
University of West Bohemia in Pilsen

Faculty of Applied Sciences

Department of Computer Science and Engineering

Dissertation thesis

Methods for Implicit Surfaces
Polygonization

Martin Čermák
e-mail: cermakm@kiv.zcu.cz

URL: http://herakles.zcu.cz/~cermakm

Supervisor: prof. Ing. Václav Skala, CSc. Plzeň, November 2004

Abstrakt
Modelování objektů a jejich zobrazování patří k základním úkolům počítačové grafiky.
V posledních letech se stalo atraktivním modelování objektů pomocí implicitních
funkcí. Implicitní modelování je často užíváno v modelovacích programech založených
na CSG stromech hlavně z důvodu, že implicitní funkce přímo definují objemová data.
Zobrazování takto definovaných objektů je možné buďto algoritmy založenými
na principu sledování paprsku popř. aproximačními algoritmy, které převádějí implicitní
reprezentaci objektů na polygonální resp. trojúhelníkové sítě. Takový aproximační
proces je obvykle nazýván polygonizací implicitní funkce. Zobrazování
trojúhelníkových sítí je podporováno naprostou většinou běžných grafických
akcelerátorů, tj. jedná se o současný standard. Práce s trojúhelníkovými sítěmi je rychlá
a, narozdíl od metod sledování paprsku, je možné provádět libovolné pohledové
transformace s objekty bez nutnosti opakovaného vyvolání zobrazovacího algoritmu.
Trojúhelníkové sítě jsou také podporovány profesionálními 3D modelovacími
programy, tj. není nic snazšího, než importovat výsledný polygonální model do vaší
oblíbené aplikace a využít pro jeho další zpracování již profesionálních nástrojů.

Prezentovaná disertační práce je rozčleněna do tří základních kapitol. V úvodu je čtenář
seznámen se základními pojmy nutnými ke správnému porozumění probírané
problematice. Další kapitola obsahuje podrobný výklad pojmu polygonizace společně
s různými způsoby, jak vyhodnocovat aproximační chybu. Zde jsou také představeny
základní algoritmy určené pro polygonizaci implicitních funkcí. Jednotlivé metody jsou
rozděleny podle svých vlastností na objemové/povrchové přístupy,
adaptivní/neadaptivní, s/bez schopnosti polygonizovat implicitně definované scény
sestávající z více objektů. V další kapitole je čtenář seznámen s algoritmy navrženými
autorem předkládané práce. Pořadí, ve kterém jsou jednotlivé metody představovány, je
dáno pořadím v jakém byly vyvinuty. V každé podkapitole je konkrétní algoritmus
vysvětlen, zhodnocen a jsou prezentovány výsledky dosažené během jeho testování.
V závěru práce je zhodnocen vědecký přínos autorova díla a jsou nastíněny možné
směry dalšího výzkumu.

Klíčovou částí disertační práce je adaptivní algoritmus navržený autorem, jehož výklad
je situován v druhé polovině práce. Prezentovaný algoritmus adaptivně polygonizuje
implicitní objekty s definovanou přesností a navíc je schopen zpracovat scény
sestávající z více těles. Algoritmus byl publikován na několika mezinárodních
konferencích pod pracovním názvem adaptive edge spinning algorithm.

Abstract
Both object modeling and visualization belong to the fundamental tasks of the computer
graphics. In recent years, implicit modeling has become attractive. Because of the fact
that the implicit surfaces conveniently define volumes, they are frequently used in CSG-
based solid modelers. The visualization of objects defined in such way is possible either
by direct rendering based on Ray-tracing principle or by approximation of the implicit
models by polygons, triangular mesh usually. Such approximation process is called
polygonization. The polygonal (triangular) meshes are supported by a wide range of
graphics hardware and, therefore, working with them is very fast as well as their
arbitrarily transformations are possible without repeated solution of the implicit
function. Programs for 3D graphics support polygonal meshes as well. It is not
complicated to import such object and also its additional modification is possible with
these professional tools.

The offered thesis is divided into three main chapters. An introduction contains
fundamental notions necessary for a reader to proper understanding of problems
presented. In the next chapter, polygonization term is described in detail including
definition of varied techniques how to measure an error of a polygonal approximation.
There are also several basic algorithms used for polygonization of implicit surfaces
introduced in this chapter. The presented methods are separated according to their
properties into volume/surface approaches, adaptive/non-adaptive methods, able/non-
able to polygonize scenes consisting of more disjoint implicit surfaces, etc. The next
chapter presents algorithms and new approaches proposed by the author of this thesis.
The algorithms are introduced in a chronological order of their developing. In each
section, a principle of a new algorithm is explained and concluded as well as
experimental results. The closing part of the thesis contains conclusion of the author’s
contribution and an outline of possible future work as well.

Key part of the thesis is an adaptive approach developed by the author that is situated in
second half of the work. The presented approach is able to polygonize unknown implicit
scenes with defined accuracy as well as scenes consisting of more disjoint surfaces. Its
working name is adaptive edge spinning algorithm and it has been published on several
international conferences.

Acknowledgement
First of all I would particularly like to thank my supervisor, prof. Václav Skala, for his
support and guidance during my PhD study.

Many special thanks go to the other members of our computer graphics group at
University of West Bohemia in Pilsen.

Not least, I would like to thank my family and my girlfriend Jana for their patience and
encouragement throughout my studies.

The work was supported by the Ministry of Education of the Czech Republic - project
MSM 235200005.

Contents
1. Introduction ... 5

1.1. Relation to parametric surfaces ... 6
1.2. Continuity, Differentiability and Manifoldness... 7
1.3. Surface curvature... 9

1.3.1. The Hessian.. 9
1.3.2. The Gauss map... 9
1.3.3. The fundamental forms .. 10
1.3.4. Surface curvature ... 11

1.4. Modeling of Implicit objects ... 12
1.4.1. Constructive Solid Geometry... 12
1.4.2. Skeleton based modeling ... 14

2. Polygonization ... 16
2.1. Approximation error .. 16
2.2. Triangulation quality ... 20
2.3. Exhaustive enumeration .. 20
2.4. Piecewise-Linear continuation .. 21
2.5. Predictor-Corrector continuation... 22

2.5.1. Marching triangles ... 23
2.6. Adaptive polygonization.. 24

2.6.1. Adaptive Marching cubes .. 24
2.6.2. Adaptive Marching triangles.. 25

2.7. Surface refinement... 28
2.8. Particle systems ... 29
2.9. Non-Manifold polygonization ... 30

3. Novel polygonization approaches .. 32
3.1. Marching triangles improvement... 32

3.1.1. Decreasing the algorithm complexity .. 32
3.1.2. Acceleration ... 33
3.1.3. Edge detection.. 34
3.1.4. Experimental results... 35
3.1.5. Conclusion ... 37

3.2. Edge spinning algorithm and its acceleration.. 37

3.2.1. Data structures.. 37
3.2.2. Idea of the algorithm.. 38
3.2.3. Starting point.. 38
3.2.4. First triangle ... 39
3.2.5. Root finding ... 39
3.2.6. Active edge polygonization ... 41
3.2.7. Distance test ... 42
3.2.8. Acceleration ... 43
3.2.9. Experimental results... 44
3.2.10. Conclusion ... 49

3.3. Adaptive Edge spinning algorithm.. 49
3.3.1. Principle of the algorithm .. 50
3.3.2. Root finding with curvature estimation ... 50
3.3.3. Root finding on a sharp edge ... 52
3.3.4. Straight root finding algorithm .. 53
3.3.5. Polygonization of an active edge ... 54
3.3.6. Splitting the new triangle ... 57
3.3.7. Experimental results... 58
3.3.8. Conclusion ... 62

3.4. Solving of Sharp features .. 62
3.4.1. Experimental results... 64
3.4.2. Conclusion ... 66

3.5. Detection and polygonization of disjoint implicit surfaces in a given area....... 67
3.5.1. Experimental results... 68
3.5.2. Conclusion ... 71

4. Conclusion and future work... 72

References.. 74

Appendix A... i
List of publications .. i

Appendix B ... iii
Stays and Lectures Abroad .. iii

Appendix C... iv
Implicit functions codes... iv

Appendix D... xi
Implicit functions pictures ... xi

Appendix E .. xii
Publications... xii

Introduction

- 5 -

1. Introduction
The use of real functions of several variables for defining geometric objects is quite
common in mathematic and computer science. Functionally represented volumes and
surfaces appear to be useful in solid modeling, computer aided geometric design
(CAGD), animation, range data processing and volume graphics.

Implicit surfaces are two-dimensional, geometric shapes that exist in three-dimensional
space. An implicit surface is mathematically defined by the equation f(p) = 0, where
p = [x,y,z] is a point in three-dimensional Euclidean space. An iso-surface is a similar
set of points for which f(p) = c, where c is the iso-contour value of the surface. An
implicit surface S is characterized as a set of points whose potential f(x,y,z) equals a
threshold value denoted by T. More precise mathematical definition is described in [5]
or [43].

{ }Tz)y,f(x,|Ez)y,M(x,S 3 ∈∈= . (1)

There are two different definitions for implicit objects. The first one [5], [7], [8] defines
an implicit object as f(p) < 0 and the second one, F-rep (functional representation) [22],
[34], [41], defines it as f(p) ≥ 0. These inequalities describe a half space in E3. An object
defined by these inequalities is usually called solid (or volume).

If f is an arbitrary procedural method (i.e. a ‘black-box’ function that evaluates p) then
the geometric properties of the surface can be deduced only through numerical
evaluation of the function.

The implicitly defined object can be bounded (finite in size), such as a sphere, or
unbounded, such as a plane. The value of f is often a measure of distance between p and
the surface. The measure is Euclidean if it is ordinary (physical) distance. For an
algebraic surface, f measures algebraic distance.

Because an implicit representation does not produce points by substitution, root-finding
has to be employed to render its surface. One such method is ray-tracing [17], which
generates excellent photo-realistic images of implicit objects. Alternatively, an image of
the function can be created with volume rendering.

Introduction

- 6 -

1.1. Relation to parametric surfaces

Both parametric and implicit methods are well developed in computer graphics.
Traditionally, computer graphics has favored polynomial parametric over implicit
surfaces because they are simpler to render and more convenient for geometric
operations such as computing curvature and controlling position and tangency.
Parametric surfaces are generally easier to draw, tessellate, subdivide, bound, and
navigate along.

An implicit surface naturally describes an object’s interior, whereas a comparable
parametric description is usually piecewise. The ability to enclose volume and to
represent blends of volumes provides a straightforward (although less precise) implicit
alternative to fillets, rounds, and other ‘free-form’ parametric surfaces that require care
in joining so that geometric continuity is established along the seams. Consequently,
animations of organic shapes commonly employ implicit surfaces.

Point classification (determining whether a point is inside, outside, or on a surface) is
simpler with implicit surfaces, depending only on the sign of f. This facilitates the
construction of complex objects from primitive ones and simplifies collision detection.

Certain shapes may be described exactly in both parametric and implicit form, as
demonstrated for the unit circle, [9]. The three-dimensional case is:

trigonometric x = (cos(α)cos(β), y = sin(α), z = cos(α)sin(β), α∈[0,π], β∈[0,2π)

rational x = 4st/w, y = 2t(1-s2)/w, z = (1-t2)(1+s2)/w,
for w = (1+s2)(1+t2), s,t∈[0, 1]

implicit f(x,y,z) = x2+y2+z2-1 (2)

Points on the parametrically defined sphere are readily found by substitution of α and β
into the equations for x, y, z (similarly for s and t). By sweeping (α,β) through its
domain in E2, points along the entire surface are conveniently generated for display,
piecewise approximation, etc. This natural conversion from the parametric (two-
dimensional) space of a surface to the geometric (three-dimensional) space of an object
is a fundamental convenience. There is no comparable mechanism for implicit surfaces
(unless the implicit equation is reduced to two explicit equations, as is possible for some
low degree algebraic surfaces).

The surface normal for a regular point on an implicit surface is computed as the unit-
length gradient; the normal to a parametric surface is usually computed as the cross-
product of the surface tangents in the two parametric directions.

The class of algebraic surfaces subsumes that of rational parametric surfaces. Thus,
implicit surfaces are more likely to be closed under certain operations than their
parametric counterparts. For example, the offset surface from an implicit surface
remains an implicit surface, whereas the offset from a parametric surface is, in general,
not parametric. Because parametric and implicit forms have complementary advantages,
it is useful to convert from one form to the other.

Introduction

- 7 -

Conversion from parametric to the implicit form is known as implicitization, and may
be performed on any rational parametric surface (or curve). This is accomplished by
elimination of the parameters in the parametric form. For example, elimination of s and
t from the rational equations yields the implicit form in x, y, z.

The conversion from implicit to parametric form is known as parameterization.
Associating a point (x,y,z) with its equivalent parametric position (s,t) is known as
inversion. Parameterization is not always possible because implicit surfaces defined by
certain polynomials of fourth and higher degree cannot be parameterized by rational
functions. Conversion is always possible for non-degenerate quadrics and for cubics
that have a singular point, [9].

1.2. Continuity, Differentiability and Manifoldness

In order that normals are defined along an implicit surface, the function f must be
continuous and differentiable. That is, the first partial derivatives Fx = ∂f/∂x, Fy = ∂f/∂y,
Fz = ∂f/∂z must be continuous and not all zero, everywhere on the surface. Such
a function is known as analytic (or is considered analytic in a region that is
differentiable). When given as an ordered triplet, the partials define the gradient f∇ of
the function. The unit-length gradient is usually taken as the surface normal.

2
z

2
y

2
x

zyx
zyx FFFJ where,

J
F,

J
F

,
J

F)n,n,(n ++=







==n . (3)

For a ‘black-box’ or other non-differentiable function, the gradient may be
approximated numerically using forward differences and some discrete step size Δ:

() Δ,/)f(Δz)f(),f(Δy)f(),f(Δx)f()f(ppppppp −+−+−+≅∇ (4)

where Δx, Δy, and Δz are displacements by Δ along the respective axes. For small Δ,
the error is proportional to Δ. If f∇ is computed by central differences:

() Δ,2/Δz)f(Δz)f(Δy),f(Δy)f(Δx),f(Δx)f()f(−−+−−+−−+≅∇ ppppppp (5)

the error is proportional to Δ2, [9].

If the gradient is non-null at a point p, then p is said to be regular (or simple) and
)f(p∇ is normal (perpendicular) to the surface at p. If, however, the gradient (or,

equivalently, the tangent vector) is indeterminate, the point is singular (also called
critical or non-regular), [32]. For example, the cone f(x,y,z) = -x2+y2+z2 is regular with

Introduction

- 8 -

the exception of a singularity at the origin S, see Figure 1. The normal at a singular
point is sometimes given as the average of the normals of surrounding vertices.

Figure 1. The apex of a cone is a singular point.

If the surface is regular and the second partial derivatives are continuous, then the
surface has continuous curvature (the surface is G2 continuous). Furthermore, if the
surface is regular, it defines a topological manifold and such implicit object is also
called valid, [43].

The 2-manifold is a fundamental concept from algebraic and differential topology. It is
a surface embedded in E3 such that the infinitesimal neighborhood around any point on
the surface is topologically equivalent (‘locally diffeomorphic’) to a disk. Intuitively,
the surface is ‘watertight’ and contains no holes or dangling edges. Typically, the
manifold is bounded (or closed). For example, a plane is a manifold but is unbounded
and thus not watertight in any physical sense. A manifold-with-boundary is a surface
locally approximated by either a disk or a half-disk. All other surfaces are non-
manifold, see Figure 2.

Figure 2. Manifold, manifold with boundary, and non-manifold surface, the picture is
taken from [9].

From the implicit function theorem it may be shown that for f(p) = 0, where 0 is
a regular value of f and f is continuous, the implicit surface is a two-dimensional
manifold. The Jordan-Brouwer Separation Theorem states that such a manifold
separates space into the surface itself and two connected open sets: an infinite ‘outside’
and a finite ‘inside’, [9].

Consider two examples for which no manifold exists. The first is simply f(p) = 0. Here,
f∇ is everywhere 0, there is no ‘inside’ nor ‘outside’ and no boundary between the two.

The second is a degenerate sphere f(x,y,z) = x2+y2+z2. Here, f∇ = (2x,2y,2z), which is

Introduction

- 9 -

null at the origin, the only point satisfying f. Intuitively, the ‘inside’ is degenerate.
Whether or not a surface is manifold concerns its polygonal representation.

1.3. Surface curvature

1.3.1. The Hessian
The Hessian form associated with a function f(x1,x2,...,xn) is the matrix of second-order
partial derivatives of f with respect to xi:





















∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

=

nn

2

1n

2

n1

2

11

2

xx
f

xx
f

xx
f

xx
f

)Hf(

L

MOM

L

x . (6)

The Hessian indicates the rate of change in the gradient of f and will be useful for,
among other things, computing the curvature of implicit objects, [43].

