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Delaunay Triangulation in Parallel and 
Distributed Environment 
Josef Kohout 
 

 

Abstract 
This thesis gives an overview of parallel techniques used in the construction of the 
Delaunay triangulation, one of the fundamentals of computational geometry. 
Several new parallel algorithms for the construction of Delaunay triangulation in E2 
and E3 suitable for symmetric multiprocessors (i.e., architectures with several 
processors and the shared memory) and for clusters of workstations are proposed. 
These architectures belong to the common equipment of laboratories. The 
problems of balanced workloads, synchronization between processors and 
reduction of communication are discussed. The proposed solutions were tested 
and the results are summarized in this thesis. The comparison with other existing 
algorithms is also given in the thesis. In the final part, the surface reconstruction as 
an application of the proposed solution is described and possible extensions of the 
Delaunay triangulation and their impacts on the solution are investigated. 
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Delaunay Triangulation in Parallel and 
Distributed Environment 
Josef Kohout 
 

 

Abstrakt 
V této práce je uveden přehled paralelních technik používaných pro konstrukci 
Delaunayovy triangulace, jednoho ze základních problémů výpočetní geometrie. 
Bylo navrženo několik nových paralelních algoritmů pro výpočet Delaunayovy 
triangulace v E2 a E3 vhodných pro symetrické multiprocesory (tj. architektury s 
několika procesory a sdílenou pamětí) a clustery počítačů.  Tyto architektury patří 
v současnosti mezi běžné vybavení laboratoří. Problémy rovnoměrného přidělení 
práce,  synchronizace mezi procesory a redukce množství nezbytné komunikace 
jsou rovněž prozkoumány. Navržené řešení bylo otestováno a výsledky 
experimentů jsou uvedeny v práci. Taktéž srovnání s ostatními existujícími 
algoritmy lze nalézt v textu. V poslední části práce je popsána rekonstrukce 
povrchů z množiny roztroušených bodů coby aplikace navrženého řešení a jsou 
prošetřena možná rozšíření konstrukce Delaunayovy triangulace a důsledky 
těchto rozšíření na navržené paralelní řešení. 
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Basic terminology 
In this subsection, we explain various basic terms that are used in the next text of this thesis. 
Advanced terms will be explained in the text at the place where they firstly appear. 

Algorithm is a finite sequence of finite steps that are needed to achieve the given goal. 
Asymptotic complexity of an algorithm determines the speed of the growing of time 
elements consumed by an algorithm in the dependence on the number N of input elements, 
where N is larger than some constant N0.  

Let us assume that each access to the memory and each execution of a simple instruction (e.g., 
+,-,*,/,=,if,call) needs one time unit, then for all possible input data sets with some N we can 
find maximal, minimal and average number of time elements needed by an algorithm to 
process any data set with this N. The function fmax(N), which assigns an appropriate maximal 
number of time elements to each number N (> 0) of input elements, is called the worst-case 
complexity of an algorithm. Similarly, the function fmax(N), which assigns an appropriate 
minimal number of time elements to each number N, is called the best-case complexity of an 
algorithm and the function favg(N), indeed, is called the average-case complexity. Usually, 
asymptotical versions of these functions, which are valid only for N > N0 > 0, are used. 

Let consider the constants c1, c2, N0 > 0 and the asymptotical complexities fx(N) and gx(N), 
where x is either max, min or avg. If c1⋅gx(N) ≤ fx(N)  ≤ c2⋅gx(N) for N > N0, then the functions 
fx and gx describe the same complexity and we write: fx(N) = Θ (gx(N)). For example, the 
complexity of Divide & Conquer (explained later in this subsection) algorithm for the 
multiplication of two NxN matrices is: fmax(N) = 8 ⋅fmax(N/2) + 4 ⋅Θ (1), i.e., Θ (N3). It is often 
impossible to find a suitable function gx(N) with both constants such that they would limit the 
function fx(N) from both sides. Therefore, let us consider the constant c instead of the 
constants c1 and c2 then we write fx(N) = Ω(gx(N)) if fx(N) is greater or equal to c⋅gx(N) for 
N > N0, and we write fx(N) = O(gx(N)) if  fx(N) is less or equal to c⋅gx(N) for N > N0.   

For the algorithm evaluation, the asymptotical complexity for the worst-case is usually used. 
However, rarely the data set is 'so bad' that the worst-case occurs and, therefore, often the 
complexity in the expected case is presented in addition to the classic worst-case complexity.  

Program is an implementation of an algorithm, i.e., it is a static notation of computational 
procedure written in such a form of operations to be recognizable by a processor. As the 
difference between the algorithm and the program is not significant, we often will substitute 
the term program for the term algorithm in this thesis. 

Processing element (PE) or processor is a general computational element characterized by 
the set of operations that is it able to execute. The operations usually load and/or store some 
data from the memory. The control unit determines which instruction should be executed. 

Process is some activity derived from the program. Its state is determined by the position of 
the operation to be executed in the program and by immediate values of processing data. The 
state changes whenever the processor performs the operation to be executed. Usually one 
processor runs one process for the whole process' lifetime. In such a case, we will substitute 
the term processor for the term process and vice versa.  

Thread does not differ too much from the process: to maintain the thread requires lower 
overheads than to maintain the process. Therefore, we will use the terms thread and process as 
the synonyms in this thesis. 

Critical section denotes a piece of the code in a program that cannot be executed 
simultaneously by more threads. When a thread reaches a critical section, it checks whether 



no thread operates in this critical section. If the outcome of this test is negative, the thread has 
to wait until the critical section is free, otherwise it continues. Critical section usually also 
denotes a synchronization object used to handle the entering (included the waiting) and the 
leaving a critical section (in the meaning of protected piece of the code).  

k-Simplex, with k ≤ d, is the convex combination of k +1 affinely independent points in a 
point set S in Ed. These points are called vertices of the simplex. In E1 it is a line segment, in 
E2 a triangle and in E3 a tetrahedron. In this thesis, we use the term simplex also as a synonym 
to the term node. When we, therefore, speak about a modification of a simplex or an access to 
a simplex, we mean, actually, the modification of the node that stores information about this 
simplex or the access to the node data structure. 

Node denotes a data structure, usually containing some links to other nodes, which describes 
a simplex.  In this thesis, we often supersede the term node for the term simplex. 

Convex hull CH(S) of a set of points S is the smallest convex geometrical object (polygon in 
E2 and polyhedron in E3) such that any point from S lies inside the interior of CH(S) or it is 
one of the vertices of CH(S). 

Divide & Conquer denotes a recursive strategy consisting of two stages. In the first one, the 
divide stage, the input data set is repeatedly subdivided as equally as possible into smaller 
subsets until each subset is small enough to be solved directly. Afterwards, the solution for 
each subset is found. In the second stage, the merge stage, solutions of subsets (i.e., 
subsolutions) are repeatedly merged until the solution for the whole input set is obtained. 

Used Shortcuts 
The shortcuts used in this thesis are summarized in the following table:  

2D E2 two-dimensional case, i.e., planar case 
3D E3 three-dimensional case 

CH(S)  convex hull of S 
D&C  Divide & Conquer 
DAG  Directed Acyclic Graph 
DT DT(S) Delaunay triangulation 
MS  Microsoft 
PDT  Parallel Delaunay Triangulation 
PE  Processing Element – processor 
PEs  number of processing elements 
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1 Introduction 
Delaunay triangulation is one of the fundamental topics in the computational geometry and it 
is used in many areas, such as terrain modeling (GIS), scientific data visualization and 
interpolation, robotics, pattern recognition, meshing for finite element methods (FEM), 
natural sciences, computer graphics and multimedia, etc. 

Many sequential algorithms for the computation of the Delaunay triangulation exist. Modern 
computer architectures allow us to compute the Delaunay triangulation in E2 or E3 with 
thousands of points by any of these sequential algorithms in a reasonable time. However, 
current applications often need to work with data sets such that they cannot be computed in 
one piece because of the common memory size limitations or their processing consumes too 
much time. In such cases, a parallel algorithm is useful and welcome. We can identify two 
different parallelization purposes. The first one is to compute the Delaunay triangulation of 
a set of points in as short time as possible without considering memory limitations. 
A different problem is to compute the Delaunay triangulation of very large input data sets 
where the final time is not as important as the memory utilization of PEs. A good example of 
such an application is the surface reconstruction from scattered point data. 

Quite a big set of parallel algorithms exists, however, most of these parallel algorithms were 
designed in times when parallel architectures, with hundreds of processors, dominated in the 
research area and thus they put stress usually on the scalability rather than on the robustness 
and simplicity. For most applications, a less scalable but easy to implement and stable 
algorithm is preferred to a more scalable but complex one. The current situation on the 
hardware market supports this tendency – in the last few years, multiprocessors with several 
processors and shared memory have come into the consideration due to their low prices; 
especially two-processor workstations are now widely spread. Clusters of workstations are 
also available; especially small clusters are very popular. Many existing algorithms can be 
used after some modifications for these hardware architectures. However, it is a question 
whether the efficiency of a modified parallel algorithm is still good enough. There is no doubt 
that the modified algorithm is often unnecessarily complicated.  

At present, there is a lack of algorithms proper for the currently used architectures, which we 
have just described. Such algorithms should use simple means of parallelization to be 
implemented by a wide computer community, but they should be effective enough to be an 
attractive choice in competition with long-existing serial algorithms.  

This thesis consists of two parts: theoretical and practical. The goal of the first part is to 
investigate the construction of the Delaunay triangulation in both E2 and E3, the possibilities 
of its parallelization and to give a brief survey of existing parallel algorithms for the 
construction of DT(S). As the properties of a parallel algorithm are mainly influenced by the 
features of the parallel architecture for which it was designed, we give an overview of 
available parallel architectures in the Section 2. In that section, we also describe general 
principles for the parallel algorithm design. The problems of even work distribution, load 
balancing, communication, traffic reduction and merging of partial solutions are discussed. 
The section should provide a good basic background to understand the problem of 
parallelization. More details about the parallelization can be found in our work [Koh04a], 
which gives a detailed study of the parallel techniques used in the computer graphics (related 
to the parallel rendering). 

In Section 3, the problem of the Delaunay triangulation is described in detail. We discuss the 
properties of the Delaunay triangulation and sequential principles for its construction. Pros 
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and cons of each principle are discussed. In general, a principle that produces better quality of 
triangulations consumes also more time or it is more difficult to implement. None is ideal for 
any purposes. A survey of existing parallel algorithms is presented in Section 4. Many of 
them are based on Divide & Conquer strategy, which is natural for the parallelization but not 
simple. Only several of these algorithms offer robustness to numerical errors. 

The second part of this thesis is more practically oriented. The main goal of this second part is 
to design a robust and simple parallel algorithm suitable for architectures with several 
processors and the shared memory as well as for cluster architectures. Using the knowledge 
acquisitioned in the theoretical part, we have chosen the method of the incremental insertion 
with local transformation as a base for our parallel algorithms because this method is easy to 
implement and it is stable (it produces fine quality meshes, no matter which kind of point 
distribution is used). The method is described in detail in Section 5. As this method has rather 
a sequential character, no wonder that, as far as we know, there is no existing parallel 
algorithm based on it. A parallelization is, therefore, a challenge for us.  

