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Surface Reconstruction from Clouds of 
Points 
Alexandr Jeměljanov 
 
 
Abstrakt 
Při rekonstrukci povrchu vznikají v praxi často dva následující problémy. První 
problém obyčejně vzniká v případech, kdy vstupní množina bodů je příliš velká, 
aby mohla být zpracována dokonce i na výkonných moderních počítačích. To je 
typické pro množiny bodů, který reprezentují velký sochy, domy, krajiny, 
kosmické objekty atd. Druhý problém vzniká v případě, kdy použitý algoritmus 
není schopen úplně zrekonstruovat CAD-model. Obvykle k tomu dochází při 
zpracovaní množin bodů, které byly získány skenováním objektů vně laboratoří. 
Oba výše popsané problémy mohou vznikat jak současně tak i odděleně. V této 
práci jsou navrženy  metody, které tyto problémy řeší. Protože uvažované 
problémy mohou vzniknout při použití jakéhokoliv z existujících algoritmů, 
navržené metody nepředpokládají využití nějakého určitého algoritmu 
rekonstrukce povrchu. Řešení prvního problému je založeno na minimalizaci 
nákladů rekonstrukce povrchu. Práce obsahuje popis obecné koncepce a také 
popis dvou jednoduchých a rychlých algoritmů, které jsou určeny pro využití 
v rámci téhle koncepce. V obecném případě tyto algoritmy mohou být využity 
jako krok pre-processingu pro libovolný algoritmus rekonstrukce povrchu, který 
umožňuje zpracovávat množinu bodů spolu s danými hranicemi již částečně 
rekonstruovaného povrchu. V práci je dále navržena a popsána metoda pro 
opravu defektů CAD-modelu. Tato metoda pro rekonstrukci chybějícího povrchu 
využívá siločáry speciálně vytvořeného tenzorového pole a může být použita 
jako krok post-processingu pro libovolný algoritmus rekonstrukce povrchu. 
V této práci popsané metody se vzájemně doplňují a mohou být spolu využity 
jako samostatný systém pro rekonstrukci povrchu. 
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Surface Reconstruction from Clouds of 
Points 
Alexandr Jeměljanov 
 
 
Abstract 
In practice of surface reconstruction the following two problems often arise. The 
first one is that we often deal with very large clouds of points (for example, 
clouds representing buildings, big sculptures, landscape areas, etc.). 
Processing such clouds of points often leads to the problem of lack of machine 
resources even for modern powerful computers. In general this problem is a 
particular case of the problem of minimization of the cost of surface 
reconstruction. The second problem can be formulated as “What to do, if an 
algorithm is not capable to reconstruct a CAD-model completely?”. This 
problem usually arises when we deal with clouds of points obtained outside of a 
laboratory. The problems are found both: separately and together. In the given 
work methods for solution of these problems are proposed. Since these 
problems can be found in using any of surface reconstruction algorithms, the 
proposed solutions don’t suppose using a concrete algorithm of surface 
reconstruction. The solution, which is meant to reduce the cost of surface 
reconstruction, includes description of a general concept and description of two 
simple and fast algorithms, which are intended to be used within the framework 
of this concept. In general, these algorithms can be used as a pre-processing 
step for a surface reconstruction algorithm that can process a set of scattered 
points with given surface boundaries. The method offered to repair defects of a 
CAD-model can be considered as a post-processing step for any surface 
reconstruction algorithm. For surface reconstruction inside damaged regions 
this method uses force lines of a specially constructed tensor field. The 
described in the given work solutions can make a self-dependent surface 
reconstruction system as well. 
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1. INTRODUCTION 
 
 
1.1 General motivations of the work 
 
 
The problem of creating a CAD model for an existing physical object from a 

given set of points of the object surface is important in many fields of science 
and industry. There are many methods available for solution of this problem. 
These methods are based on a great variety of principles, and have various 
properties, that in many cases allows choosing the most suitable algorithm for a 
given task. At the same time many authors don’t consider two problems, which 
often arise in practice. The first one is that we often deal with very large clouds 
of points (for example, clouds representing buildings, big sculptures, landscape 
areas, etc.). Processing such clouds of points often leads to the problem of lack 
of machine resources even for modern powerful computers. In general this 
problem is a particular case of the problem of minimization of the cost of surface 
reconstruction. The second problem can be formulated as “What to do, if an 
algorithm is not capable to reconstruct a CAD-model completely?“ This problem 
usually arises when we deal with clouds of points obtained outside of a 
laboratory. The problems are found both: separately and together. 

 
 
1.2 Used system of denotations 
 
 
In the given work the following system of denotations is used. The six 

groups of denoted objects are defined: definitions, conditions, lemmas, 
mathematical expressions, figures, and tables. Each object is denoted by the 
index that is composed in the following way. As its basic part the index of 
corresponding enumerated block of text is used. Before the basic part there is a 
letter denoting the type of given object: “D” for definitions, “C” for conditions, “L” 
for lemmas, “E” for expressions, “F” for figures, and “T” for tables. At the end of 
basic part the ordinal number of the object is added. Enumeration is made from 
the beginning in each enumerated block of text. For each group of objects 
enumeration is made separately. If a figure or an expression has concern only 
to a given definition, condition, or lemma, then the index of such figure or 
expression is assembled by adding the letter “F” or “E” respectively before the 
index of given definition, condition, or lemma. For new introduced or locally 
defined terms the italic type of font is used.  

 
 
1.3 Overview of the work 

 
 

In most cases surface reconstruction implies that a given algorithm takes a 
cloud of sampled points as an input data and produces a CAD-model as a 
result. This scheme (let’s denote it S1) is shown in figure F1.3-1. 
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Figure F1.3-1 
 
 

Definition D1.3-1. Let’s consider an unsuccessful result of work of some 
surface reconstruction algorithm. Let we have a particularly reconstructed 
surface, and all regions of this surface (let’s denote the aggregate of them Α ) 
are topologically equivalent to the corresponding regions of the original surface. 
Let’s assume there are no invalid edges and triangles in the considered result. It 
means that each point of the input cloud of points is included in  or doesn't 
have any triangles and edges (let’s call such point a free point). Let’s call such 
result an incomplete normalized CAD-model (ICADM). Let’s denote the 
aggregate of regions supplementing 

Α

Α  up to a topologically correct CAD-model 
Α . 

 
In the given work surface reconstruction is considered as a process of the 

two following steps: firstly from a given point cloud we obtain an ICADM and 
then from the ICADM we obtain a CAD-model. This scheme (let’s denote it S2) 
is shown in figure F1.3-2.  

 
 

 
 

Figure F1.3-2 
 
 
In chapter 3 at first on the base of scheme S2 definition of a general surface 

reconstruction concept is made. Then the case of application of scheme S1, 
when surface reconstruction from a given point cloud can be made by 
application of a given algorithm with the corresponding cost, is considered. It is 
shown, that using scheme S2, when the given algorithm is used only to realize 
step ICADM->CAD-model, the cost of the surface reconstruction can be 
reduced (with the assumption that the given algorithm can process a set of 
scattered points with given surface boundaries). In the given chapter two simple 
and fast algorithms to realize step PointCloud->ICADM are proposed without 
detailed considering step ICADM->CAD-model. The proposed solution can be 
used as a pre-processing step for any surface reconstruction algorithm that 
corresponds to the abovementioned assumption. 
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In chapter 4 the case, when application of scheme S2 is the only possible 
way, is considered. It occurs when a used surface reconstruction algorithm can’t 
reconstruct a CAD-model completely. In this chapter a method to realize step 
ICADM->CAD-model is offered. For surface reconstruction inside damaged 
regions this method uses force lines of a specially constructed tensor field. The 
method can be used as a post-processing step for any surface reconstruction 
algorithm. Step PointCloud->ICADM isn’t considered in the given chapter.  

 
In general, the offered in the chapters 3 and 4 methods supplement each 

other, since they are intended to implement the corresponding steps of scheme 
S2. Because the same fact these methods (and the corresponding problems) 
can be considered independent from each other. Therefore each 
abovementioned chapter has its own section of results and conclusions. The 
total generalized conclusion concerning the work done and designation of the 
future work direction are made in chapter 5.     
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2. STATE OF THE ART 
 
 
In this chapter a general description of basic groups of existing surface 

reconstruction methods is adduced. One of the most complete survey [MM98] is 
used for this purpose. All the information in this chapter is taken from the 
abovementioned survey and is not a result of my own work. A necessary 
discussion and criticism about some methods adduced in this chapter are made 
in corresponding parts of the next chapters. 

 
 
2.1 Spatial subdivision 
 
 
Common to the approaches that can be characterized by “Spatial 

Subdivision” is that some bounding box of the set P of sampling points is 
subdivided into disjoint cells. There is a variety of spatial decomposition 
techniques which were developed for different applications [LC87]. Typical 
examples are regular grids, adaptive schemes like octrees, or irregular 
schemes like tetrahedral meshes. Many of them can also be applied to surface 
construction. The goal of construction algorithms based on spatial subdivision is 
to find cells related to the shape described by P. The selection of the cells can 
be done in roughly two ways: surface-oriented and volume-oriented.  

 
 
2.11 Surface-oriented cell selection 
 
 
The surface-oriented approach consists of the following basic steps.  
 
Surface-oriented cell selection:  
1. Decompose the space in cells.  
2. Find those cells that are traversed by the surface.  
3. Calculate a surface from the selected cells.  
 
 
2.111 The approach of Algorri and Schmitt 
 
 
An example for surface-oriented cell selection is the algorithm of Algorri and 

Schmitt [AS96] (figure F2.111-1). For the first step, the rectangular bounding 
box of the given data set is subdivided by a regular voxel grid. In the second 
step, the algorithm extracts those voxels which are occupied by at least one 
point of the sampling set P. In the third step, the outer quadrilaterals of the 
selected voxels are taken as a first approximation of the surface. This 
resembles the cuberille approach of volume visualization [HL79].  

 
In order to get a more pleasent representation, the surface is transferred into 

a triangular mesh by diagonally splitting each quadrilateral into two triangles. 
The cuberille artifacts are smoothed using a depth-pass filter that assigns a new 
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position to each vertex of a triangle. This position is computed as the weighted 
average of its old position and the position of its neighbors. The approximation 
of the resulting surface is improved by warping it towards the data points. For 
more on that we refer to section 2.32.  

 
 

 
 

 
 

Figure F2.111-1 
 

 
2.112 The approach of Hoppe et al. 
 
 
Another possibility of surface-oriented cell selection is based on the distance 

function approach of Hoppe [HDD92, HDD93, HH94] (figure F2.112-1). The 
distance function of the surface of a closed object tells for each point in space 
its minimum signed distance to the surface. Points on the surface of course 
have distance 0, whereas points outside the surface have positive, and points 
inside the surface have negative distance. The calculation of the distance 
function is outlined in section 2.21.  

 
The first step of the algorithm again is implemented by a regular voxel grid. 

The voxel cells selected in the second step are those which have vertices of 
opposite sign. Evidently, the surface has to traverse these cells. In the third 
step, the surface is obtained by the marching cubes algorithm of volume 
visualization [LC87]. The marching cubes algorithm defines templates of 
separating surface patches for each possible configuration of the signs of the 
distance values at the vertices of a voxel cell. The voxels are replaced with 
these triangulated patches. The resulting triangular mesh separates the positive 
and negative distance values on the grid.  
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Figure F2.112-1 
 
 
A similar algorithm was suggested by Roth and Wibowoo [RGW97]. It differs 

from the approach of Hoppe et al. in the way the distance function is calculated, 
cf. section 2.21. Furthermore, the special cases of profile lines and multiple view 
range data are considered besides scattered point data.  

 
A difficulty with these approaches is the choice of the resolution of the voxel 

grid. One effect is that gaps may occur in the surface because of troubles of the 
heuristics of distance function calculation.  

 
 
2.113 The approach of Bajaj, Bernardini et al. 

 
 

The approach of Bajaj, Bernardini et al. [BBX95] differs from the previous 
ones in that spatial decomposition is now irregular and adaptive.  

 
The algorithm also requires a signed distance function. For this purpose, a 

first approximate surface is calculated in a preprocessing phase. The distance 
to this surface is used as distance function. The approximate surface is 
calculated using α-solids which will be explained in section 2.12.  

 
Having the distance function in hand, the space is incrementally 

decomposed into tetrahedra starting with an initial tetrahedron surrounding the 
whole data set. By inspecting the signs of the distance function at the vertices, 
the tetrahedra traversed by the surface are found out. For each of them, an 
approximation of the traversing surface is calculated. For this purpose, a 
Bernstein-Bezier trivariate implicit approximant is used. The approximation error 
to the given data points is calculated. A bad approximation induces a further 
refinement of the tetrahedrization. The refinement is performed by incrementally 
inserting the centers of tetrahedra with high approximation error into the 
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tetrahedrization. The process is iterated until a sufficient approximation is 
achieved.  

 
In order to keep the shape of the tetrahedra balanced, an incremental 

tetrahedrization algorithm is used so that the resulting tetrahedrizations always 
have the Delaunay property. A tetrahedrization is said to have the Delaunay 
property if none of its vertices lies inside the circumscribed sphere of a 
tetrahedron [PS85].  

 
The resulting surface is composed of trivariate implicit Bernstein-Bezier 

patches. A C1 smoothing of the constructed surfaces is obtained by applying a 
Clough-Tocher subdivision scheme.  

 
In Bernardini et al. [BBC97] an extension and modification of this algorithm 

is formulated [BBX97, BB97]. The algorithm consists of an additional mesh 
simplification step to reduce the complexity of the mesh represented by the 
α-solid [BS96]. The reduced mesh is used in the last step of the algorithm for 
polynomial-patch data fitting using Bernstein-Bezier patches for each triangle 
(by interpolating the vertices and normals and by approximating data points in 
its neighborhood). Additionally, the representation of sharp features can be 
achieved in the resulting surface.  