1.3.2. The Gauss map
We know that for curves the curvature at a point p is measured by a number. For
surfaces, it is measured by a map.

Let M be an oriented codimension-1 sub-manifold in En+1. Denote by N(p) the unit
normal vector to M at p. The Gauss map, nSM:N → , associates to each p∈M the point
N(p) on the unit n-dimensional sphere Sn, see Figure 3.

Figure 3. The Gauss map, taken from [43].

Introduction

- 10 -

Note that a submanifold is defined as follows, see [43] for details. A submanifold S of
another manifold M is a subset S ⊂ M with a manifold structure, such that the inclusion
map i:S→M, i(p)=p, is an embedding. If Sn ⊂ Mm is an n-dimensional submanifold of an
m-dimensional manifold M, with n ≤ m, then the difference k = m – n is called the
codimension of S in M.

The derivative N′ of N (along its arguments x, y, z) is a measure of how the normal
vector is changing. Because N is a unit vector, N′ indicates the change in its direction,
and therefore N′ conveys information about the curvature of the surface, [43]. It is easy
to show that:

- N′(p) is a linear operator on TpM, where TpM is a tangent plane at p.

- N′(p) is self-adjoint.

Note that N′(p) is sometimes called the Weingarten map in the literature.

1.3.3. The fundamental forms
For any self-adjoint linear transformation on a vector space with dot product there is a
real-valued function vvv ⋅=)N()O(called the Quadratic form associated with N.

The First fundamental form of M at p is the quadratic form Fp associated with the
identity transformation on TpM.

vvv ⋅=)(Fp (7)

Therefore, this quadratic form defines the inner product in each tangent plane to the
surface. All the metric properties of the surface are connected to it.

The Second fundamental form of M is the quadratic form Sp associated with the
Weingarten map Np at a point p.

vvv ⋅′=)(N)(S pp (8)

A surface is completely determined up to rigid motion by its first and second
fundamentals forms, [32], [37].

If M = f -1(c) is a regular implicit surface in En+1 with orientation given by the normal
vector field and v = (v1,...,vn+1) is a tangent vector to M at a point p, v∈TpM, the second
fundamental form is related to the Hessian form of f. More precisely in matrix notation:

Introduction

- 11 -

vpv
p

v ⋅⋅
∇

=)Hf(
)f(

1)(S T
p (9)

1.3.4. Surface curvature
The second fundamental form allows us to investigate the curvature of a surface. The
Normal curvature of M at p in the direction v is defined by

1 when ,)(N)(S)k(pp =′== vvvvv . (10)

In other words, k(v) is equal to the normal component of acceleration of any curve,
contained in M, passing through p with velocity v.

Because)(N p′ is a self-adjoint linear transformation of TpM, there exists an
orthonormal basis v1,...,vn of TpM whose vectors, vi, are eigenvectors of)(N p′ . The
eigenvalues k1(p),..., kn(p) of)(N p′ are called principal curvatures of M at p and the
correspondent unit eigenvectors of)(N p′ are called principal directions. The principal
curvatures are stationary values of normal curvature k(p) and among them k(p) attains
its minimum and maximum values.

In general, we can diagonalize the Hessian matrix H to obtain the eigenvalues and
eigenvectors of)(N p′ . Alternatively, the following formulas allow us to compute the
principle curvatures ki and the principle directions vi directly from H, [43].

() ()
f2

H4HHHH
k

2T2TTTT

i ∇
+−±+

=
babbaabbaa

, (11)

























−∇
+

−∇
+

−∇
+

=

ab
aa

ab
aa

ab
aa

v

H
Hkf

ba

H
Hkf

ba

H
Hkf

ba

T

T
i

33

T

T
i

22

T

T
i

11

i , (12)

for i = 1, 2, where

Introduction

- 12 -

T

12

,0
x
f

γ
1,

x
f

γ
1









∂
∂

−
∂
∂

=a ,
T

3231 f
γ-,

x
f

x
f

fγ
1,

x
f

x
f

fγ
1












∇∂
∂

∂
∂

∇∂
∂

∂
∂

∇
=b . (13)

The trace and determinant of the Gauss map are important intrinsic properties of a
surface.

The mean curvature)(K p of M at p is 1/n times the trace of S(p):

∑==
n

i
i)(k

n
1)S(trace

n
1)(K ppp (14)

It is the average value of the principal curvatures at p.

The determinant of S(p) is called the Gauss-Kronecker curvature KG of M at p.

∏==
n

i
iG)(k)S(det)(K ppp (15)

It is equal to the product of the principal curvatures.

1.4. Modeling of Implicit objects

1.4.1. Constructive Solid Geometry
With Constructive Solid Geometry (CSG), an object is evaluated ‘bottom-up’ according
to a binary tree. The leaf nodes are usually restricted to low degree polynomial
primitives, such as spheres, cylinders, ellipsoids, half-spaces, and tori. The internal
nodes represent Boolean set operations.

The primitives in CSG may be represented implicitly and combined by set-theoretic
Boolean operations, [48]. These operations may create hard-edged functions that
conventional polygonization algorithms cannot accurately approximate, see Figure 4.

Introduction

- 13 -

Figure 4. A corner of a cube modeled as intersection of six half-spaces.

The exact analytical definitions of the set-theoretic operations of functionally described
objects have been proposed in the theory of R-functions, [34], and applied for solving
problems of mathematical physics.

Let the geometric object G1 be defined as f1(x,y,z) ≥ 0 and the geometric object G2 be
defined as f2(x,y,z) ≥ 0. The resultant object will have the defining function as follows:

R-union f3 = f1 | f2

R-intersection f3 = f1 & f2

R-subtraction f3 = f1 \ f2

One of the possible analytical descriptions of R-functions is:

()21
2
2

2
12121 ff 2αffff

α1
1f|f −+++
+

= ,

()21
2
2

2
12121 ff 2αffff

α1
1f&f −+−+
+

= , (16)

where α=α(f1,f2) is an arbitrary continuous function satisfying the
conditions -1 < α(f1,f2) ≤ 1, α(f1,f2) = α(f2,f1) = α(-f1,f2) = α(f1,-f2).

The expression for the subtraction operation is f1 \ f2 = f1&(-f2). Note that with this
definition of the subtraction, the resultant object includes its boundary. If α = 1, the
functions (16) become:

f1 | f2 = max(f1,f2)

f1 & f2 = min(f1,f2) (17)

Introduction

- 14 -

This is the particular case, the functions are very convenient for calculations but have C1
discontinuity when f1 = f2. If α = 0, the functions (16) take the most useful in practice
form:

2

2
2

12121 fffff|f +++=

2
2

2
12121 fffff&f +−+= (18)

The functions above have C1 discontinuity only in points where both arguments are
equal to zero. If Cm continuity is to be provided, one may use another set of
R-functions:

()2
m

2
2

2
1

2
2

2
12121 fffffff|f +





 +++=

()2
m

2
2

2
1

2
2

2
12121 fffffff&f +





 +−+= (19)

The more examples of set-theoretic operations, such as blending (linear, hyperbolic,
super-elliptic), offsetting, bijective mapping, affine mapping, projection, Cartesian
product and metamorphosis can be found in [12], [16], [30], [31], [43].

1.4.2. Skeleton based modeling
The skeleton is a collection of elements, each of which generates a volume. Within an
implicit context, such a volume is called a skeletal primitive, which is denoted by fi(p),
for skeletal element i. Thus, f is a function from E3 (or E2 for illustrative purposes) to
E1, and, usually, is C1 continuous. The implicit surface function may be a blend of these
primitives, i.e., f(p) = g(p, f1,f2,...,fn) = 0, and the implicit surface is the covering, or
manifold, of the skeleton, [7].

When used in a biological context, ‘skeleton’ usually refers to the rigid, mechanical
support system found in most animals. In such a system, a subordinate element rotates
with respect to a superior one.

Although an organism’s inner structure need not be organized hierarchically, for our
purposes we assume that a skeleton is topologically equivalent to a directed acyclic
graph. Such a graph, or tree, organizes the internal components of an object and is,
therefore, a powerful means for the representation and manipulation of the object. The
basic data structure for a skeleton, which we call an element (or, sometimes, limb), is
recursive and contains the following fields, [7]:

Introduction

- 15 -

- parent: pointer to element

- children: list of pointer to element

- transformation from parent: matrix

- geometry: geometric object

- ancillary data: . . .

The transformation is Euclidean, allowing rotation and translation. Usually the
geometry is a tapered cylinder defined by two three-dimensional endpoints and their
associated radii.

Each skeletal element can readily define a surrounding volume, or primitive. Although
the collection of these volumes may yield a topologically complex surface, the skeletal
elements remain easily defined, articulated, and displayed.

Figure 5. A skeleton and possible resulting surfaces, taken from [7].

A skeleton is related to its resulting shape but its geometric complexity is not
necessarily comparable to that of the shape. For example, in Figure 5, the skeleton
contains a single loop. Depending on the radii associated with the skeletal elements, the
resulting surface can contain a hole or not, can be convex or not, and can consist of one,
two, or three convex regions.

The skeleton modeling is important for interactive modeling, [46], [44], [47] when
a designer creates a shape by interactively defining the skeleton and various parameters
that control how the skeleton becomes a polygonized surface.

Polygonization

- 16 -

2. Polygonization
For many applications it is useful to approximate an implicit surface with a mesh of
triangles or polygons (formally, a discrete set of piecewise-linear, semi-disjoint
elements). Conversion of a functionally specified implicit surface to a polygonal
approximation can require considerable computation, but is required only once per
surface and allows rendering of the surface by conventional polygon scan conversion.
For differentiable f, [35], this is always possible because all manifold surfaces may be
triangulated. Such mesh conversion is popularly known as polygonization.

In this chapter, an overview of existing polygonization algorithms is presented as well
as some techniques for measurement of approximation quality.

2.1. Approximation error

The approximation error is a measure of difference between the polygonal model and its
mathematical description. In available papers, there is not emphasis on measurement of
the error. Therefore, the author has proposed several possibilities how to evaluate this
difference. These techniques are used for comparison of algorithms properties in
following sections.

One way is to determine the distance of polygonal mesh’s elements from the real
(mathematically defined) surface. Let the distance between a point p and an implicit
surface be defined as follows:

{ }0)f(:- min)dist(zz == pppp (20)

Then, the average error in the vertices positioning (actually, it is the error of a root
finding algorithm) can be evaluated as:

N

)dist(
E

N

1i
i

av

∑
==

p
, (21)

where pi is a vertex in the triangulation and N is a number of vertices.

Polygonization

- 17 -

The average error of the approximation by triangles can be determined as:

M

)dist(
E

M

1i
ti

at

∑
==

c
, (22)

where cti is the centre of gravity of an ith triangle and M is a number of triangles.

Figure 6. Approximation of an implicit object with a triangular net (contours and lines
in two-dimensional example); distance of point ctk (the centre of gravity of a triangle)
from the real surface.

Determination of the exact (real) distance of the given point to the implicit surface is
computationally expensive and, therefore, several approximations are often used.

Each vertex coordinates are usually computed by an iteration process which is stopped
when the function value in the given point is less then some ε. In such cases, the real
distance between the surface vertex and the implicit surface is approximated by the
Algebraic distance defined as:

)(f)(dist A pp = (23)

For normalized implicit functions, the Algebraic distance is equal to the real distance
(Euclidian distance in Euclidian space) but in majority, it is only proportional to the real
distance. For example, the Sphere implicit function is usually defined as:

0zyxr 2222 =−−− . (24)

The normalized version of the Sphere function is defined as:

Polygonization

- 18 -

0zyxr 222 =++− . (25)

The other approximation of the real distance is the Taubin’s distance, [39], defined as
follows:

)(f
)(f

)(dist T p
p

p
∇

= . (26)

The Taubin’s distance is the first order approximation to the exact distance, but the
approximate distance is also biased in some sense, [13]. If, for instance, a data point p is
close to a critical point of the function, i.e., 0)(f ≈∇ p , but f(p) ≠ 0, the distance
becomes large which is certainly a limitation.

There is also another point of view how to measure approximation quality than
investigation of a distance from the real surface. Such approaches are proportional to
surface curvature estimation. Curvature error along an edge can be expressed as
a deviation of surface normal vectors at points of the edge, see Figure 7. Such curvature
error is called the Angle error of an edge.

Figure 7. Curvature error of the edge ek is measured as deviation αk between surface
normals ni and nj.

The average angle error could be then determined by the following simple formula:

Q
E

P

1k
k

angle

∑
==

α
, (27)

where Q is a number of edges in triangulation.

Another curvature error could be measured for a triangle as a deviation between the
triangle’s normal vector and the real normal vector of the implicit function determined
at the centroid of the triangle, see Figure 8. The second curvature error is called the
Centroid angle error of a triangle.

Polygonization

- 19 -

Figure 8. Curvature error of the triangle tk is measured at centroid ctk as deviation αk
between the triangle’s normal vector ntk and the real normal vector of the implicit
function nfk.

The average centroid angle error of the approximation by triangles can be determined as
follows:

M
E

M

1k
k

angle c

∑
==

α

, (28)

where M is a number of triangles.

An alternative evaluation of the approximation error between the implicit model and its
triangular mesh is the comparison of their surface areas. The usage of this measurement
is limited only to implicit functions we know or we can compute their surface area.
Surface area of an implicit model approximated by triangles can be determined as:

∑
=

=
M

1 ti
tip SS , (29)

where Sti is the surface area of the ith triangle and M is a number of triangles.

Then, the relative error of the approximated model can be computed as:

r

p
s S

S
1E −= , (30)

where Sr is the real surface area of the model defined by the implicit function. As the
model is approximated by triangles we can assume that Sp ≤ Sr.

Polygonization

- 20 -

2.2. Triangulation quality

A quality of shape of triangles generated is usually measured by the following
criterions:

- Edge length criterion – a ratio between the shortest and the longest edge of
a triangle

- Angle criterion – a ratio between the smallest to the biggest angle of a triangle

- Histogram of angles distribution – a number (or a percentage) of angles in given
intervals

2.3. Exhaustive enumeration

Exhaustive enumeration operates on a set of samples of f arranged as a regular, typically
rectilinear lattice known as a scalar grid or voxel array. The samples may be
experimental, such as CAT and MRI scans, or computed, as in simulations of fluid
flow. The lattice is readily represented by a three-dimensional memory array, which can
be filled by a hardware scanner in constant time.

Once the samples are obtained, each transverse cell is polygonized. Given c1 and c2,
lattice neighbors of opposite sign, a surface vertex p is usually computed using linear
interpolation:

() 0)f(c),f(c ,)f(c)f(c)/f(cα where,α)c(1αc 2112221 ≠−=−+=p (31)

This method is popularly known as ‘marching cubes’ or ‘marching tetrahedra’. The
standard Marching cubes (MC) and the Marching tetrahedra (MTE) algorithms [5], [7]
are often used for an iso-surface extraction. These methods can be performed both the
continuation schemes (see bellow) and the exhaustive enumeration approaches. The
process of polygonization consists of two principal steps: partitioning the space into
cells and the processing of each cell to produce polygons. Each cell is represented by a
cube or by a tetrahedron. The implicit surface function is evaluated at corners.

A cell is transverse if any of its edges intersects the implicit surface (one edge endpoint
evaluates negatively, the other positively). For each transverse edge, a surface vertex is
computed (by the Intermediate Value Theorem, a point p: f(p) = 0 must exist along a
transverse edge if f is continuous). Function f may be evaluated at arbitrary locations,
which allows methods such as binary sectioning to compute surface vertex locations
with arbitrary precision, unlike linear interpolation. These algorithms seek to minimize
the number of evaluations of f, which may be arbitrarily demanding to evaluate.

Polygonization

- 21 -

The surface vertices belonging to the transverse edges of a cell are connected to form
one or more polygons (alternatively, patches may be produced). The edges of the
polygons lie within the faces of the cell. The order of vertex connectivity is often stored
in a table of polarity configurations of the cell corners. For a cube (8 corners) and a
tetrahedron (4 corners, i.e., a three-dimensional simplex) there are 256 and 16
possibilities, respectively. The 256 possible configurations of a cube can be reduced to
only 15 fundamentals and the others can be obtained by rotation and application of
symmetry. Figure 9a shows the basic 15 configurations of a cube and the configurations
of a tetrahedron are shown in Figure 9b.

a)

b)

Figure 9. a) The basic 15 configuration of a cube, b) the configuration of a tetrahedron,
taken from [5].

Because the tetrahedral edges include the diagonals of the cube faces, the tetrahedral
decomposition yields to a greater number of surface vertices per surface area than the
cubical polygonization does.

The Marching cubes and the Marching tetrahedra algorithms generate a triangular mesh
which is much influenced by a regular grid. Therefore, next adjustment of the mesh is
suitable.