Section 6 discusses options of the parallelization of the chosen algorithm of incremental 
insertion with local transformations and possibilities of even workload.  Several parallel 
algorithms for symmetric multiprocessors are proposed in Section 7 and a few parallel 
algorithms for clusters of workstations are proposed in Section 8. These algorithms were 
implemented and tested. The results of the performed experiments are given in Section 9. 

In Section 10, the algorithm by Varnuška [Var05] for surface reconstruction from scattered 
point data based on the construction of the Delaunay triangulation is described and the 
parallelization of the whole algorithm is proposed exploiting a solution of virtual shared 
memory from Section 8. The results of experiments with the developed application are given. 

Section 11 investigates possible extensions of the Delaunay triangulation, e.g., to incorporate 
constraints given in the form of prescribed faces into the triangulation, to use non-Euclidian 
metrics or weights of points during the computation, and their impacts on the parallelization. 
In the section, we propose also another parallel algorithm for the construction of the Delaunay 
triangulation for clusters of workstations that, unlike algorithms described in Section 8, does 
not need to communicate during the insertion of points. 

Last section, Section 12, summarizes current results and concludes this thesis. In this section, 
the objectives of the future work are discussed.  
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2 Parallel and Distributed Computing 
Sequential computers are based on the model presented by John von Neumann. The 
performance of this model is limited by the speed of information exchange between the 
memory and the processing unit and by the execution rate of the instructions. In modern 
sequential computers, the speed of information exchange is improved by using memory 
interleaving (i.e., simultaneous memory access by having several memory banks) and by 
using caches; the execution rate is improved by pipelining. Despite these improvements, in 
many areas of human activity, there is a necessity to work with such data sets that their 
processing by any sequential algorithm cannot be finished in a reasonable time at a single 
sequential computer or the processing even requires more resources than are available at this 
computer. For example, sometimes the task has to be finished in a real time or it needs more 
memory than is the addressable amount. Let us mention [Tam01] quantum chemistry, 
statistical mechanics, relativistic physics, astrophysics, computational fluid dynamics and 
turbulence, genetic engineering, cell modeling, medicine, modeling human organs, global 
weather and environmental modeling, speech processing, data mining, computer graphics and 
computational geometry as examples of human activities where such data sets are common. In 
all these cases, a 'parallel computer' and an appropriate parallel algorithm are welcome. 

2.1 Parallel Models 
A parallel computer is a collection of processing elements (PE) that cooperatively solve the 
given task. While any sequential computer was based on the same sequential model, there is 
quite a big set of physical parallel models to be adopted in a parallel computer. The taxonomy 
of parallel architectures is ambiguous. Very popular is Flynn's taxonomy, which was firstly 
introduced by Flynn in 1966 and which classifies all architectures into four categories: SISD, 
MISD, SIMD, and MIMD depending on whether a single (S) or multiple streams (M) are 
used for instructions (I) and data (D). The problem with this classification is that it is 
nowadays too rough: SISD denotes sequential computers, MISD does not really exist (unless 
pipelining is considered as MISD configuration), SIMD denotes only a small group of 
architectures but MIMD contains tens of architectures.  

Therefore, we classify parallel architectures into six practical models [Per99]: SIMD, parallel 
vector processor, symmetric multiprocessor, massive parallel processor, cluster (or network) 
of workstations and distributed shared memory. Let us note that the original Flynn's taxonomy 
classifies parallel vector processor as SIMD and all the remaining models as MIMD. 

Single Instruction Multiple Data (SIMD) is a model that has only a single control unit, i.e., 
only one process runs (one copy of an algorithm is stored in the memory). The control unit 
dispatches the instruction to all processing elements and each PE executes the instruction with 
different data. Therefore, this model suits for such an algorithm where input data can be 
subdivided into several groups and processed simultaneously (e.g., operations with vectors or 
matrices). The structure of SIMD model is sketched in Figure 2.1a. Famous commercial 
parallel computers based on this model are: CM-2, Illiac IV, MP-1 and MP-2. 

Parallel vector processor is an extension of SIMD. It contains a small number of powerful 
vector processing elements (they are based on SIMD) connected together and to the common 
shared memory (i.e., accessible to all processing elements) by a crossbar network switch. 
Famous parallel computers based on this model are Cray C-90, Cray T-90 and NEC SX-4. 
They are mainly used for the numerical computations. As this model is too specialized, the 
popularity of parallel vector processor has been going down in the recent years. 
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Symmetric multiprocessor contains a small group of common processing elements that are 
used in the sequential computers, i.e., it suits for any algorithm. Each processing element has 
an equal access to common shared memory and I/O devices via bus or crossbar switch. The 
structure of the model is sketched in Figure 2.1b. The efficiency of the system goes down 
with the increasing number of PEs because of the limited speed of data transfers. Therefore, 
the number of PEs is limited to a small number only. Great advantage of the symmetric 
multiprocessor model is, however, the low cost of parallel computers based on this model. No 
wonder that these parallel computers (especially computers with 2 PEs) became widely spread 
in the last years. From the set of commercial computers, let us name SGI Power Challenge, 
DEC Alpha server 8400, Dell Power Edge 7150, Dell Power Edge 8400, etc. 

CU PE1

PE2

PEn

...

M

 

CU PE1

PE2

PEn

...

M

CU

CU  

CU PE1

PE2

PEn

...
CU

CU

LM1

LM2

LMn

 

a) SIMD b) symmetric multiprocessors c) massive parallel processor 

Figure 2.1: Scheme of the model structures. Legend: PE - processing element, CU - control unit, M - 
memory, LM - local memory. 

Massive parallel processor contains a large group (often thousands) of common processing 
elements.  Each processing element has an exclusive access to its local memory, all memory 
is distributed (i.e., there is no shared memory in the system). The processing elements are 
connected together by serial lines ensuring high communication bandwidth and low latency. 
Figure 2.1c brings the scheme of this model. There are various types of topology of the 
connection. Each topology is predetermined for some types of algorithms. A typical topology 
is a closed cube in En, briefly called n-Cube, where each element is directly connected to 2n – 1 
others. Figure 2.2 shows an example of closed two-dimensional grid. Famous parallel 
computers based on this model are CM-5 (topology of a tree) and Intel Paragon (two-
dimensional grid). 

Cluster of workstations (or also computer network) is very similar to the massive parallel 
processor. It consists of a large group of sequential computers. As each processing unit is a 
complete computer (i.e., it has its own processing element, local memory, I/O devices and 
operating system), each computer can be different. These computers are connected together 
via some low-cost, however, in the comparison with the massive parallel processor, slow 
network (e.g., Ethernet, FDDI, Fiber-channel or ATM). Clusters are very popular. Namely, 
IBM SP2 is a successful commercial cluster. 

Distributed Shared Memory (DSM) model belongs to a new generation of parallel computing. 
It combines advantages of the massive parallel processor and the symmetric multiprocessor. 
The model has distributed memory allowing higher number of PEs and, in addition, it creates 
an illusion of the shared memory, thus the implementation of algorithms is simplified. 
Moreover, the model is general enough. As far as we know, there is only one parallel 
computer based on this model – Cray T3D.   
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PU1,1 PU1,2 PU1,n … 

PU2,1 PU2,2 PU2,n … 

PUn,1 PUn,2 PUn,n … 

 …  …  … 

 

Figure 2.2: An example of the topology of E2 grid used in a massive parallel processor. Processing 
unit (PU) includes a processing element (PE) and its local memory (LM). 

Besides the practical models that we have just described, several theoretical models and 
parallel algorithms developed for them are published in the literature. Su [Su94] complains 
that many theoretical algorithms use complicated data structures or scheduling techniques to 
reduce the parallel “runtime” of basic algorithms, however, when they are implemented, they 
are so complicated and need so much data movement that achieve worse result than simpler 
solution. Despite it, the theoretical models can be used as a basis for designing parallel 
algorithms that are efficient in practice, for the explanation of results achieved by a parallel 
algorithm, or for the comparison of parallel algorithms. Therefore, let us introduce Parallel 
Random Access Machine (PRAM). This model assumes a machine with k (or even unlimited 
number of) processing elements and an unlimited random-access common shared memory. In 
a single machine cycle, each processing element can fetch a word, perform an operation and 
write the result back to memory. Different PRAM machines allow a different amount of 
concurrent memory access. EREW machines allow no concurrent access, CREW machines 
allow concurrent reads and CRCW machines allow concurrent writes as well.  

Each parallel model described above offers different means and, therefore, requires using of a 
different programming technique in the design of a parallel algorithm. While an algorithm 
developed for the architectures with the distributed memory can use the message passing (i.e., 
sending and receiving messages) for the communication among the processes only, the 
architectures with the shared memory, including DSM systems, allow very simple and low-
cost (except for the DSM model) inter-process communication through the shared memory. 
Therefore, we have to keep the pros and cons of all parallel models in mind when parallel 
algorithms are evaluated. 

2.2 Parallel Programming 
Although many parallel models exist, as it was described in the previous subsection, we can 
identify only a few parallel programming techniques used in parallel algorithms for the 
decomposition of computation [Jež97, Cro97]. These techniques include Multiple Program 
Single Data (MPSD) parallelism, Single Program Multiple Data (SPMD) parallelism and 
Multiple Program Multiple Data (MPMD) parallelism. Usually, a parallel algorithm uses 
only one of these programming techniques. 
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2.2.1 Multiple Program Single Data 
MPSD is a functional parallelism. The computation is split into several distinct functions 
which can be applied in series to individual data items. Each function is exclusively assigned 
to its processing element and a data path is provided from one PE to another one. As the 
resulting scheme resembles a processor pipeline, the term pipeline is often used in the 
literature when MPSD parallelism is considered. This parallelism has two significant 
limitations. First, the overall speed of the pipeline is limited by its slowest stage, so functional 
units must be designed carefully to avoid bottlenecks. In an ideal case, all stages consume the 
same time. More importantly, the available speed-up is limited to the number of stages in the 
pipeline. The number of stages can be increased only as long as we are able to split all 
functions into smaller pieces that run in a similar time. If some function has to be performed 
atomically, it is useless to split other functions.  

Let us assume a sequential algorithm that allows subdivision into k stages. A stage takes the 
time ti. To process N data items, the algorithm consumes the total time tseq where  

∑
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The parallel version of the algorithm then requires the total time tpar where 
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Speed-up s of this parallel algorithm can be calculated as tseq / tpar. The efficiency of such an 
algorithm is given by the expression s / k. 

2.2.2 Single Program Multiple Data 
In SPMD parallelism, data parallelism, instead of performing a sequence of functions on a 
single data stream, the data set is split into multiple streams that are processed simultaneously 
by several processing elements executing the same program (i.e., the same functions).  