 
 
2.114 Edelsbrunner's and Mucke's alpha-shapes 
 
 
Edelsbrunner and Mucke [EPM92, EPM93, EH92] also use an irregular 

spatial decomposition. In contrast to the previous ones, the given sample points 
are part of the subdivision. The decomposition chosen for that purpose is the 
Delaunay tetrahedrization of the given set P of sampling points. A 
tetrahedrization of a set P of spatial points is a decomposition of the convex hull 
of P into tetrahedra so that all vertices of the tetrahedra are points in P. A 
tetrahedrization is a Delaunay tetrahedrization if none of the points of P lies 
inside the circumsphere of a tetrahedron. It is well known that each finite point 
set has a Delaunay tetrahedrization which can be calculated efficiently [PS85]. 
This is the first step of the algorithm.  

 
The second step is to erase tetrahedrons, triangles, and edges of the 

Delaunay tetrahedrization using so-called α-balls as eraser sphere with radius 
α. Each tetrahedron, triangle, or edge of the tetrahedrization whose 
corresponding minimum surrounding sphere does not fit into the eraser sphere 
is eliminated. The resulting so-called α-shape is a collection of points, edges, 
faces, and tetrahedra.  

 
In the third step, the triangles are extracted out of the α-shape which belong 

to the desired surface, using the following rule. Consider the two possible 
spheres of radius α through all three points of a triangle of the α-shape. If at 
least one of these does not contain any other point of the point set, the triangle 
belongs to the surface.  
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A problem of this approach is the choice of a suitable α. Since α is a global 
parameter the user is not swamped with many open parameters, but the 
drawback is that a variable point density is not possible without loss of detail in 
the reconstruction.  

 
An example for a reconstruction of a body is shown in figure F2.114-1. If α is 

too small, gaps in the surface can occur, or the surface may become 
fragmented.  

 
 

 
 

Figure F2.114-1 
 
 
Guo et al. [GMW97] also make use of α-shapes for surface reconstruction 

but they propose a so-called visibility algorithm for extracting those triangles out 
of the α-shape which represent the simplicial surface.  

 
 
2.115 Attali's normalized meshes 
 
 
In the approach of Attali [AD97], the Delaunay tetrahedrization is also used 

as a basic spatial decomposition. Attali introduces so-called normalized meshes 
which are contained in the Delaunay graph. It is formed by the edges, faces and 
tetrahedra whose dual Voronoi element intersects the surface of the object.  

 
In two dimensions, the normalized mesh of a curve c consists of all edges 

between pairs of points of the given set P of sampling points on c which induce 
an edge of the Voronoi diagram of P that intersects c. The nice property of 
normalized meshes is that for a wide class of curves of bounded curvature, the 
so-called r-regular shapes, a bound on the sampling density can be given within 
which the normalized mesh retains all the topological properties of the original 
curve.  
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For reconstruction of c, the edges belonging to the reconstructed mesh are 
obtained by considering the angle between the intersections of the two possible 
circles around a Delaunay edge. The angle between the circles is defined to be 
the smaller of the two angles between the two tangent planes at one 
intersection point of the two circles. This characterization is useful because 
Delaunay discs tend to become tangent to the boundary of the object. The 
reconstructed mesh consists of all edges whose associated Delaunay discs 

have an angle smaller than 
2
π . If the sampling density is sufficiently high, the 

reconstructed mesh is equal to the normalized mesh.  
 
While in two dimensions the normalized mesh is a correct reconstruction of 

shapes having the property of r-regularity, the immediate extension to three 
dimensions is not possible. The reason for that is that some Delaunay spheres 
can intersect the surface without being approximately tangent to it. Therefore, 
the normalized mesh in three dimensions does not contain all faces of the 
surface.  

 
To overcome this problem, two different heuristics for filling the gaps in the 

surface structure were introduced.  
 
The first heuristic is to triangulate the border of a gap in the triangular mesh 

by considering only triangles contained in the Delaunay tetrahedrization.  
 
The second heuristic is volume-based. It merges Delaunay tetrahedra to 

build up the possibly different solids represented in the point set. The set of 
mergeable solids is initialized with the Delaunay tetrahedra and the complement 
of the convex hull. The merging step is performed by processing the Delaunay 
triangles according to decreasing diameters. If the current triangle separates 
two different solids in the set of mergable solids, they are merged if the 
following holds:  

• no triangle from the normalized mesh disappears;  
• merging will not isolate sample points inside the union of these objects, 

i.e. the sample points have to remain on the boundary of at least one 
object.  

 
The surface finally yielded by the algorithm is formed by the boundary of the 

resulting solids.  
 
 
2.116 Weller's approach of stable Voronoi edges 
 
 
Let P be a finite set of points in the plane. P’ is an ε-perturbation of P if 

 holds for all ε≤)( '
ii ppd Ppi ∈ , , '' Ppi ∈ ni ,...,1= . An edge  of the 

Delaunay triangulation is called stable if the perturbed endpoints ,  are also 
connected by an edge of the Delaunay triangulation of the perturbed point set 
P’.  

'' , ji pp
'
ip '

jp
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It turns out that for intuitively reasonably sampled curves in the plane, the 
stable edges usually are the edges connecting two consecutive sampling points 
on the curve, whereas the edges connecting non-neighboring sampling points 
are instable. The stability of an edge can be checked in time O(Voronoi 
neighbors) [WF97].  

 
The extension of this approach to 3D-surfaces shows that large areas of a 

surface can usually be reconstructed correctly, but still not sufficiently 
approximated regions do exist. This resembles the experience reported by Attali 
[AD97], cf. section 2.11. Further research is necessary in order to make stability 
useful for surface construction.  

 
 
2.12 Volume-oriented cell selection 
 
 
Volume-oriented cell selection also consists of three steps which at a first 

glance are quite similar to those of surface-oriented selection:  
 
Volume-oriented cell selection:  
1. Decompose the space in cells.  
2. Remove those cells that do not belong to the volume bounded by the 

sampled surface.  
3. Calculate a surface from the selected cells.  
 
The difference is that a volume representation, in contrast to a surface 

representation, is obtained.  
 
Most implementations of volume-oriented cell selection are based on the 

Delaunay tetrahedrization of the given set P of sampling points. The algorithms 
presented in the following differ in how volume-based selection is performed. 
Some algorithms eliminate tetrahedrons expected outside the desired solid, 
until a description of the solid is achieved [BJ84, IBS97, VR94]. Another 
methodology is the use of the Voronoi diagram to describe the constructed solid 
by a “skeleton” [SB97, AD97].  

 
 
2.121 Boissonnat's volume-oriented approach 
 
 
Boissonnat's volume-oriented approach starts with the Delaunay 

triangulation of the given set P of sampling points. From this triangulation of the 
convex hull, tetrahedra having particular properties are successively removed. 
First of all, only tetrahedra with two faces, five edges and four points or one 
face, three edges and three points on the boundary of the current polyhedron 
are eliminated. Because of this elimination rule only objects without holes can 
be reconstructed, cf. figure F2.121-1. 
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Figure F2.121-1 
 
 
Tetrahedra of this type are iteratively removed according to decreasing 

decision values. The decision value is the maximum distance of a face of the 
tetrahedron to its circumsphere. This decision value is useful because flat 
tetrahedra of the Delaunay tetrahedrization usually tend to be outside the object 
and cover areas of higher detail. The algorithm stops if all points lie on the 
surface, or if the deletion of the tetrahedron with highest decision value does not 
improve the sum taken over the decision values of all tetrahedra incident to the 
boundary of the polyhedron.  

 
 
2.122 The approach of Isselhard, Brunnett, and Schreiber 
 
 
The approach of [IBS97] is an improvement of the volume-oriented algorithm 

of Boissonnat [BJ84]. While Boissonnat cannot handle objects with holes, the 
deletion procedure of this approach is modified so that construction of holes 
becomes possible.  

 
As before, the algorithm starts with the Delaunay triangulation of the point 

set. An incremental tetrahedron deletion procedure is then performed on 
tetrahedra at the boundary of the polyhedron, as in Boissonnat's algorithm. The 
difference is, that more types of tetrahedron can be removed in order to being 
able to reconstruct even object with holes. The additionally allowed types of 
tetrahedra are those with one face and four vertices or three faces or all four 
faces or on the current surface provided that no point would become isolated 
through their elimination.  

 
The elimination process is controlled by observing an elimination function. 

The elimination function is defined as the maximum decision value (in the sense 
of Boissonnat) of the remaining removable tetrahedra. In this function, several 
significant jumps can be noticed. One of these jumps is expected to indicate 
that the desired shape is reached. In practice, the jump before the stabilization 
of the function on a higher level is the one which is taken. This stopping point 

11 



helps handling different point densities in the point set which would lead to 
undesired holes through the extended type set of removable tetrahedra in 
comparison to Boissonnat's algorithm [BJ84].  

 
If all data points are already on the surface, the algorithm stops. If not, more 

tetrahedra are eliminated to recover sharp edges (reflex edges) of the object. 
For that purpose the elimination rules are restricted to those of Boissonnat, 
assuming that all holes present in the data set have been recovered at this 
stage. Additionally, the decision value of the tetrahedra is scaled by the radius 
of the circumscribed sphere as a measure for the size of the tetrahedron. In this 
way, the cost of small tetrahedra is increased which are more likely to be in 
regions of reflex edges than big ones. The elimination continues until all data 
points are on the surface and the elimination function does not decrease 
anymore.  

 
An example point set and the deletion process is depicted in figure F2.122-

1.  
 
 

 
 

Figure F2.122-1 
 
 
2.123 The γ-indicator approach of Veltkamp 
 
 
To describe the method of Veltkamp [VR94, VR95] some terminology is 

required. A γ-indicator is a value associated to a sphere through three boundary 
points of a polyhedron which is positive or negative, cf. figure F2.123-1 for an 

illustration of the 2D-case. Its absolute value is computed as 
R
r

−1 , where r is 

the circle for the boundary triangle and R the radius of the boundary 
tetrahedron. It is taken to be negative if the center of the sphere is on the inner 
side and positive if the center is on the outer side of the polyhedron. Note, that 
the γ-indicator is independent of the size of the boundary triangle (tetrahedron, 

12 



respectively). Therefore, it adapts to areas of changing point density. A 
removable face is a face with positive γ-indicator value.  

 
 

 
 

Figure F2.123-1 
 
 
The first step of the algorithm is to calculate the Delaunay tetrahedrization.  
 
In the second step, a heap is filled with removable tetrahedra which are 

sorted according to their γ-indicator value. The removable tetrahedra are of the 
same boundary types as in Boissonnat's volume-oriented approach [BJ84]. The 
tetrahedron with the largest γ-indicator value is removed and the boundary is 
updated. This process continues until all points lie on the boundary, or there are 
no further removable tetrahedra.  

 
The main advantage of this algorithm is the adaption of the γ-indicator value 

to variable point density. Like Boissonnat's approach, the algorithm is restricted 
to objects without holes.  

 
Some intermediate stages during the construction of a surface are displayed 

in figure F2.123-2.  
 
 

 
 

Figure F2.123-2 
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2.124 The approach of Schreiber and Brunnett 
 
 
The approach of Schreiber and Brunnett [ST97, SB97] uses properties of 

the Voronoi diagram of the given point set for tetrahedra removal. The Voronoi 
diagram of a point set P is a partition of the space in regions of nearest 
neighborhood. For each point p in P, it contains the region of all points in space 
that are closer to p than to any other point of P. It is interesting to note that the 
Voronoi diagram is dual to the Delaunay tetrahedrization of P. For example, 
each vertex of the Voronoi diagram corresponds to the center of a tetrahedron 
of the tetrahedrization. Edges of the Voronoi diagram correspond to neighboring 
faces of the tetrahedra dual to its vertices. The same observation holds for 
Voronoi diagrams in the plane that are used in the following for the explanation 
of the 2D-version of the algorithm.  

 
In the first step, the Delaunay triangulation and the dual Voronoi diagram of 

P is determined. The second step, the selection of tetrahedra, uses a minimum 
spanning tree of the Voronoi graph, cf. figure F2.124-1. The Voronoi graph is 
the graph induced by the vertices and edges of the Voronoi diagram. A 
minimum spanning tree (MST) of a graph is a subtree of the graph which 
connects all vertices and has minimum summed edge length. Edge length in 
our case is the Euclidean distance of the two endpoints of the edge.  

 
 

 

 
 

Figure F2.124-1 
 
 
In the second step, a pruning strategy is applied to it which possibly 

decomposes it into several disjoint subtrees. Each subtree represents a region 
defined by the union of the triangles dual to its vertices.  
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Two pruning rules have been developed for that purpose:  
1. All those edges will be pruned for which no end point is contained in the 

circumcircle of the dual Delaunay triangle of the other end point.  
2. An edge will be pruned if its length is shorter than the mean value of the 

radii of both circumcircles of the dual Delaunay triangles of its voronoi 
end points.  

 
The number of edges to be pruned can be controlled by using the edge 

length as a parameter.  
 
The resulting regions are then distinguished into inside and outside. In order 

to find the inside regions, we add the complement of the convex hull as further 
region to the set of subtree regions. The algorithm starts with a point on the 
convex hull which is incident to exactly two regions. The region different from 
the complement of the convex hull is classified “inside”. Then the label “inside” 
is propagated to neighboring regions by again considering points that are 
incident to exactly two regions.  

 
After all regions have been classified correctly, the boundary of the 

constructed shape is obtained as the boundary of the union of the region 
labeled “inside”.  

 
An adaption of this method to three dimensions is possible.  
 