The application of the Marching cubes algorithms includes electron motion,
computational electromagnetic, polypeptide visualization, biomedical visualization,
molecular modeling, etc.

2.4. Piecewise-Linear continuation

Piecewise-linear principles have been applied to implicit surfaces using a tetrahedral
cell and a cubic cell, [5], [40]. Beginning with a single transverse ‘seed’ cell, new cells
are propagated across transverse faces until the entire surface is enclosed.

Polygonization

- 22 -

Because only transverse cells are generated, piecewise-linear continuation requires
O(N2) function evaluations, where N is a measure of the size of the object (thus, N2
corresponds to the object’s surface area, [5], [7]), see Figure 10. In comparison,
exhaustive enumeration requires O(N3) samples. Compared with subdivision,
continuation appears less prone to under-sampling.

Figure 10. Continuation scheme, 2D example for illustration, taken from [5].

Exhaustive enumeration yields all disjoint surface components (with detectable size).
Continuation, however, produces a single component for each seed cell; to polygonize
all disjoint surface components, continuation must be performed for each, using an
appropriate seed cell.

2.5. Predictor-Corrector continuation

Predictor-corrector methods [1], [19], [20], [21] apply directly to the surface, creating
elements (usually triangles or polygons) by joining an initial surface point with
additional points. New points are computed by displacement from a known point along
the tangent plane and then corrected (e.g., using Newton iteration) onto the surface.
These methods are problematic for surfaces because surface vertices are not intrinsically
ordered (unlike a one-dimensional contour), which complicates detection of global
overlap.

Figure 11. Continuation scheme, new triangles are directly generated on an implicit
surface.

Polygonization

- 23 -

2.5.1. Marching triangles
The idea of the Marching triangles (MTR) algorithm, [19], consists of five steps:

Algorithm 1. Marching triangles principle.

Step 0: Arbitrarily choose a starting point s in the neighborhood of the surface and find
the point p1 that lies on the surface. Surround p1 with a regular hexagon q2,…,q7 in
the tangent plane. Determine the points p2,…,p7 corresponding to the starting points
q2,…,q7 that lie on the surface (Figure 12a). The triangles (p1,pi,pi+1) are the first six
triangles of the triangulation. The ordered array of points p2,…,p7 form the first
actual front polygon1 ∏0.

Step 1: For every point of the actual front polygon ∏0, determine the angle of the area
till to be triangulated and form front angles (Figure 12b).

Step 2: Check if any point pi of the actual front polygon is near:

a) to a point of ∏0 that is different from pi and its neighbors. Then divide the actual
front polygon ∏0 into a smaller one and an additional front polygon (Figure
13a).

b) to a point of any other front polygon ∏m, m>0. Then unite the polygons ∏0, ∏m
to a new and larger actual front polygon (Figure 13b). Delete ∏m.

Figure 12. The first steps of the
Marching triangles algorithm, taken
from [19].

Figure 13. (a) Dividing the actual front
polygon (step 2a of the MTR algorithm) and
(b) uniting two front polygons
(step 2b of the algorithm).

1 the border of the triangulation

Polygonization

- 24 -

Step 3: Determine a front point pi of the actual front polygon ∏0 with a minimal front
angle. Surround pi with triangles with angles ≈ 600. Delete pi from the actual front
polygon ∏0 and insert the new points into the actual front polygon ∏0.

Step 4: Repeat steps 1-3 until the actual front polygon ∏0 consists of only three points
that generate a new triangle. If there is another (nonempty) front polygon left, it
becomes the new actual front polygon ∏0 and steps 1-3 are repeated. If there are no
more front polygons then the triangulation is finished.

2.6. Adaptive polygonization

Polygonization is a sampling process. If the spacing between samples is large with
respect to surface curvature, detail is lost. Resolution requirements may also change
with viewpoint. Any fixed sampling rate may be excessive for relatively flat regions of
the surface and insufficient for relatively curved regions. If the cell size is inversely
proportional to local curvature, the resulting adaptive polygonization minimizes
polygon count while maintaining geometric accuracy. Both subdivision and
continuation may be performed adaptively, [1], [10], [36]. Accurate representation of
non-differentiable f, however, may require explicit computation of its singular points.

2.6.1. Adaptive Marching cubes
The estimate of the surface may be improved by subdividing those cubes containing
highly curved or intersecting surfaces. As is introduced in [10], using the polygon
resulting from an octree node, criteria for subdivision of the node include:

- whether any edge of the cube intersects the surface,

- whether a maximum subdivision depth or a minimum cube size has been
reached,

- whether more than one polygon results from the cube,

- the planarity of the polygon, and

- the divergence of vertex normals from the normal at the polygon center.

Given the polygon vertices, pi, their unit length normals ni, and the unit length normal n
at the polygon center, the planarity of the polygon can be estimated by:

max (vi · n), i ∈ [1,nPoints] and vi the unit length vector (pi,pi+1), and the divergence of
the vertex normals can be estimated by:

min (ni · n), i ∈ [1,nPoints]

Polygonization

- 25 -

Certain topological criteria, [18], warrant the subdivision of an adjacent cube. If the
edge of a parent cube connects two equally signed corners and the midpoint is
differently signed, as in Figure 14 left, then the three neighbors along that edge should
be subdivided. For each face of a parent cube, if the four child corners that are
midpoints of the four edges of the face all agree in sign but disagree with the center of
the face, Figure 14 right, then the face neighbor should be subdivided. Without such
subdivision, a hole will appear in the surface.

Figure 14. Conditions warranting subdivision of adjacent cubes; midpoint of an edge
(left) and midpoint of a face (right), taken from [10].

The generalized cylinder in Figure 15 was created by this adaptive algorithm.

Figure 15. Adaptively subdivided generalized cylinder, taken from [10].

2.6.2. Adaptive Marching triangles
The algorithm introduced in [1] is based on the surface tracking approach. Starting from
a seed triangle on an implicit surface, the marching triangles algorithm iteratively
creates new triangles on the surface from the boundary edges. It is the improved version
of the method [20] with adaptivity depending on surface curvature.

The edges of the seed triangle are inserted into the list of boundary edges. New triangles
are created from the boundary edges and their new edges are appended to the end of the
list, referred as Le. Each new generated triangle has to satisfy the Delaunay property: A
triangle T(xk,xk+1,xp) can be added to the mesh boundary at edge e(xk,xk+1) if no part of
the surface of the existing mesh, i.e., no existing triangle, intersects the sphere centered
at cT circumscribing the triangle T(xp,xk,xk+1) with the same orientation (see Figure 16).

Polygonization

- 26 -

Figure 16. Creation of a new triangle T: the empty sphere criterion does not apply as
the sphere S intersect another part of the mesh (at vertex xi) whose surface normals nT’
and nT” exhibits a different orientation than nT. The picture is taken from [1].

The algorithm proceeds as follows, iteratively analyzing each edge e(xk,xk+1) in the list:

Algorithm 2. Adaptive Marching triangles.

1. Create a new vertex x in the plane of the triangle T(xi,xk,xk+1) that contains the
edge e(xk,xk+1). This point will be used as a first guess in the computation of the
surface vertex xp.

2. Create a new surface vertex xp by projecting x onto the implicit surface
following the gradient of the field function f∇ .

3. Apply the Delaunay surface constraint to the new triangle T(xp,xk,xk+1) and
proceed as follows:

a) If T(xp,xk,xk+1) passes the constraint, then add the triangle to the mesh and
stack the edges e(xp,xk) and e(xp,xk+1) to the list of edges Le that need to be
processed.

b) If T(xp,xk,xk+1) does not pass the constraint, check if one of the triangles
T(xk-1,xk,xk+1) and T(xk,xk+1,xk+2) satisfy the Delaunay surface constraint,
and modify the mesh accordingly if needed.

c) Otherwise, step over the edge e(xk,xk+1) to the next candidate edge.

4. Close the cracks that may appear in the triangulation.

The method is implemented as a single pass through the edge list Le. Whenever the
mesh growing scheme fails, the edges are left in the edge list. At the end of the
algorithm, Le forms an open contour in the polygonization. Enclosing of the left edges is
in detail described in [1] and it is not necessary for understanding to the adaptive
polygonization principle that is described in the next paragraphs.

In [20] the point xp is computed by projecting a point x on the surface, where x is
created at a constant distance d from the edge e in the plane of the triangle T. Authors in

Polygonization

- 27 -

[1] used a better approach consists in adapting the parameter d to the local curvature of
the surface.

Anticipating the local curvature of the field function consists of the three
following steps.

1. Geometry correction step. Let xm denote the mid point of the boundary edge e.
At first, the point xm is projected onto the implicit surface in the direction of the
gradient)f(mx∇ so as to fit to the local geometry of the implicit surface, see
Figure 17. This step creates a new point on the surface denoted as xs.

Figure 17. Characterization of the surface point xs and the projected point xp,
taken from [1].

2. Computation of the starting point. Let t be the unit tangent vector (see Figure
17) to the surface at the surface vertex position xs defined as:

)f(
)f(

sk

sk

xe
xet

∇×
∇×

= . (32)

The point x may be written as x=xs+dt where d is a variable distance parameter
computed as:

3
e where,e

2
3d 1kk1-k +++

==
eee

, (33)

and the edges ek-1, ek+1 are the neighboring edges of the edge ek.

The variable d is constrained with some limit value dmin and
if d<dmin then dnew = 3/4d + 1/4dmin.

Polygonization

- 28 -

3. Computation of the new surface vertex. Let x and y denote the two points that
converge to the surface by following the gradient of the field function. The
algorithm may be written as follows:

a) Initialize y with the starting point x.

b) While both points are on the same side of the implicit surface, i.e., f(x)
and f(y) are of the same sign, perform the following sub-steps.

- Evaluate an approximation of the distance to the surface by the Taubin’s
distance, equation (26).

- Compute the new location for point y, marching from x along the
direction of the gradient vector)f(x∇ .

2)f(
)f()f(α

x
xxxy

∇

∇
−= , (34)

where α is a scalar factor.

- If f(x) and f(y) are of the same signs, store y in x and restart loop at
step b.

c) When the algorithm reaches this step, x and y are on opposite sides of the
surface, so perform bisection over the line segment [x,y].

2.7. Surface refinement

One possible solution for polygonization of implicit object with sharp features is
refinement of an initial triangular mesh, [4], [24], [27], [28], [42]. Simple, efficient and
numerically stable algorithm is used for constructing of an initial mesh. Algorithms
based on the marching cubes principle are often used. A coarsely polygonized surface is
followed by subdivision of insufficiently accurate polygons. For example, if the center
of a triangle is too distant from the surface, the triangle may be split at its center, which
is moved to the surface. Similarly, a triangle may be divided along its edges if the
divergence between surface normals at the triangle vertices is too great.

The algorithm introduced in [28] consists of following two steps. Given an implicit
surface f(x,y,z) = 0 and its initial polygonization then the mesh optimization procedure
is as follows.

1. Construct the dual mesh consisting of the centroid of the original mesh, modify
the dual mesh by projecting its vertices onto the implicit surface, and find the
tangent planes at the vertices of the modified dual mesh.

Polygonization

- 29 -

2. For each vertex, update its position by minimizing an error function equal the
sum of squared distances from the vertex to tangent planes at the neighboring
vertices of the modified dual mesh.

Figure 18. The initial mesh (left) created by the Marching cubes algorithm and its
optimized version (right), taken from [28].

The method has several limitations. The mesh optimization process does not change the
topology of an initial coarse mesh. Therefore, if fine topological details are not captured
by the initial mesh, the method may produce a wrong reconstruction of the implicit
surface. Another drawback of the method is a large number of calls of a function which
defines the implicit surface. If the function is very complex, the method becomes
computationally expensive.

2.8. Particle systems

Particle systems (physically based techniques) start from initial positions in space and
seek their equilibrium positions, i.e. positions where a potential function | f | is minimal
– on an implicit surface, [14], [15]. The desired polygonal approximation is then
obtained by computing the Delaunay triangulation associated with the points.

The interpretation of the gradient of | f | as a force field implies the following equation
of motion for a unit mass particle:

0)(2

2

=∇++ ffsign
dt
dx

dt
xd

γ , (35)

where γ is a positive real number representing friction proportional to velocity, [14].

Figure 19a shows the trajectories of a particle system associated with a two-dimensional
curve with 2 components and Figure 19b shows the final equilibrium positions of these
particles along the curve.

Polygonization

- 30 -

Figure 19. Trajectories (a) and final positions (b) of particles for 2D curve, taken
from [14].

Figure 20a shows the sample points on the surface of a sphere and Figure 20b shows the
polygonal approximation for the sphere.

Figure 20. Sample points on the surface of a sphere (a) and polygonization of the
sphere (b), taken from [14].

2.9. Non-Manifold polygonization

Although a manifold-with-boundary may be specified by a continuous function, all
points off the zero set are of the same sign. Consequently, conventional polygonization
fails. A non-manifold can be implicitly represented by extending the definition of f to be

Polygonization

- 31 -

the separation between arbitrary regions of space. A continuation method using this
scheme is given in [11].

Figure 21. Polygonized non-manifold, taken from [11].

Novel polygonization approaches

- 32 -

3. Novel polygonization approaches
In previous sections, an overview about implicit surfaces, their modeling and
polygonization has been introduced. The author’s work will be presented in the
following text. This chapter starts with modifications of the Marching triangles
algorithm that has been mentioned in section 2.5.1. The following section contains an
introduction of the new polygonization method - Edge spinning (ES). The first version
of the algorithm is non-adaptive and its adaptive modification is presented next. The ES
algorithm is based on the similar principle as the Marching triangles method. The
ES approach has been implemented in a standard way as well as using an acceleration
technique. Thereinafter, the ES algorithm has been modified to be able to polygonize
implicit object with sharp features. A modification of the algorithm, to be able to
triangulate implicit scenes consisting of more disjoint surfaces, is presented finally.

Note that sequence of the following sections is chronological according to development
of the algorithms. In each section, the comparison and experimental results of the given
method are demonstrated. All experiments have been realized on a computer Athlon XP
2500+, 512MB DDR400.

3.1. Marching triangles improvement

The original algorithm described in [19] contains some parts that can be implemented
more effectively. The most time-consuming part is the distances checking of the front
polygons’ points (Step 2 of the Algorithm 1). Our modification of the algorithm is
directed precisely towards achieving this step.

3.1.1. Decreasing the algorithm complexity
The first distance check (FDC, step 2a of Algorithm 1) is of complexity:

()() (),5 2
2
1 mOmmO ⇒−∗ (36)

where m is a number of points in the actual front polygon.

The second distance check (SDC, step 2b of Algorithm 1) is of complexity:

(),umO ∗ (37)

where u is a number of points in all the other front polygons.

Both distance checks, FDC and SDC, are evaluated at each step of the MTR algorithm
and, therefore, the final algorithm complexity is:

Novel polygonization approaches

- 33 -

()() ()() (),32 NOsummOsummO ≈∗+∗⇒∗∗+ (38)

where s is a number of repetitions of the MTR algorithm.

There is good to realize that the shape and structure of the actual front polygon is only
modified during the polygonization process and all the other front polygons stand
without any changes. Thereinafter, the actual front polygon’s shape is only modified in
one location where new points are included. The result of those causes is: the main part
of a scene is static and only one local limited area is dynamically modified. Therefore,
the distance checking need only be performed for new points and Step 2 of the MTR
algorithm can be written as follows.

Step 2: Check if only the new points pi of the actual front polygon are near … (both
steps a and b are without changes).

This means that the algorithm complexity for one step and one inserted point is
decreased and can be expressed for FDC as:

(),mO (39)

where m is a number of points in the actual front polygon, and for SDC as:

(),uO (40)

where u is a number of points in all the other front polygons.

Therefore, the final algorithm complexity is:

()() (),2NOsumO ≈∗+ (41)

where s is a number of repetitions of the MTR algorithm.

The algorithm complexity of the MTR method was reduced by one level. Therefore, the
usage of the algorithm for polygonization of more detailed objects (with a large number
of polygons as its output) was significantly increased. Nevertheless, our experiments
proved that the MC algorithm (surface tracking approach) is, for polygonization of
highly detailed objects, significantly speedier than this modified MTR method. The
reason is that the distance checking is still using large algorithm complexity for the
growing number of points in front polygons.

3.1.2. Acceleration
One possible solution is the subdivision of the computing area into smaller sub-areas.
Each sub-area contains only one part of a set of front polygons’ points. The average
number of points in sub-areas depends on the sub-areas’ size. Our main requirement is
to minimize the number of distance checks, i.e. a selection of the most restricted set of
points into which the actual front polygon can be divided or united.