There are two possibilities how to split the data set: static and dynamic load-balancing. In the 
first one, the data set is subdivided into streams at the beginning of the computation and this 
partition remains intact for the entire process. Fixed partition of the data set into streams of 
the same amount of input data elements introduces a possibility of imbalanced workloads of 
processors. This means that the difference of the time consumed by the PE that finished its 
work as the last one and the time consumed by the PE that finished as the first one is not 
insignificant. The load imbalance can be reduced by an adaptive partition where the amounts 
of elements in streams differ but the estimated time for their processing is the same. As the 
optimal load balancing strategy is NP-complete problem, some more or less efficient 
heuristics have to be used. 

If an adaptive static load-balancing cannot be used or it does not brings a substantial 
improvement, dynamic load-balancing, which provides more flexibility in assigning 
workloads to processing elements, is used. There are two principal approaches: demand-
driven and work stealing. In the demand-driven approach, the input data set is split into such 
very small streams that the number of these streams is much larger than the number of 
processing elements. The streams are assigned to processors one at a time. When a processor 
completes one task (i.e., the processing of a stream), it receives another task, and the process 
continues until all of tasks are complete.  
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Work stealing strategy starts with a fixed partition of the input data set. However, when a 
processor becomes idle, the remaining workloads of busy processors are split (i.e., their work 
is 'stolen') and reassigned to this idle processor. 

In SPMD, the outputs of the processing of streams obtained by the processing elements are 
afterwards merged together to get the final result. As the merge stage very often cannot be 
parallelized and has to be performed in a sequential way, it limits the available speed-up of an 
algorithm. In many algorithms, it is also necessary to finish the execution of the operation j in 
the process A before the execution of the operation k in the process B can start. In such a case, 
B has to wait until A completes the operation. Therefore, the processes have to synchronize 
themselves, i.e., some inter-process communication is required. The inter-process 
communication and the waiting of processes limit the performance of a parallel algorithm. 

Despite these troubles, the data parallel approach opens an opportunity to use more processing 
elements than in the functional parallelism and, therefore, to reach higher speed-up. Let us 
assume a sequential algorithm that consumes the total time tseq to process N data items. If this 
algorithm can be fully parallelized and its parallel version running on k processors requires 
the total time tpar, then speed-up s of this parallel algorithm can be calculated as tseq / tpar and 
its efficiency is given by the expression s / k. 

2.2.3 Multiple Program Multiple Data 
MPMD enriches SPMD parallelism. The input data set is split into multiple streams. The 
streams are assigned (statically or dynamically) to processors executing multiple programs. 
Let us note that parallel algorithms combining the functional and data parallelism can also be 
included into this category. For the MPMD approach, it is typical that the input data set 
contains data items of various data structures requiring various programs to be processed.  

A very popular model, which exploits MPMD parallelism, involves two different programs, 
one program is executed only by one processor and the second program is executed by several 
processors. In the client-server strategy, several clients assign tasks to the server that has to 
perform a task and return results to the client. The opposite strategy is called the farmer-
worker. There is one farmer, which drives the computation (it assigns tasks, collects sub-
results and merges them into the final result), and several workers performing their tasks. 
Such a strategy is welcome for parallel architectures with the distributed memory. 

As parallel algorithms with this parallelism are usually designed for the architecture with the 
distributed memory, they put the stress on the problems that cannot be processed on a 
sequential computer because of its technical limitations. Therefore, many MPMD algorithms 
do not compute speed-up and efficiency. A very important characteristic, however, is the 
scalability of a MPMD algorithm, which shows the capability of the algorithm to employ 
a large number of processors efficiently. Let us assume a parallel algorithm that consumes the 
total time tpar1 to process N data items on k1 processor. When k2 > k1 processors are used, the 
computation requires the total time tpar2. A value calculated as tpar1 / tpar2 evaluates the 
scalability of the given parallel algorithm. 

2.3 Amdahl's Law 
A sequential algorithm cannot usually be fully parallelized, i.e., some operations have to be 
performed in a sequential mode (e.g., write access to the shared memory, merge phase and I/O 
operations). Consider a program containing m operations, which take the same time T, to be 
executed on a parallel machine with k processors. If the fraction 1 – q of the operations has to 
operate in a sequential mode, and q can be executed in parallel, the speedup is limited to: 
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This equation is called Amdahl's law [Amd67]. Although it ignores many of the realities of 
computing (e.g., parallelization is free, communication is free, parallel operation is a multiple 
of sequential operation, without changing data structures or operational design), researches in 
the parallel processing community have been using Amdahl's Law to estimate the highest 
possible speed-ups of their parallel programs. For example, if a parallel algorithm contains 
99% of operations that can be executed in parallel, then speed-up on a parallel architecture 
with unlimited number of processors will reach value 100. If we consider an architecture with 
10 000 PEs, speed-up will be about 99. 

Let us warn against a common error that some researches make when dealing with Amdahl's 
law. Assume a sequential program. First, parts that can be performed in parallel are found. 
The total time tp needed by the program in these parts to process N data items is measured as 
well as the total consumed time ttot. The parameter q is computed as tp / ttot. Let us assume the 
parallelizable parts contain mp operations and the remaining parts contain ms operations. 
However, when the considered sequential algorithm is parallelized, new operations have to be 
included into the code. Therefore, the resulting parallel algorithm has mp+dp and ms+ds 
operations. It may not be true that (mp+dp) / mp = (ms+ds) / ms. As dp << ds in many parallel 
algorithms, the value of q calculated as tp / ttot is incorrect! 

Even if the Amdahl's law is used correctly, there are some situations when a parallel program 
reaches higher speed-up than was the estimated one, or even it reaches super-linear speed-up, 
i.e., achieved speed-up is bigger than the number of used processing elements. Sun et al. 
[Sun95] discussed the reasons for such a behavior. First, the time needed to process a data set 
depends on the place where the required data set resides. If the data is stored in the cache, the 
shortest time is reached. On the other hand, if the data is stored in the external or remote 
memory (i.e., on the disk or in the memory of a remote computer), a large time is consumed. 
Sequential applications often need to work with such a data set that a part of this set has to be 
stored in slower local memory or in the, even slower, external or remote memory. Let us 
assume such a data set of N items that only x < N items can be stored in the cache. While each 
of these items requires the time t0 to be processed, an item from the local memory consumes 
the time t1 > t0. The total times tseq and tpar required to process the entire data set on a parallel 
computer using one and two processors are in an ideal case: 
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Therefore, we achieve a super-linear speed-up s: 
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There is another reason for the super-linear speed-up related to the caches in [Sun95, Sie94]. 
Parallel computers very often contain larger caches than their sequential counterparts and, 
therefore, cache hit ratio could be increased. More or less theoretical reason is that the 
parallelization of a sequential algorithm reduces overheads hidden in the original code.  
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A last but not the least reason is typical for algorithms that perform a task only if some 
condition is fulfilled. If we parallelize such an algorithm, we can avoid processing of less 
useful tasks than in the original serial algorithm. A good example is the backtracking [Rao92] 
where a node of the tree is expanded only in the case that we expect the solution somewhere 
in the sub-tree of this node and we expand a node with the highest probability of the success 
first. In the parallel backtracking, we skip the expansion of a sub-tree earlier and, therefore, 
the result is often achieved sooner. 
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3 Delaunay Triangulation 
In this section, we describe the Delaunay triangulation and sequential methods for its 
construction. The Delaunay triangulation is a good representative of the problems of 
computational geometry that are often solved in a parallel or distributed environment. 
Parallelization of the Delaunay triangulation is discussed in the following sections. 

Given a point set S in Ed (for our purpose let d = {2,3}) , the triangulation T(S) of this set of 
points is a set of simplices such that: 

• The point p ∈ Ed is a vertex of a simplex from T(S) if and only if p belongs to S; i.e., 
the vertices of the simplices are some points from the input set. 

• The intersection of two simplices is either empty or it is a shared face, a shared edge, 
or a shared vertex. 

• The set T(S) is maximal: there is no simplex that can be added into T(S) without 
violating previous rules; i.e., union of simplices and convex polyhedron formed by a 
convex hull CH(S) is the same object. 

Delaunay triangulation (shortly DT) was proposed by a Russian scientist Boris N. Delone 
[Del34a, Del34b]. However, as his original papers are not written in English and their 
translations are usually rather complex, we would recommend Radke's [Rad99] or de Berg's 
[Ber97] texts for details about Delaunay triangulation.  

Delaunay triangulation DT(S) of a set of points S in Ed is a triangulation such that the circum-
sphere of any simplex does not contain any other point of S in its interior. In the next text, this 
criterion is also called the circum-sphere criterion (or circum-circle criterion in E2). 

There is also an alternative definition of the Delaunay triangulation:  the DT is a dual of the 
Voronoi diagram Vor(S), which is a set of points having the same distance from at least two 
points from S and, moreover, there is no other point from S with a smaller distance. The 
mathematical expression of the Vor(S) can be written as: 

}:;;:;,:{)( xpxpjkikSpxpxpjiSpSpExSVor ikkjiji
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Figure 3.1 shows the mutual relationship of the Vor(S) and the DT(S).  

The basic properties of the DT(S) are as follows [God97]: 

• If no d+2 points lie on a common hyper-sphere and no k+2 points lie on a common 
subspace of the dimension k, where k is less than d, then the DT(S) is unique. E.g., 
four points lying in the vertices of an empty square in E2 have a common circle and 
two possible configurations of their triangulation. 

• The Delaunay triangulation includes at most O(N⎡d/2⎤) simplices, where N is the 
number of points to be triangulated. 

• It minimizes the maximum radius of the containment spheres of the simplices in the 
triangulation. The containment sphere of a simplex is the smallest possible sphere that 
encapsulates this simplex. 

• The boundary of the DT(S) is a convex hull of S. 
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• In E2, it maximizes the minimal angle and, therefore, the Delaunay triangulation 
contains the most equiangular triangles of all triangulations (i.e., it limits the number 
of too narrow triangles that may cause problems in further processing). 

• In the worst case, it can be computed in O(N⋅log N + N ⎣(d+1)/2⎦), i.e., in O(N⋅log N) for 
E2 and in O(N2) for E3. However, algorithms with O(N) expected time also exist in 
both E2 and E3. 

Due to these good properties, Delaunay triangulation is used in many areas, such as terrain 
modeling (GIS) [Gon02], scientific data visualization [Oku96, Oku97, Wal00, Att01] and 
interpolation [Par03], robotics, pattern recognition [Pra00, Xia02], meshing for finite element 
methods (FEM) [Chu03, Béc02, Nis01], natural sciences [Mul03, Ada03], computer graphics 
and multimedia [Ost99, Tek00], etc. 

Many algorithms for construction of the Delaunay triangulation exist. Some of them exploit 
the duality and construct the Delaunay triangulation using the Voronoi diagram – see 
Figure 3.1. It is, however, more efficient to use some direct algorithm. We classify them into 
several categories: local improvement, incremental construction, incremental insertion, higher 
dimension embedding and divide & conquer. 

