) + 100/ (1+(f1/2)*(f1/2)+(f2/2)*(f2/2));
return (fff);

}

Torus

doubl e torus (double x, double y, double z, double R, double r)

double x2 = x*x, y2 = y*y, z2 = z*z
double a = x2+y2+z2+(R*R)-(r*r);
return -a*a+4. 0*(R*R) *(x2+y2);

}

Olympicrings

doubl e ol ynpi c_rings(doubl e x, double y, double z)
{

double s = 0.5; // scale

double s1 = 1.0/ s;

X = s* X, y= s*y, z= s* z

doubl e R=1. 4*s1;

doubl e r=0. 2*s1;

double a, b, ¢, d, e, f;

doubl e y2, z2
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PO NT1 pl, p2, p3, p4; // struct with three double x,

y, ¢

pl = rotation_x(-15.0, x, y, z); // angle in degrees
p2 = rotation_x( 20.0, x, vy, z);
p3 = rotation x( 30.0, x, y, 2);
p3 = rotation_y(-10.0, p3);
p4 = rotation_x(-30.0, x, vy, z);
p4 = rotation_y( 15.0, p4);
a = torus(pl.x-2.1*s1l, pl.y, pl.z, R r);
b = torus(p2.x, p2.y, p2.z, R r);
¢ = torus(pl. x+2.1*s1, pl.y, pl.z, R r);
d = torus(p3.x-0.8*s1, p3.y+1.3*s1, p3.z-0.8*sl, R r);
e = torus(p4. x+1.1*s1, p4.y+1.1*s1, p4.z+0.4*sl, R r);
f = uni onAB( uni onAB(a, b), unionAB(c,d) );
return ( uni onAB(e,f) );
}
Cube
doubl e cube(doubl e x, double y, double z)
{
double r = 0.5;
double a, b, c, d;
a = -fabs(x) + r;
b = -fabs(y) + r;
c = -fabs(z) + r;
d = intersecti onAB(a, b);
return intersecti onAB(c, d);
}
Jack
doubl e jack(doubl e x, double y, double z)
{
double x2 = x*x, y2 = y*y, z2 = z*z
double al = x2/9 + 4*y2 + 4*z2
double a2 = y2/9 + 4*x2 + 4*z2
double a3 = z2/9 + 4*y2 + 4*x2
doubl e b1l = 4*x/ 3-4;
doubl e bl12 = 4*x/ 3+4;
doubl e b21 = 4*y/ 3-4;
doubl e b22 = 4*y/ 3+4;
double c1 = bl1l*b11 +16*y2/9 + 16*z2/9;
double c2 = bl2*b12 +16*y2/9 + 16*z2/9;
doubl e ¢3 = b21*b21 +16*x2/9 + 16*z2/9;
doubl e c4 = b22*b22 +16*x2/9 + 16*z2/09;
double mL. = 1/ (al*al*al*al) + 1/(a2*a2*a2*a2) + 1/(a3*a3*a3*a3);
double m2 = 1/(cl*cl*cl*cl) + 1/(c2*c2*c2*c2) + 1/(c3*c3*c3*c3) +
1/ (cd*cd*cd*c4);
double mB = 1/sqrt(sqrt(nl+nR));
return(-n8+1);
}
Spiral

doubl e spiral (doubl e xx, double yy, double zz)

double x, vy, z;
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X = XX; Yy =Yy, Z = zzZ;
double R = 2.0;

doubl e r 0. 8;

double cx = R * cos(z);

double cy = R * sin(z);

double sp = r*r - (x+cx)*(x+cx) - (y+cy)*(y+cy);

doubl e cube = uni _cube(x, y, z, 7.0); // clipping by a cube
doubl e spd = intersecti onAB(sp, cube);

return (spd + 0.2);

}
Spirals
doubl e spiral s(double x, double y, double z)
{
double s1 = spiral (x, y, z);
PO NT1 p;
p.x =X5 Py =Yy, p.Z2 =2
p = rotation_z(180.0, p);
double s2 = spiral (p.x, p.y, p.2z);
doubl e ss = uni onAB(sl, s2);
return ss;
}
Morph
doubl e nmorph (doubl e x, double y, double z)
{
double r = 2.2; // norphing ratio
doubl e 01 = common_sphere(-0.2, 0, 0, 1, x, vy, 2);
double 02 = jack(x, y, z);
double m=r * 01 + (1.0 - r) * 02
return (n;
}

Note that following two functions are modeled by the Hyperfun modeling module [41],
so they have different syntax.