Novel polygonization approaches

- 34 -

The actual front polygon is divided or united only if the distance between two specified
points is shorter than some limit distance σ (more information in [19]). Therefore, the
most suitable choice for the size of the sub-areas side is σ, i.e. the shape of sub-areas is a
cube. For this choice, the distance checks (FDC and SDC) can be accomplished only
with front polygons’ points which lie in adjacent sub-areas of the new point’s area.
Figure 22 shows a distance check for a new included point (for illustration only the E2
example).

Figure 22. Space subdivision scheme.

Figure 23. The data structure for the
space subdivision scheme.

Each sub-area contains a list of front polygons’ points located inside. The data structure
used for the subdivision scheme is shown in Figure 23. Each front polygon also has its
own set of points (similar as above) and each point contains one pointer to its sub-area
and one pointer to its front polygon as well.

3.1.3. Edge detection
Detection of sharp edges is a modification of the MTR method (section 2.5.1) at the step
of finding location of a new point (in step 3 of the MTR algorithm, see Algorithm 1).
The principle of the algorithm is in knowledge of normal vectors at points p and q. The
point p already has its own accurate position and the point q lies in the tangent plane of
the point p. Then the algorithm is as follows.

Algorithm 3. Edge detection for the Marching triangles method.

1. Initialization, a = p, b = q, na … normal vector in the point a, nb … normal
vector in the point b.

2. c = 0.5*(a+b) … binary subdivision between the points a, b.

3. Let the normal vector at the point c be nc, and α be the angle between vectors na
and nc.

4. If α > αlim then b = c else a = c.

5. If the distance between points a, b is less then some ε, the desired point is b, else
return to step 2.

Novel polygonization approaches

- 35 -

Figure 24. The implicit object modeled as intersection of two spheres; polygonized
a) without edge detection; b) with edge detection algorithm.

3.1.4. Experimental results
The next experiments were accomplished on the implicit object Genus 3, Figure 25. Its
implicit function is described as follows:

() () ()[] ()[] ()[] 01 2
1

22
1

2
1

22
1

2224 =−++⋅−+−⋅−−−⋅= ryxxryxxryrxzrf yxzx , (42)

where the parameters are rx=6, ry=3.5, rz=4, r1=1.2, x1=3.9.

Figure 25. The implicit object Genus 3.

Figure 26 shows the speed-up between the original MTR algorithm and the accelerated
one. It can be seen that speed-up grows with the resolution linearly in the range of
resolution used for experiments. The experiments proved that the proposed algorithm is
especially convenient for cases where highly detailed objects are to be generated.
Nevertheless, even for small resolution the proposed algorithm is significantly faster
than the original one [19].

Novel polygonization approaches

- 36 -

43

106

831

340

10

100

1000

160 240 400 630

N

Sp
ee

d-
up

Figure 26. Speed-up between the original MTR algorithm and the accelerated version.

Table 1 contains the list of values which were obtained by the first experiment. It is
obvious that both modifications of the MTR algorithm generate comparable values
(number of triangles and vertices) only the computational time is significantly different.

GENUS 3 N 160 240 400 630
Triangles 15 535 34 945 97 785 244 295
Vertices 7 763 17 468 48 886 122 143

Original MTR
algorithm

time [ms] 5 147 27 600 340 459 2 263 275
Triangles 15 679 35 067 97 867 244 103
Vertices 7 835 17 529 48 929 122 047

Accelerated MTR
algorithm

time [ms] 120 260 1 001 2 724

Table 1. Values measured for both versions of the MTR algorithm.

The N variable, used in Figure 26 and in Table 1, represents a desired level of detail.
Specifically, the average triangles edges’ length is proportional to N and to the
computing area’s size as well. With growing N, the triangles’ edges get shorter, i.e. each
side of the computing area is as though divided into N parts and length of such part is
the average edges’ length of generated triangles. The computing area’s size used in
experiments has been [<xmin,xmax>,<ymin,ymax>,<zmin,zmax>]=[<-16,16>,<-16,16>,<-
16,16>].

The histogram in Figure 27 illustrates that the triangular mesh generated by the
accelerated version of the MTR method consists of triangles with the similar shape
properties.

Novel polygonization approaches

- 37 -

0

5

10

15

20

25

30

35

30-40 40-50 50-60 60-70 70-80 80-90 90-100

Angle's intervals in degrees

Original
Accelerated

Number of angles [%]

Figure 27. Histogram of the triangles’ shape (angle distribution) for the MTR
algorithms; generated for N=630, see Table 1.

3.1.5. Conclusion
The original Marching triangles algorithm has been significantly accelerated and its use
is also suitable for triangulation of more detailed implicit objects now.

Note that the presented approach in this section has been published in [vii] of the author
publications.

3.2. Edge spinning algorithm and its acceleration

In this section, the new algorithm for polygonization of the implicit surfaces will be
introduced. The Edge spinning (ES) method put emphasis on the shape of triangles
generated and on the polygonization speed as well. The algorithm is a variant of
marching triangles methods [1], [19], [20], [21], i.e. it is based on the continuation
(surface tracking) scheme.

3.2.1. Data structures
The presented algorithm works only with the standard data structures used in computer
graphics. The main data structure is an edge used as a basic building block for the
polygonization. We use the standard winged edge and therefore, the resulting polygonal
mesh is correct and complete with neighborhood among all generated triangles. If a
triangle’s edge lies on the triangulation border, it is contained in the list of active edges
(dynamically allocated list) and it is called as an active edge. Each point contained in an
active edge has two pointers to its left and right active edge (left and right directions are
in active edges’ orientation).

Novel polygonization approaches

- 38 -

3.2.2. Idea of the algorithm
Our algorithm is based on the surface tracking scheme and therefore, there are several
limitations. A starting point must be determined and only one separated implicit surface
can by polygonized for such point. Several disjoint surfaces can be polygonized from
a starting point for each of them. The whole algorithm consists of the following steps.

Algorithm 4. Edge spinning principle.

1. Find a starting point p0.

2. Create the first triangle T0, see Figure 28.

3. Include the edges (e0,e1,e2) of the first triangle T0 into the active edges list.

4. Polygonize the first active edge e from the active edges list.

5. Delete the actual active edge e from the active edges list and include the new
generated active edges to the end of the active edges list.

6. Check the distance between the new generated point pnew and all the other points
lying on the border of already triangulated area (lying in all the other active
edges).

7. If the active edges list is not empty return to step 4

Figure 28. The first steps of the Edge spinning algorithm.

3.2.3. Starting point
There are several methods for finding a starting point on an implicit surface. These
algorithms can be based on some random search method as in [5] or on more
sophisticated approach. In [40], searching in constant direction from an interior of an
implicit object is used.

In our approach, we use a simple algorithm for finding a starting point. A starting point
is sought from any place in defined area in direction of a gradient vector f∇ of an
implicit function f. The algorithm looks for a point p0 that satisfy the equation f(p0) = 0.

Novel polygonization approaches

- 39 -

3.2.4. First triangle
The first triangle in polygonization is assumed to lie near a tangent plane of the starting
point p0 that is on the implicit surface.

Algorithm 5. Creating of the first triangle.

1. Determine the normal vector n = (nx,ny,nz) in the starting point p0, see Figure 29.
ffn ∇∇=

2. Determine the tangent vector t as in [19].
If (nx > 0.5) or (ny > 0.5) then t = (ny, -nx, 0); else t = (-nz, 0, nx).

3. Use the tangent vector t as a fictive active edge and use the algorithm edge spinning
(described bellow) for computation coordinates of the second point p1. The pair of
points (p0, p1) forms the first edge e0.

4. Polygonize the first edge e0 with the edge spinning algorithm for getting the third
point p2. Points (p0, p1, p2) and edges (e0, e1, e2) form the first triangle T0.

Figure 29. First triangle generation.

3.2.5. Root finding
The algorithm looks for a new points’ location by spinning of edges of already
generated triangles. Usually, the polygonization algorithms seek points’ coordinates
following the gradient of an implicit function, [19]. Differential properties, [35], for
each implicit function are different with the dependence on the modeling technique;
therefore, the computing of a gradient of function f is influenced by a major error.
Because of these reasons, in our approach, we have defined these restrictions for finding
a new surface point pnew:

- The new point pnew is sought in a constant distance, i.e. on a circle; then each
new generated triangle preserves the desired accuracy (level of detail) of
polygonization – the average edge’s length δe. The circle radius is proportional
to the δe.

Novel polygonization approaches

- 40 -

- The circle lies in the plane defined by the normal vector of triangle Told (see
Figure 30) and axis o of the actual edge e; this guarantees that the new generated
triangle is well shaped (isosceles at least).

Figure 30. The root finding principle.

Then, the algorithm is as follows:

Algorithm 6. Root finding of the Edge spinning method.

1. Set the point pnew to its initial position; the initial position is on the triangle’s Told
plane on the other side of the edge e, see Figure 30. Let the angle of the initial
position be α=0.

2. Compute the function values f(pnew) = f(α), f(p’new) = f(α+∆α) – initial position
rotated by the angle +∆α, f(p”new) = f(α-∆α) - initial position rotated by the
angle -∆α; the rotation axis is the edge e.

3. Determine the right direction of rotation; if |f(α+∆α)| < |f(α)| then +∆α else -∆α.

Figure 31. Angle between two triangles; the view is in direction of the edge’s
vector e.

4. Let the functional values be f1 = f(α) and f2 = f(α±∆α); update the angle
α = α±∆α.

5. If (f1 ⋅ f2) < 0 then compute the accurate coordinates of the new point pnew by the
binary subdivision between the last two points corresponding to functional
values f1 and f2; else return to step 4.

Novel polygonization approaches

- 41 -

6. Check if both triangles Told and Tnew do not cross themselves; if the angle
between these triangles β > βlim (see Figure 31) then point pnew is accepted; else
point pnew is rejected and return to step 4.

3.2.6. Active edge polygonization
Polygonization of an active edge e consists of several steps. At first, the algorithm
checks adjacent active edges of the active edge e and determines which of following
cases appeared, see Figure 32.

- If (αi < αlim_1) then case a); i = 1, 2.
- If (α2 < αlim_2) and (||pe1 - pr_e2|| < δlim_1) then case a); analogically for α1.
- If (α2 > αlim_3) and (||pe1 - pr_e2|| < δlim_2) then case b); analogically for α1.
- else case c)
Note that the relations among limit angles are αlim_1 < αlim_2 ≤ αlim_3.

Figure 32. The possible cases for polygonization of an active edge.

Possible cases which are illustrated in Figure 32 are:

a) In this case, algorithm creates a new one triangle and includes a new active edge
enew to the end of the active edges list.

b) In some situations, the length of certain edges can be shorter then tolerable limit. In
this case, algorithm must repair the length of the new edges enew1 and enew3 to
achieve better shapes of next triangles. The axis o1 (see Figure 32) is used as

Novel polygonization approaches

- 42 -

a fictive active edge for the algorithm edge spinning and the new point pnew is
created as well as two new triangles.

c) In all the other situations, the edge e is polygonized by the standard algorithm edge
spinning.

3.2.7. Distance test
To preserve the correct topology and the shape of the mesh triangles it is necessary to
perform the distance check between the new triangle and a border of already
triangulated area. Therefore, each new generated point pnew must be checked for
distance with all the other points which lie in active edges. Let the point pmin be the
nearest point to this new point pnew and distance between both points is δ = ||pnew - pmin||.
Further, let pmin not lie in the active edges which are in the neighborhood of both active
edges which contain the point pnew. Then, there are two cases described in Figure 33.

a) If δ < δlim_3 then the new point pnew is replaced with the point pmin.

b) If δ < δlim_4 then a new triangle must be created between the new point pnew and one
of two active edges which contain the point pmin. , i.e. either the triangle (pmin, pnew,
pr_min) or the triangle (pl_min, pnew, pmin), see Figure 33b. The decision, which active
edge will be used, depends on angles α1, α2. The angles αi, i = 1, 2 are in interval
<0, π> and therefore, the triangle with the angle αi that is better approximation of
angle 90° is chosen.

Note that the relation between distance limits is δlim_3 < δlim_4.

The situation described in Figure 33 a) and b) is similar for both cases now. Point pnew
is contained in four active edges e1, e2, e3, e4 and a border of already triangulated area
intersects itself on it. Solution of the problem will be introduced on case b) and solution
for case a) is analogically. Let the four active edges be divided into pairs; the left pair is
(e3, e2) and the right pair is (e1, e4). One of these pairs will be polygonized and the
second one will be cached in memory for later use. The solution depends on angles β1,
β2, see Figure 33b. If (β1<β2) then the left pair (e3, e2) is polygonized; else the right pair
(e1, e4) of active edges is polygonized. In both cases, the second pair that is not
polygonized is deleted from the list of active edges and the point pnew is contained only
in one pair of active edges.

In Figure 33b, the first case is valid (β1<β2), i.e. the active edges (e3, e2) are polygonized
in order that depends on angles γ3, γ2. If (γ3<γ2) then the active edge e3 is polygonized at
first; else the active edge e2 is polygonized first.

Novel polygonization approaches

- 43 -

Figure 33. The possible cases for the distance test.

Now, the border of the triangulated area does not cross itself in the point pnew and the
recently polygonized pair of edges is removed from the active edges list. The previously
cached pair of edges must be returned into the list of active edges.

3.2.8. Acceleration
The original distance check algorithm takes more time if required scene details grow
(growing number of points on the triangulation border). In case that the new included
point can lie near to any point of the boundary, it is not possible to determine some
subset of candidates to the nearest point ahead.

Figure 34. The space subdivision scheme for the Edge spinning algorithm.

Novel polygonization approaches

- 44 -

Advantageous solution is dividing of space into sub-spaces (sub-areas), similarly as in
case of the Marching triangles algorithm described above. The date structure of the
point has to be extent of a pointer to its sub-area. Each sub-area contains its own list of
incidence points, similarly as in Figure 23.

Then, the nearest point must lie in the same sub-area like the new included point or in
the closest neighborhood. In order to validity of this theorem the next equation must be
valid as well: σ ≥ δlim, where σ is the size of sub-areas (cube shape), see Figure 34, and
δlim is the limit distance for distance check.

The original algorithm checks distances with the algorithm complexity O(N), where N is
a number of points on the triangulation border. The accelerated distance test is of
algorithm complexity O(M), where M is a number of points in adjacent sub-areas and
M<<N. Figure 34 shows 9 possible sub-areas in E2 case, there are 27 possible sub-areas
in E3 case, see Figure 35.

Figure 35. The algorithm has to perform the distance test among a) all points lying on
the triangulation border; b) only points lying in the adjacent sub-areas to the new point.

3.2.9. Experimental results
Experimental results are divided into three parts where at first, the quality of triangles is
compared among Edge spinning, Marching triangles and Marching cubes algorithms.
Second experiment illustrates effectiveness of the space subdivision acceleration

Novel polygonization approaches

- 45 -

technique and the last results have been achieved by comparison of Marching cubes and
Edge spinning methods, including speed and quality, on various implicit objects.

Quality of triangular meshes
At first, we compare a quality of triangles generated by the Marching triangles [19],
Edge spinning, and the Marching cubes [5] algorithms. For visual comparison, Figure
36 shows the Genus 3 object polygonized by these algorithms.

Figure 36. The Genus 3 object generated by a) the Edge spinning; b) the Marching
triangles; c) the Marching cubes algorithm.

The percentage ratio of the angles incidence is shown in Figure 37. This experiment
demonstrates that the Edge spinning algorithm has the highest number of angles in
triangulation in interval <50º, 70º>. The Marching triangles method also generates well-
shaped triangles and the Marching cubes algorithm generates poor polygonal mesh. The
presented results were verified by using many nontrivial implicit surfaces.

Novel polygonization approaches

- 46 -

0
5

10
15
20
25
30
35
40
45
50

0-
10

10
-2

0

20
-3

0

30
-4

0

40
-5

0

50
-6

0

60
-7

0

70
-8

0

80
-9

0

90
-1

00

10
0-

11
0

11
0-

12
0

12
0-

13
0

13
0-

14
0

Angle's intervals in degrees

N
um

be
r o

f a
ng

le
s

[%
]

Edge spinning
Marching triangles
Marching cubes

Figure 37. Histogram of angle distribution of triangular mesh, generated for Genus 3
object with average length of triangles edges set to 0.04 (it represents the desired level
of detail - LOD).

Acceleration by the space subdivision
In the next experiment, we will have a look at speed comparison between the
accelerated and the original ES algorithm. If we divide the computational time into two
parts, the polygonization time and the distance check time, Figure 38 shows the
percentage ratio of time with and without acceleration. It is obvious that the time,
needed for distance checking, was significantly decreased.

Figure 38. The time ratio between the Polygonization time and the Distance test time of
the ES algorithm; a) without the space subdivision scheme, b) with the space
subdivisions equal to 100.

Table 2 contains computing times measured with various space subdivisions as well as
speed-up achieved. For better illustration, the values from the Table 2 are graphically
shown in Figure 39.