 

Figure 3.1: The Delaunay triangulation (solid lines) and the Voronoi diagram (dashed lines) of the 
same set of points (big black dots) 

3.1 Local Improvement 
Local improvement method is used mainly in E2. First, a general triangulation T(S) is created. 
In the second stage, this triangulation is successively converted into the DT by applying some 
local transformations. The Delaunay triangulation is such a triangulation where all edges are 
locally optimal. The edge e is locally optimal if and only if the polygon P formed by two 
triangles sharing this edge is not convex or the circum-circle of one of these two triangles 
does not contain the far point of the second triangle in its interior. If the edge e, i.e., the first 
diagonal of the convex polygon P, is not optimal, it is removed from the triangulation and the 
second diagonal e' is inserted into the triangulation. Then it is necessary to check all four 
edges of the polygon P on optimality. An example of the process is given also in Figure 3.2. 
Let us note that another strategy of local transformations exists: both possible triangulations 
of the polygon P, i.e., with the edge e and with the edge e', are investigated and the 
triangulation having the larger minimum angle of six angles in its triangles is picked as the 
proper configuration. This criterion is called max-min angle criterion. 
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The algorithms based on local improvement method are simple and robust: in the case of an 
incorrect or inconsistent Delaunay criterion evaluation caused by numerical inaccuracy, a 
triangulation with two or more non-Delaunay triangles is obtained, but it is still a valid 
triangulation. In practice, however, they are rarely used because it is not straightforward – the 
primary triangulation is required to be constructed, and because the convergence of the 
algorithm in E3 is not ensured [God97]. Let us note that their complexity depends on the way 
how the primary triangulation is constructed, which is usually O(N2) in the worst case for E2 
and O(N) in the expected case. 

e

p

P

 

e’e’
PP

 

a) not optimal edge e – the circum-circle 
contains the far point p inside its interior 

b) optimal edge e' 

Figure 3.2: Flipping the diagonals to convert a general triangulation into DT. 

3.2 Incremental Construction 
The Delaunay triangulation is constructed by successively building simplices whose circum-
spheres contain no points in S. Starting with a simplex as the primary triangulation, this 
triangulation is expanded by adding a proper point until the input set is not empty. Already 
constructed simplices are never reversed. Let us describe the general approach of the 
incremental construction [Cig93, Su94]. For easier understanding, we limit our explanation to 
the problem in E2. First, a point from S is picked, the point nearest to the starting one is found 
and the first edge is created. Then for each outer side of an edge on the boundary of the 
current Delaunay triangulation (the first edge has two sides), the algorithm finds a point lying 
in the outer half-space such that the circum-circle of a triangle formed by the tested edge and 
this point has the smallest radius. If the point is successfully found, a new triangle is built. 
Figure 3.3 shows several steps of the construction. 

   

 

a) initial two triangles b) construction of next triangles c) partial triangulation 

Figure 3.3: The incremental construction in E2. 



16 

This general approach is simple enough but if the algorithm does not incorporate some data 
structures to speed-up the location of the points, it has low efficiency: the worst-case 
complexity in E3 is O(N3). 

Another approach of the incremental construction is based on the sweeping paradigm. The 
sweeping algorithm by Fortune [For87] for the problem in E2 is well-known. Although his 
algorithm seems to be quite complex, the worst-case complexity is O(N⋅log N). The 
extensions for E3 also exist but it is not used in practice because of its complexity.  

Let us explain the main idea of the original Fortune's algorithm. More details can be found in 
[For87, Su94]. First, the points are sorted according to their y-coordinates. A moving up 
horizontal sweeping line separates the plane into two parts: in the lower half-space there is a 
current Delaunay triangulation, in the upper one are the points to be processed. The line stops 
in either a point or the top of a circum-circle of a potential triangle that was generated during 
the process. If the line does not meet any point before the top of the circum-circle is reached, 
the triangle with this circum-circle is added into the triangulation. Figure 3.4 explains the 
generation of potential triangles. Whenever the line reaches a new point, a potential edge 
between this point and some previously visited point is added into a special list called frontier. 
If another edge sharing a point with the currently inserted edge is already in the frontier, the 
circum-circle of the triangle formed by these two edges is constructed – see Figure 3.4a. 
When the point d is reached it invalidates the circum-circle of the triangle a, b, c and 
generates a new potential edge a, d and two circum-circles – see Figure 3.4b. Then the 
sweeping line reaches the top of the circum-circle of the potential triangle a, b, d and, 
therefore, this triangle is added into the Delaunay triangulation. Finally, it reaches the second 
circum-circle and the triangle a, c, d is constructed as it is shown in Figure 3.4c.  
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a) generation of a circum-circle 
of the potential triangle a,b,c 

b) the previous circum-circle is 
invalidated and new circum-circles 

are generated 

c) partial triangulation 

Figure 3.4: The sweeping in E2 by Fortune. 

3.3 Incremental Insertion 
Starting with an auxiliary simplex that contains all points in its interior (or with the convex 
hull of all the points divided into simplices), these algorithms insert the points in S one at a 
time. In each step, a simplex containing the point to be inserted inside in its interior has to be 
found and this simplex and appropriate simplices in the neighborhood are modified in such 
a manner to incorporate current point and to ensure that the resulting triangulation is the DT. 

As long as we do not consider time requirements, the order of the insertion is not important. 
The points do not need to be known in advance (although their range of coordinates is 
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needed). If the algorithm uses a randomized order of insertion, it becomes almost insensitive 
to the type of points distributions. 

The location of simplex per one point is possible in O(log N) expected time (and it is also the 
optimal time) and O(N) worst time, if some data structure speeding-up the location, e.g., 
Directed Acyclic Graph (DAG) [Ber97], is used. The worst case happens when the DAG is 
“totally imbalanced”, having the shape of a list – due to randomization, such a situation is 
highly improbable. The DAG structure stores the history of changes. Each inner node of the 
DAG stores one simplex that existed in some previous triangulation, the current triangulation 
is stored in the leaves. The DAG root describes an auxiliary simplex. Further information 
about this structure will be given later. 

There are other possibilities for quick location: random walk techniques [Gui85], a use of 
quadtrees or bucketing techniques. The random walk techniques are especially popular. They 
consume less memory, however, expected time O(N1/3) is needed per one location. The 
possibilities for location are compared in [Žal03]. In the effort to reduce memory use, 
Devillers in [Dev98] suggests a hierarchical structure similar to the DAG. It consists of 
several connected levels; each level contains a random sample of the level below. The lowest 
level contains the current triangulation. Time O(log N) for location is ensured.  

After the location, there are two different methods. In the first one, the simplex containing the 
point to be inserted is subdivided and then the circum-sphere criterion is tested recursively on 
all simplices adjacent to the new ones and if necessary, their edges (faces) are flipped as in the 
local improvement approach [Ber97, Gui92]. This method was chosen as the basis for our 
parallel solution and, therefore, it will be described in more detail in the next section. 

Another approach was presented by [Wat81] and it is known under the name Bowyer-Watson. 
The original algorithm needs O(N(2d-1)/d) time in the worst-case. It works as follows: all 
simplices, which contain the point to be inserted in their circum-spheres, are removed from 
the triangulation and a convex cavity formed by the removed simplices is retriangulated using 
the currently inserted point. The retriangulation involves two steps. First, all vertices of the 
cavity are connected with the point to be inserted. Then, if it is necessary, the currently 
constructed edges (or faces) are swapped similarly to local improvement. Figure 3.5 shows an 
example of the insertion. In this example, no local improvement technique is required, after 
the retriangulation we have already the Delaunay triangulation. 

  

a) triangles forming the cavity b) retriangulation of the cavity 

Figure 3.5: Insertion of a point (marked by the cross) inside the DT by the Bowyer-Watson approach. 
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In its simplest form, the Bowyer-Watson algorithm is not robust against floating-point 
roundoff error, which may cause appearance of overlapping simplices – see Figure 3.6. It is 
also more difficult for the implementation than the approach with successive performing of 
local transformations. 

 

Figure 3.6: Incorrect detection of triangles to be removed caused by floating-point roundoff error and 
the result of cavity retriangulation of such a set of triangles [Sch99]. 

3.4 Higher Dimensional Embedding 
These algorithms transform the points in Ed into the Ed+1 space and then compute the convex 
hull of the transformed points. It was proven that the projection of the convex hull into Ed 
gives the Delaunay triangulation [God97]. In practice, these algorithms are mainly used only 
for E2 [e.g., Bro79]. In such a case, a lifting projection onto the surface of a paraboloid is 
used. Figure 3.7 illustrates this approach. Let us note that the complexity of the construction 
of the Delaunay triangulation in Ed is given by the complexity of construction CH(S) in Ed+1, 
which is O(N⎣(d+1)/2⎦+1) using gift-wrapping method. 

 

Figure 3.7 (see also Color Plates): The projected points and the corresponding Delaunay 
triangulation [Har97]. Only a tiny part of the 3D convex hull is shown (black bold line segments). 

3.5 Divide & Conquer (D&C) 
The main idea of these algorithms [e.g., Dwy86, Cig93, Gui85] is to recursively divide the 
input set of points until only a few points is in one group so that they can be easily 
triangulated in O(1) time. Then the local triangulations are recursively merged together in 
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order to get the final Delaunay triangulation. Figure 3.8 shows several steps of the D&C 
algorithm. The merge phase is quite complicated because it involves not only building of the 
faces among simplices from both triangulations but also corrections of existing simplices to 
satisfy Delaunay criterion. In the worst case, these corrections spread over the whole 
triangulation. Although the D&C algorithms are not simple to implement, they are in E2 
optimal for the worst-case. Let us note that the recursion usually stops when the size of the 
point set matches some given threshold and the local triangulation is then constructed by an 
algorithm belonging to any of the previous category (often the incremental construction). 

  
 

a) local triangulations b) the first merging, simple c) the second merging, local 
improvement necessary 

Figure 3.8: Several steps of the construction of the DT in E2 by D&C. 
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4 Parallel Delaunay Triangulation 
In this section, we give a survey of existing parallel algorithms for the construction of the 
Delaunay triangulation. Although the sequential construction of the Delaunay triangulation 
seems to be suitable for any application, it is not true in practice. The applications demanding 
real-time processing of some relatively small number of points exist as well as applications 
that need to process data sets with millions of points in reasonable time. The second kind of 
applications introduces the problem that to process their typical data sets, the applications 
need more physical memory than is available on a single computer. Good example of such an 
application is the surface reconstruction of the David's statue [Mich]. 

4.1 Incremental Construction 
As the nature of the incremental construction allows a relatively easy parallelization, many 
parallel algorithms are based on this approach. In this section, we describe several well-
known algorithms. The D&C algorithms exploiting the incremental construction are described 
in an independent section. 

4.1.1 InCode 
Cignoni et al. proposed a parallel algorithm called InCode [Cig93]. The algorithm subdivides 
the E3 space (but can be easily modified for E2) into k cubical areas. Each area as well as the 
whole set of the input points are assigned to one processor. The processor constructs 
simplices that have at least one vertex in its area, thus the simplices at the area's boundaries 
are created by more processors. To get the final triangulation, redundant simplices have to be 
removed in the post-processing sequential phase. This, indeed, affects the efficiency of the 
algorithm. Figure 4.1 shows an example of the triangulation. 

 

Figure 4.1: The Delaunay triangulation in E2 of using 4 PEs. The gray triangles are constructed 
redundantly by more processors. 