 
2.125 The α-solids of Bajaj, Bernardini et al. 
 
 
Bajaj, Bernardini et al. [BBX95, BBX97, BB97, BBC97] calculate so-called 

α-solids. While α-shapes are computed by using eraser spheres at every point 
in space, the eraser spheres are now applied from outside the convex hull, like 
in Boissonnat's approach [BJ84]. To overcome the approximation problems 
inherent to α-shapes a re-sculpturing scheme has been developed. 
Re-sculpturing roughly follows the volumetric approach of Boissonnat in that 
further tetrahedra are removed. This goal is to generate finer structures of the 
object provided the α-shape approach has correctly recognized the larger 
structures of the object.  

 
 
2.2 Surface construction with distance functions 
 
 
The distance function of a surface gives the shortest distance of any point in 

space to the surface. For closed surface the distances can be negative or 
positive, dependent on whether a point lies inside or outside of the volume 
bounded by the surface. In section 2.1 we have already described an algorithm 
which uses the distance function for the purpose of surface construction. There 
the question remained open how a distance function can be calculated from the 
given set P of sample points. Solutions are presented in the next subsection.  
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Another possibility of calculating a distance function is to construct a surface 
to the given set P of data points and take the distance to this surface. The idea 
behind that is that this distance function may be used to get a better surface, for 
instance a smooth surface as in [BBX95].  

 
Besides marching cubes construction of surfaces as explained in section 

2.11, distance plays a major role in construction of surfaces using the medial 
axis of a volume. The medial axis consists of all points inside the volume for 
which the maximal sphere inside the volume and centered at this point does not 
contain the maximal sphere of any other point. Having the medial axis and the 
radius of the maximum sphere at each of its points, the given object can be 
represented by the union taken over all spheres centered at the skeleton points 
with the respective radius. An algorithm for surface construction based on 
medial axes is described in section 2.22.  

 
 
2.21 Calculation of distance functions 
 
 
2.211 The approach of Hoppe et al. 
 
 
Hoppe et al. [HDD92, HH94] suggest the following approach. At the 

beginning, for each point pi an estimated tangent plane is computed. The 
tangent plane is obtained by fitting the best approximating plane in the least 
square sense [DRH73] into a certain number k of points in the neighborhood of 
pi. In order to get the sign of the distance in the case of close surfaces, a 
consistent orientation of neighboring tangent planes is determined by computing 
the Riemannian graph (figure F2.211-1). The vertices of the Riemannian graph 
are the centers of the tangent planes which are defined as the centroids of the k 
points used to calculate the tangent plane. Two tangent plane centers oi,oj are 
connected with an edge (i, j) if one center is in the k-neighborhood of the other 
center. By this construction, the edges of the Riemannian graph can be 
expected to lie close to the sampled surface.  

 
 

 
 

Figure F2.211-1 
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Each edge is weighted by 1 minus the absolute value of the scalar product 
between normals of the two tangent plane centers defining the edge. The 
orientation of the tangent planes is determined by propagating the orientation at 
a starting point, by traversing the minimum spanning tree of the resulting 
weighted Riemannian graph.  

 
Using the tangent plane description of the surface and their correct 

orientations, the signed distance is computed by first determining the tangent 
plane center nearest to the query point. The distance between the query point 
and its projection on the nearest tangent plane. The sign is obtained form the 
orientation of the tangent plane.  

 
 
2.212 The approach of Roth and Wibowoo to distance functions 
 
 
The goal of the algorithm of Roth and Wibowoo [RGW97] is to calculate 

distance values at the vertices of a given voxel grid surrounding the data points. 
The data points are assigned to the voxel cells into whcih they fall. An “outer” 
normal vector is calculated for each data point by finding the closest two 
neighboring points in the voxel grid, and then using these points along with the 
original point to compute the normal.  

 
The normal orientation which is required for signed distance calculation is 

determined as follows. Consider the voxel grid and the six axis directions ( x± , 
, ). If we look from infinity down each axis into the voxel grid, then those 

voxels that are visible must have their normals point towards the viewing 
direction. The normal direction is fixed for these visible points. Then the normal 
direction is propagated to those neighboring voxels whose normals are not fixed 
by this procedure. This heuristic only works if the nonempty voxel defines a 
closed boundary without holes.  

y± z±

 
The value of the signed distance function at a vertex of the voxel grid is 

computed by taking the weighted average of the signed distances of every point 
in the eight neighboring voxels. The signed distance to a point with normal is 
the Euclidean distance to this point, with positive sign if the angle between the 
normal and the vector towards the voxel vertex exceeds 90°.  

 
 
2.22 Bittar's et al. surface construction by medial axes 
 
 
The approach of Bittar et al. [BTG95] consists of two steps, the calculation of 

the medial axis and the calculation of an implicit surface from the medial axis.  
 
The medial axis is calculated from a voxelization of a bounding box of the 

given set of points. The voxels containing points of the given point set P are 
assumed to be boundary voxels of the solid to be constructed. Starting at the 
boundary of the bounding box, voxels are successively eliminated until all 
boundary voxels are on the surface of the remaining voxel volume. A distance 
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function is propagated from the boundary voxels to the inner voxels of the 
volume, starting wiht distance 0 on the boundary voxels. The voxels with locally 
maximal distance value are included to the medial axis.  

 
 

 
 

Figure F2.22-1 
 
 
The desired surface is calculated by distributing centers of spheres on the 

medial, cf. figure F2.22-1. The radius of a sphere is equal to the distance 
assigned to its center on the medial axis. For each sphere, a field function is 
defined which allows to calculate a scalar field value for arbitrary point in space. 
A field function of the whole set of spheres is obtained as sum of the field 
functions of all spheres. The implicit surface is defined as an iso-surface of the 
field function, that is, it consists off all points in space for which the field function 
has a given constant value.  

 
 

 
 

Figure F2.22-2 
 
 
In order to save computation time, a search strategy is introduced which 

restricts the calculation of the sum to points with suitable positions.  
 
The shape of the resulting surface is strongly influenced by the type of field 

function. For example, a sharp field function preserves details while a soft 
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function smoothes out the details, cf. figure F2.22-2. Also the connectness of 
the resulting solid can be influenced by the shape function cf. figure F2.22-3.  

 
 

 
 

Figure F2.22-3 
 
 
Because of the voxelization, a crucial point is tuning the resolution of the 

medial axis. If the resolution of the axis is low, finer details are not represented 
very accurately. The display of the surface detail is improved if the resolution is 
increased but can also tend to disconnect parts of the surface if the resolution is 
higher than the sample density at certain regions.  

 
A result of this algorithm is shown in figure F2.22-1.  
 
 
2.3 Surface construction by warping 
 
 
Warping-based surface construction means to deform an initial surface so 

that it gives a good approximation of the given point set P. For example, let the 
initial shape be a triangular surface to some or all of its vertices corresponding 
points in P are determined to which the vertices have to be moved in the 
warping process. When moving the vertices of the mesh to their new locations, 
the rest of the mesh is also deformed and yields a surface approximation of the 
points in P.  

 
Surface construction by warping is particularly suited if a rough 

approximation of the desired shape is already known. This simplifies detection 
of corresponding points.  

 
Several methods of describing deformable surfaces were developed in the 

past. Muraki suggested a “blobby model” to approximate 2.5 D range images 
[MS91]. Terzopoulos, Witkin and Kass [TM91, TWK88] made use of deformable 
superquadrics which have to fit the input data points.  
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Miller et al. [MBL91] extract a topologically closed geometric model from a 
volume data set. The algorithm starts with a simple model that is already 
topologically closed and deforms the model on a set of constraints, so that the 
model grows or shrinks to fit the object within the volume while maintaining it 
closed and a locally simple non-self-intersecting polyhedron that is either 
embedded in the object or surrounds the object in the volume data 
representation. A function is associated with every vertex of the polyhedron that 
associates costs with local deformation adherent to properties of simple 
polyhedra, and the relationship between noise and feature. By minimizing these 
constraints, one achieves an effect similar to inflating a balloon within a 
container or collapsing a piece of shrink wrap around the object.  

 
A completely different approach to warping is modeling with oriented 

particles suggested by Szeliski and Tonnesen [SRT92]. Each particle owns 
several parameters which are updated during the modeling simulation. By 
modeling the interaction between the particles themselves the surface is being 
modeled using forces and repulsion. As an extension Szeliski and Tonnesen 
describe how their algorithm can be extended for automatic 3D reconstruction. 
At each sample location one particle with appropriate parameters is generated. 
The gaps between the sample points (particles, respectively) are filled by 
growing particles away from isolated points and edges. After having a rough 
approximation of the current surface the other particles are rejusted to smooth 
the surface.  

 
In the following three subsections three approaches are outlined which stand 

for basically different methodologies, a purely geometric approach, a physical 
approach, and a computational intelligence approach.  

 
  
2.31 Spatial free form warping 
 
 
The idea of spatial free-form warping is to deform the whole space in which 

an object to be warped is embedded in, with the effect that the object is warped 
at the same time. Space deformation is defined by a finite set of displacement 
vectors consisting of pairs of initial and target point, from which a spatial 
displacement vector field is interpolated using a scattered data interpolation 
method. There is a huge number of scattered data interpolation methods known 
in literature, cf. e.g. [HJL93]. Among them that one can be chosen that yields 
the most reasonable shape for the particular field of application.  

 
The resulting displacement vector field tells for each point in space its target 

point. In particular, if the displacement vector field is applied to all vertices of the 
initial mesh, or of a possibly refined one, the mesh is warped towards the given 
data points [RM95].  

 
The advantage of spatial free form warping is that usually only a small 

number of control displacement vectors located at points with particular features 
like corners or edges is necessary. A still open question is how to find good 
control displacement vectors automatically.  
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2.32 The approach of Algorri and Schmitt 
 
 
The idea of Algorri and Schmitt [AS96] is to translate given approximate 

triangular mesh into a physical model, cf. figure F2.32-1. The vertices of the 
mesh are interpreted as mass points. The edges are replaced with springs. 
Each nodal mass of the resulting mesh of springs is attached to its closest point 
in given set P of sampling points by a further spring. The masses and springs 
are chosen so that the triangular mesh is deformed towards the data points.  

 
 

 
 

Figure F2.32-1 
 
 

The model can be expressed as a linear differential equation of degree 2. 
This equation is solved iteratively. Efficiency is gained by embedding the data 
points and the approximate triangular mesh into a regular grid of voxels, like 
that one already yielded by the surface construction algorithm of the same 
authors, cf. section 2.11.  

 
 
2.33 Kohonen feature map approach of Baader and Hirzinger 
 
 
The Kohonen feature map approach of Baader and Hirzinger [BH93, BH94] 

can be seen as another implementation of the idea of surface construction by 
warping. Kohonen's feature map is a two-dimensional array of units (neurons), 
cf. figure F2.33-1.  
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Figure F2.33-1 
 
 

Each unit uj has a corresponding weight vector jw . In the beginning these 
vectors are set to normalized random values (of length equal to 1). During the 
reconstruction or training process the neurons are fed with the input data which 
affects their weight vectors (which resemble their position in three-space). Each 
input vector i  is presented to the units j which produce output oj of the form 

iwo jj = . The unit generating the highest response oj is the center of the 
excitation area. The weights of this unit and a defined neighborhood are 
updated by the formula ))(()()1( twitwtw jijj −+=+ ε  

 
 

 
 

Figure F2.33-2 
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Note that after this update the weight vectors have to be normalized again. 
The value jj hηε =  contains two values, the learning rate η and the 
neighborhood relationship hj. Units far away from the center of excitation are 
only slightly changed.  

 
The algorithm has one additional difficulty. If the input point data do not 

properly correspond with the neuron network it is possible, that neurons might 
remain which had not been in any center of excitation so far. Therefore they had 
been updated only by the neighborhood update which usually is not sufficient to 
place the units near the real surface. Having this in mind, Baader and Hirzinger 
have introduced a kind of reverse training. Unlike the normal training where for 
each input point a corresponding neural unit is determined and updated the 
procedure in the intermediate reverse training is reciprocal. For each unit uj the 
part of the input data with the highest influence is determined and used for 
updating uj.  

 
The combination of this normal and reverse training completes the algorithm 

of Baader and Hirzinger and has to be used in the training of the network.  
 
A result is depicted in figure F2.33-2.  
 
  
2.4 Incremental surface-oriented construction 
 
 
The idea of incremental surface-oriented construction is to build-up the 

interpolating or approximating surface directly on surface-oriented properties of 
the given data points. This can be done in quite different manner.  

 
For example, surface construction may start with an initial surface edge at 

some location of the given point set P, connecting two of its points which are 
expected neighboring on the surface. The edge is successively extended to a 
larger surface by iteratively attaching further triangles at boundary edges of the 
emerging surface. The surface-oriented algorithm of Boissonnat explained in 
the first subsection may be assigned to this category.  

 
Another possibility is to start with a global wire frame of the surface, in order 

to fill it iteratively to a complete surface. This is the idea of the approach of 
Mencl and Muller described in section 2.42.  

 
 
2.41 Boissonat's surface-oriented approach 
 
 
Boissonnat's surface oriented contouring algorithm [BJ84] usually starts at 

the shortest connection between two points of the given point set P. In order to 
attach a new triangle at this edge, and later on to other edges on the boundary, 
a locally estimated tangent plane is computed based on the points in the 
neighborhood of the boundary edge. The points in the neighbourhood of the 
boundary edge are then projected onto the tangent plane. The new triangle is 
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obtained by connecting one of these points to the boundary edge. That point is 
taken which maximizes the angle between at its edges in the new triangle, that 
is, the point sees edge boundary edge under the maximum angle, cf. figure 
F2.41-1.  