Rabbit

Frodel Doubl e Frrodel Doubl e: : rabbi t (doubl e x[])

{

doubl e center[ 3];

doubl e xt[3];

Frrodel Doubl e kao, head, body;

Frodel Doubl e kaol,spl,rmim ,r2mm,Imm,I2mm,mm;
Frnodel Doubl e hana, reye, | eye, nout hl, facel, nout h;

Frnodel Doubl e Il eg,rleg,|foot, rfoot, ashi,tail, | ude,
rude, | hand, r hand, ude;

xt[1] = x[0];

xt[2] = x[1];

xt[3] = x[2];

center[0] = 0.0;center[1] = 0.0;center[2] = 1.5;

kaol = fElIipsoid(x,center,4,4,3);

center[0] = 0.0;center[1] = 1.4;center[2] = 1.5;
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spl = f Sphere(x, center, 5);

kao = kaol & spl;

center[0] = -2.0;center[1] = -1.0;center[2] = 5.5;
rmim = fEIipsoid(x,center,1,1,4);

center[0] = -2.0;center[1] = 0.0;center[2] = 6.0;
r2mm = fElIlipsoid(x,center,0.5,0.5,2);

center[0] = 2.0;center[1] = -1.0;center[2] = 5.5;

Imim = fEIlipsoid(x,center,1,1,4);

center[0] = 2.0;center[1] = 0.0;center[2] = 6.0;
I2mim = fElIlipsoid(x,center,0.5,0.5,2);

mm = (rmm %r2mm) | (Imm %I2mm)
center[0] = 0.0;center[1] = 4.2;center[2] = 1.5
hana = f Sphere(x, center,0.7);

center[0] = -2.0;center[1] = 2.5;center[2] = 3.0;
reye. m dRes = f Sphere(x, center,0.5);

center[0] = 2.0;center[1] = 2.5;center[2] = 3.0;
| eye = f Sphere(x, center,0.5);

center[0] = 0.0;center[1] = 3.0;center[2] = 0.8;
mout hl = fElIipsoid(x,center,2,2,1);

facel = 0.8-x[2];

mouth = nmouthl & facel

head = (kao | mim | hana | reye | leye) % nouth;

center[0] = 0.0;center[1] = 0.0;center[2] = -4.0;
body = fElIipsoid(x,center, 3,3,5);

center[0] = -1.7;center[1] = 0.0;center[2] = -8.0;
Ileg = fEIlipsoid(x,center,1.5,1.5,2.7);

center[0] = 1.7;center[1] = 0.0;center[2] = -8.0;
rleg = fEIlipsoid(x,center,1.5,1.5,2.7);

center[0] = 2.0;center[1] = 0.2;center[2] = -10.0;
| foot = fElIIlipsoid(x,center,1.8,3,1);

center[0] = -2.0;center[1] = 0.2;center[2] = -10.0;
rfoot = fElIipsoid(x,center,1.8,3,1);

ashi =1leg | rleg | Ifoot | rfoot;

center[0] = 0.0;center[1] = -3.0;center[2] = -7.0;
tail = fSphere(x,center,0.8);

center[0] = -3.0;center[1] = 0.0;center[2] = -3.5;
lude = fElIipsoid(x,center,1,1,2.5);

center[0] = 3.0;center[1] = 0.0;center[2] = -3.5;
rude = fEllipsoid(x,center,1,1,2.5);

center[0] = -3.2;center[1] = 0.0;center[2] = -5.0;

I hand = fEllipsoid(x,center,1,1,1);
center[0] = 3.2;center[1] = 0.0;center[2] = -5.0;
rhand = fEllipsoid(x,center,1,1,1);

ude = lude | rude | lhand | rhand;
return(head | body | ashi | tail | ude);
Tap

Frrodel Doubl e Frrodel Doubl e: : t ap(doubl e x[])
{

doubl e center1[ 3], center2[ 3], center3[3],center4[3],

center5[ 3], center6[3];

doubl e center7[ 3], center8[3],center9[3],centerl0[3],centerll[3];

doubl e xt, yt, zt;