For the problem of the DT(S) in E3 the authors present, for example, speed-up 1.79 – 19.01 
for 2 – 64 PEs at nCUBE 2 system model 6410. The uniform data sets with 20 000 points 
were tested. Hardwick [Har97], however, notes that InCode is about 10 times slower for non-
uniform data sets. 
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A similar algorithm was proposed by Teng et al. [Ten93]. The difference is that the algorithm 
avoids the redundancy by some synchronization of the processors during the computation. For 
the problem of the DT(S) in E3, the authors present, e.g., the speed-up 3.43 for 128 PEs and 
6.08 for 256 PEs on CM-5 parallel architecture for uniform data set with 16 000 points where 
the speed-up is calculated according to the time spent by their algorithm using 32 PEs. 

4.1.2 Lee et al. 
Another interesting approach appears in Lee [Lee97]. The algorithm is useful for massive 
parallelization. Each processor has a set P of several points to be processed (an ideal loading 
is one point per PE) and the whole set S of input points for tests. For each point, it looks up 
the point nearest to the currently processed one and constructs the edge between them. The 
first PE afterwards collects all computed edges, removes redundant edges and distributes the 
computed edges among processors. They find the two nearest points for each received edge 
(one point in the left half-plane, one in the right half-plane) and construct two triangles. This 
second stage is repeated until no new elements are created. As Lee used Intel Paragon 
equipped by fast message routing chips for his experiments, we can expect that overhead for 
communication is significantly reduced. Unfortunately, the author does not present any results 
of his experiments. 

4.2 Incremental Insertion 
The nature of the incremental insertion is rather sequential and, therefore, sequential 
algorithms belonging to this category are rarely parallelized. As far as we know, there is just 
one purely parallel algorithm and several algorithms exploiting the principle of incremental 
insertion for their refinement purpose. These refinement algorithms start with already existing 
Delaunay triangulation and they try to find new artificial points that should be inserted in 
order to improve the quality of the triangulation (e.g., to improve the shape of simplices). The 
candidates for such points are usually the centers of circum-spheres of the simplices, the 
algorithm has to decide whether to use such a point or not. One very popular sequential 
solution was proposed by Chew [Che89]. 

4.2.1 Chrisochoides et al. 
Chrisochoides et al. [Chr99, Chr96] parallelizes the Bowyer-Watson’s algorithm. Let us 
remind that this algorithm is based on incremental insertion with cavity retriangulation. The 
parallel algorithm by Chrisochoides et al. starts by a sequential construction of a coarse 
triangulation of a subset of points by a sequential algorithm. The created simplices are 
partitioned into k continuous regions and distributed over k processors. The boundaries among 
regions are formed by some faces of the simplices and they may change during the process.  

After the distribution of work, the processors insert simultaneously the points. In each step, 
the cavity to be retriangulated is found. If the cavity crosses the boundaries, it is necessary to 
use some synchronization of processors sharing the simplices in this cavity before the 
retriangulation can be performed. The new simplices are redistributed heuristically over the 
participants in order to balance the load of the processors and to minimize the length of the 
boundary. Figure 4.2 shows an example of the retriangulation of a shared cavity.  

In their recent work [Chr99], the authors present that the speed-up is nearly linear due to the 
used heuristics, but there is neither proof nor experimental evidence for this statement.  
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a) the original partition b) the shared cavity c) the cavity retriangulation 

Figure 4.2 (see also Color Plates): The insertion of a point (big dot) into the triangulation in E2. This 
insertion causes retriangulation of a cavity shared by three processors (PE1, PE2 and PE3) including 

the update of their regions' boundaries.  

4.2.2 Pupo et al. 
A parallel algorithm based on incremental insertion with local transformations was proposed 
by Puppo et al. [Pup94]. It works with a dense regular grid of points in E2 only and it is 
determined to be used for terrain triangulations. The algorithm does not construct the 
Delaunay triangulation of all given points; it triangulates only such a subset of points that the 
error between the approximated triangulation and the full triangulation does not exceed a 
required threshold. 

At the beginning, only two triangles containing the four corners of the grid exist. Each input 
point, as well as each triangle, is allotted to one virtual PE. The parallel algorithm consists of 
a loop with three phases that are performed in parallel. In the first phase, for each triangle, the 
processor responsible for this triangle founds all yet non-used points such that they are, in the 
planar projection, overlapped by the projected triangle. The vertical distance between each 
point and its approximation lying on the tested triangle is computed. The point with the 
maximum distance is chosen to be inserted – see Figure 4.3. Let us note that if this maximum 
distance does not exceed a given threshold, the insertion is omitted. If there is no point to be 
inserted after the evaluation of all triangles, the algorithm finishes its work. 

The points that have been just chosen are inserted into the triangulation in the second phase. 
When a processor wants to insert a point that lies inside a triangle (as in the example in 
Figure 4.3), it inserts the point locally (using the incremental insertion principle). However, in 
a case that the point lies on a common edge of two triangles, only one point per these two 
triangles can be inserted and, therefore, the processors owning these triangles have to 
synchronize their work. After the synchronization of PEs, the processor with higher priority 
continues with the insertion. A higher priority is given to the processor holding the triangle 
whose point to be inserted lies further from the approximation.  

In the last phase, the Delaunay triangulation is restored. It involves the detection of all non-
optimal edges followed by the local transformations. Mutual exclusion similar to the previous 
one must be solved also in this phase. 

The algorithm was implemented on Connection Machine CM-2 with 16K processors, 
compared with a serial implementation on Sun SPARC1 and tested up to 5122 points. The 
speed-up was up to 80 for 16K points. The highest speed-up was achieved for the smallest 
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allowed approximation error because in such a case, more triangles are necessary and 
workload balance is improved. 

 

x

y

z

 

Figure 4.3: A triangular patch (bold triangle) and its appropriate set of input points (big dots). The 
point with the worst approximation (the approximations are marked by crosses) is shown bigger.   

4.2.3 Okusanya et al. 
Okusanya et al. [Oku96] developed a parallel version of Chew's refinement algorithm in E2. 
The primary triangulation is partitioned among processors. If the insertion of a new point also 
affects remote triangles (i.e., the triangles not physically present at the current processor), the 
processor has to send a message to all participants to obtain these remote triangles. 
Concurrent processors locate remote triangles in a special tree structure, lock them for the 
initiator to avoid inconsistency and send them in a compressed way to the initiator. For 
communication, MPI [MPI] or PVM is used. When the initiator completes its operation, all 
remote triangles are unlocked. However, in such a case that a contacted processor cannot 
grant an exclusive access to the requested triangles for the initiator, it denies the request and 
the initiator has to give up insertion of this point and focus itself on another point. Although 
authors also implemented some load balancing, they reached the speed-up only 1.6 – 3.0 for 
2 – 8 PEs at IBM SP2 for uniform data set of 1 000 000 points. Probably it is caused by the 
time-consuming communication between PEs. Let us note that the authors use a similar 
strategy also in E3 [Oku97]; their speed-up is roughly 1.2 – 2.3 for 2 – 8 PEs and 144 600 
points. In our opinion, the reached speed-up is quite low. 

Probably better results could be achieved by the approach by Spielman et al. [Spi02] because 
it is able to determine quickly which points can be inserted without any synchronization. 
Authors present their algorithms for E2 and E3 and prove correctness of these algorithms. 
However, there is no experimental section in their paper. 
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4.3 Divide & Conquer (D&C) 
The parallelization of D&C algorithms seems to be straightforward, no wonder that parallel 
algorithms based on the D&C approach dominate. A naive parallel solution (e.g., Aggarwal et 
al. [Agg88]), however, suffers from a serious drawback: the merging of two local 
triangulations is limited to just one processing element (PE) and thus it negatively influences 
the overall efficiency of the algorithm.  

4.3.1 DeWall 
The DeWall algorithm by Cignoni et al. [Cig93] uses a slight modification of naive D&C 
strategy. In the divide phase, a cutting plane α separates the points to be triangulated into two 
groups. The simplices intersected by this cutting plane are constructed and then the 
simultaneous triangulation (based on the incremental construction) of both parts is started. No 
complex merge phase is required, the final triangulation is obtained by a simple union of all 
three triangulations (i.e., local triangulations of both parts and the joint of the simplices 
intersecting the cutting plane) – see Figure 4.4. 

 

Figure 4.4: The triangulation by DeWall in E2 [Mag98] 

A natural solution is to start a new process in each step of the recursion and assign it one half 
of the points. The second half will be processed by the currently running proccess. However, 
as the dynamic starting of the processes could be expensive on a parallel architecture with the 
distributed memory, [Cig93] recommend to start all required processes, say k processes, at the 
beginning. In such a case, all processes run the same task up to the level of recursion log k and 
their intermediate results are, except for one per level, discarded.  

Authors presented results of their algorithm for DT(S) in E3 (however, it may be used in E2 as 
well). The experiments ran at nCUBE 2 system model 6410. For example, speed-up 1.70 – 
3.35 for 2 – 16 PEs was noticed when the uniform data sets with 8 000 points were tested. 
The achieved speed-up is relatively low because of workload imbalance. Hardwick [Har97] 
claims that the situation is much worse (up to ten times) if we consider non-uniform data sets.  
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4.3.2 Chen et al. 
Chen et al. [Che01] use an approach similar to DeWall. In their algorithm, which is intended 
to be used in E2 only, the input points are subdivided according to their coordinates into k 
rectangular areas (where k is the number of processors). Each processor is responsible for the 
triangulation of points lying in one area. To fulfill its task, the processor requires to have 
available all points lying in the areas adjacent to the area assigned to this processor (there are 
at most four such areas). As the processor does not need the whole input set (in contrast to 
InCode), the algorithm is able to triangulate huge data sets.  

The processor triangulates its 'central' area by the fastest sequential algorithm [Dwy86], which 
is based on the divide & conquer principle. Only points lying in this area are required. Then, 
an "interface" is constructed at each boundary using the principle of incremental construction. 
The interface is such a set of triangles that crosses the area's boundaries – indeed, the 
knowledge of the points of adjacent areas is needed. It is quite clear that we have two 
interfaces (constructed by two processors) at the same boundary.  

The merging of results of two processors consists of two stages. In the first one, both 
interfaces at the shared boundary are merged together in order to get a wall of Delaunay 
triangles. Then this resulting wall (or joint) is combined successively with both triangulations. 
Thanks to the interface methodology, this second stage involves only removal of triangles 
from both triangulations such that they overlap the constructed wall. The final triangulation is 
obtained afterwards by a simple union of all three products. Figure 4.5 shows the merging of 
two local triangulations and their wall of the points lying inside a circle. 

 

Figure 4.5: The Delaunay triangulation given by a merge of two local triangulations and its common 
interface (created from two local interfaces) [Che01] 

The entire algorithm, except for the merge phase, can be processed in parallel. Time needed 
for the merge phase is, however, negligible (thanks to interfaces) in comparison to other 
phases. Therefore, the algorithm achieved outstanding speed-up. For example, the tested 
uniform data sets with 96K points achieved speed-up 1.57 – 4.95 for 2 – 8 PEs at IBM SP2 
with High Performance Fortran.  