 
 

 
 

Figure F2.41-1 
 
 

The algorithm terminates if there is no free edge available any more. The 
behavior of this algorithm can be seen in figure F2.41-2.  

 
 

 
 

Figure F2.41-2 
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2.42 Approach of Mencl and Muller 
 
 
The solution of Mencl and Muller consists of seven main steps [RM95, 

MM97]:  
1. The computation of the EMST (Euclidean minimum spanning tree) of the 

point set.  
2. Extension of the graph at leaf points of the EMST.  
3. Recognition of features.  
4. Extraction of different objects out of the graph.  
5. Connection of features of the same kind.  
6. Connection of associated edges in the graph.  
7. Filling the wire frame with triangles.  

 
 

 

 

 
 

Figure F2.42-1 
 
 
The first two steps are designed to build up an initial surface description 

graph (SDG). This is performed by computing the EMST (Euclidean minimum 
spanning tree) and an graph extension step afterwards, cf. figure F2.42-1. Next, 
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a feature recognition is performed to gain necessary information considering the 
possible structure of the surface in the third step. As in object recognition of 
raster images Mencl and Muller consider features to be regions with special 
information about the objects structure like paths, edges, point rings and so on. 
After that, these feature areas are disconnected and/or connected according to 
certain rules to have a proper description of the objects in the point set (step 4 
and 5). In the last step before the triangle filling procedure, the so far computed 
graph is extended more by connecting associated edges in the graph under 
consideration of certain constraints. Finally, the triangles are filled into this 
surface description graph by using a rule system to assure a resulting surface 
with high accuracy.  

 
As a main concept, Mencl and Muller introduce the concept of feature 

recognition and clustering to improve the accuracy of the surface description 
graph according to the assumed surface of the object [MM97]. The idea is the 
possibility to integrate different kind of recognition algorithms in the main 
algorithm while maintaining the structural consistency of the SDG.  

 
In contrast to many other methods this approach returns a piecewise linear 

surface which interpolates exactly the input point set. The algorithm can handle 
point sets with high changes in point density. This makes it possible to describe 
objects with only the least necessary amount of points since it is not necessary 
to oversample areas with low local curvature. The reconstruction of sharp edges 
in artificial or synthetic objects can be done properly as well as the 
reconstruction of non-orientable surfaces like Mobius strips, for example.  
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3. MINIMIZATION OF THE COST OF SURFACE RECONSTRUCTION 
 
 
3.1 Concept of consecutive application of algorithms 
 
 
Let’s consider a way to decrease the total cost of surface reconstruction. Let 

we have a cloud of  points and two surface reconstruction algorithms (let’s 
denote them  and 

N
A B  respectively). Let algorithm  is able to reconstruct a 

correct CAD-model with the specific cost  (seconds per a point). Let algorithm 
A

Ac
B  can produce a result in that  (kN 10 << k ) sampled points belong to a correct 
triangulated surface and the remaining Nk)1( −  sampled points don’t belong to 
it (such points can have edges and triangles or remain free). Let the specific 
cost of work of algorithm B  is  (seconds per a point). Let we have also an 
algorithm of filtering, that having an unsuccessful result of work of a surface 
reconstruction algorithm at the input can remove all wrong edges and triangles 
(i.e. produce an ICADM) with the specific cost  (seconds per a point). The 
usually way of processing the given cloud of points is using only algorithm . In 
this case the total cost of surface reconstruction is:  

Bc

Fc
A

 
NcC AA = (E3.1-1)

 
At the same time surface reconstruction can be made in that way: first we 

apply algorithm B , then we apply the filtering algorithm, and then for the set of 
remaining free points we use algorithm  (it is supposed that  can process a 
set of scattered points with given surface boundaries). The cost of such surface 
reconstruction is: 

A A

 
NkcNcNcC AFBBA )1( −++= (E3.1-2)

 
Definition D3.1-1. Let’s call the described above using scheme S2 the 

concept of consecutive application of surface reconstruction algorithms (CCAA). 
Let’s call an algorithm applied first for processing an input cloud of points the 
start algorithm, an algorithm applied to remove wrong edges and triangles (to 
obtain an ICADM) the filtering algorithm, and an algorithm applied to obtain a 
CAD-model from the given ICADM the base algorithm. This concept can be 
inductively extended to an arbitrary number of surface reconstruction algorithms 
having right properties. 

 
Condition C3.1-1. Application of CCAA is more advantageous than 

application of only the base algorithm if the following condition is fulfilled:  
 

FBA cckc +> (EC3.1-1)
 

where all the denotations correspond to the described above example. 
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3.2 Development of a new solution motivation 
 
 
For realization of CCAA we need to find for a given algorithm chosen as the 

base algorithm an algorithm to use as the start algorithm and an algorithm to 
use as the filtering algorithm with the properties, which meet condition C3.1-1. 
Since nowadays very many such algorithms are designed, we, of course, in 
many cases can find suitable existing algorithms. However, let’s take into 
consideration, that the absolute majority of existing surface reconstruction 
algorithms is designed for self-dependent complete surface reconstruction. But, 
in CCAA the start algorithm has “a right of mistake”. Thus, using this fact we 
can try to design a surface reconstruction algorithm with the specific cost 
smaller than existing algorithms. Of course, such algorithm in general case can’t 
be used as a self-dependent surface reconstruction algorithm, but it can be 
successfully applied as the start algorithm within the framework of CCAA. An 
algorithm designed in accordance with these means and an algorithm to use as 
the filtering algorithm are described below.  

 
 
3.3 An algorithm to use as the start algorithm 
 
 
In general, this algorithm uses the ideas of greedy triangulation (GT) and 

belongs to the group of interpolating methods. The GT of a point set in the 
plane is the triangulation obtained by starting with the empty set and at each 
step adding the shortest compatible edge between two of the points [BE95]. In 
2D a compatible edge is defined to be an edge that crosses none of the 
previously added edges. This algorithm is an extension of 2D GT-strategy for 
3D.  

 
For using GT-strategy in 3D a special very simple and fast test was 

designed. This test analyzes a topology of a created mesh at the place of 
prospective inclusion of an edge, and can be formulated as follows: if insertion 
of the current tested edge leads to at least one of the following situations: 

• appearance of edges having more than two adjacent triangles; 
• appearance of a tetrahedron; 
• appearance of angles lesser than a given threshold value (let’s denote it 

)  TA
then the edge is considered as incompatible and compatible otherwise. The 
given test uses floating-point operations in a minimal degree, and is performed 
fast.  

 
To achieve the linear complexity, the step of sorting created set of all the 

possible edges is realized in that way: we use a one-dimensional regular grid 
and during the sorting just put a current considered edge in the corresponding 
cell of the grid. Such grid having about 1000 cells provide a satisfactory quality 
of sorting. 
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Figure F3.3-1 
 
 
Naturally, an algorithm based on such simple principles can’t provide 100% 

reliability. For example, the applied test can’t prevent appearance of edges 
having less than 2 adjacent triangles (edge  in figure F3.3-1). During 
experiments we have about 85-98% correctly connected points. But it is enough 
index for the start algorithm. 

AB

 
 
3.4 An algorithm to use as the filtering algorithm 
 
 
At the input of the described algorithm we have an unsuccessful result of 

work of a surface reconstruction algorithm. At the output we have a set of 
correctly reconstructed regions and a set of free points. In general, the 
algorithm detects and marks points of correctly triangulated regions. 
Simultaneously the algorithm removes wrong edges and triangles. The 
algorithm can improve some errors of the input triangulation, which are caused 
by generation of redundant edges and triangles, but it doesn’t create new edges 
and triangles.  

 
Condition C3.4-1. On an input set of edges is imposed the following 

condition: each edge can have only one or two adjacent triangles. 
 
As the basis of this algorithm a variant of the well-known “umbrella” filtering 

[AGJ02] is used. Each point at the input can have one or several chains of 
adjacent triangles. These chains can be closed or open. Because of condition 
C3.4-1 such chains can’t have any intersections (shared edges). The possible 
cases are shown in figure F3.4-1. 

 
Condition C3.4-2. Can be easily proved, that a point of a correctly 

triangulated region can have only one chain of triangles. This chain is closed for 
an internal point, and is open for a boundary point.  

 
Condition C3.4-3. Condition C3.4-2 is necessary, but is sufficient only if a 

given triangulated region is enough extensive. For example, vertices of a single 
isolated wrong triangle meet this condition. Let we have a triangulated region 
consist of points, which meet condition C3.4-2. Let’s consider such region 
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correct, if it has at least  internal points, where  is an empirically chosen 
parameter.  

iN iN

 
 

 
   
a b c 
   
 
 
 
 

Figure F3.4-1 

 
   
 d e 

 
 
At the filtering all the input points are sequentially considered. For a current 

considered point first determination of all chains of triangles is made. The work 
of the algorithm depending on the obtained configuration of the chains is 
described in table T3.4-1: 

 
No Case Action 
1 Only one closed chain 

(figure F3.4-1a) 
The point is considered an internal point; 

2 Only one open chain 
(figure F3.4-1b) 

If the point meets condition C3.4-3 then this point is 
considered a boundary point, otherwise all the 
triangles of the point are deleted and the point is 
considered a free point; 

3 Several open chains 
(figure F3.4-1c) 

Elimination of all the open chains is made with 
exception of the chain having the greatest number 
of triangles, then the point is considered like in 
case 2; 

4 One closed and one or 
several open chains 
(figure F3.4-1d) 

Elimination of all the open chains is made, then the 
point is considered an internal point; 
 

5 More than one closed 
chains (figure F3.4-1e) 

Elimination of all the chains is made, and then the 
point is considered a free point. 

 
Table T3.4-1 
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In all the cases of elimination of triangles the described algorithm is recursive 
applied for all the other points, which were vertices of the deleted triangles.  

 
 
3.5 Results and conclusions 
 
 
The proposed CCAA has been tested in the following configuration: the 

algorithm described in paragraph 3.3 with  as the start algorithm and 
the algorithm described in paragraph 3.4 with 

o11=TA
10=iN  (introduced in C3.4-3) as 

the filtering algorithm have been used. As the base algorithm a projection-based 
algorithm that is analogous to the algorithm described in [GK02] has been used. 
This algorithm has a good processing speed in comparison with other existing 
nowadays algorithms. All tests have been done on a computer with 500 MHz 
Pentium-3 CPU. 

 
The used algorithms have the following specific costs: 

4107.1 −⋅=Bc   for the start algorithm; )/( pnts
5108.2 −⋅=Fc )/( pnts  for the filtering algorithm; 
4109.2 −⋅=Ac )/( pnts  for the base algorithm. 

 
Here the results for two well-known models are adduced. They are “Bunny” 

(figure F3.5-1) and “Bone” (figure F3.5-2). 
 
 

 
 

 
  

Figure F3.5-1 Figure F3.5-2 
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The numerical results of the tests are shown in table T3.5-1. In this table the 
total number of input points is denoted “ ”, the rate of correctly triangulated 
points after application of the start algorithm is denoted  “  “, the time of surface 
reconstruction only by the base algorithm is denoted “ ”, the time of surface 
reconstruction by the given CCAA is denoted “ ”, the achieved speedup is 
denoted “ ”. 

N
k
At

BAt
S

 
 

Model N  k  At , s BAt , s S  
“Bunny” 35947 0.96 10.4 7.9 1.32 
“Bone” 68537 0.88 19.9 16.1 1.24 

 
Table T3.5-1 

 
 
Thus, formulated CCAA with using the designed algorithms allows improving 

processing speed of even such fast algorithm like [GK02]. The effect of CCAA is 
proportional to the value of . k
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4. REPAIRING RESULTS OF INCOMPLETE SURFACE 
RECONSTRUCTION 

 
 
4.1 Formalization of the problem  
 
 
In the given chapter a method for obtaining a CAD-model of a given object 

from an ICADM is described. This method is designed with the assumption, that 
information contained in the given ICADM is sufficient for obtaining a result with 
practical value. In general, Α  (introduced in D1.3-1) may consist of one 
coherent surface region or several ones isolated from each other (let’s call such 
isolated regions islands). As a rule, there are holes on Α . Thus  has a set of 
closed boundaries. This set consists at least of one element. An element of this 
set can be the boundary of a hole or the boundary of an island. Sometimes an 
answer to the question, what exactly a given boundary bounds (a hole or an 
island) is obvious (figure F4.1-1a), and sometimes is not (figure F4.1-1b). Thus, 
we need to have a strict criterion to answer this question in any case. For the 
generality in the further statement let’s suppose (if an other supposition isn’t 
explicitly given), that a considered boundary is a smooth curve and the surface 
region bounded by this boundary is a smooth surface region. 

Α

 
 

 

  
Figure F4.1-1a Figure F4.1-1b 

 
 
Definition D4.1-1. Let’s consider a boundary (let’s denote it B ). Let’s define 

a main chord vector as the vector connecting two points on the boundary with 
condition, that the second point is the most distant from the first point. Let we 
have a main chord vector (vector XY  in figure FD4.1-1). In a close 
neighborhood of point Y  the boundary can be approximated by the tangent line 
at this point. In the same neighborhood the surface can be approximated by the 
tangent plane at the point. The tangent line lies in the tangent plane and splits it 
in two half-planes. Let’s call the half-plane corresponding to the surface the 
internal half-plane at Y . At Y  let’s define the angle φ  as the angle between XY  
and the internal half-plane. For the given boundary let’s determine the boundary 
integral value ( ): D
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)(cos bD
B
∫= φ db (ED4.1-1) 

 
 
where b  is the arc length. 

 
 

 
 

Figure FD4.1-1 
 
 

A boundary is classified as the boundary of a hole, if  for this boundary, 
otherwise as the boundary of an island. 