Novel polygonization approaches

- 47 -

subdivision N/A 10 20 30 40 50 60 70 80 90 100
time [ms] 12609 7791 5969 4056 3024 2563 2284 2143 2033 1993 1943
speed-up 1,00 1,62 2,11 3,11 4,17 4,92 5,52 5,88 6,20 6,33 6,49

Table 2. Computational time and speed-up achieved in dependence on space
subdivisions used. Genus 3 object, 331 414 triangles, 165 703 vertices, polygonization
area [<xmin,xmax>, <ymin,ymax>, <zmin,zmax>] = [<-16,16>, <-16,16>, <-16,16>].

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

N/A 10 20 30 40 50 60 70 80 90 100

Space subdivision

S
pe

ed
-u

p

Figure 39. Comparison of speed-up depending on space subdivision used.

The results proved that this acceleration technique is effective and simple for
implementation as well.

Comparison between the Edge spinning and the Marching cubes algorithms
Our next experiment is aimed at detailed comparison of Edge spinning and the
Marching cubes algorithms. The measured values from the experiment are in Table 3.
The space subdivisions for the Edge spinning algorithm has been equal to 100 and the
polygonization area has been the same as in previous test. The values have been
achieved with a variable lowest level of detail (LOD) because we want the number of
generated triangles to be similar. Note that for the Marching cubes algorithm, the LOD
value represents a size of cube cells. The experiment has been performed on implicit
objects Genus, Jack, Morph and Spiral whose pictures are shown in Figure 40.

Table 3 contains the number of triangles and vertices generated. The value Angle err is
proportional to surface curvature and means the average deviation between surface
normal vectors at points sharing an edge. For the Edge spinning algorithm, it
corresponds to αerr given at the beginning of the polygonization. The value Centroid

Novel polygonization approaches

- 48 -

angle err represents the deviation between the normal vector of a triangle and the
function normal vector computed at the centroid of the triangle. Note that the real
normal vector is measured numerically from the implicit function at a given point.

Figure 40. Implicit objects used in the experiment.

The values Alg dist avg, Euc dist avg, Taub dist avg measure the approximation quality
as an average distance of a triangle from the real implicit surface. They are measured at
a gravity centre of each triangle. The distance is either algebraic (Alg dist avg) or real
Euclidian (Euc dist avg) or the Taubian [39] (Taub dist avg).

Edge spinning Marching cubes

Genus Jack Morph Spiral Genus Jack Morph Spiral

LOD 0,04 0,02 0,03 0,04 0,05 0,02 0,03 0,05

Triangles 331 414 332 580 117 342 191442 334 816 327 208 134 552 201 908

Verices 165 703 166 290 58 671 95 723 167 404 163 606 67 274 100 954

Angle error 7,89E-03 1,02E-02 1,29E-02 1,32E-02 8,12E-03 1,06E-02 1,26E-02 1,40E-02

Centroid angle err. 1,84E-03 1,80E-03 2,73E-03 3,11E-03 2,29E-03 3,17E-03 3,87E-03 4,70E-03

Alg dist avg 0,16 2,50E-04 7,25E-04 6,68E-04 0,2 3,27E-04 8,32E-04 8,64E-04

Euc dist avg 1,08E-04 8,63E-05 1,64E-04 2,26E-04 1,41E-04 1,16E-04 1,90E-04 2,86E-04

Taub dist avg 1,08E-04 8,64E-05 1,64E-04 2,26E-04 1,41E-04 1,15E-04 1,90E-04 2,87E-04

Angle criterion 0,86 0,86 0,85 0,85 0,37 0,37 0,37 0,36

Edge length crit. 0,91 0,91 0,90 0,90 0,53 0,53 0,53 0,52

Time [ms] 1 892 3 345 941 2 243 1 692 2 053 831 1 943

Avg time [ms] 5,71 10,06 8,02 11,72 5,05 6,27 6,18 9,62

Time ratio ES/MC 1,13 1,60 1,30 1,22 --- --- --- ---

Time ratio MC/ES --- --- --- --- 0,89 0,62 0,77 0,82

Table 3. Values from the experiment measured by the Edge spinning and the Marching
cubes algorithms on various implicit objects.

Note that the algebraic distance (function value) strongly depends on the given implicit
function and it is only proportional to the real distance. It is only useful for comparing

Novel polygonization approaches

- 49 -

algorithms properties on the same objects. The Euclidian distance has been measured
between a triangle centroid and its corresponding surface point; note that it is computed
numerically, see Algorithm 9 on page 53 for details. For the given implicit functions, it
can be seen that the Taubian distance is a good approximation of the real distance.

The value Angle criterion means the criterion of the ratio of the smallest angle to the
largest angle of a triangle and the value Edge length criterion means the criterion of the
ratio of the shortest edge to the longest edge of a triangle. These values show the quality
of resulting triangles generated.

The value Time shows the measured computational time of each algorithm and the value
Time avg represents an average time needed for creating of one thousand triangles. Time
ratio values represent a speed comparison between the both algorithms.

Note that all the criteria mentioned above have been defined in section 2.1 and will be
used in the same meaning in following section as well.

3.2.10. Conclusion
In this section, the new principle for polygonization of implicit surfaces has been
presented. The algorithm marches over the object’s surface and computes the accurate
coordinates of new points by spinning the edges of already generated triangles. The
Edge spinning algorithm generates triangular meshes of excellent quality and the
polygonization speed is, with using the space subdivision scheme, comparable with the
well-known Marching cubes algorithm. The space subdivision scheme seems to be an
effective way for speed-up of such type of geometric algorithms.

Usage of the Edge spinning algorithm is limited for implicit surfaces which comply C1
continuity which is a common problem of surface tracking approaches.

Note that the presented approaches of this section have been published in [iv], [viii] and
[ix] of the author publications.

3.3. Adaptive Edge spinning algorithm

Many polygonization algorithms adaptively or non-adaptively create polygonal meshes
without a proper definition of an approximation error that is requested in result. Usually,
the algorithms allow to user to set a level of detail (min/max size of triangles, number of
divisions in axes, etc.) which only has a little relation to the resulting approximation
quality. The quality strongly depends on ratio between size of implicit objects and size
of triangles, size of computational area, etc.

Our algorithm defines the approximation error that is proportional to surface curvature
estimation, see variable αerr in section 3.3.1. The desired error is given at the beginning
of the computation and it is preserved for all triangles during the whole polygonization.
The resulting polygonal mesh consists of well shaped and adaptively sized triangles and
moreover, it preserved the given approximation quality as well.

Novel polygonization approaches

- 50 -

In this section, the adaptive extension of the Edge spinning algorithm will be presented.
The method approximates an implicit surface by a triangular mesh according to local
estimation of surface curvature. The polygonal mesh is created with respect to preserve
given approximation error as well as to achieve the best possible shape of triangles
generated.

3.3.1. Principle of the algorithm
The algorithm is based on the surface tracking scheme as methods mentioned in
previous sections. Its principle and basic steps are analogical to the original non-
adaptive Edge spinning method.

Because the adaptive approach operates with triangles of different size, some steps
inside are different from the original method and will be described in following
sections.

The whole algorithm consists of the following steps.

Algorithm 7. Adaptive Edge spinning principle.

1. Initialize the polygonization:

a) Find the starting point p0 and create the first triangle T0.

b) Include the edges (e0,e1,e2,) of the first triangle T0 into the active edges list.

2. Polygonize the first active edge e from the active edges list.

3. Update the AEL; delete the currently polygonized active edge e and include the
new generated active edge/s at the end of the list.

4. If the active edges list is not empty return to step 2.

Note that at the beginning of polygonization, there are two variables important for
computation:

- LODmax – the maximal length of triangles’ edges, i.e. maximal level of detail;

- αerr – desired accuracy of approximation, i.e. desired maximal angle between
normal vectors at points lying on the same edge of a triangle; this variable
represent a measure of dependence on surface curvature.

The whole polygonization is controlled by these criteria and new triangles generated are
created adaptively to preserve the accuracy.

3.3.2. Root finding with curvature estimation
New generated points are sought on a circle as in the original algorithm but the finding
circle radius is proportional to the estimated surface curvature now.

The surface curvature radius rc between points p1, p2 with their normal vectors n1, n2,
see Figure 41, is estimated by the simple formula:

Novel polygonization approaches

- 51 -

α
drc = , (43)

where d is the distance between the points p1, p2 and α is the angle between the surface
normals n1, n2.

Figure 41. The circle c with radius rc of surface curvature between points p1, p2 and
estimation of radius r2 of finding circle according to desired approximation error αerr.

The new radius r2 of the finding circle is then computed as follows.

()errcrkr αcos122 −⋅⋅⋅= , (44)

where k is a constant, rc is the estimated radius of surface curvature and αerr is the
required approximation error given at the beginning of the polygonization process.
Because it is an estimation, we used the k = 0.8 constant just to be surer that the new
triangle will satisfy the desired accuracy.

Note that this formula has been derived from the second cosine theorem
αcos2222 ⋅⋅⋅−+= babac with the presumption a = b = rc, see Figure 41. The initial

radius r1 of the circle c1 is proportional to the length of the current active edge e to
a new triangle Tnew be equilateral.

Limitations of the final radius:

if (r2 < rmin) then r2 = rmin,

if (r2 > rmax) then r2 = rmax,

where max10
1

min rr = and rmax is a limit value derived from the maximal level of detail
LODmax which edges of the new triangle have to satisfy.

For creating of a new triangle, the radius of surface curvature rc is evaluated three times
among pairs of points (p1, pinit), (p2, pinit), (ps, pinit), where p1, p2 are points of the
current active edge e, ps is its midpoint and pinit is the point of intersection of the circle
c1 with the plane defined by the triangle Told, see Figure 42. The final rc is taken as
minimum from these three.

Determination of the point pnew location is then analogical to Algorithm 6.

Novel polygonization approaches

- 52 -

Figure 42. The finding circle radius estimation.

3.3.3. Root finding on a sharp edge
Let us assume that the standard edge spinning root finding algorithm presented above
has found the point pnew. The algorithm then determines the surface normal vector nnew
at this point and computes the angle α between normal vectors nnew and ns. The vector
ns is measured at mid-point s of the active edge e, see Figure 43. If the angle α is greater
then some user-specified threshold αlim_edge (limit edge angle) then the algorithm will
look for a new edge point as follows.

Figure 43. The principle of root finding algorithm for sharp edges.

Algorithm 8. Edge detection for the Edge spinning method.

1. Compute coordinates of the point pinit as an intersection of the three planes,
tangent planes t1 and t2, and the plane in which the seeking circle c lies, see
Figure 43.

Novel polygonization approaches

- 53 -

2. Apply the straight root finding algorithm described in section 3.3.4 and find the
new point p’new.

Note that the algorithm needs an accurate determination of surface normal vectors, i.e.
accurate computation of a function gradient. Therefore, implicit objects should be
modeled by F-Rep, [34], because objects defined by min/max operations are not good
differentiable, [27], [35].

Figure 44. A square modeled as intersection of four half-spaces; left: by min/max
operations; right: by the F-Rep operations; taken from [27].

The gradient array of a square, modeled by min/max and F-Rep operations, is illustrated
in Figure 44. The picture shows that the min/max operations create objects with poor
differential properties.

3.3.4. Straight root finding algorithm
The algorithm starts from an initial point pinit (see Figure 45) and supposes that the
implicit surface is at least C0 continuity.

Figure 45. Principle of root-finding in straight direction.

The algorithm continues as follows.

Algorithm 9. Straight root finding algorithm.

1. At point pinit, compute the surface normal vector ninit that defines the seeking
axis o.

2. Compute coordinates of point p’init with distance δ from point pinit in direction
ninit * sign(f(pinit)); where δ is the step length.

3. Determine function values f, f’ at points pinit, p’init.

Novel polygonization approaches

- 54 -

4. Check next two cases.
a) If these points lie on opposite sides of implicit surface, i.e. (f *f’) < 0;

compute the exact coordinates of the point pnew by binary subdivision
between these points.

b) If the points pinit, p’init lie on the same side of the surface then pinit = p’init and
return to step 2.

3.3.5. Polygonization of an active edge
Polygonization of an active edge e consists of several following steps.

Algorithm 10. Active edge polygonization.
1. Use the Edge spinning algorithm to find a new point pnew in front of the edge e.

2. Determine angles α1, α2 in front of points p1, p2 of the current edge e,
see Figure 46.

3. Perform neighborhood test.

4. Perform distance test.

Neighborhood test
If the point pnew has been found, there are two cases illustrated in Figure 46. Decision
between cases a) and b) depends on relation among angles α1, α2, αn, see Figure 46. Let
the angle α be min(α1,α2). If (α < αshape) then case a) else case b), see Figure 46. The
limit shape angle is determined as αshape = αn + π/6, so the space for next triangles
should be at least π/6; this constant just affect a shape of next generated triangles.

Figure 46. Polygonization of the active edge e.

Novel polygonization approaches

- 55 -

If the point pnew is not found, angle αn is not defined and the limit angle αshape should be
just less then π; we have chosen αshape = 2/3 * π.

a) In this case, a new triangle tnew is created by connecting the edge e with one of its
neighbors, see step 2a.

b) The new triangle tnew is created by joining the active edge e and the new point pnew,
see step 2b.

In both cases, a bounding sphere is determined for the new triangle tnew. The bounding
sphere is the minimal sphere that contains all three points of the triangle, i.e. the centre
of the sphere lies in the plane defined by these three points.

Note if there is not a new triangle (the point pnew does not exist and case a) has not
appeared) the bounding sphere of the active edge e is used. The next procedure is
analogical for all cases.

Distance test
To preserve the correct topology, it is necessary to check each new generated triangle if
it does not cross a surface already generated. It is sufficient to perform this test between
the new triangle and a border of already triangulated area (i.e. active edges in AEL).

The algorithm will make the nearest active edges list (NAEL) to the new triangle tnew.
Each active edge which is not adjacent to the current active edge e and which crosses
the bounding sphere of the new triangle (or the edge e), is included into the list, see
Figure 48, step 2. The extended bounding sphere is used for the new triangle created by
the new point pnew (case b) because the algorithm should detect a collision in order to
preserve well-shaped triangles. The new radius of the bounding sphere is computed as
r2 = c*r1 and we used the constant c = 1.3.

If the NAEL list is empty then the new triangle tnew is finally created and the active
edges list is updated.

In case a), Figure 46 step 2, the current active edge e and its neighbor edge er are
deleted from the list and one new edge enew is added at the end of the list. The new edge
should be tested if it satisfies the condition of the surface curvature. If it does not then
the new triangle will be split along the edge enew, see section bellow.

In case b), Figure 46 step 2, the current active edge e is deleted from the list and two
new edges enew1, enew2 are added at the end of the list.

Note that if there is no new triangle to be created (the point pnew does not exist and case
a) in Figure 46 has not appeared) the current active edge e is moved at the end of the
AEL list and the whole Algorithm 7 will return back to step 2.

If the NAEL list is not empty then the situation has to be solved. The point pmin with the
minimal distance from the current edge e is chosen from the NAEL list, see Figure 48,
step 3.

Novel polygonization approaches

- 56 -

Figure 47. A problem of thin implicit objects.

This point has to satisfy a condition of thin objects as well. The current active edge e
and the point pmin should not lie on the opposite sides of the implicit surface. Figure 47
illustrates the wrong situation.

Figure 48. Solving of distance test.

Novel polygonization approaches

- 57 -

If the correct point pmin is found, the new triangle tnew has to be changed and will be
formed by the edge e and the point pmin, i.e. by points (pe1,pmin,pe2); the situation is
described in Figure 48, step 3. The point pmin is owned by four active edges enew1, enew2,
emin1, emin2 and the border of already triangulated area intersects itself on it. This is not
correct because each point that lies on the triangulation border should has only two
neighborhood edges (left and right).

Solution of the problem is to triangulate two of four edges first. Let the four active
edges be divided into pairs; the left pair be (emin1, enew2) and the right pair be (enew1,
emin2). One of these pairs will be polygonized and the second one will be cached in
memory for later use. The solution depends on angles αm1, αm2, see Figure 48, step 3. If
(αm1 < αm2) then the left pair is polygonized; else the right pair is polygonized.

In both cases, the recently polygonized pair is automatically removed from the list and
the previously cached pair of edges is returned into the list. The point pmin is contained
only in one pair of active edges and the border of the triangulated area is correct, see
Figure 48, step 4.

Note that the polygonization of one pair of edges consists just of joining its end points
by the edge and this second new triangle has to fulfill the empty NAEL list as well;
otherwise the current active edge e is moved to the end of AEL list.