4.3.3 Hardwick 
Hardwick [Har97] chooses another approach allowing avoidance of the merge phase. Input 
points are subdivided recursively into two groups by the orthogonal line L that goes through a 
median q in x-coordinate (or y-coordinate at even levels of the recursion) – see Figure 4.6a. 
As it is not necessary to compute the exact value of the median, the author uses a very simple 
parallel algorithm for its computation: each processor computes a median of its local points 
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and then median of these medians is found by any sequential algorithm and the achieved 
value is picked as the representative “median”.  

 

a) the median line L going through the 
median point q 

 

 

b) the projection of the point p on the 
vertical plane using the paraboloid 
centered at q – perpendicular view  

d) the points and the lower convex hull (dark bold line 
segments) projected back onto the paraboloid and its 

relation to the resulting triangulation 

 

 

c) the projected points and their lower 
convex hull (bold line) 

e) the Delaunay triangulation with a median line (thin 
gray line) and a joint (thin black line segments) 

Figure 4.6: The construction of the Delaunay triangulation by Hardwick's approach. The images in c, d 
and e were adopted from [Har97] 

The main algorithm continues by the construction of a paraboloid in E3 centered at the median 
q and by the construction of the projection plane yz (or xz at even levels of the recursion) 
containing the median-line L. Then the algorithm transforms all points onto the projection 
plane using the paraboloid for this purpose, i.e., the coordinates of the transformed point p' are 
equal to (py-qy, ⎥⎥ p-q⎥⎥2) where p is the original point from the input set. Let us note that at 
even levels we have to use x-coordinates of p and q. The projection is shown in Figure 4.6b. 

The lower convex hull of the projected points is found by a parallel modification of simple 
quickhull [Pre85] – see Figure 4.6c and the back projection of the resulting lower convex hull 
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into the plane xy gives a set of line segments – see Figure 4.6d. It was proven that these line 
segments form a joint that has to be present in final Delaunay triangulation. This joint 
separates the input region with the input points into two non-convex sub-regions. Both sub-
regions are simultaneously triangulated by Dwyer’s sequential algorithm [Dwy86] and the 
Delaunay triangulation is obtained by a simple union of both local triangulations. The 
resulting triangulation is given in Figure 4.6e. 

Although the algorithm by Hardwick uses a higher dimension, it cannot be included into the 
higher dimensional embedding category because this higher dimension is not used for the 
construction of the Delaunay triangulation but only for the subdivision of the set of points. In 
our opinion, the algorithm is quite complicated. Moreover, it is limited to E2 only. On the 
other hand, it achieves a very good speed-up, e.g., about 1.8 – 4.8 for 2 – 8 PEs at SGI Power 
Challenge with shared memory for the uniform data sets with 128K points. There are several 
reasons for such a very good speed-up. First, the use of median ensures that each processor 
has almost the same workload. Next, the algorithm does not need the merge phase and the 
divide phase, i.e., the described subdivision of input points, is solved in parallel. 

The just described algorithm was improved by Lee S. et al. [Lee01]. Their algorithm does not 
recursively subdivide the input points into two groups via a median line but it subdivides 
them immediately (in one step) into several slabs. The authors claim that such partitioning 
leads to a simpler algorithm. According to published graphs it is evident that also a better 
speed-up is reached. The experiments were done at INMOS TRAM network with 32 T800 
processors. Their algorithm achieves speed-up 1.36 – 12.5 for 2 – 32 PEs and uniform data. 
Better behavior of the algorithm is presented for cluster data; the speed-up about 16.9 for 32 
PEs was measured. Let us note that an objective evaluation of this algorithm is impossible 
because the authors do not present the numbers of points of their data sets. 
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5 Incremental Insertion with Local Transformations 
In previous sections, we described briefly sequential principles for the construction of the 
Delaunay triangulation and best-known existing parallel algorithms. In this section, we 
describe a sequential incremental insertion algorithm with local improvements that was 
chosen as a base for our parallel solution (will be discussed in next sections). 

Let us remind that incremental insertion algorithms insert the points in the input set S one at a 
time into an already existing Delaunay triangulation. It consists of three phases: the location 
where a simplex containing the point to be inserted has to be quickly found followed by the 
subdivision of this simplex and by the legalization where the circum-sphere criterion is 
applied and if it is necessary, the local improvement techniques are used to restore the 
Delaunay triangulation. The algorithm for the construction of DT(S) by the method of 
incremental insertion with local transformations is given in Figure 5.1.  
Input:  A set S = { p0 , p1 , ..., pN - 1 } of  N points in E2 
 
for r := 0 to m - 1 do begin   
 Locate the simplex S0 ∈ DT(S) containing pr in the DAG structure; 
 
 Subdivide S0;  //in the case where pr lies on the shared edge or face 
    //then subdivide also the appropriate adjacent simplices. 
 
 //Legalize all new simplices 
 while there exist an unchecked face F do 
  if the face F violates DT criterion  
          then perform local transformation; 
end; 

Figure 5.1: Construction of the DT(S) by incremental insertion with local transformations. 

First, let us to explain why we choose an algorithm that is not the fastest one for the 
parallelization. It is true that the incremental insertion algorithm with local transformations 
has O(N2) complexity in the worst-case and, therefore, it is not worst-case optimal. Better 
complexity O(N·log N) in the expected case can be reached if some accelerating structure, 
such as already mentioned the DAG, is used. However, this algorithm has many advantages 
over others. First, it is very simple to understand and implement. There is no significant 
difference in implementations of the version for E2 and of the version for E3. It is also 
relatively robust: in the case of an incorrect or inconsistent Delaunay criterion evaluation 
caused by numerical inaccuracy, a triangulation with two or more non-Delaunay simplices is 
obtained, but it is still a valid triangulation. There are no holes or mutually overlapping 
simplices that may result from other methods (e.g., according to our experience, incremental 
construction or D&C algorithm, or Bowyer-Watson's incremental insertion [Gol97]). 
Moreover, the algorithm can be simply modified to incorporate constraints given in the form 
of prescribed edges (or faces in E3) [Vig97], to use non-Euclidian metrics [Oka92, Vig00] or 
weights of points. Not all input points need to be available at the beginning of computation 
(although the range of their coordinates is required), which can be also an advantage for some 
applications. As the algorithm uses a randomized order of insertion and the DAG structure for 
the location of simplices, it becomes almost insensitive to the type of point distributions. 
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5.1 Initialization 
Let us have the input set S of N points. An auxiliary simplex large enough to hold all these 
points inside its interior is constructed. We prefer this large simplex to the convex hull (see 
Section 3) because it is easier and, according to our experience, more stable. One problem 
with this approach is how to choose the vertices of this simplex. If they are not far enough 
away, they may influence the empty circum-sphere tests, which may lead to the non-convex 
boundary of the resulting Delaunay triangulation. On the other hand, if the vertices are “too 
far away”, it may lead to numerical instability of the algorithm.  

Therefore, in our algorithm, the vertices have coordinates (K, 0), (0, K), (-K, -K) for the 
version in E2 and (K, 0, 0), (0, K, 0), (0, 0, K), (-K, -K, -K) for the version in E3. The value K 
is equal to the multiple of the size of the bounding box of points - see Figure 5.2. More 
detailed description is given by Žalik and Kolingerová in [Žal03]. 

 

(–K,–K) 

(0, K) 

(K, 0)

 

Figure 5.2: The selection of the auxiliary simplex in E2. The black rectangle is the bounding box. 

5.2 Location 
In the location part, it is required to find a simplex to be subdivided. It can be done either with 
use of some hierarchical structures or without them. Let us describe two different approaches 
for the location and discuss its advantages and disadvantages. 

5.2.1 The Directed Acyclic Graph – DAG 
The Directed Acyclic Graph (DAG) is a hierarchical structure that stores the history of 
changes in the Delaunay triangulation and resembles tree. Each node of this graph describes 
one simplex; the root contains the auxiliary large simplex. If we want to find a simplex 
containing the current point to be inserted, we take the root in the DAG and then test the 
mutual position of the point and the simplices stored in the children nodes. When the relevant 
child with a simplex containing the point is found, the process continues until a leaf of the 
DAG is reached. This leaf describes a simplex that has to be subdivided. When the simplex is 
subdivided (in the subdivision phase), new nodes are created and joined to the node that stores 
the subdivided simplex. Later, in the legalization phase, more simplices are transformed in 
one operation, i.e., we have more input nodes. Two or more new nodes are created and they 
are joined to all input nodes. As the DAG structure stores the full history of the changes of the 
Delaunay triangulation, it consumes a lot of memory – O(N2) in the worst-case. On the other 
hand, the location of one point in this data structure is possible in O(log N) expected time (and 
it is also optimal time) and O(N) worst time (worst time happens when the DAG is “totally 
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imbalanced”, having the shape of a list – if the order of insertion of the input points is 
randomized, such a situation is highly improbable). More details about the structure can be 
found in [Ber97]. Figure 5.3 shows the changes in the triangulation and the corresponding 
changes of the DAG structure. We describe the possible changes in the following text. 

Let us discuss the allocation and the destruction of the DAG structure. Native solution is to 
allocate new nodes successively during the process, i.e., to allocate the memory for a new 
node when it is demanded. This strategy implies that the nodes have to be successively 
destructed at the end of the triangulation. Typically, it involves a recursive traversing of the 
DAG structure. As one node may be accessed more times via various routes (at most twice 
in E2) because of local transformations, it is necessary to count the number of still not passed 
routes and do not destruct the node until this counter is zero.  

There is another strategy. It is a bit more complicated and consumes additional memory, 
however, using this strategy speed-ups the algorithm significantly. According to our 
experiments, the number of nodes in the DAG after the insertion of all points is about 6 up to 
10 times larger than is the number of points. If we allocate a continuous block of memory 
capable enough to hold 6⋅N nodes and provide the main algorithm with pointers on these 
nodes when they are demanded, the destruction of the entire DAG structure is very fast – only 
a few (usually up to 3) large blocks of memory are deallocated. 

Figure 5.3: The changes in the planar Delaunay triangulation caused by the insertion of the point pr 
and the corresponding changes of the DAG structure. 

5.2.2 Remembering Stochastic Walk 
Walking techniques are based on the searching of simplex to be subdivided directly in the 
Delaunay triangulation. Therefore, the location can take O(N) time in the worst-case. 
Fortunately, the worst-case scenario is not very probable and the location is, usually, 
performed in O(√N) expected time. Let us note that under special circumstances expected 
time O(N1/3) can be reached [Žal03]. Although walking approach is slower than the approach 
with the DAG structure, its big advantages is that it needs no additional memory, which is 
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appreciated in the case that we need to process a big data set. Different walking techniques are 
presented in [Dev01]. 

Let us describe visibility walk in E2. The E3 case is similar: triangles just have to be replaced 
by tetrahedra and edges by faces. Starting from an arbitrary triangle, the algorithm traverses 
through the triangulation testing the mutual position of visited triangles and the given input 
point until the triangle containing this point is found. For each visited triangle, it is necessary 
to detect an edge such that the line supporting this edge separates the triangle from the input 
point, which can be reduced to a single orientation test. If there is no such edge, the triangle 
contains the point in its interior. Otherwise, the search continues with the neighboring triangle 
sharing the detected common edge. Figure 5.4a shows an example of walk. 