0>D

 
Definition D4.1-2. Since each island is a part of a reconstructed surface of 

an object, we can determine the external and the internal sides of the given 
island. Let’s call an island with determined sides an oriented island. A method of 
determination of the orientation of an island is described in section 4.48. For the 
island let’s define the positive direction of movement along its boundary the 
counter-clockwise direction, if we look to the external side. For the boundary of 
a hole inside an island the positive direction is reverse. 

 
Definition D4.1-3. Let there be a hole. Let’s call this hole a simple hole if a 

proper surface inside it can be reconstructed by an existing fast and simple 
surface reconstruction method (let’s call such method a “darning” method), and 
a complex hole otherwise. 

 
 

 
 

Figure F4.1-2 
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Naturally, that the same hole can be simple concerning a given “darning” 
method and can be complex concerning another one. For example the hole in 
figure F4.1-2 is most likely simple concerning a spline-based method and is 
complex concerning a projection-based method that uses single-stage 
projection onto a plane. For the further statement only the fact, that 
reconstruction of a proper surface inside a simple hole is not a problem, is 
important. 

 
When considering the problem of obtaining a correct CAD-model from a 

given ICADM it is necessary to take into account, that reconstruction of Α  
(introduced in D1.3-1) can be made only on the basis of analysis of behavior of 

 and distribution of free points. These points typically have the following 
properties:  
Α

• density and uniformity of distribution are sufficiently smaller than the 
corresponding indices of points of Α ; 

• inaccuracy of determination of the coordinates is greater than this index 
of points of .  Α

Thus, usually we don't have necessary information to provide a complicated 
behavior of reconstructed Α . And usually we can’t reconstruct Α  with the same 
precision like Α . In general, adequacy of reconstruction of Α  has a likelihood 
character. Taking into account these considerations let’s work out the problem 
with the assumption that behavior of Α  isn’t too complicated. In general, 
probability of adequate reconstruction of Α  is higher in regions where  has a 
simple behavior. 

Α

 
Definition D4.1-4. Each ICADM can be related to one of the following 

classes: 
ICM1:  is represented by one coherent region, that has only simple holes 

(figure FD4.1-4a, the holes are simple concerning the algorithm used in 
paragraph 3.5 as the base algorithm); 

Α

ICM2:  is represented by one coherent region too, but there are both 
simple and complex holes inside (figure FD4.1-4b); 

Α

ICM3:  is represented by the aggregate of several islands, which have 
possible holes of the both types (figure FD4.1-4c). 

Α

 
 

   
   

a b c 
Figure FD4.1-4 
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In accordance with definition D4.1-3 obtaining a correct CAD-model from a 
given ICADM of class ICM1 is not a problem. Thus, our problem is to find a 
method of correct processing ICADMs of classes ICM2 and ICM3. 

 
 
4.2 Development of a new solution motivation 
 
 
Among the groups of methods considered in chapter 2 warping-based 

methods [AS95, AS96, BH93, BH94, DH94, HG92, HJL93, MBL91, RA00, 
RM95, MS91, SRT92, TM91, TWK88, VT92] have necessary features to solve 
the above-formulated problem. Of these methods, the ones based on physical 
modeling of the warping are [AS95, AS96, DH94, HG92, RA00, VT92] the most 
suitable. This technique means, that there is an initial membrane (mesh) that is 
topologically equivalent to the original surface of a given object (in most cases it 
is the topology of a closed sphere). Elements of the membrane interact both 
with each other and with sampled points by rules defined by a given physical 
model. As a result of this interaction the membrane takes deformation to 
approximately the original surface of the object. A system of material points 
connected by springs is usually used as the interaction model. Material points 
corresponding to sampled points are considered fixed (figure F2.32-1). Such 
model can be expressed as a system of linear differential equations of degree 
2. This system is solved iteratively. In general, application of the warping-based 
methods to solve the considered problem has the following advantages and 
disadvantages: 

 
Advantages: 
• If a modeled membrane at the beginning of the process is topologically 

equivalent to the original object surface, then topologically correctness of 
reconstructed Α  is provided. 

• Α  is represented by a region (regions) of the surface of minimal potential 
energy of the modeled membrane. It is the most probable approximation 
of the original surface, and in many cases the condition of smoothness is 
satisfied as well. 

• ICADMs of all the three classes can be processed by the same method. 
 
Disadvantages: 
• Topological correctness of Α  is provided by the fact that during the 

modeling the membrane is considered entirely. Of course, at the final 
step only regions of the membrane corresponding to Α  can be modeled, 
but the cost of elimination form the modeling regions of the membrane 
corresponding to  masks optimization effect. Therefore, the cost of 
obtaining a CAD-model from a given ICADM is not essentially smaller 
than the cost of obtaining the same result from the corresponding cloud 
of points.  

Α

• In general, the process of modeling is costly enough. To reduce this cost 
many existing methods use the warping technique only at the final step 
to obtain a total shape of the membrane. An initial shape of the 
membrane approximating the original object surface is obtained by using 
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a different algorithm that is not so costly. But for ICADMs of classes 
ICM2 and ICM3 (especially) such algorithm often can’t make an initial 
shape of the membrane with the correct topology.  

 
Thus, for solution of our problem it would be good to find a method with the 

following properties: 
• the cost depending only on the number of points included in Α  (they are 

points on boundaries of Α  and free points); 
• a capability to determine the correct topology of Α  with the cost smaller 

than the cost of the modeling membrane and with robustness greater 
than the robustness of existing fast surface reconstruction algorithms; 

• a capability to provide behavior of Α  in accordance with the surface of 
minimal potential energy of a membrane that is correctly connected to 
boundaries of . Α

 
 
4.3 Basic concepts 
 
 
4.31 Concept of perturbed boundary-based surface 
 
 
Definition D4.31-1. Let’s consider Α  of a given ICADM. In general case it is 

the aggregate of one or several coherent surface regions bounded by 
boundaries of Α . Let each of these regions meet the following conditions: 

• it is completely defined only by the corresponding sections of the 
boundaries of  and the normals of Α Α  along these sections; 

• it is topologically equivalent to the corresponding region of the original 
object surface; 

• it is some compromise between minimization of its area and interpolation 
of the corresponding region of Α . 

Let’s call such region of Α  a boundary-based surface region (BBSR). 
 
 

  
a b 

Figure F4.31-1 
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Taking into account the mentioned in paragraph 4.1 properties of free points, 
let’s use for reconstruction of Α  the following approach. At the first step 
determination of BBSRs is made (figure F4.31-1a). In accordance with definition 
D4.31-1 free points are no taken into consideration for determination of their 
behavior. At the second step we use the free points as a perturbing factor for 
the obtained BBSRs (figure F4.31-1b).  

 
 
4.32 Concept of bridges 
 
 
Let’s note that to reduce of an ICADM of class ICM3 to an ICADM of class 

ICM2 and then to an ICADM of class ICM1 it is enough to make reconstruction 
of Α  only in properly chosen local regions (figure F4.32-1). 

 
 

 
 

Figure F4.32-1 
 
 
Definition D4.32-1. The simplest case of such local region is a curve 

connecting two selected boundary points of Α  with definition of the external 
normal vector along the curve (figure FD4.32-1). Let’s call such curve a bridge 
and the boundary points (  and A B  in the figure) connected by this bridge its 
supporting points.  

 
 

 
 

Figure FD4.32-1 
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For further description of properties of a bridge, let’s use one-dimensional 
coordinate system where the coordinate of a bridge point is defined by the 
length of the corresponding arc. Let’s denote a bridge by the pair of its 
supporting points (for example ) where at the first position there is the point 
selected as the origin of the coordinate system.  

AB

 
Definition D4.32-2. Because of the fact that at each point of a bridge the 

corresponding normal vector is defined we can interpret a bridge as an infinite 
narrow surface strip. Let’s use the term “the surface of a bridge” meaning this 
interpretation. Let’s also consider, that a bridge lays on a given surface if the 
surface of the bridge coincides with the given surface at each point of the 
bridge. 

 
Taking into account the formulated in section 4.31 concept of perturbed 

BBSR, let’s make construction of a bridge in two steps. At the first step we 
obtain a bridge connecting given supporting points that lies on a BBSR. At the 
second step we make correction of the trajectory of the bridge with taking into 
account nearby free points. 

 
 

4.33 General concept of reconstruction of Α  
 
 
Thus, let’s make obtaining a correct CAD-model from a given ICADM (for 

generality let’s assume that it belongs to class ICM3) in the following way: 
1. we make reduction of the given ICADM to an ICADM of class ICM2 by 

construction bridges between the existing islands; 
2. we chose a suitable surface reconstruction algorithm as a “darning” 

algorithm (therefore, we define the criterion of a simple hole); 
3. we make reduction of the obtained ICADM of class ICM2 to an ICADM of 

class ICM1 by construction bridges inside existing complex holes; 
4. we make surface reconstruction inside each simple hole by using the 

chosen “darning” algorithm. 
 
The key problem of implementation of the formulated above concept is 

determination of properly sets of bridges for the first and second steps (let’s 
denote them ICM3→ICM2 and ICM2→ICM1 respectively).  

 
 
4.4 Determination of a set of bridges at step ICM3→ICM2 
 
 
4.41 Concept of an indicator field 
 
 
Definition D4.41-1. Let’s define quality of a given bridge as estimated in 

some way probability of the bridge to be topologically correct (probability of 
belonging the bridge to a correct BBSR). 
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To implement step ICM3→ICM2 for a given set of islands we need to 
determine a proper set of bridges and these bridges should have the quality as 
high as possible. The most natural way to solve this problem is consecutive 
consideration of each of the given islands (let’s call a currently considered 
island the base island) and determination for it a set of the best quality bridges 
with other islands. The concept of a method of determination of this set is 
described in the given paragraph. The total set of bridges is determined on the 
base of union of such sets bearing in mind the conditions described in section 
4.47. 

 
 

 
 

Figure F4.41-1 
 
 
Let’s assume that the boundaries of islands are sources of a special field 

(let’s call it indicator field, H ). For a given base island possible bridges 
connecting it with other islands are defined by force lines of this field (figure 
F4.41-1). These force lines come out of points on the boundary of the base 
island and go to the boundaries of other islands.  

 
Let’s assume that this field contains sufficient information to determine both: 

the trajectory of a force line as well as the external normal vector along this 
trajectory. Thus a force line of the field locally defines a BBSR in an infinitely 
small neighborhood of its trajectory.  

 
Let’s assume that the average scalar value of the field tension along a given 

force line is the value of the quality of the bridge represented by this force line.  
 
Let’s note, that in accordance with the last assumption the quality of a bridge 

with a high enough probability is proportional to the scalar value of the tension 
at its origin point. Taking it into consideration, to determine the required bridges 
we can track the force lines outgoing from points on the boundary of the base 
island with the highest scalar values of the tension until we obtain a sufficient 
number of bridges with proper quality. A natural way to track a force line is 
application of an iterative method, when at each iteration step on the base of a 
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current point of the force line we obtain the next point of this line by analyzing 
the field tension at the current point. 

  
 
4.42 Formalization of the quality of a simple bridge 
 
 
Let’s solve the task of formalization of the quality of a bridge for a particular 

case that has direct relation to the task of construction of the indicator field. 
 
Definition D4.42-1. In the further statement mathematical objects, being a 

set of certain number of scalar and vector values, are used. Let’s call such 
object a complex and denote it by capital letter with one or more signs “°” 
above. In declaration of a complex its components are listed in braces. For 

example: },,,{ baYXA
o

 is a complex that consists of two points and two vectors; 

},{ cAA
ooo

 is a complex that consists of a complex and a vector. Let’s call a 
complex that consists of a point and a unit vector an oriented point. If the term 
“point” is used for a complex, it means that the given complex is an oriented 
point.   

 
 
4.421 Base definitions and conditions 

 
 

Condition C4.421-1. Let’s consider an island and a bridge coming out of it 
in a little neighborhood defined by ε  (a value close to zero) of the 
corresponding supporting point of the bridge (figure FC4.421-1). Let’s formulate 
a necessary condition for topological correctness of joining the bridge and the 
island. First, let’s require that the external normal vector of the bridge at the 
supporting point is perpendicular to the tangent line (τ ) to the island boundary 
at the same point. It means that in the considered neighborhood the boundary 
lies on the bridge surface. Secondly, let’s require, that if we go on the external 
side of the bridge to the island, then we should reach the external side of the 
island.  

 
 

 
 

Figure FC4.421-1 
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Definition D4.421-1. Let’s consider an island (figure FD4.421-1), a point O  
on its boundary and the tangent line (τ ) to the boundary at this point. Let there 
be a point ( X ) outside the island. Let’s consider the plane (α ) containing τ  
and X . Let’s arbitrarily define the external side of α  and the corresponding 

external normal vector ( n ). Let’s call point },{ nXX
o

 a point compatible with point 
, if during the movement along straight line  from point O XO X  to point  on 

the external side of 
O

α  we end up on the external side of the island, and non-
compatible if we are on the internal side. In the case when  coincides with XO τ  

let’s call 
o

X  a degenerated point, because in this case we can’t reach the island 
surface. 

 
 

 
 

Figure FD4.421-1 
 

 
Definition D4.421-2. Let’s consider an island, a point O  on its boundary, 

and the tangent line to the boundary at this point (figure FD4.421-2). Let’s call 
the unit vector τ  on the tangent line with the origin at O  directed in accordance 
with the positive direction of the boundary the tangent vector to the boundary at 
the given point.  