3.3.6. Splitting the new triangle
This process is evaluated only in cases when the new triangle has been created by
connecting of two adjacent edges, i.e. situation illustrated in Figure 46, step 2a. If the
new edge does not comply a condition of surface curvature the new triangle should be
split. That means, see Figure 49; if the angle α between surface normal vectors n1, n2 at
points pe1, per2 is greater than some limit αsplit_lim then the new triangle will be split into
two new triangles, see Figure 49, step 2.

Figure 49. Splitting of the new triangle.

The point pnew is a midpoint of edge enew and it does not lie on the implicit surface. Its
correct coordinates are additionally computed by the straight root finding algorithm
described in section 3.3.4.

Novel polygonization approaches

- 58 -

3.3.7. Experimental results
Our first experiment is aimed at comparing dependence of approximation quality on
variable Angle error αerr (an input variable, given at the beginning of polygonization,
see Algorithm 7). The Adaptive Edge spinning algorithm change size of triangles
generated according to it and resulting approximation quality strongly depends on it as
well, see Table 4.

Angle error set αerr GENUS 3
0,08 0,04 0,02

Triangles 32 246 75 650 182 502
Verices 16 119 37 821 91 247
Angle error 3,17E-02 2,30E-02 1,47E-02
Centroid angle error 7,60E-03 5,26E-03 3,29E-03
Alg dist avg 1,66 0,69 0,28
Euc dist avg 1,10E-03 4,52E-04 1,81E-04
Taub dist avg 1,10E-03 4,53E-04 1,82E-04
Angle criterion 0,72 0,74 0,75
Edge length criterion 0,82 0,83 0,84
Time [ms] 671 2 013 4 276

Table 4. Values of the object Genus 3 with the variable angle error set αerr.

0

5

10

15

20

25

30

35

40

10
-2

0

20
-3

0

30
-4

0

40
-5

0

50
-6

0

60
-7

0

70
-8

0

80
-9

0

90
-1

00

10
0-

11
0

11
0-

12
0

12
0-

13
0

Angle intervals in degrees

N
um

be
r o

f a
ng

le
s

[%
]

Angle err = 0,08
Angle err = 0,04
Angle err = 0,02

Figure 50. The histogram of triangles shape quality in dependence on angle error value.

Novel polygonization approaches

- 59 -

The histogram in Figure 50 shows that the shape of triangles is not much influenced by
the angle error variable and the Adaptive Edge spinning algorithm generates about 70%
of triangles with angles in interval <50,70> degrees.

An another test is aimed at comparison of a surface approximation quality with the
same starting LOD values for all polygonization methods, Adaptive edge spinning,
Marching triangles and Marching cubes. The test is performed on the Jack object,
introduced in [5] and it shows advantages of the adaptive approach.

Figure 51. The Jack object generated by the a) Edge spinning, b) Marching triangles
and c) Marching cubes algorithms. Details are zoomed for better illustration.

The adaptive Edge spinning algorithm shrinks the size of triangles in regions of higher
curvature and therefore, the number of triangles is greater than that of generated by the
other non-adaptive algorithms. The precision of polygonization is higher by about one
order of magnitude, see Table 5.

JACK Edge spinning Marching triangles Marching cubes
LOD 0,16 0,16 0,16
Triangles 34 256 6 107 6 552
Vertices 17 130 3 055 3 278
Angle err 3,33E-02 7,47E-02 7,54E-02
Centroid angle err 7,10E-03 1,40E-02 2,13E-02
Alg dist avg 2,39E-03 1,32E-02 1,67E-02
Euc dist avg 8,29E-04 4,62E-03 5,93E-03
Taub dist avg 8,30E-04 4,66E-03 5,97E-03
Angle criterion 0,700 0,729 0,377
Edge length criterion 0,806 0,828 0,536
Time [ms] 1 442 70 71
Time avg [ms] 42,09 11,46 10,83

Table 5. Values of the Jack object measured with the constant level of detail for all
methods. Note that the Adaptive edge spinning algorithm has had the angle error value
(αerr) set to 0,04

Novel polygonization approaches

- 60 -

Figure 52a shows the object generated by the adaptive algorithm, so the number of
triangles generated is higher in dependence on the surface curvature. In case of non-
adaptive approaches, some parts of an object could be lost because the algorithm just
connects thinner parts by large triangles depending on a given lowest level of detail;
an example is shown in Figure 52b. The resulting image generated by the Marching
cubes algorithm is shown in Figure 52c.

Figure 52. The Genus 3 object generated by the a) Adaptive edge Spinning algorithm;
b) Marching triangles algorithm; and c) Marching cubes algorithm.

GENUS 3

Adaptive
Edge spinning

Non-adaptive
Edge spinning

Marching
triangles

Marching
cubes

LOD 0,16 0,016 0,016 0,016
Triangles 75 650 2 096 678 2 455 489 2 735 836
Verices 37 821 1 048 335 1 227 740 1 367 914
Angle error 2,30E-02 3,16E-03 2,92E-03 2,84E-03
Centroid angle error 5,26E-03 7,26E-04 6,88E-04 8,91E-04
Alg dist avg 0,69 2,53E-02 2,19E-02 2,49E-02
Euc dist avg 4,52E-04 1,70E-05 1,47E-05 1,72E-05
Taub dist avg 4,53E-04 1,70E-05 1,47E-05 1,72E-05
Angle criterion 0,74 0,90 0,72 0,37
Edge length criterion 0,83 0,94 0,82 0,53
Time [ms] 1 993 20 179 67 737 20 549

Table 6. Genus object polygonized by given algorithms with the same minimal level of
detail. Note that the Adaptive edge spinning algorithm has had the angle error value
(αerr) set to 0,04.

There is an opposite point of view to adaptive approaches and our next experiment is
aimed at it. Table 6 contains values measured on Genus 3 object by the Adaptive edge
spinning, non-adaptive Edge spinning and Marching triangles algorithms. The non-
adaptive approaches have had the level of detail set to that minimal possible for the

Novel polygonization approaches

- 61 -

adaptive method, i.e. they generate triangles of minimal size possible for the adaptive
approach. In such case, the adaptive method generates as many triangles needed to
achieve a desired accuracy and it minimizes a computational time as well as a number
of triangles generated. To the contrary, the non-adaptive approaches generate
unnecessarily huge number of triangles in flat regions and therefore, the accuracy is also
unnecessarily high as well as the computational time is expensive.

0
5

10
15
20
25
30
35
40
45
50

0-
10

10
-2

0

20
-3

0

30
-4

0

40
-5

0

50
-6

0

60
-7

0

70
-8

0

80
-9

0

90
-1

00

10
0-

11
0

11
0-

12
0

12
0-

13
0

13
0-

14
0

Angle intervals in degrees

N
um

be
r o

f a
ng

le
s

[%
]

Adaptive edge spinning
Edge spinning
Marching triangles
Marching cubes

Figure 53. Histogram of angle distribution according to values in Table 6.

The histogram in Figure 53 shows angle distribution of triangular meshes generated by
the given algorithms. In case of triangles shape quality, non-adaptive approaches have
an advantage because these generate triangles of nearly constant size; therefore it is
easier to achieve equilateral triangles. It is obvious that the classical Edge spinning
algorithm generates triangular meshes of excellent quality but the adaptive approach is
also very good although it musts operate with triangles of different size. The both edge
spinning methods and the Marching triangles algorithm generate the most number of
triangles with angles in interval <50, 70> degrees. The poorest triangular mesh is
generated by the Marching cubes method.

Next experiment shows polygonization of simple implicit functions with sharp features.
Figure 54 shows an object modeled as intersection of two spheres. The implicit object
complies only the C0 continuity and it is correctly polygonized by the proposed
Adaptive edge spinning method. The picture a) is polygonized without the edge
detection, i.e. the limit edge angle αlim_edge is equal to π and the picture b) is
polygonized with limit edge angle equal to π/4, see section 3.3.3 for details.

Novel polygonization approaches

- 62 -

Figure 54. Intersection of two spheres generated by the Adaptive Edge spinning
algorithm; with and without edge detection.

3.3.8. Conclusion
The new adaptive approach for polygonization of implicit surfaces has been presented
in this section. The algorithm marches over the object’s surface and computes the
accurate coordinates of new points by spinning the edges of already generated triangles.
Size of new triangles generated depends on the surface curvature estimation. We used
the estimation by deviation of angles of adjacent points because it is simple and fast for
computation. Our experiments proved its functionality as well. Other estimation
techniques can be found in [3], [23], [42].

The algorithm can polygonize implicit surfaces which comply C1 continuity, thin
objects and some non-complex objects of C0 continuity (an object should have only
sharp edges, no sharp corners or more complex shapes).

The main advantage of our algorithm, in comparison to other methods, [1], [23], is its
controlling of approximation quality during computation. The whole process is directed
to achieve the desired accuracy given at the beginning and the algorithm maintains this
requirement in all places of an implicit object (high/low curvature). It means that the
resulting polygonal mesh does not consists only of well-shaped triangles, but moreover,
the mesh satisfies predefined requirements of accuracy as well.

The presented approaches in this section have been published in [i], [ii], [iii] of the
author publications.

3.4. Solving of Sharp features

Our previously developed methods have been able to polygonize implicit surfaces
which comply C1 continuity or have only simple sharp edges; no corners or more
complicated shapes. A computation of a gradient vector (normal vectors) in areas of
sharp features is influenced by a major error and surface approaches become unstable in
such regions, see Figure 55.

Novel polygonization approaches

- 63 -

Figure 55. An edge of the Yutaka model. The Edge spinning algorithm become
unstable in the region of the sharp edge and started to generate the already polygonized
surface again.

In order to solve problem of sharp features we used a simple technique how to bypass it.
Our technique supposes that an object is modeled by the F-Rep [22], which gives to it
good differential properties, see Figure 44. It allows us to assume that an implicit
surface has sharp edges only in its zero-set, i.e. at points xi that satisfy equation
f(xi) = 0. If the algorithm will look for some iso-value ε, the equation will change to
f(xi) = ε and the implicit surface is then C1 continuous, see Figure 56.

Figure 56. A cube modeled by the F-Rep as intersection of six half-spaces and
polygonized with a) ε = 0 – classical approach, surface with sharp features and
b) ε = 0.1, smooth surface.

The discussed implicit surface property allows us to construct an initial mesh that
satisfies a desired accuracy according to surface curvature and consists of well-shaped
triangles as well.

When the initial mesh is created, the algorithm has to find new positions of surface
vertices xi on the original implicit surface, i.e. ε = 0, f(xi) = 0. There are vary algorithms

Novel polygonization approaches

- 64 -

that work with an initial mesh and iteratively adapt it to get more precise approximation,
see section 2.7 for more details. In order to verify our approach, we have proposed only
a simple algorithm. The points xi follow their gradient ∇f(xi) to find the new positions.
This method is similar to particle systems approaches, [15], but it has an opposite order
of steps; the triangulation is created at first and then the points are projected onto the
implicit surface.

The algorithm is similar to the straight root finding algorithm, see Algorithm 9, with
difference that the surface normal vector is computed in each step.

Let the initial mesh be created. Then the next procedure continues as follows.

Algorithm 11. Projecting the points of an initial mesh onto the original implicit surface.

1. Set ε = 0.

2. For each point xi compute its new normal vector ni.

3. Move the point to its new position xi’ in the normal vector direction,

xi’ = xi + δ * sign (fi) ni ,

where δ is a step and sign(fi) is the signum function of the function value fi in the

point xi.

4. Determine function values fi, fi’ at points xi, xi’.

5. Check next two cases.

a) If these points lie on opposite sides of implicit surface, i.e. (fi*fi’) < 0; compute

the exact coordinates of the point xi by binary subdivision between these points.

b) If the points xi, xi’ lie on the same side of the surface then xi = xi’ and return to

step 2.

3.4.1. Experimental results
In this section, several complex implicit objects with sharp features will be properly
polygonized by the Adaptive Edge spinning approach using the technique proposed
above. Triangulations of some examples are shown in Figure 57 and corresponding
formulas can be found in Appendix C.

Novel polygonization approaches

- 65 -

Figure 57. Objects generated by the Adaptive edge spinning algorithm, with usage of
the introduced technique, a) the Yutaka object - taken from [27], b) the Rabbit modeled
by the F-Rep [22] and c) the Eclipse model.

Figure 58 shows the implicit model of a tap with its normal vectors array. The Tap
object consists of sharp edges as well.

Figure 58. A tap generated by the Adaptive edge spinning algorithm; also with usage of
the introduced trick, a) its triangulation, b) the array of normal vectors.

Note that the objects Tap and Rabbit have been modeled with use of the implicit
modeling module, [41], which is a part of the MVE (Modular Visualization
Environment) developed at University of West Bohemia, [25].

Table 7 contains values measured on complex implicit objects visualized in figures
above. It is obvious that the Taubian distance is not good enough for such complex
objects as the approximation of the real distance.

Novel polygonization approaches

- 66 -

Edge spinning yutaka rabbit eclipse tap
ε 0,1 0,1 6,0 0,1
LOD 0,32 0,32 0,32 0,32
Triangles 111 173 48 529 31 233 38 184
Vertices 55 648 24 268 15 627 19 094
Angle err 5,31E-02 4,55E-02 6,94E-02 4,40E-02
Centroid angle err 1,43E-02 1,06E-02 3,15E-02 1,00E-02
Alg dist avg 9,76E-02 9,79E-02 9,32E-01 9,37E-02
Euc dist avg 1,42E-03 2,06E-03 1,11E-03 3,03E-03
Taub dist avg 8,85E-02 1,77E-01 2,29E-02 6,10E-02
Angle criterion 0,649 0,662 0,618 0,684
Edge length criterion 0,772 0,780 0,748 0,796
Time [ms] 10 175 7 841 6 519 7 741
Time avg [ms] 91,52 161,57 208,72 202,72

Table 7. Values generated by the Edge spinning algorithm.

Note that the average time values for creating of one thousand triangles are higher in
comparison with the simpler models because the one call of the function takes more
time.

3.4.2. Conclusion
The Edge spinning algorithm can polygonize variety of implicit surfaces whose size and
degree of continuity is not known ahead. It is possible with use of the introduced
technique when the epsilon value instead of the zero value of an implicit function is
used for computation. In that case, the implicit model has better differential properties.

Figure 59. a) the original Olympic Rings object b) polygonized with ε = 10 and
c) visualization after projection back to ε = 0.

Of course there must be a limitation. There is no exact way how to predict value of
epsilon. It depends on a size of an object, sharpness of edges, etc. Moreover, for higher

Novel polygonization approaches

- 67 -

epsilon, an implicit object could change its topology, see Figure 59. In such cases, the
projection phase cannot work properly.

The presented approaches in this section have been sent for publication, see [xi] of the
author publications.

3.5. Detection and polygonization of disjoint implicit surfaces
in a given area

In this section, a new method how to detect, count, and polygonalize more disjoint
implicit surfaces will be introduced. The algorithm uses the Edge spinning method for
polygonization of each component, so there is necessary to detect a starting point for
each of them.

Because of an implicit function can be an arbitrary unknown algebraic function, there is
no other way how to detect more disjoint surfaces in a defined area than use of
exhaustive search approach (described for the Marching cubes and tetrahedra methods
in section 2.3).

Figure 60. The polygonization area divided by the regular grid that contains three
implicit objects. Grid cells intersected by the implicit function are highlighted.

Our algorithm divides the given polygonization area by the regular grid. An important
note is that a size of grid cells need not to be proportional to extracted object detail but
it should only be proportional to the size of the smallest object that is wanted to be

Novel polygonization approaches

- 68 -

visualized. The size of grid cells is only needed for detection of implicit components in
a scene, it has no relation to object detail and this is the main difference from the
Marching cubes approaches. Therefore, a number of grid divisions is much lesser for
our algorithm than for Marching cubes method as well as a computational time.

Let the polygonization area be defined in space as [-x, +x ; -y, +y ; -z, +z] and a number
of division in each axis be M. Then the algorithm works as follows.

Algorithm 12. Polygonization of more disjoint surfaces in defined area.

1. Use the Edge spinning algorithm to polygonalize the first object in the area.

2. Create a function grid – find and mark all grid cells intersected by the implicit
function.

3. Create a triangulation grid – find and mark all grid cells intersected by the
triangular mesh.

4. Check if there is a marked function grid cell that has an unmarked equivalent
and even unmarked neighborhood in the triangulation grid.

a) If YES – there is a new implicit component and continue as follows.

- Find a new starting point in the given cell.

- Use the ES method for triangulation of the component.

- Return to step 3.

b) If NO – there is no other component – end of polygonization.

Notes:

- step 2 – a grid cell is marked if at least two of their corners have opposite signs of
the function; important note is that this step is performed just once and in case of
complex functions it saves computational time

- step 3 – if the size of grid cells is greater than or equal to the longest edge of
a triangle then it is enough to marked a grid cell when a point of a triangle is
located in there

- step 4 – the neighborhood in E3 means 26 adjacent grid cells to the given one

- step 4a – a new starting point in the given cell is sought by the binary subdivision
between two cell’s corners with opposite signs.