Unfortunately, for non-Delaunay triangulations, the walk we have just described may fall into 
a cycle as illustrated in Figure 5.4b. As the constrained Delaunay triangulations (i.e., with 
some prescribed edges – will be discussed in further text), which are important in practice, are 
also non-Delaunay, a little bit of randomness has to be introduced into the algorithm in order 
to avoid infinite loops. Instead of starting the detection with the first edge of the given 
triangle, the algorithm starts with randomly picked edge. This ensures that, if the walk enters 
a cycle in the triangulation, it cannot loop in this cycle forever. Another small improvement is 
to remember, for each visited triangle, the edge that was just crossed by the walk and do not 
test this edge twice. The visibility walk algorithm with these two improvements is called 
remembering stochastic walk. 

 

a) the path of visibility walk, the dark gray triangle 
is currently being tested, light gray triangles were 

visited in previous steps 

b) an infinite cycle for the visibility walk [Dev01] 

Figure 5.4 (see also Color Plates): The visibility walk algorithm. 

5.3 Subdivision 
Let us suppose we have successfully found the triangle pi, pj, pk (or the tetrahedron pi, pj, pk, pl 
in case of E3) containing the point pr to be inserted. There are several mutual positions of this 
point and the located simplex. The simplest possible configuration is that the point lies strictly 
inside the simplex. In this case, all vertices of the located simplex are connected with the 
point by an edge and the simplex is subdivided into several new simplices. These are three 
triangles in E2 (see Figure 5.5a) and four tetrahedra in E3 (see Figure 5.6a). 
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a) the point to be inserted lies strictly inside b) the point to be inserted lies on an edge 

Figure 5.5: Subdivision in E2. 

Slightly more complicated situation occurs when the point to be inserted lies on an edge (for 
E2 only) or on a face (for E3 only). In both cases, it is necessary to subdivide not only the 
located simplex but also the adjacent simplex that shares this edge or face. It results in four 
new triangles (see Figure 5.5b) or six tetrahedra (see Figure 5.6b). 
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a) the point to be inserted lies strictly inside b) the point to be inserted lies on a face 
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c) the point to be inserted lies on an edge; only two tetrahedra are shown - see the projection to xy-
plane in the right to see their position in space 

Figure 5.6: Subdivision in E3. 

If the point to be inserted lies on an edge of the simplex in E3, all simplices sharing this edge 
have to be subdivided. In the worst-case, all simplices in the triangulation will be subdivided. 
Each simplex is subdivided into two new simplices (tetrahedra) – see Figure 5.6c. Let us note 
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that the handing of this case is time consuming and its implementation is quite difficult. 
Therefore, when it is detected that the point lies on an edge, its insertion may be postponed in 
the hope that, as the triangulation dynamically changes, this edge will no longer exist in the 
triangulation when the point arrives later again. Another option is to shift slightly the point in 
a random direction and thus avoid insertions on edges at all. As this option introduces an 
inaccuracy, it is allowed only in some applications. 

5.4 Legalization 
After the subdivision, we have a new triangulation. However, it may not be the Delaunay one. 
Therefore, all outer edges (or faces in the case of E3) of currently created simplices have to be 
tested whether they do not violate the empty circum-sphere criterion, i.e., whether the far 
point of the simplex adjacent to the new one does not lie inside the circum-sphere of this new 
simplex. If the condition is not fulfilled, the triangulation has to be changed by applying the 
local transformations. The transformation in E2, which is shown in Figure 5.7, is simple: the 
edge is just swapped (see also Figure 4.2). 

 

 

Figure 5.7: Local transformations in E2. The edge is swapped. 

After that, indeed, we have new outer edges (or faces) that have to be tested. Figure 5.8 shows 
an example of the propagation of the local transformations in E2. The located triangle is 
subdivided into three new triangles (Figure 5.8a – dotted line). Then, the circum-circle 
criterion is tested on all these new triangles. The test for the triangle T1 fails because the far 
point p1 of the adjacent triangle lies in the circum-circle of the triangle T1. The shared edge is 
flipped. As the circum-circle of the just created triangle T2 is not empty, the flipping has to 
continue – see Figure 5.8b. Finally, the Delaunay triangulation is achieved (Figure 5.8c). 

 

a) subdivision b) propagation of flips c) the resulting triangulation 

Figure 5.8: The incremental insertion in E2. Edges that should be flipped are bold. 

T1 T2

p1 

point to be 
inserted  
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While in E2 two simplices were replaced by new two simplices, the situation in E3 is not so 
simple. The local transformations [Joe91] are applied on a set of two to four simplices and 
result in new up to four simplices. Let us have a pair of tetrahedra with vertices pi, pj, pk, pl 
and pm sharing the illegal (i.e., needed to be changed) face pi, pj, pk. If the line segment pl, pm 
intersects this face and does not intersect any edge of the face, then this pair of tetrahedra is 
replaced by three tetrahedra pi, pj, pl, pm; pi, pk, pl, pm and pj, pk, pl, pm – see Figure 5.9.  
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Figure 5.9: Local transformation of two adjacent tetrahedra pi, pj, pk pl and pi, pj, pk, pm sharing illegal 
face pi, pj, pk into three tetrahedra pi, pj, pl, pm; pi, pk, pl, pm and pj, pk, pl, pm. 

If the line segment pl, pm does not intersect the face pi, pj, pk and the simplex pi, pj, pk, pm is 
available, this triple of tetrahedra is replaced by a pair of tetrahedra – see Figure 5.10. 
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Figure 5.10: Local transformation of three adjacent tetrahedra (tetrahedron pj, pk, pl, pm is shown 
separately to increase readability) pi, pj, pk, pl; pi, pj, pk, pm and pj, pk, pl, pm into a pair of tetrahedra 

pi, pj, pl, pm and pi, pk, pl, pm. 

A more complicated situation occurs if the line segment pl, pm intersects some edge of the 
illegal face pi, pj, pk. In such a case, the faces pj, pk, pl and pj, pk, pm are coplanar and may or 
may not be shared with other two tetrahedra. If these tetrahedra do not exist, the illegal face is 
simply swapped and new pair of tetrahedra is created, otherwise we need also to swap the face 
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between the adjacent pair of tetrahedra, i.e., new four tetrahedra are generated. Figure 5.11 
shows these local transformations. 
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a) Local transformation of two tetrahedra into two tetrahedra pi, pj, pl, pm and pi, pk, pl, pm. 
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b) Local transformation of four tetrahedra into four tetrahedra pi, pj, pl, pm; pi, pk, pl, pm; pj, pl, pm, pn and 
pk, pl, pm, pn. 

Figure 5.11: Local transformation of tetrahedra with the coplanar faces pj pk pl and pj pk pm. 

Let us note that to perform a transformation, it is necessary to find all simplices adjacent to 
the tested one. Adding pointers on the neighbors into the data structure describing simplex is 
the simplest and the most efficient solution.  

5.5 Finalization 
Another small problem appears when the construction has been finished and the algorithm 
should extract the triangulation from the leaves. The most efficient solution is to have the 
leaves in a bidirectional list and know (or find) the head of such a list. Therefore, pointers 
'Next' and 'Last' were included into the data structure. Let us note that all simplices having at 
least one vertex of the big auxiliary simplex have to be removed from the triangulation.  
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6 Parallelization Problem 
Modern computer architectures allow us to compute the Delaunay triangulation in E2 or E3 
with thousands of points by a sequential algorithm in reasonable time. However, current 
applications often need to work with data sets such that they cannot be computed in one piece 
because of the common memory size limitations or their processing consumes too many time. 
In such cases, a parallel algorithm is useful and welcome. We can identify two different 
parallelization purposes. The first one is to compute the Delaunay triangulation of set of 
points in as shortest time as possible without considering memory limitations. A different 
problem is to compute the Delaunay triangulation of very large input data sets where the final 
time is not as important as the memory utilization of PEs. 

Quite a big set of parallel algorithms exists (see Section 4), however, they were designed in 
times when special parallel architectures, with hundreds of processors, dominated in the 
research area and thus they put stress usually on the scalability rather than on the robustness 
and simplicity. In the last few years, symetric multiprocessors with several processors and 
shared memory (especially two-processors) and clusters of workstations (especially computer 
networks) have become very popular due to their low prices. Many existing algorithms can be 
used after some modifications for these hardware architectures. However, it is a question 
whether the efficiency of a modified parallel algorithm is still good enough. Moreover, there 
is no doubt that the modified algorithm is often unnecessarily complicated for the low-degree 
of parallelism. This led us to the idea to develop a new algorithm that can process small data 
sets quickly on architectures with a limited number of processors (typically 2 or 4) and with a 
shared memory, and to develop a new algorithm suitable for clusters of workstations that can 
process large data sets. We have chosen the randomized incremental insertion algorithm 
described in Section 5 as a base for our parallel algorithms because of its good advantages, 
mainly because of its simplicity or robustness (see the previous section for more details).  

In this section, we discuss general problems of parallelization of incremental insertion with 
local transformations common to both parallelization purposes (i.e., speed and unlimited size) 
such as analyzis of required synchronizations or distribution of work over processors. 

6.1 Analysis of the Sequential Algorithm 
Let us remind that incremental insertion algorithms described in the previous section insert 
the points in the input set S one at a time into an already existing Delaunay triangulation. The 
order of insertion does not influence the result, i.e., it does not matter if some point p1 is 
inserted before another point p2 or vice versa. It is a very important fact because it allows us 
to use SPMD or MPMD paradigms (see Section 2) in order to parallelize the given algorithm. 

The main idea is to let several processors to insert the points simultaneously into the 
Delaunay triangulation that is stored in the shared memory in the case of symmetric 
multiprocessors or distributed over local memories in the case of clusters of workstations. Let 
us note that the distribution of the Delaunay triangulation introduces several new problems 
such as how to ensure consistency between simplices stored on different computers. These 
problems will be discussed in Section 8. 

The incremental insertion algorithm consists of three main phases: the location, followed by 
the subdivision and by the legalization. In all phases, the algorithm needs to access the data 
structure storing information about simplices (i.e., the Delaunay triangulation), however, in 
a different way. In the location, data structure is accessed for reading only in such a manner to 
find the simplex containing the point to be inserted. Afterwards all corresponding simplices 
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are subdivided and legalized, i.e., the data structure is modifed. The parallelization of the 
location phase will probably require different parallel programming techniques than the 
parallelization of remaining phases (i.e., the subdivision and the legalization). 

Typical runtimes needed by various stages of the sequential algorithm with DAG hierarchical 
structure are in Figure 6.1. For remembering stochastic walk, time spent in the location phase 
is slightly larger. The majority of time in E2 is consumed by the location phase (about 60 – 
70%). The parts when the structure is modified take up to 25%. The remaining time is used 
for extraction of the DT(S) from the DAG structure and for the destruction of this structure, 
thus for the sequential part of the algorithm. The situation differs in E3 where the most 
complex part is the legalization phase (about 65 – 80%) while the location phase needs up to 
30%. According to this profiling, it seems to be not very probable that one parallel algorithm 
would work efficiently in both dimensions. 