 
 

 
 

Figure FD4.421-2 

42 



O
X

SXO On

 
 

Figure FD4.421-3 
 

 

Definition D4.421-3. Let’s consider an island with a point },{ τOO
o

 on its 

boundary (where τ  is the tangent vector at O ) and a point X  outside the island 

(figure FD4.421-3). Let’s call the vector 
XO

s  making point },{
XO

sXX
o

 compatible 
with point O  the compatibility vector for point X  concerning point O . Using the 
properties of the vector product let’s define this vector by the following formula: 

 

τ×=
|| OX

OXs
XO (ED4.421-3)

 
In that formulation the length of 

XO
s  is equal to the absolute value of the sinus 

of the angle between the vectors OX  and τ . It reveals the fact that the 
compatibility vector for a degenerated point doesn’t exist.  Let’s note that in 
accordance with ED4.421-3 the compatibility vector is the same for all the 
points on closed half-line  with exception of point O (because the 
compatibility vector for a point concerning itself makes no sense).  

OX

 
Condition C4.421-2. Let’s consider a bridge with the trajectory represented 

by the segment between its supporting points (let’s denote them  and A B ). 
From ED4.421-3 immediately follows that the necessary and sufficient condition 
for such bridge to fulfill condition C4.421-1 is that this bridge should have at the 
supporting points the external normal vectors (let’s denote them 

A
n  and 

B
n  

respectively) defined in the following way:   
 

||
BA

BA
A

s

sn =
(EC4.421-2a)
 

  

||
AB

AB
B

s

sn =
(EC4.421-2b)
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Condition C4.421-3. Let’s define a necessary condition for the segment 
between two given points (let’s denote them  and A B ) on the boundaries of 
given islands (let’s denote them X  and Y  respectively) to be the topologically 
correct trajectory of a bridge by the following formula: 

 

0>=
ABBA

T ssq (EC4.421-3)

 
Index  can be interpreted in the following way. In accordance with C4.421-2 
for any bridge with the given trajectory the external normal vectors at the 
supporting points are defined by EC4.421-2. If we go from a point of 

Tq

X  on its 
external side to the segment, at point  we are on the segment and the 
external normal vector has the same direction as 

A
BA

s  has. If we go along the 
segment to island Y  keeping this external normal direction, we end up on: the 
external side of Y  if  (and “easiness” of the transition is proportional to 

); the internal side of 
0>Tq

Tq Y  if 0<Tq ; the boundary of Y  if . It is obvious, 
that only the first case corresponds to a topologically correct connection of the 
islands. 

0=Tq

 
Definition D4.421-4. Let’s consider a bridge with given supporting points 

and the trajectory represented by the segment between them. Let’s assume that 
this bridge has distribution of the external normal vector that meets condition 
C4.421-2 and provides the simplest behavior of the bridge surface (in 
accordance with the assumption made in paragraph 4.1). Let’s call such bridge 
a simple bridge.  
 

Let’s consider a simple bridge from the viewpoint of condition C4.421-3. 
Because of the fact that C4.421-3 is only necessary condition we can estimate 
by the value of index  only a probability of topological correctness of the 
bridge. It is easy to see, that if  then the bridge is probably topologically 
correct and the value of  increases with increasing this probability, otherwise 
it is wrong.  

Tq
0>Tq

Tq

 
 
4.422 The basic task 
 
 
Let we have a given topology of islands, one of them is chosen as the base 

island. Let’ consider (figure F4.422-1): },{
X

nXX
o

 is a point in the space 

between given islands; },,{
OO

nOO τ
o

 is a complex consisting of the following 
components:  is a point on the boundary of an island, that isn’t the base 

island; 

O
O

n  is the external normal vector to the island surface at point ; O
O

τ  is 
the tangent vector at this point. 
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Figure F4.422-1 
 
 

In the beginning let’s assume that 
o

X  defines a round platform with an 
arbitrary small radius ε . This platform is perpendicular to 

X
n  and has point X  

as the center. Let’s consider this platform as an elementary island. Since ε  is 
arbitrary small ( ) let’s assume that any bridge connecting this 

elementary island with another island has as the supporting point on the 
elementary island point 

XX =
→

'

0
lim
ε

X .  
 
Let’s consider the simple bridge . We need to formalize the quality (let’s 

denote it Q ) of this bridge with assumption that the bridge is a part of a bridge 
connecting a point on the boundary of the base island and point O .  

XO

 
Firstly, let’s note, that in accordance with C4.421-3 . Let’s also take 

into account the following conditions for the trajectory of the bridge, which have 
influence on the quality:  

TqQ ~

 
 Condition C4.422-1. The trajectory should be as short as possible. 
   
 Condition C4.422-2. The trajectory should lie in region that has as high 

concentration of free points as possible. 
   
 Condition C4.422-4. The trajectory should lie in the plane defined by 

o

X
as entirely as possible. 

   
 Condition C4.422-4. The trajectory should interpolate behavior of the 

surface of the island containing point O  in some 
neighborhood of this point as entirely as possible. 

 
Conditions C4.422-1 and C4.422-2 are a consequence of the fact that the 

probability of correctness of the bridge increases if its trajectory lies near to 
sampled points. At the same time condition C4.422-1 is dominating because 
free points have lesser density and lesser trustworthiness of the coordinates. 
Also, for a bridge in general case, condition C4.422-1 expresses the fact that 
the cost of construction of the bridge is proportional to its length. Condition 
C4.422-3 expresses a general assumption that behavior of a BBSR isn’t too 
complicated (it follows from D4.31-1). Condition C4.422-4 expresses the fact 
that usually only  has a proper degree of trustworthiness. Α
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Let’s formalize the indices of fulfillment of these conditions by the considered 
bridge. 

 
 
4.423 The index of fulfillment of condition C4.422-1 

 
 

Let’s consider that this index (let’s denote it ) is defined by the function: 1q
 

)(11 Lqq = (E4.423 -1)
 

which has the following properties: 
 

0)(1 ≥Lq  (E4.423-2a)

01 ≤
dL
dq

 
(E4.423-2b)

1)0(1 =q  (E4.423-2c)
0)(lim 1 =

∞→
Lq

L
(E4.423-2d)

 
 
4.424 The index of fulfillment of condition C4.422-2 

 
 

To define this index let’s assume that free points can compress the 
surrounding space (like sources of the gravitational field in the theory of 
relativity). As a result the length of a bridge passing in a neighborhood of free 
points shrinks. Let’s assume the length of the bridge with taking into account 
such compression as the value of the index. To determine this length let’s 
assume, that each free point is a source of an spherically symmetric scalar field 

, where )(RGG = R  is the distance between the free point and a given space 
point. Let’s assume that function  has the following properties: )(RG

 
0)( ≥RG  (E4.424-1a)
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RG
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where  is the “factor of trustworthiness” for the coordinates of the given free 
point. 

tk

 
Let’s assume that an elementary segment with length  located at a point 

 where the value of the field tension is  has the effective length 
dl

A AG
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AG
dldl

+
=

1
' . Therefore, in the case 0=R , if  then , and if  

then . 

0→tk dldl →' 1→tk

0' →dl
 
Thus, the index (let’s denote it ) can be expressed by this formula: 2q
 

∫
∑

Ω

=

−+
=

L

m

i
i lYPG

dlq
0

)(

1

2

|))((|1

 
(E4.424-2)

 
where  
Ω  is the region around the considered bridge defined by the condition stating 
that only free points from this region have valuable influence on the length of 
the bridge (the criterion of this condition is considered in detail in section 4.47);  
m  is the total number of free points in Ω ; 

iP  is the i-th free point of these free points; 

)(lYY =  is the parametric equation of the bridge; 
L  is the length of the bridge. 

 
The limiting values of the index: for the maximal fulfillment of the condition 

L
mk
k

q
t

t

)1(1
1

2 −+
−

→ , for the minimal fulfillment Lq =2 . 

 
 
4.425 The index of fulfillment of condition C4.422-3 
 
 
We can formulate this index (let’s denote it ) in the following way: 3q
 

|||),sin(|3 dnXOnq
XX

×== (E4.425-1)

 

where 
|| XO

XOd = . 

 
The limiting values of the index: for the maximal fulfillment of the condition 

, for the minimal fulfillment 13 =q 03 =q . 
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4.426 The index of fulfillment of condition C4.422-4 
 
 
Let’s define this index (let’s denote it ) by the following formula: 4q
 

2
1

4

OXO
nsq +

=
(E4.426-1)

 
The limiting values of the index: for the maximal fulfillment of the condition 

, for the minimal fulfillment . 14 =q 04 →q
 
 
4.427 Derivation of the total quality index 
 
 
To formalize the quality index of bridge  we need to construct an 

expression based on the indices , , , ,  taking into account the logic 
of influence of each of these indices on the quality.  

XO
Tq 1q 2q 3q 4q

 
Firstly, it is naturally to unite the indices  and  (lets denote the united 

index ) by using  as argument  of the function defining  (introduced in 
subsection 4.423): 

1q 2q

12q 2q L 1q

 
)( 2112 qqq = (E4.427-1)

 
Then, let’s take into consideration that: 
• the indices , ,  are proportional to degree of fulfillment of the 

corresponding conditions by the bridge;  
12q 3q 4q

• the possible values of the indices , ,  are non-negative; 12q 3q 4q
• if any of the indices ,  is equal to 0 then the quality is equal to 0 as 

well. 
12q 3q

Thus, it is possible to write that . In this case if  the bridge is 
probably correct, otherwise it is unconditionally wrong.  

312~ qqqQ T 0>Q

 
 

 
 

Figure F4.427-1 

48 



 
Then, let’s take into account, that condition C4.422-4 often is not fulfilled 

even if the bridge is absolutely correct (figure F4.427-1). Nevertheless, 
fulfillment of this condition by the bridge increases its probability to be correct. 
Thus, let’s express  by the following formula: Q

 
)1( 4312 qkqqqQ iT += (E4.427-2)

 
where  is the factor of interpolation that allows controlling influence of 
condition C4.422-4 on the value of Q .  

ik

 
Let’s simplify formula E4.427-2. Using EC4.421-3 this formula can be 

rewritten in the following way: 
 

)1( 4312 qkqqssQ i

XOOX
+= (E4.427-3)

 
In accordance with ED4.421-3:  

 
OXO

ds τ×−= (E4.427-4)

 

Taking into consideration the assumption that 
o

X  defines a round platform 
we can write:  

 

|| dn

dn
X

X
X

×

×
=τ

 
(E4.427-5)

 
then 
 

XOX
ds τ×= (E4.427-6)

 
By substitution E4.427-6, E4.427-4, and E4.425-1 in E4.427-3 we obtain: 

 

)1())(( 412 qkqsdndQ i

XOX
+××= (E4.427-7) 

 
or 
 

)1())(( 412 qkqsdndnQ i

XOXX
+−= (E4.427-8) 
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4.43 Formalization of the indicator field 
 
 
Let’s make formalization of the indicator field on the basis of the considered 

in subsection 4.422 task (all the used conditions and conventional signs remain 
the same).  

 
As an elementary source of the field let’s define a complex of the type 

}},,,{{ OOO
hnOOO τ

ooo

, and let’s define a complex of the type },{
X

nXX
o

 as an 

object, that the field affects; where  is the “charge” associated with source , 
the remaining components of the complexes are the same like in subsection 
4.422. 

Oh
oo

O

Let’s assume that source  creates a field that makes influence on 
oo

O
o

X  by 
force f  acting at X  and defined by the following equation:  
 

Qdhf O= (E4.43-1)

 
where 

|| XO
XOd = ; 

Q  is the quality of bridge  defined by  (E4.427-8). XO
 
Thus, point  “attracts” point O X , if a bridge between the base island and 

the elementary island defined by 
o

X  can be extended to point  by the 
probably topologically correct simple bridge and “repulses” it otherwise. The 
attraction force is proportional to the quality of this bridge.  

O

 
Let’s consider the case, when  belongs to the boundary of the base island. 

Because a bridge between two points of the base island boundary is 
topologically wrong, let’s assume that sources of the field of the base island 
boundary have the negative “charge”. It implies that in the considered case 
point  “repulses” point 

O

O X  if there is a possible correct smoothly joined simple 
bridge between these points.  

 
Thus, force f  is a function of one scalar and five vector arguments: 

),(
ooo

XOff = . During iterative tracking a force line of field H  the components of 

 are considered as constants. The coordinates of 
oo

O X  at a given iteration are 
defined at the previous iteration. Thus, at a given point X  the acting force f  

can be considered as a function of 
X

n .  
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Definition D4.43-1. Let’s define the tension of field H  created by a given 

source ( }},,,{{ OOO
hnOOO τ

ooo

) at a given point ( X ) as an operator , whose 

result of action on a unit vector (

Η

n ) at this point is the force acting at the point: 
 

nnf Η=)( (ED4.43-1)

 
Let’s also define the length of the force vector as the scalar value of the tension.  
 

Like that, operator Η  is a function of one scalar and four vector arguments: 

. This operator should provide the property of superposition of field ),( XO
oo

Η=Η

H . Therefore, for this operator for any space point X , any unit vector n , and 
any value of “charge”  the following equations would be true: Oh

 
1221 Η+Η=Η+Η  (E4.43-2a) 

  
)()( 321321 Η+Η+Η=Η+Η+Η (E4.43-2b) 

  
nnn )( 2121 Η+Η=Η+Η  (E4.43-2c) 

  

),,(),,( XhOkXkhO OO
oo

Η=Η  (E4.43-2d) 

 
where  is a constant. k

 
Field H  providing fulfillment of these conditions is a tensor field. The tension 

of this field created by the given elementary source  at the given point 
oo

O X  is 
represented by the following matrix:  
 

ΑΒ=Η OhXO ),(
oo (E4.43-3)

 
where 
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where  

zyxd ,, ,  are components of the corresponding vectors XO
zyxs ,, d  and 

XO
s ; 

)1( 412 qkqm i+= ; 
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⎥
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ddddd
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ddddd (E4.43-5) 

 
 
Let’s note that in spite of the fact that the field is defined on the base of 

analyzing of the quality of simple bridges, force lines of the field in many cases 
have behavior that is similar to behavior of spline curves. This behavior 
considerably depends on degree of influence of each of the indices , , . 
These degrees are controlled by the functions , , and factor  
respectively (they are introduced in the subsections 4.423, 4.424, 4.427). By 
proper definition of these functions and the factor we can manage the behavior 
of force lines of the field. The examples of such behavior are shown in figure 
F4.43-1. For each case the corresponding dominating index is adduced.  