3.5.1. Experimental results
Experimental results in this section are aimed at polygonization of unknown implicit
scenes consisting of more disjoint surface components. The Adaptive Edge spinning
algorithm (AES) will be compared with the Marching cubes method – exhaustive search
(MCE).

The first scene is illustrated in Figure 61 and contains two entwined spirals.

Novel polygonization approaches

- 69 -

Figure 61. The Spirals model polygonized by the Adaptive Edge spinning algorithm;
a) the first spiral and b) both spirals polygonized.

Regarding to recent Olympic Games, the second implicit scene represents Olympic
rings. The model consists of five disjoint components and has been modeled as union of
five tori, see Figure 62.

Figure 62. The Olympic rings model polygonized by the Adaptive Edge spinning
algorithm. The numbers means the order of polygonization.

Novel polygonization approaches

- 70 -

Adaptive Edge spinning Marching cubes
 Spiral Olympic rings Spiral Olympic rings
Subdivisions 50 50 400 300
LOD 0,16 0,16 0,08 0,11
Angle error set 5,00E-02 5,00E-02 --- ---
Triangles 134 316 147 346 131 776 230 572
Verices 67 163 73 673 65 892 115 286
Angle error 3,11E-02 2,97E-02 2,45E-02 2,51E-02
Centroid angle error 7,01E-03 6,96E-03 8,10E-03 7,48E-03
Alg dist avg 1,79E-03 1,88E-02 2,65E-03 1,51E-02
Euc dist avg 5,91E-04 1,47E-03 8,70E-04 1,18E-03
Taub dist avg 5,93E-04 1,47E-03 8,76E-04 1,18E-03
Angle criterion 0,70 0,69 0,36 0,37
Edge length criterion 0,81 0,80 0,52 0,53
Time [ms] 6 453 7 375 42 844 27 422
Avg time [ms] 48,04 50,05 325,13 118,93

Table 8. Values generated by the Edge spinning and the Marching cubes algorithms.

The measured values from the experiment are contained in Table 8. The level of detail
for both algorithms has been set so that a number of triangles as well as the
approximation quality to be similar. In such case, the Marching cubes method is much
slower then the Edge spinning algorithm and moreover, it generates poor triangular
mesh, see histogram of angle distributions in Figure 63.

0

5

10

15

20

25

30

35

0-
10

10
-2

0

20
-3

0

30
-4

0

40
-5

0

50
-6

0

60
-7

0

70
-8

0

80
-9

0

90
-1

00

10
0-

11
0

11
0-

12
0

12
0-

13
0

13
0-

14
0

14
0-

15
0

15
0-

16
0

16
0-

17
0

17
0-

18
0

Angle intervals in degrees

N
um

be
r o

f a
ng

le
s

[%
]

AES Spirals
AES Olympic rings
MCE Spirals
MCE Olympic rings

Figure 63. Histogram of triangles shape quality.

Novel polygonization approaches

- 71 -

3.5.2. Conclusion
The presented approach in this section makes possible polygonization of more disjoint
implicit surfaces in a defined area. The algorithm is not limited to a given
polygonization method but then, its use is possible for all other surface approaches that
need a starting point at the beginning. The algorithm works well, it is able to found and
polygonize all implicit components in a given region and the computational time is
much less than in case of Marching cubes method – exhaustive search. All advantages
of surface approaches are preserved.

Conclusion and future work

- 72 -

4. Conclusion and future work
All the polygonization algorithms developed so far have always had several
disadvantages. The volume approaches (methods based on the Marching cubes and
tetrahedra principle) usually generate polygonal meshes consisting of badly-shaped
triangles. Due to the next processing, these meshes have to be further modified:
improvement of the shape of triangles, reduction of the number of triangles in regions
with a low curvature, etc. The reason why they are still in use is the fact that these
methods are numerically stable. On the contrary, the surface approaches (methods based
on the Marching triangles principle) generate well-shaped triangular meshes consisting
of triangles shaped close to equilateral. These methods are limited by their high
numerical sensitivity to the properties (continuity, differentiability, etc.) of the given
implicit model and are not able to polygonize implicit objects consisting of more
disjoint surfaces.

In the presented dissertation thesis, there are several new approaches for polygonization
of implicit surfaces introduced, based on the Edge spinning principle. The first of them
is the non-adaptive algorithm that generates triangular meshes of high quality and its
polygonization speed is comparable with the well-known Marching cubes algorithm.

The adaptive modification of the given approach has been developed in the next
research. The algorithm generates triangles of size according to the local surface
curvature estimation. The curvature is estimated by deviation of surface normal vectors.
This technique is simple and fast for computation as well as effective in results. A size
of triangles varies to preserve the approximation error given at the beginning of
polygonization and this is the main advantage in comparison to other methods. The
whole process is directed to achieve the given accuracy and the algorithm maintains this
requirement in all places of an implicit object (high/low curvature). It means that the
resulting polygonal mesh does not consists only of well-shaped triangles, but moreover,
the mesh satisfies predefined requirements of accuracy as well.

The Edge spinning algorithm has a common deficiency of surface approaches, i.e. it is
sensitive to implicit functions of only C0 continuity. A computation of a gradient vector
(normal vectors) in areas of sharp features is influenced by a major error and surface
approaches become unstable in such regions. Therefore, we have proposed a simple
technique how to bypass this problem. The method depends on modeling technique F-
Rep that gives to resulting objects good differential properties.

The last part of the thesis is aimed at implicit scenes consisting of more disjoint
surfaces. In case of unknown implicit functions, there is only the volume based
Marching cubes algorithm – exhaustive search able to polygonize all surfaces in the
defined area. Surface approaches need a starting point for computation and such point

Conclusion and future work

- 73 -

has to be found for each disjoint component. We have designed such algorithm and
unknown complex scenes can be triangulated by surface approaches of higher quality of
details and much faster then in case of use of exhaustive search now.

In our future research, we want to improve the ability of the Edge spinning algorithm to
polygonize implicit objects of C0 continuity with proper edge detection and edge
extraction in the resulting polygonal mesh.

References

- 74 -

References
[1] Akkouche, S., Galin, E.: Adaptive Implicit Surface Polygonization using

Marching Triangles, Computer Graphic Forum, 20(2): 67-80, 2001.

[2] Allgower, E.L., Gnutzmann, S.: An algorithm for piecewise linear approximation
of implicitly defined two-dimensional surfaces. SIAM Journal of Numerical
Analysis, 24, 452-469, April 1987.

[3] Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic
Polygonal Remeshing, Siggraph 2003, ACM TOG, Volume 22 , Issue 3, 2003.

[4] Balsys, R.J., Suffern, K.G.: Visualisation of Implicit Surfaces, COMPUTERS &
GRAPHICS 25, 89-107, 2001.

[5] Blinn, J.: A Generalization of Algebraic Surface Drawing. ACM Transactions on
Graphics, 1(3):235–256, 1982.

[6] Bloomenthal, J.: Graphics Gems IV, Academic Press, 1994.

[7] Bloomenthal, J.: Skeletal Design of Natural Forms, Ph.D. Thesis, 1995.

[8] Bloomenthal, J., Bajaj, Ch., Blinn, J., Cani-Gascuel, M-P., Rockwood, A.,
Wyvill, B., Wyvill, G.: Introduction to Implicit Surfaces, Morgan Kaufmann,
1997.

[9] Bloomenthal, J.: Implicit surfaces, Unchained Geometry, Seattle.

[10] Bloomenthal, J.: Polygonization of Implicit Surfaces, Computer Aided Geometric
Design, vol. 5, no. 4, Nov. 1988, pp. 341-355.

[11] Bloomenthal, J., Ferguson, K.: Polygonization of Non-Manifold Implicit Surfaces,
Computer Graphics, pp. 309-316 (Proc. SIGGRRAPH 95).

[12] Dekkers, D., Overveld, K., Golsteijn, R.: Combining CSG Modeling with Soft
Blending using Lipschiz-based Implicit Surfaces, 1996.

[13] Faber, P., Fisher, R.B.: Pros and Cons of Euclidean Fitting, Proc. Annual German
Symposium for Pattern Recognition (DAGM01, Munich), Springer LNCS 2191,
Berlin, pp 414-420.

[14] Figueiredo, L.H.: Computational Morphology of Implicit Curves, doctoral thesis,
IMPA, 1992.

[15] Figueiredo L.H., Gomes J.M., Terzopoulos D., Velho L.: Physically-based
methods for polygonization of implicit surfaces, In Proceedings of Graphics
Interface 92, 1992.

References

- 75 -

[16] Gomez, J., Velho, L.: Implicit Objects for Computer graphics, IMPA, 1998.

[17] Hart, J.C.: Ray Tracing Implicit Surfaces, SIGGRAPH 1993, pp. 1-16.

[18] Hart, J.C., Stander, B.T.: Guaranteeing the Topology of an Implicit Surface
Polygonization for Interactive Modeling, SIGGRAPH 1997, pp. 279-286.

[19] Hartmann, E.: A marching method for the triangulation of surfaces, The Visual
Computer (14), pp.95-108, 1998.

[20] Hilton, A., Stoddart, A.J., Illingworth, J., Windeatt, T.: Marching Triangles:
Range Image Fusion for Complex Object Modeling, International conf. On Image
Processing, Lusanne, 1996, pp. 381-384.

[21] Hilton, A., Illingworth, J.: Marching Triangles: Delaunay Implicit Surface
Triangulation, Computer Graphic Forum 20 (2) pp. 67–80, 2001.

[22] “Hyperfun: Language for F-Rep Geometric Modeling”,
http://cis.k.hosei.ac.jp/~F-rep/

[23] Karkanis, T., Stewart, A.J.: Curvature-Dependent Triangulation of Implicit
Surfaces, IEEE Computer Graphics and Applications, Volume 21, Issue 2, March
2001

[24] Kobbelt, L.P., Botsch, M., Schwanecke, U., Seidel, H.-P.: Feature Sensitive
Surface Extraction from volume data, SIGGRAPH 2001 proceedings.

[25] MVE – Modular Visualization Environment project,
http://herakles.zcu.cz/research.php, University of West Bohemia in Plzeň, Czech
Republic, 2001.

[26] Ning, P., Bloomenthal, J.: An Evaluation of Implicit Surface Tilers, IEEE
Computer Graphics and Applications, vol. 13, no. 6, IEEE Comput. Soc. Press,
Los Alamitos CA, Nov. 1993, pp. 33-41.

[27] Ohraje, Y., Belyaev, A.G., Pasko, A.: Dynamic Meshes for Accurate
Polygonization of Implicit Surfaces with Sharp Features, Shape Modeling
International 2001, IEEE, 74-81.

[28] Ohtake, Y., Belyaev, A.G.: Dual/Primal Mesh Optimization for Polygonized
Implicit Surfaces, ACM Solid Modeling Symposium, Saarbrucken, Germany,
ACM Press, 2002, pp. 171-178.

[29] Pasko, A., Adzhiev, V., Karakov, M., Savchenko, V.: Hybrid system architecture
for volume modeling, Computer & Graphics 24 (67-68), 2000.

[30] Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V.: Function Representation in
Geometric Modeling: Concepts, Implementation and Applications, The Visual
Computer, 8 (2), pp. 429-446, 1995.

[31] Pasko, A., Sourin, A., Savchenko, V.: Using Real Functions with Application to
Hair Modeling, C&G(20), 1996, pp. 11-19.

[32] Rektorys, K.: Přehled užité matematiky, the textbook of mathematics (in Czech),
SNTL 1981.

References

- 76 -

[33] Rousal, M., Skala, V.: Modular Visualization Environment - MVE, Int. Conf. ECI
2000, Herlany, Slovakia, pp.245-250, ISBN 80-88922-25-9.

[34] Rvachev, A.M.: Definition of R-functions,
http://www.mit.edu/~maratr/rvachev/p1.htm

[35] Shapiro, V., Tsukanov, I.: Implicit Functions with Guaranteed Differential
Properties, Solid Modeling, Ann Arbor, Michigan, 1999.

[36] Shu R., Zhou, Ch., Kankanhalli, M.S.: Adaptive Marching Cubes, The Visual
Computer, 11: 202-217, 1995.

[37] Stoker, J.J.: Differential geometry, New York: Willey-Interscience, ISBN 0-471-
50403-3, 1989.

[38] Takahashi, T., Yonekura, T.: Isosurface Construction from a Data Set sampled on
a Face-Centered-Cubic Lattice, Int. Conf. ICCVG 2002, Zakopane, Poland, ISBN
839176830-9.

[39] Taubin, G.: Distance Approximations for Rasterizing Implicit Curves, ACM
Transactions on Graphics, January 1994.

[40] Triquet, F., Meseure, F., Chaillou, Ch.: Fast Polygonization of Implicit Surfaces,
WSCG 2001 Int.Conf., pp. 162, University of West Bohemia in Pilsen, 2001.

[41] Uhlíř, K., Skala, V.: Kompilovaný HyperFun, Research report (in Czech) No.
DCSE/TR-2002-07, University of West Bohemia, 2002.

[42] Velho, L.: Simple and Efficient Polygonization of Implicit Surfaces, Journal of
Graphics Tools, Volume 1 Number 1, 1996, pp. 5-24.

[43] Velho, L., Gomes, J., Figueiredo, L.H.: Implicit Objects in Computer Graphics,
Springer, ISBN 0-387-98424-0, 2002.

[44] Wyvill, B., Liang, X.: Hierarchical Implicit Surface Refinement, International
Conference CGI, 2001.

[45] Wyvill, B., Guy, A., Galin, E.: Extending the CSG Tree Warping, Blending and
Boolean Operations in an Implicit Surface Modeling System, Computer Graphics
Forum, 18(2), 149-158, June 1999.

[46] Wyvill, B., Bloomenthal, J.: Interactive Techniques for Implicit Modeling,
Symposium on Interactive 3D Computer Graphics, Snowbird, UT, in Computer
Graphics, 24, 2, Mar. 1990, pp. 109-116.

[47] Wyvill, B., Galbraith, C., MacMurchy, P.: BlobTree Trees, International
Conference CGI, 2004.

[48] Wyvill, B., Overveld, K.: Polygonization of Implicit Surfaces with Constructive
Solid Geometry, Journal of Shape Modeling, vol. 2, no. 4, World Scientific
Publishing, 1997, pp. 257-273.

[49] Wyvill, B., Jepp, P., Overveld, K., Wyvill, G.: Subdivision Surfaces for fast
Approximate Implicit Polygonization, University of Calgary, Dept. of Computer
Science, Research Report 2000-671-23, 2000.

Appendix A

- i -

Appendix A

List of publications

[i] Čermák,M., Skala,V. Adaptive Edge Spinning Algorithm for Polygonization of
Implicit Surfaces. Computer Graphics International, CGI 2004, IEEE, Crete,
Greece, 2004.

[ii] Čermák,M., Skala,V. Surface Curvature Estimation for Edge Spinning Algorithm.
International Conference on Computational Science, ICCS 2004, Springer,
Krakow, Poland, 2004.

[iii] Čermák,M., Skala,V. Adaptive Edge Spinning Algorithm for Implicit Surfaces.
International Conference on Computational Science and its Applications, ICCSA
2004, Springer, Assisi, Italy, 2004.

[iv] Čermák,M., Skala,V. Edge spinning algorithm for implicit surfaces, Journal of
Applied Numerical Mathematics, Volume 49, Issues 3-4, Pages 331-342, Elsevier,
June 2004.

[v] Čermák,M., Skala,V. Detection of Sharp Edges during Polygonization of Implicit
Surfaces by the Edge Spinning. Geometry and graphics in teaching contemporary
engineer, Szczyrk 2003, Poland, June 12-14, 2003.

[vi] Čermák,M., Skala,V. (supervisor). Methods for Implicit Surfaces Polygonization.
State of the Art and Concept of Doctoral Thesis, Technical report No. DCSE/TR-
2003-01, University of West Bohemia, Plzen, Czech Republic, 2003.

[vii] Čermák, M., Skala, V. Space Subdivision for Fast Polygonization of Implicit
Surfaces. The Fifth International Scientific Conference, ECI 2002, Slovakia, pp.
302-307, October 10-11, 2002.

[viii] Čermák, M., Skala, V. Polygonization by the Edge Spinning. 16th Conference on
Scientific Computing, Algoritmy 2002, Slovakia, pp. 245-252, September 8-13,
2002.

[ix] Čermák, M., Skala, V. Accelerated Edge Spinning Algorithm for Implicit
Surfaces. International Conference on Computer Vision and Graphics,
ICCVG 2002, Poland, pp. 174-179, September 25-29, 2002.

[x] Čermák, M., Skala, V. (supervisor). Visualization of Scenes which are Defined by
Implicit Functions and CSG trees, MSc. Thesis (in Czech), University of West
Bohemia in Pilsen, 2001.