Frodel Doubl e t heta, cyl 1, cyl 2, cyl 3, cyl 4, bl uni 1, bl uni 2;
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Frrodel Doubl e cyl 5, cyl 6, torusl, t orus2, pi pel, pi pe, cyl 7, cyl 8,
gripl, spl, sp2, sp3;

Frodel Doubl e cyl 1a, cyl 1b, cyl 1c, cyl 2a, cyl 2b, cyl 2c, cyl 3a,
cyl 3b, cyl 3¢, cyl 4a, cyl 4b, cyl 4c;

Frnodel Doubl e cyl 5a, cyl 5b, cyl 5¢, cyl 6a, cyl 6b, cyl 6¢, cyl 7a,
cyl 7b, cyl 7c, cyl 8a, cyl 8b, cyl 8c;

Frrodel Doubl e sp4, grip, rotateyl

xt = x[0]; yt = x[1]; zt = x[2];

theta = 0.25*x[3] +3.5;

centerl[0] = 1; centerl[1l] = 0; centerl[2] = 0;

center2[ 0] -7; center?2[1] 0; center2[2] =0

center 3[ 0] 10; center3[1] 0; center3[2] =0

center4[0] 0; center4[1] = 3; center4[2] = O;

cent er 5[ 0] -7; center5[1] 7; center5[2] = 0;

center6[ 0] 10; center6[1] = -6; center6[2] = 0;
center7[0] -7, center7[1] = 10; center7[2] = O;
cent er 8[ 0] -1; center8[1] = 10; center8[2] =0
cent er 9[ 0] -12; center9[1] = 10; center9[2] =
center10[0] = -7; center10[1] = 10; center10[ 2] 6;
centerll[0] = -7; centerl1l[1l] = 10; centerll[2] - 6;
/[l --- pipe ---

cyl la = yt;

cyl 1b = -yt +8;

cyl 1c = fCylinderY(x, center2,2);

cyll = cylla & cyl1lb & cyl 1c;

cyl 2a = (xt+7);

cyl 2b = (-xt+9);

cyl 2c = fCylinderX(x, centerl, 2);

cyl2 = cyl2a & cyl2b & cyl 2c;

cyl 3a = (yt+6);

cyl3b = (-yt-1);

cyl 3c = fCylinderY(x,center3,1.7);

cyl3 = cyl3a & cyl 3b & cyl 3c;

cyl 4a = (xt+12);

cyl4b = (-xt-8);

cyl 4c = fCylinder X(x, center4, 2);

cyl4 = cyld4a & cyl4b & cyl 4c;

blunil = fBlendUni (cyl 1,cyl 2,2,2,1);
bl uni 2 = fBl endUni (bl uni 1, cyl 3, 3, 5, 3);
cyl 5a = yt;

cyl 5b = (-yt+10);

cyl 5¢ = fCylinderY(x,center2,0.7);
cyl5 = cyl5a & cyl5b & cyl 5c¢;

cyl 6a = (xt+9.5);

cyl 6b = (-xt-10);

cyl 6¢c = fCylinderX(x, center4,5);
cyl 6 = cyl6a & cyl 6b & cyl 6c;

torusl = fTorusY(x,center5,2.3,1);
torus2 = fTorusY(x,center6,1,0.8);

pi pel = fBl endUni (bluni2,torusl, 1,1,1);
pi pe = pipel|torus2

Il --- grip ---
cyl 7a = (xt+12);
cyl7b = (-xt-1);

cyl 7c f Cylinder X(x, center7,0.8);
cyl7 = cyl7a & cyl 7b & cyl 7c;
cyl 8a = (zt+6);
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cyl 8b (-zt+6);

cyl 8c f CylinderZ(x, center7,0.8);
cyl 8 = cyl8a & cyl8b & cyl 8c;

gripl = fBlendUni (cyl 7,cyl 8, 2,1, 1);

spl = fSphere(x, center8, 1.5);
sp2 = f Sphere(x, center9, 1.5);
sp3 = fSphere(x, center10, 1.5);
sp4 = fSphere(x, centerll, 1.5);

rotateyl = fRotate3DY(center7,45);
grip = gripl|spl|sp2|sp3|sps;
return(bluni 1] bl uni 2| cyl 4| cyl 5| cyl 6| pi pe| gri p);
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