1q 2q 4q
)(1 Lq )(RG ik

 
 

a:  1q b: ||  2q 4q

c:  2q d: ||  1q 4q

e:  4q f: ||  1q 2q

Figure F4.43-1 
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In conclusion, let’s note that to increase robustness of the method, formula 
E4.43-1 can be supplemented by the following condition of shielding: 
 

Qdhf OXOδ= (E4.43-6)

 
where  if segment  crosses 0=XOδ XO Α  and  otherwise. 1=XOδ

 
 

4.44 Determination of the normal vectors along a force line 
 
 
Force lines of defined above field H  are defined only concerning some 

function )(Xnn =  that associates a normal vector with each space point. During 
tracking a force line this function should be defined for each point of the iterative 
process. Let’s take into account that at each of these points the plane allowed 
for the normal vector is known. For the origin point of the force line (it is a point 
on the boundary of a given base island) it is the plane that is perpendicular to 
the tangent vector at the point. For each of others points it is the plane that is 
perpendicular to the tangent line to the force line at this point (because found 
section of the force line ends at this point, to determine such tangent line the 
backward derivative is used). Let’s define, that at a given point of the iterative 
process the normal vector is the solution of the following system:  

for the origin point: 
 

⎪
⎩

⎪
⎨

⎧

=
=

=Η

0
1||
max||

τn
n

n (4.44-1a)

 
where τ  is the tangent vector;  
 

for each of other points: 
 

⎪
⎩

⎪
⎨

⎧

=
=

=Η

0
1||
max||

pn
n

n (4.44-1b)

 
where p  is the vector that is tangent to the trajectory of the force line at the 
given point. 
 

The solution of each of these systems is found as the maximum of the 
function |)(||| ϕnHf = , where ϕ  is the angular coordinate of vector n  in a 
coordinate system in the allowed plane having the given point as the origin 
(figure F4.44-1).  
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Figure F4.44-1 
 
 

Thus, during the tracking we simultaneously find both: the function of the 
trajectory of the force line )(lXX =  and the function of distribution of the normal 

vector along it )(lnn =  (where  is the arc). l
 
Because of the properties of the matrix of operator Η  the function )(lnn =  

can’t be continuous. In a point of discontinuity constn =|)(ϕ| . Therefore, if a 
given force line is chosen as a bridge, we need to eliminate possible 
discontinuity points by using an interpolation.  

 
 
4.45 Definition of the functions  and  )(1 Lq )(RG
 
 
In accordance with the logic of our task, function  should not have 

essential changes when 
)(1 Lq

1LL ≤  and  ( ). The values of  and  
are chosen for the following reasons. Let’s consider case of a boundary of a 
real island. This boundary is represented by a polyline, vertices of which are 
represented by sampled points. Sources of the field are defined at points on this 
boundary (in the simplest case - at the vertices, in more details this problem is 
considered in section 4.46). Let’s assume that  should be approximately 
equal to the average distance between the sources of the field. As a result, the 
field created by such boundary approaches to the field created by a similar 
smooth boundary.  defines the radius of the area that is considered at 
determination of the field tension. Thus, let’s assume that: 

2LL ≥ 12 LL > 1L 2L

1L

2L

 
1)(1 =Lq  in ],0[ 1LL ∈ (E4.45-1a)
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χ)1()(
12

1
1 LL

LL
Lq

−
−

−=  in ),( 21 LLL ∈
(E4.45-1b) 

 
where χ  is a positive factor; 
 

0)(1 =Lq  in ),[ 2 ∞∈ LL (E4.45-1c)
 
Analogously, function  should not have essential changes when )(RG 1RR ≤  

and  ( ). The values  and  are chosen for the following 
reasons.  should be approximately equal to the average distance between 
neighbor free points. It provides relatively equal effect of field , created by a 
group of free points, on the trajectories of bridges passing trough the region of 
location of this group (figure F4.45-1).  

2RR ≥ 12 RR > 1R 2R

1R
G

 
 

 
 

Figure F4.45-1 
 
 

2R  should not exceed a value that provides existence in the space region of a 
given ICADM corresponding to the inner part of the original object a region 
without action of field G . At the same time,  should be approximately equal 
to one half of the average distance between islands in a considered area. 
Fulfillment of these conditions provides a positive effect concerning filtration of 
topologically incorrect bridges. By analogy with function  let’s define 
function : 

2R

)(1 Lq
)(RG

 
)0()( GRG =  in ],0[ 1RR ∈ (E4.45-2a)

 
γ)1)(0()(

12

1

RR
RRGRG

−
−

−=  in ),( 21 RRR ∈
(E4.45-2b) 

  
where γ  is a positive factor; 
 

0)( =RG  in ),[ 2 ∞∈ RR (E4.45-2c)
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4.46 Definition of sources of field H  
 
 
In this section let’s use the term “boundary of an island” for the boundary of 

a hole inside a given island as well. Thus, each island can have one or several 
boundaries. They are the external boundary and the boundaries of possible 
holes. At step ICM3→ICM2 as sources of the field we should consider both the 
external boundaries of given islands so the boundaries of holes which meet the 
following condition: 

 
Condition C4.46-1. At step ICM3→ICM2 the boundary of a given hole 

should be considered as a source of the field, if its effective size is greater or 
equal to the effective size of the smallest island in a -neighborhood of the 
boundary of the hole. Fulfillment of this condition allows to process situations 
like shown in (figure FC4.46-1) correctly.  

2L

 
 

 

 
 

Figure FC4.46-1 
 

 
It would be ideal, if all the boundaries considered as sources of the field 

have the same linear density of the “charge”. But in practice we deal with a finite 
set of point sources of the field. For properly modeling uniform charged 
boundaries such sources should have the same absolute value of the “charge” 
and approximately the same linear density on the boundaries. Such density 
should be enough for properly sampling the boundaries. 

 
The total tension of field H  at a given space point created by a given (j-th) 

boundary of a given (i-th) island is defined by the following formula: 
 

∑
=

Η=Η
n

k

i
j XbOh

1
)),((

o (E4.46-1)

 
where  
n  is the total number of sources of the field on the boundary;  
h  is the “charge” of each of these sources. 
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Thus, the tension of the field created at a given point by the aggregate of l  
islands, where each i-th island has  boundaries, which are sources of the 
field, is defined by the following formula: 

im

 

∑∑
= =

Η=Η
l

i

m

j

i
j

i

1 1

(E4.46-2)

   
where  is defined by formula E4.46-1. i

jΗ
 
 
4.47 Topological issues of a set of bridges 
 
 
It is obvious, that a set of bridges created for step ICM3→ICM2 should meet 

the following condition: 
 
Condition C4.47-1. Each section of the boundary of each island should be 

included in the contour of a created hole.  
 

 

 
 

Figure F4.47-1 
 
 
From a given topology of bridges (figure F4.47-1) we extract holes by the 

following algorithm: 
1. We choose a supporting point of a bridge as the beginning point ( ) and 

take the point as the current point ( ). 
0P

1P
2. From  we move along the corresponding bridge to its other supporting 

point.  
1P

3. From this supporting point we move along the boundary of the 
corresponding island in the positive direction until the first supporting 
point ( ) of any bridge is met.  2P
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4. If  coincides with , then the passed closed contour is considered as 
the found boundary of a hole, otherwise we take  as  and return to 
step 2.  

2P 0P

2P 1P

 
Using this algorithm produces the following condition for topology of created 

bridges: 
 
Condition C4.47-2. To avoid a topological ambiguity, the supporting points 

of any two bridges should not coincide with each other. 
 

 

 
 

Figure F4.47-2 
 
 
The proposed method of ICM3→ICM2 reduction is sensitive to appearing of 

wrong redundant bridges. As it is shown in figure F4.47-2, appearance of a 
wrong bridge ( ) leads to appearance of a contour having a complex 
topology. Such contour can’t be interpreted as the boundary of a hole in a 
reconstructed surface.  

21PP

 
Lemma L4.47-1. Let we have a topology created only by correct bridges 

and the corresponding set of correct contours. Let we add to the topology 
several wrong bridges with condition, that in each correct contour no more than 
one wrong bridge appears. Then, a closed contour containing a wrong bridge 
passes this bridge two times. Besides, if two correct contours connected by a 
wrong bridge have shared correct bridges, then these bridges are passed two 
times as well. 

Proof. Let’s consider a wrong bridge  (figure F4.47-2), which connects 
two correct contours  and 

21PP
A B . The given wrong bridge takes away the 

trajectory of a round of contour  to contour A B . It is obvious, that the trajectory 
can return to contour  only by the same wrong bridge. Also, to return from 
contour 

A
B  the trajectory should return to the supporting point of the wrong 

bridge on contour B . The trajectory can make it only if it makes the round 
around all contour B . Similarly arguing, we make the conclusion, that for 

58 



closure of the round trajectory at the beginning point the trajectory should make 
the round around all contour . Thus, if contours  and A A B  have shared 
bridges (  in the figure), then these bridges are passed two times as well.                43PP

 
Therefore, if two correct contours don't have shared bridges, then we can 

simply detect a wrong bridge as a bridge passed two times. If these contours 
have shared bridges, the situation is more difficult, because we can’t distinguish 
wrong and shared bridges. Taking into account that appearance of a wrong 
bridge is unacceptable, let’s consider that all the bridges passed two (or more) 
times are removed.  

 
Thus, let’s formulate the last condition for topology of bridges: 
 
Condition C4.47-3. The contour of each hole should pass through each 

bridge included in this contour only once. 
 
Let’s note, that the given condition also prevents appearance of islands 

connected with other islands only by one bridge. Presence of such islands leads 
to appearance of holes, which are too difficult to process at step ICM2→ICM1. 

 
An algorithm of holes extraction is described below. This algorithm has 

stability concerning appearance of wrong bridges, if such bridges don’t break 
the condition of lemma L4.47-1. During the holes extraction each segment of 
the boundary of an island made by supporting points of bridges can have two 
states - “free” and “used”. Initially all the segments are marked “free”. If the 
contour of a hole is extracted successfully, then the segments of the contour are 
marked “used”. The algorithm consists of the following steps: 

1. We chose a beginning point for extraction of the contour of a new hole. 
Initially we choose a “free” segment, then the “positive” (concerning the 
positive direction for this segment) endpoint of the segment is chosen as 
the beginning point. If there is no free segment, then the algorithm is 
ended. 

2. We extract the contour of a hole from the chosen beginning point. For 
extraction the described above algorithm is used. If during the extraction 
of holes, bridges passed twice are found then these bridges are deleted 
and a jump to step 1 is made. 

3. We mark the segments belonging to the found contour as “used” and 
then we jump to step 1.    

 
 
4.48 Determination of the orientation of islands 
 
 
As was mentioned above, one of the key problems of step ICM3→ICM2 is 

determination of the orientation of an island. Firstly let’s adduce one of the 
possible approaches.  

 
Let’s consider the minimal sphere circumscribed around a given input cloud 

of points. Let’s denote the center of the sphere O  (figure F4.48-1). Let  is a 
point of the surface of an island and 

A
B  is the point of intersection of the sphere 
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and half-line OA . Let’s consider the direction of normal at  making a positive 
dot product with vector 

A
OA  as the external direction if the following conditions 

are fulfilled: 
• segment  doesn’t intersect the surface of any other island; AB
• there are no free points in the r  neighborhood of segment ; where 

,  is the average distance between neighbor free points in the 
corresponding given region,  is a constant. 

AB
kdr = d

k
 

 
 

Figure F4.48-1 
 
 

If a point, that meets these conditions, can be found for a given island, then its 
orientation can be determined by this method. However, this method (or any 
other simple method) isn’t suitable for all cases. For example, in figure 4.48-1 
the described method works for island X  and doesn’t work for islands Y  and 
Z .  

 
Let’s have such “difficult” island in an environment of correctly oriented 

islands (let’s call them standard islands). To determine the orientation of the 
given island the properties of field H  can be used. Let’s consider the 
boundaries of the standard islands as sources of field H  and the given island 
as the base island. From the properties of field H  follows that in case of correct 
orientation of the base island, points on its boundary are attracted to neighbor 
segments of the boundaries of the standard islands and are repulsed otherwise. 
Let’s calculate the following integral for the both possible variants of the base 
island orientation: 
 

mf
B
∫ db (E4.48-1)

 
where  
B  is the contour of the boundary of the island;   
f  is the force vector at point ( X ) of the boundary; 
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m  is the unit vector (figure 4.48-2) at point X , that is:  
1) perpendicular to the normal ( ) to the island surface at point n X ;  
2) perpendicular to the tangent line ( p ) to the boundary at point X ;  
3) directed to the non-reconstructed area. 

The greatest value of integral E4.48-1 corresponds to the correct orientation of 
the island.  
 

 

 
 

Figure F4.48-2 
 
 

4.5 Properties of determination of a set of bridges at step ICM2→ICM1 
 
 
At this step decomposition of a given complex hole is made by recursive 

binary subdivision of the hole until each resulting hole is a simple hole. The 
subdivision is made by construction of a bridge inside the hole contour. To track 
the corresponding force line, the boundary point with one of the highest values 
of the tension of the field is chosen as the origin. In general, calculation of the 
tension of field H  is made in the same way as in step ICM3→ICM2, but there 
are several differences described below. 