Appendix A

- ii -

Submitted for publication:

[xi] Čermák, M., Skala, V. Polygonization of Implicit Surfaces with Sharp Features by
the Edge Spinning, The Visual Computer journal, May 2004.

[xii] Čermák, M., Skala, V. Polygonization of Disjoint Implicit Surfaces by the
Adaptive Edge Spinning Algorithm, International Journal of Computational
Science and Engineering, Inderscience Publishers, November 2004.

Appendix B

- iii -

Appendix B

Stays and Lectures Abroad

Stays
15.2.2001 - 15.6.2001 University of Lisboa, Portugal, Erasmus/Socrates

project

Conferences
29.8.2004 - 3.9.2004 Eurographics 2004, Grenoble, France

16.6.2004 - 19.6.2004 CGI 2004, Crete, Greece [i]

6.6.2004 - 9.6.2004 ICCS 2004, Krakow, Poland [ii]

14.5.2004 - 17.5.2004 ICCSA 2004, Assisi, Italy [iii]

12.6.2003 - 14.6.2003 Szczyrk 2003, Poland [v]

10.10.2002 - 11.10.2002 ECI 2002, Herlany, Slovakia [vii]

25.9.2002 - 29.9.2002 ICCVG 2002, Zakopane, Poland [ix]

8.9.2002 - 13.9.2002 Algoritmy 2002, Podbanske, Slovakia [viii]

1.9.2002 - 6.9.2002 Eurographics 2002, Saarbrücken, Germany

Publications
See Appendix A and E for details.

Funding
The work was supported by the Ministry of Education of the Czech Republic - project
MSM 235200005.

Appendix C

- iv -

Appendix C

Implicit functions codes

Boolean operations – F-Rep
double unionAB(double A, double B)
{
 return (A + B + sqrt(A*A + B*B);
}
double intersectionAB(double A, double B)
{
 return (A + B - sqrt(A*A + B*B);
}
double differencesAB(double A, double B)
{
 return intersectionAB(A, -B);
}

Sphere
double common_sphere(double c1, double c2, double c3, double rad,

double x, double y, double z) {
 double s, a1,a2,a3;
 a1 = (c1-x)*(c1-x);
 a2 = (c2-y)*(c2-y);
 a3 = (c3-z)*(c3-z);
 s = rad*rad - a1 - a2 - a3;
 return s;
}

Eclipse
double eclipse(double x, double y, double z)
{
 double s1a = common_sphere(-30.0,8.0,0.0, 31.0, x, y, z);
 double s1b = common_sphere(30.0,8.0,0.0, 31.0, x, y, z);
 double s1c = common_sphere(0.0,10.0,-3.0, 7.0, 2.0*x, y, z);
 double s1d = intersectionAB(s1a,s1b);
 double s1 = differencesAB(s1d,s1c);
 return (s1);
}

Genus
double genus(double x, double y, double z)
{

Appendix C

- v -

 double rx = 6, ry = 3.5, rz = 4;
 double r1 = 1.2, x1 = 3.9;
 double y2 = SQR(y);
 double r12 = SQR(r1);
 double g1 = SQR(rz)*SQR(rz)*SQR(z);
 double g2 = (1 - SQR(x/rx) - SQR(y/ry));
 double g3 = (SQR(x-x1) + y2 - r12) * (x*x + y2 - r12);
 double g4 = (SQR(x+x1) + y2 - r12);
 return (-g1 + g2*g3*g4);
}

Yutaka
double yutaka(double x, double y, double z) {
 float x1 = (float)x;
 float y1 = (float)y;
 float z1 = (float)z;
 float tar = (y1+15.0f)/15.0f;
 x1 /= tar*tar;
 z1 /= tar*tar;
 double angle = 4*PI*y1/30.0f;
 float xt = x1*cos(angle) + z1*sin(angle);
 float yt = y1;
 float zt = -x1*sin(angle) + z1*cos(angle);
 float rect = intersectionAB(intersectionAB(3 - fabs(xt), 15 -

fabs(yt)), 1 - fabs(zt));
 float rect3 = 4 - xt*xt - (yt-5)*(yt-5)/4;
 x1 = x; y1 = y; z1 = z;
 tar = (y1+14)/10;
 x1 /= tar*tar;
 z1 /= tar*tar;
 float sphere = 5 - x1*x1 - (y1+10)*(y1+10) - z1*z1;
 float f1 = intersectionAB(rect, -rect3);
 float f2 = sphere;
 float fff = unionAB(f1, f2) + 100/(1+(f1/2)*(f1/2)+(f2/2)*(f2/2));
 return (fff);
}

Torus
double torus (double x, double y, double z, double R, double r)
{
 double x2 = x*x, y2 = y*y, z2 = z*z;
 double a = x2+y2+z2+(R*R)-(r*r);
 return -a*a+4.0*(R*R)*(x2+y2);
}

Olympic rings
double olympic_rings(double x, double y, double z)
{
 double s = 0.5; // scale
 double s1 = 1.0 / s;
 x = s * x; y = s * y; z = s * z;
 double R=1.4*s1;
 double r=0.2*s1;
 double a, b, c, d, e, f;
 double y2,z2;

Appendix C

- vi -

 POINT1 p1, p2, p3, p4; // struct with three double x, y, z
 p1 = rotation_x(-15.0, x, y, z); // angle in degrees
 p2 = rotation_x(20.0, x, y, z);
 p3 = rotation_x(30.0, x, y, z);
 p3 = rotation_y(-10.0, p3);
 p4 = rotation_x(-30.0, x, y, z);
 p4 = rotation_y(15.0, p4);
 a = torus(p1.x-2.1*s1, p1.y, p1.z, R, r);
 b = torus(p2.x, p2.y, p2.z, R, r);
 c = torus(p1.x+2.1*s1, p1.y, p1.z, R, r);
 d = torus(p3.x-0.8*s1, p3.y+1.3*s1, p3.z-0.8*s1, R, r);
 e = torus(p4.x+1.1*s1, p4.y+1.1*s1, p4.z+0.4*s1, R, r);
 f = unionAB(unionAB(a,b), unionAB(c,d));
 return (unionAB(e,f));
}

Cube
double cube(double x, double y, double z)
{
 double r = 0.5;
 double a, b, c, d;
 a = -fabs(x) + r;
 b = -fabs(y) + r;
 c = -fabs(z) + r;
 d = intersectionAB(a,b);
 return intersectionAB(c, d);
}

Jack
double jack(double x, double y, double z)
{
 double x2 = x*x, y2 = y*y, z2 = z*z;
 double a1 = x2/9 + 4*y2 + 4*z2;
 double a2 = y2/9 + 4*x2 + 4*z2;
 double a3 = z2/9 + 4*y2 + 4*x2;
 double b11 = 4*x/3-4;
 double b12 = 4*x/3+4;
 double b21 = 4*y/3-4;
 double b22 = 4*y/3+4;
 double c1 = b11*b11 +16*y2/9 + 16*z2/9;
 double c2 = b12*b12 +16*y2/9 + 16*z2/9;
 double c3 = b21*b21 +16*x2/9 + 16*z2/9;
 double c4 = b22*b22 +16*x2/9 + 16*z2/9;
 double m1 = 1/(a1*a1*a1*a1) + 1/(a2*a2*a2*a2) + 1/(a3*a3*a3*a3);
 double m2 = 1/(c1*c1*c1*c1) + 1/(c2*c2*c2*c2) + 1/(c3*c3*c3*c3) +

1/(c4*c4*c4*c4);
 double m3 = 1/sqrt(sqrt(m1+m2));
 return(-m3+1);
}

Spiral
double spiral(double xx, double yy, double zz)
{
 double x, y, z;

Appendix C

- vii -

 x = xx; y = yy; z = zz;
 double R = 2.0;
 double r = 0.8;
 double cx = R * cos(z);
 double cy = R * sin(z);
 double sp = r*r - (x+cx)*(x+cx) - (y+cy)*(y+cy);
 double cube = uni_cube(x, y, z, 7.0); // clipping by a cube
 double spd = intersectionAB(sp,cube);
 return (spd + 0.2);
}

Spirals
double spirals(double x, double y, double z)
{
 double s1 = spiral (x, y, z);
 POINT1 p;
 p.x = x; p.y = y; p.z = z;
 p = rotation_z(180.0, p);
 double s2 = spiral(p.x, p.y, p.z);
 double ss = unionAB(s1, s2);
 return ss;
}

Morph
double morph (double x, double y, double z)
{
 double r = 2.2; // morphing ratio
 double o1 = common_sphere(-0.2, 0, 0, 1, x, y, z);
 double o2 = jack(x, y, z);
 double m = r * o1 + (1.0 - r) * o2;
 return (m);
}

Note that following two functions are modeled by the Hyperfun modeling module [41],
so they have different syntax.

Rabbit
FmodelDouble FmodelDouble::rabbit(double x[])
{
double center[3];
double xt[3];
FmodelDouble kao,head,body;
FmodelDouble kao1,sp1,rmimi,r2mimi,lmimi,l2mimi,mimi;
FmodelDouble hana,reye,leye,mouth1,face1,mouth;
FmodelDouble lleg,rleg,lfoot,rfoot,ashi,tail,lude,

rude,lhand,rhand,ude;
xt[1] = x[0];
xt[2] = x[1];
xt[3] = x[2];
center[0] = 0.0;center[1] = 0.0;center[2] = 1.5;
kao1 = fEllipsoid(x,center,4,4,3);
center[0] = 0.0;center[1] = 1.4;center[2] = 1.5;

Appendix C

- viii -

sp1 = fSphere(x,center,5);
kao = kao1 & sp1;
center[0] = -2.0;center[1] = -1.0;center[2] = 5.5;
rmimi = fEllipsoid(x,center,1,1,4);
center[0] = -2.0;center[1] = 0.0;center[2] = 6.0;
r2mimi = fEllipsoid(x,center,0.5,0.5,2);
center[0] = 2.0;center[1] = -1.0;center[2] = 5.5;
lmimi = fEllipsoid(x,center,1,1,4);
center[0] = 2.0;center[1] = 0.0;center[2] = 6.0;
l2mimi = fEllipsoid(x,center,0.5,0.5,2);
mimi = (rmimi % r2mimi) | (lmimi % l2mimi);
center[0] = 0.0;center[1] = 4.2;center[2] = 1.5;
hana = fSphere(x,center,0.7);
center[0] = -2.0;center[1] = 2.5;center[2] = 3.0;
reye.m_dRes = fSphere(x,center,0.5);
center[0] = 2.0;center[1] = 2.5;center[2] = 3.0;
leye = fSphere(x,center,0.5);
center[0] = 0.0;center[1] = 3.0;center[2] = 0.8;
mouth1 = fEllipsoid(x,center,2,2,1);
face1 = 0.8-x[2];
mouth = mouth1 & face1;
head = (kao | mimi | hana | reye | leye) % mouth;
center[0] = 0.0;center[1] = 0.0;center[2] = -4.0;
body = fEllipsoid(x,center,3,3,5);
center[0] = -1.7;center[1] = 0.0;center[2] = -8.0;
lleg = fEllipsoid(x,center,1.5,1.5,2.7);
center[0] = 1.7;center[1] = 0.0;center[2] = -8.0;
rleg = fEllipsoid(x,center,1.5,1.5,2.7);
center[0] = 2.0;center[1] = 0.2;center[2] = -10.0;
lfoot = fEllipsoid(x,center,1.8,3,1);
center[0] = -2.0;center[1] = 0.2;center[2] = -10.0;
rfoot = fEllipsoid(x,center,1.8,3,1);
ashi = lleg | rleg | lfoot | rfoot;
center[0] = 0.0;center[1] = -3.0;center[2] = -7.0;
tail = fSphere(x,center,0.8);
center[0] = -3.0;center[1] = 0.0;center[2] = -3.5;
lude = fEllipsoid(x,center,1,1,2.5);
center[0] = 3.0;center[1] = 0.0;center[2] = -3.5;
rude = fEllipsoid(x,center,1,1,2.5);
center[0] = -3.2;center[1] = 0.0;center[2] = -5.0;
lhand = fEllipsoid(x,center,1,1,1);
center[0] = 3.2;center[1] = 0.0;center[2] = -5.0;
rhand = fEllipsoid(x,center,1,1,1);
ude = lude | rude | lhand | rhand;
return(head | body | ashi | tail | ude);
}

Tap
FmodelDouble FmodelDouble::tap(double x[])
{
 double center1[3],center2[3],center3[3],center4[3],

center5[3],center6[3];
 double center7[3],center8[3],center9[3],center10[3],center11[3];
 double xt,yt,zt;
 FmodelDouble theta,cyl1,cyl2,cyl3,cyl4,bluni1,bluni2;

Appendix C

- ix -

 FmodelDouble cyl5,cyl6,torus1,torus2,pipe1,pipe,cyl7,cyl8,
grip1,sp1,sp2,sp3;

 FmodelDouble cyl1a,cyl1b,cyl1c,cyl2a,cyl2b,cyl2c,cyl3a,
cyl3b,cyl3c,cyl4a,cyl4b,cyl4c;

 FmodelDouble cyl5a,cyl5b,cyl5c,cyl6a,cyl6b,cyl6c,cyl7a,
cyl7b,cyl7c,cyl8a,cyl8b,cyl8c;

 FmodelDouble sp4,grip,rotatey1;
 xt = x[0]; yt = x[1]; zt = x[2];
 theta = 0.25*x[3] +3.5;
 center1[0] = 1; center1[1] = 0; center1[2] = 0;
 center2[0] = -7; center2[1] = 0; center2[2] = 0;
 center3[0] = 10; center3[1] = 0; center3[2] = 0;
 center4[0] = 0; center4[1] = 3; center4[2] = 0;
 center5[0] = -7; center5[1] = 7; center5[2] = 0;
 center6[0] = 10; center6[1] = -6; center6[2] = 0;
 center7[0] = -7; center7[1] = 10; center7[2] = 0;
 center8[0] = -1; center8[1] = 10; center8[2] = 0;
 center9[0] = -12; center9[1] = 10; center9[2] = 0;
 center10[0] = -7; center10[1] = 10; center10[2] = 6;
 center11[0] = -7; center11[1] = 10; center11[2] = -6;
 // --- pipe ---
 cyl1a = yt;
 cyl1b = -yt+8;
 cyl1c = fCylinderY(x,center2,2);
 cyl1 = cyl1a & cyl1b & cyl1c;
 cyl2a = (xt+7);
 cyl2b = (-xt+9);
 cyl2c = fCylinderX(x,center1,2);
 cyl2 = cyl2a & cyl2b & cyl2c;
 cyl3a = (yt+6);
 cyl3b = (-yt-1);
 cyl3c = fCylinderY(x,center3,1.7);
 cyl3 = cyl3a & cyl3b & cyl3c;
 cyl4a = (xt+12);
 cyl4b = (-xt-8);
 cyl4c = fCylinderX(x,center4,2);
 cyl4 = cyl4a & cyl4b & cyl4c;
 bluni1 = fBlendUni(cyl1,cyl2,2,2,1);
 bluni2 = fBlendUni(bluni1,cyl3,3,5,3);
 cyl5a = yt;
 cyl5b = (-yt+10);
 cyl5c = fCylinderY(x,center2,0.7);
 cyl5 = cyl5a & cyl5b & cyl5c;
 cyl6a = (xt+9.5);
 cyl6b = (-xt-10);
 cyl6c = fCylinderX(x,center4,5);
 cyl6 = cyl6a & cyl6b & cyl6c;
 torus1 = fTorusY(x,center5,2.3,1);
 torus2 = fTorusY(x,center6,1,0.8);
 pipe1 = fBlendUni(bluni2,torus1,1,1,1);
 pipe = pipe1|torus2;
 // --- grip ---
 cyl7a = (xt+12);
 cyl7b = (-xt-1);
 cyl7c = fCylinderX(x,center7,0.8);
 cyl7 = cyl7a & cyl7b & cyl7c;
 cyl8a = (zt+6);

Appendix C

- x -

 cyl8b = (-zt+6);
 cyl8c = fCylinderZ(x,center7,0.8);
 cyl8 = cyl8a & cyl8b & cyl8c;
 grip1 = fBlendUni(cyl7,cyl8,2,1,1);
 sp1 = fSphere(x,center8,1.5);
 sp2 = fSphere(x,center9,1.5);
 sp3 = fSphere(x,center10,1.5);
 sp4 = fSphere(x,center11,1.5);
 rotatey1 = fRotate3DY(center7,45);
 grip = grip1|sp1|sp2|sp3|sp4;
 return(bluni1|bluni2|cyl4|cyl5|cyl6|pipe|grip);
}

Appendix D

- xi -

Appendix D

Implicit functions pictures

Appendix E

- xii -

Appendix E

Publications