 
Each hole at step ICM2→ICM1 is considered separately. Hence, the positive 

direction of its contour can be chosen arbitrarily. To provide the biggest 
“convexity” for the boundaries of the child holes, in definition of field H  the 
following changes are made. Let’s assume, that the field affects a complex of 

the type }},,{{
XX

nXXX τ
ooo

, and the tension of the field is defined for a complex 

of the type },{
X

XX τ
o

; where X  is a space point, 
X

τ , 
X

n  are unit vectors (at 

step ICM3→ICM2 the field affects a complex of the type },{
X

nXX
o

 and the 
tension is defined for a space point ( X )). During subdivision of a given hole we 
need to determine the field tension in two cases. The first one is when a 
considered point is on the boundary of the hole. The second case occurs when 
a considered point is on a tracked force line that has the given origin point on 
the boundary. In both cases we need to define a complex of the type adduced 
above at the considered point. In the first case let’s define the necessary 
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complex assigning to the given point the tangent vector at the point. In the 
second case let’s define the complex assigning to the given point the tangent 
vector at the origin point of the corresponding force line. By analogy with section 

4.43 let’s denote a currently considered source of the field }},,,{{ OOO
hnOOO τ

ooo

. 
All the considerations and equations of section 4.43 in our case are valid with 
condition of replacement of “charge”  by an “effective charge” . For a 

given source of the field  concerning a given point 

Oh XOσ
oo

O
o

X  the “effective charge” is 
defined by the following formula: 
 

OOXXO h)( ττσ −= (E4.5-1)

 
 

 
 

Figure F4.5-1 
 
 
At determination the tension of the field at a given point on the boundary (on 

a current tracked force line) we consider the sign of “charge”  of a current 
considered source as negative, if the length of the section of the boundary 
between the source point and the boundary point (the origin point of the force 
line) doesn’t exceed an established threshold value (let’s denote it 

h

T ). 
Otherwise the sign of the “charge” is considered positive (figure F4.5-1). Thus 
the tracked force line can’t end at a point that connected with the origin point by 
the segment of the boundary shorter than T . It limits the minimal possible 
length of the boundary of at least one child hole by the value LT + ; where  is 
the length of the splitting bridge. 

L

 
 
4.6 Taking into account free points 
 
 
In accordance with the concept described in section 4.31, after 

determination of the required bridges by tracking the corresponding force lines 
we need to take into account free points like perturbing factors for these 
trajectories.  
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Let’s assume, that free points are sources of the defined in subsection 4.424 

field . Let’s consider a bridge (figure F4.6-1). Let’s choose a point G
o

},{ nXX  on 
the bridge. Let’s consider the line  that contains n X  and external normal vector 
n . Let’s consider the centered at X  cylinder with axis , radius , and the 
half-height , where  is a positive factor. Let there are  free points (let’s 
denote them , ) inside the cylinder. For each point  let’s consider its 
projection on , let’s denote such projection '  and call a pole. 

n 2R

2kR k m

iP mi ,1= iP
n iP

 
 

R

R

 
 

Figure F4.6-1 
 
 

Let’s associate with each pole  the weight  that is equal to the tension of 
field  created by the corresponding free point  at the given pole:  

'iP iw
G 'iP

 
|)'(| iii PPGw −= (E4.6-1)

 
Let’s assume, that the found perturbed point corresponding point X  (let’s 
denote it 'X ) lies on . Let’s assume that point n 'X  is connected with the poles 
by springs, the stiffness of each spring is equal to the weight of the 
corresponding pole. The potential energy of the spring connecting 'X  with a 
given (i-th) pole is defined by the formula: 
 

|''| iii PXwE −= (E4.6-2)
 

Let’s assume that the coordinates of 'X  minimize the sum of the squares of the 
potential energies of the given springs. In this case these coordinates are 
defined by the following formula:  
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Condition C4.6-1. The trajectory of a bridge changed by taking into account 

free points should meet the following conditions: 
 

AlX
l

=
→

)('lim
0

(EC4.6-1a)

  
BlX

Ll
=

→
)('lim (EC4.6-1b)

 
where  
A , B  are the supporting points of the bridge; 

)('' lXX =  is the parametric equation of the trajectory.  
 
To provide fulfillment of condition C4.6-1 let’s assume that the supporting 

points ( ,A B ) of a bridge are sources of field G  as well. Let’s define the values 
of weights of poles corresponding to the supporting points by the following 
formulas:  
 

|)'(| AAkGwA −= (E4.6-4a)
  

|)'(| BBkGwB −= (E4.6-4b)
 

where  is a constant. k
 
 
4.7 Experimental implementation 
 
 
The theoretical concepts described above have been verified by an 

experimental implementation. In comparison with the theoretical description the 
current implementation has the following properties and differences.  

 
At step ICM3→ICM2 we consider, that the boundary of an island chosen as 

the base island isn’t a source of field H . These changes have been made for 
the following two reasons: 

• Necessity to take into account the field created by remote sources 
adequately, because as a result of restricted precision of floating point 
operations the contribution of such sources can be distorted or masked 
by the field created by nearby sources.  

• Necessity to reduce the cost of determination of the field tension, 
because at calculation the tension at a point of the boundary of the base 
island (or at a point that is close to the boundary) a majority of sources of 
the field in the -neighborhood of the point belongs to the same 
boundary. At the same time the influence of such sources on the 

2L
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trajectory of a tracked force line is not so significant in comparison with 
the influence of sources belonging to other islands.  

 
For the same reasons at step ICM2→ICM1 sources of the field having in 

accordance with paragraph 4.5 negative “charge” aren’t considered. 
  
As a  “darning” method (introduced in D4.1-3) the simplest method has been 

chosen. We just calculate the point of the geometrical center of the boundary of 
a considered hole, and then we make a “triangle fan” inside the hole using the 
obtained central point. Concerning this method a hole should have the following 
properties to be simple: 

• the boundary of the hole should not be too long (in the implementation 
the threshold length is 12 edges); 

• the boundary of the hole should have a simple projection on its average 
plane, and this projection should be a convex figure. 

 
Since decomposition of a complex hole by the method described in 

paragraph 4.5 leads to appearance of child holes, meeting the last condition, to 
discover whether this hole is simple or not only the first condition is checked. 
During the tests we have not found any problems caused by this simplification.  

 
The choice of the given “darning” method means that for reduction an 

ICADM of class ICM3(2) to an ICADM of class ICM1 we need to construct the 
greatest number of bridges in comparison with other more robust “darning” 
methods (like projection-based, spline-based, etc). This fact allows interpreting 
the obtained cost indices as the worst case for tested ICADMs. In case of using 
more powerful “darning” methods we need to construct a significantly lesser 
number of bridges, and the cost indices should be better. 

 
 
4.8 Results and conclusions 
 
 
The created implementation has been applied to repairing several ICADMs. 

The testing has been made for each of the two following modes of work of the 
algorithm: “light” mode (let’s denote it 1M ) and “full” mode (let’s denote it 2M ). 
The “light” mode doesn’t use the shielding condition (defined by E4.43-6) and 
doesn’t take into account the influence of free points on the length of a bridge 
(introduced in subsection 4.424). 

 
For creation of the tested ICADMs the following method has been used. A 

cloud of points representing one of “classic” model (such models are widely 
used for testing by various authors) is chosen as an input. Then this cloud is 
artificially damaged by removing sampled points from selected regions. The 
density and uniformity of sampled points in these regions is reduced to the 
values, which are typical for regions shaded during scanning. Then for such 
cloud a surface reconstruction algorithm is applied.  

 
Here the results for four such ICADMs are adduced. The visual results are 

shown in the figures F4.8-1, F4.8-2, F4.8-3, and F4.8-4. For each one the figure 
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with letter “a” shows the input ICADM, the figure with letter “b” shows a 
fragment of the set of constructed bridges, and the figure with letter “c” shows 
the finally obtained CAD-model.  

 
In figure F4.8-2 along with examples of successful application of the concept 

of perturbed BBSR to reconstruct surface inside complex holes a defect that 
can’t be fixed within the framework of this concept is marked by circle. Note, 
that incompleteness of the given ICADM in the corresponding region doesn’t 
allow considering this region as one having a practical value. 

 
 

a b 
  

 
 
 
 
 

Figure F4.8-1 
 

“Bunny-1” 
(processed in mode 1M ) 

 c 
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a b 
  

 
 
 
 
 

Figure F4.8-2 
 

“Bunny-2” 
(processed in mode 2M ) 

 c 
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Figure F4.8-3 
 

“Woman-1” 
(processed in mode 1M ) 

 c 
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Figure F4.8-4 
 

“Bunny-3” 
(processed in mode 2M ) 

 c 
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a b 

Figure F4.8-5 
 
 
In figure F4.8-5 an example (a fragment of model “Woman-1”) of influence of 

the factor of interpolation ( ) introduced in E4.427-2 is shown. F4.8-5a shows 
the result for 

ik
0=ik  and F4.8-5b shows the result for 1=ik . 

 
The numerical results of the tests are shown in table T4.8-1. In this table the 

following denotations are used: 
bndN  is the total number of boundary points; 

bdgN  is the total number of iterative points of constructed bridges; 
for each processing mode the corresponding time (denoted by t ) of the 
reconstruction is adduced; for processing in mode 1M  there is an additional 
information field (denoted by “Art.”) about appearing any artifacts in comparison 
with the result of processing in mode 2M ; 
χ , γ ,  are the factors introduced in section 4.45 and subsection 4.427 
respectively, which have influence on behavior of force lines of the field.  

ik

These results have been obtained on a PC with a 500MHz Pentium-3 CPU. 
 
 

1M  2M  ICADM Class bndN  bdgN  
t ,s Art. t ,s 

χ  γ  
ik  
 

“Bunny-1” ICM2 2424 749 11 No 30 2.5 1.0 0 
 

“Bunny-2” ICM2 2319 3615 16 Yes 66 2.5 1.0 0 
 

“Woman-1” ICM2 1526 7938 34 No 283 1.7 1.0 1.0 
 

“Bunny-3” ICM3 3272 4150 48 Yes 185 2.5 1.0 0 
 

 
Table T4.8-1 
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For model “Woman-1“ the smallest step of the tracking a force line has been 
chosen, it explains the greatest value of  for this model. The artifacts that 
have been found for mode 

bdgN
1M  for the ICADMs “Bunny-2” and “Bunny-3” are 

shown in the figures F4.8-6 and F4.8-7 respectively.  
 
 

  
Figure F4.8-6 Figure F4.8-7 

 
  

In general, the cost of the algorithm mainly depends on properties of input 
topology of boundaries and distribution of free points. Therefore behavior of the 
cost of the algorithm can’t be expressed by a simple “cost equation”. Very 
roughly the cost can be estimated by the following expression: 
 

βα )(~ 1

smpS
S

LkRC Α+
(E4.8 -1)
 

 
where 
R  is the typical remoteness of a boundary from neighbor boundaries;  
L  is the total length of the boundaries;  

Α
S  is the total area of Α ;  

smpS  is the typical area of a simple hole;  
]3,1[∈α  but in practice α  doesn’t essentially differ from 1, the part “ ” 

expresses the cost of calculation of the shielding factor 
1+

δ  defined by E4.43-6;  

]
2
1,0[∈β  with dependence on the topology;  

k  is a constant. 
 
A comparison with the warping-based methods (mentioned in paragraph 

4.2) has been made analytically, because the cost of solution of the used type 
of differential equations is known and information about the number of iterations 
is adduced in the corresponding works. The following two cases of the modeling 
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have been considered: relatively simple topology, when only local modeling of 
the membrane (mesh) in regions corresponding to Α  is required; complicated 
case, when to obtain a proper result the modeling entire membrane is needed. 
During the analysis it has been supposed, that the warping process use at the 
beginning step a “magic” approach that can construct a proper initial shape (that 
requires about 50 iterations to get satisfactory approximation) without a cost. 
Even in this case the proposed method shows convincing theoretical advantage 
over the warping in the first case while working in mode 1M  and in the second 
case while working in mode 2M . 

 
Thus, the presented method substantially meets the requirements 

formulated in paragraph 4.2. As its disadvantages the high cost and sensitivity 
to precision of floating point operations can be mentioned. In general, it seems, 
a method having a low cost can’t be created for the considered problem. At the 
same time the described method has very good capabilities for parallelization, 
owing to the fact that the processes of determination of the field tension at 
points are absolutely independent. And the processes of determination of 
contributions of considered field sources to the total field tension at a given 
point are independent as well.   
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5. GENERAL CONCLUSION AND FUTURE WORK 
 
 
In general, the new methods proposed for solution of the problems 

formulated in paragraph 1.1 confirmed the expected properties. In addition to 
the results adduced in the corresponding parts of the chapters 3 and 4 let’s 
note, that the described in the given work methods have proved the capability to 
make a self-dependent surface reconstruction system within the framework of 
CCAA. For example, the results for the models “Bunny-1”, “Bunny-2”, “Bunny-3” 
adduced in paragraph 4.8 have been obtained in the following way. To realize 
step PointCloud->ICADM the algorithms described in the paragraphs 3.3, 3.4 
have been used as the start algorithm and as the filtering algorithm respectively. 
And final processing of the obtained ICADMs has been made by the method, 
described in chapter 4.  

 
To designate the field of future work, let’s note that the natural field of use of 

the designed methods is a joint usage (possible with another surface 
reconstruction algorithm) for processing big clouds of points having problems of 
sampling. But the current implementation of the method described in chapter 4 
can’t work with a large input. Thus, as a future work a further improvement of 
both, the principles and the implementation of the method is planned to create a 
system for processing big damaged clouds of points that can be used in 
practice. 
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