0%

25%

50%

75%

100%

10
00

50
00

10
00

0

50
00

0

10
00

00

50
00

00

10
00

00
0

Location Subdivis ion
Legalization Other

 

0%

25%

50%

75%

100%

10
00

50
00

10
00

0

50
00

0

10
00

00

20
00

00

24
00

00

Location Subdivis ion
Legalization Other

 

a) E2 b) E3 

Figure 6.1: Typical runtimes needed by various stages of the sequential algorithm with DAG. Uniform 
data sets were tested. 

Now, we discuss differences in the parallelization of phases in more detail. A simplex can be 
accessed simultaneously by several processors if all processors need it for read-only purpose. 
When any processor needs to modify it, some synchronization has to be implemented because 
otherwise the concurrency could produce artifacts in the resulting Delaunay triangulation or 
even could lead to the collapse of the program. The main reason for this behavior is that 
processors run in unpredictable speed. Figure 6.2 shows one of the possible results of the 
unsynchronized subdivision phase when two points are to be inserted into the same triangle. 
Both processors performed subdivision using local data structures and started to update the 
common triangulation. The second processor started the update earlier than the first one, 
however, finished it later. This caused that the connectivity of two left most triangles updated 
by the second processor was overwritten by the information from the first processor. 

It is quite clear that any synchronization takes additional time and an efficient parallel 
algorithm has to avoid synchronization as much as possible. There is also no doubt that the 
avoidance of synchronization in the subdivision or the legalization is impossible; we can just 
reduce time required for the synchronization. However, it could be done for the location. 
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a) subdivision to be performed by 
the first processor 

b) subdivision to be performed by 
the second processor 

c) one possible result of the 
performed subdivisions 

Figure 6.2: Simultaneous unsynchronized insertion in E2. 

Let us suppose the DAG hierarchical structure used for the location. The algorithm modifies 
leaves only and, therefore, all parent nodes in the DAG may be tested in the location 
simultaneously without any synchronization. The detection whether the tested node is a leaf 
or not is straightforward and, therefore, we could expect that a parallel algorithm with DAG 
structure will be quite efficient.  

For walking techniques, the situation is different because, in terms of the DAG approach, the 
algorithm works just with leaves. We can deal with this problem as follows. If a node (i.e., the 
data structure of simplex) is currently being modified, the simpex cannot be tested 
immediately but the processor has to wait until the modification of this node is finished. The 
detection whether the test can be performed without synchronization can be done, e.g., by 
a check of flag added into the node data structure. Indeed, operations (set, clear, check) with 
this flag consume some time and, therefore, the performance of proposed parallel algorithms 
is reduced.  

Let us note that a parallel algorithm using another hierarchical structure for the location, e.g., 
[Dev98], should achieve efficiency lower than the same algorithm with the DAG structure, 
however, higher than the same algorithm exploiting a walking technique. 

6.2 Subdivision of Input Points – workload 
To achieve efficiency as close to the optimal efficiency as possible, we have to minimize the 
total time spent inactively, e.g., because of synchronization or communication between 
processors. This requires minimizing of the number of cases when a processor needs to access 
data stored remotely or currently modified by another processor. As the processor accesses, 
usually, only the nodes that store simplices lying closely to the position of currently inserted 
point, there is no doubt that the way how input points were assigned to processors 
significantly influences the performance of given parallel Delaunay triangulator. 

For symmetric multiprocessors, all data is stored in the shared memory and, therefore, all that 
is needed is to reduce the amount of required synchronization. The simplest possible strategy 
is to subdivide points randomly into k groups (k is the number of available processor) in such 
a manner to ensure equal number of points in each group. Due to this randomization, it is 
highly improbable that two processors insert two close points simultaneously.  

For clusters of workstations, the described strategy is useless because it would require a lot of 
communication to retrieve remotely stored data. Better seems to be a subdivision of input 
points into k groups in such a manner that not only the equal number of points in each group 
is ensured but also the bounding boxes of these groups have minimal intersection. In an ideal 
case, all triangles (tetrahedra) created by one processor then form just one fragment, i.e., a 
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continuous area (volume). A simple way is to subdivide input points into k slabs in x-
coordinate. There is one serious drawback with this simple solution: for non-uniform data 
sets, points are not subdivided equally and, therefore, workload is imbalanced. Moreover, 
when k is larger, the total length of boundaries among groups is larger and slabs are very 
narrow, which leads to a larger number of required synchronizations. Indeed, the problem 
with too narrow areas could be simply handled by dividing the input points using cuts not 
only in x-coordinate but also in y-coordinate (and in E3 in z-coordinate). It, however, does not 
solve the problem with imbalanced workload in the case of non-uniform data sets. Therefore, 
let us describe other two more general strategies. 

Whelan [Whe85] proposed an algorithm originally used for the problem of parallel ray-
tracing. Starting with bounding box of points, the algorithm recursively divides this box into 
groups until the number of groups equals to the number of available processors. In each step 
of the recursion, median of w-coordinates, where w denotes the dimension of longest side of 
the current box, is found and box is cut into two parts at this place – see Figure 6.3. As the 
precise computation is not needed, an approximated method, e.g., [Bat99], for median 
computation can be exploited. Such a solution usually requires O(N) time in the worst-case. 
Parallel versions of approximate median computations also exist; one of them can be found in 
Hardwick et al. [Har97]. Whelan's approach ensures even distribution of points and, therefore, 
balanced workload. On the other hand, the algorithm is suitable only for k=2m processors, 
where m is an integer. The median computation also takes a lot of time (especially for larger 
data sets); it requires O(k·N) time in the worst-case.  

Figure 6.3: A median based division of points in E2. 

Mueller’s approach [Mue97] developed for parallel ray-tracing overcomes disadvantages of 
the median based algorithm. It is also a recursive algorithm that splits the box into two parts 
in each step but unlike Whelan it does not need to achieve the same level of recursion 
everywhere. This allows exploiting an arbitrary number of processors. In the preprocessing 
stage, Mueller constructs a binary tree containing the plan of division as follows. Starting with 
k leaves evaluated by the value 1, the algorithm successively merges nodes until the root is 
achieved assigning to each inner node the sum of values of its children. Values in children of 
a node denote the ratio in which the box of this node should be split, e.g., having 5 processors, 
the first box will be divided into two parts in the ratio 3 to 2.  Figure 6.4 shows an example of 
tree construction for 5 processors.  
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Figure 6.4: The construction of division tree. 

Afterwards, a uniform grid covering the bounding box of points is created, each cell of this 
grid is evaluated according to the number of points lying in this cell and a summed-area table 
of the grid is computed. Summed-area table is such a table that the value of its cell at the 
position [i, j, k] is equal to the sum of the values of the cells in the original grid at positions [0 
up to i, 0 up to j, 0 up to k]. Figure 6.5 shows an example of grid and summed-area table 
construction in E2. Let us note that the summed-area table can be efficiently found in O(R), 
where R is the total number of cells. 
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a) grid covering data b) grid evaluation c) summed-area table 

Figure 6.5: The construction of summed-area table in E2. 

The input data set is recursively divided into k groups according to the plan introduced in the 
preprocessing stage of the algorithm and exploiting the summed-area table. In each step of the 
recursion, the dimension of the longest side of the box is picked and the appropriate position 
of cut in the table is found. Let us explain the process by an example in E2 for 5 processors – 
see Figure 6.6. In the first step, we divide the summed-area table into two parts in ratio 3:2 in 
y-coordinate. In an ideal case, the first part of the summed-area will consist of 3/5·409 = 245.4 
points. It is, however, impossible to find an exact position of cut to achieve this ideal case due 
to the error introduced by the bucketing of points into the grid. All that can be done is to find 
a cut that minimize the deviation from the ideal case as follows. First, the proper position of 
value 245.4 in the one-dimensional array 13, 42, up to 409 (i.e., the last column in the table) is 
found. As this array is ordered, we can use modified binary-search algorithm for this purpose. 
The value somewhere lies between values 247 and 278. It is necessary to decide whether the 
value 247 will belong to the first part or the second one. The first possibility introduces the 
error 245-219=26 and the second possibility the error 247-245=2. Therefore, the cut between 
the values 247 and 278 is created and the summed-table area updated as Figure 6.6b shows. 
In the second step, we divide the first part in ratio 1:2 in x-coordinate (the longer one). The 
position of the value 1/3·247 = 83.3 in vector 41, 89, etc. (i.e., the last row in the area) is 
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found. It is between values 41 and 89, minimal error is achieved if the cut is constructed 
behind 89. The table is subdivided and values are updated – see Figure 6.6c. The algorithm 
continues until k groups are created. Figure 6.6d shows the result of the algorithm. As it can 
be seen, the workloads are 89, 75, 83, 91 and 71, i.e., relatively evenly distributed. 

Unlike Whelan's approach, Mueller does not achieve perfectly balanced workload. However, 
it could be easily improved by successive finding of parts of grid where cuts lie until the 
required precision of balance is matched. As we did not noticed significant imbalance in our 
experiments with this points subdivision strategy, we do not use this modification. A great 
advantage of the algorithm is its complexity, it needs O(N + k·R) in the worst-case. Moreover, 
not all points need to be stored in the main memory because their coordinates are not used in 
the algorithm. If extremely large data set is considered, Mueller's approach is, therefore, an 
ideal choice.  

1 3 6 9 11 12 12 13 13 13
4 12 20 27 32 35 37 40 42 42
8 23 37 49 59 66 71 76 81 83

14 37 60 79 96 109 118 126 133 136
20 48 77 100 120 135 146 155 164 169
26 59 92 118 140 156 168 178 189 195
33 72 110 138 161 178 190 200 212 219
41 89 134 164 188 205 218 228 240 247

47 103 157 190 216 235 249 259 271 278
53 114 174 212 242 264 280 291 303 310
59 125 189 231 267 293 312 325 338 345
66 138 207 253 291 319 339 353 367 375
72 150 225 276 318 349 371 385 400 409  

1 3 6 9 11 12 12 13 13 13
4 12 20 27 32 35 37 40 42 42
8 23 37 49 59 66 71 76 81 83

14 37 60 79 96 109 118 126 133 136
20 48 77 100 120 135 146 155 164 169
26 59 92 118 140 156 168 178 189 195
33 72 110 138 161 178 190 200 212 219
41 89 134 164 188 205 218 228 240 247

6 14 23 26 28 30 31 31 31 31
12 25 40 48 54 59 62 63 63 63
18 36 55 67 79 88 94 97 98 98
25 49 73 89 103 114 121 125 127 128
31 61 91 112 130 144 153 157 160 162  

a) the summed-area table b) after the first division 

1 3 3 6 8 9 9 10 10 10
4 12 8 15 20 23 25 28 30 30
8 23 14 26 36 43 48 53 58 60

14 37 23 42 59 72 81 89 96 99
20 48 29 52 72 87 98 107 116 121
26 59 33 59 81 97 109 119 130 136
33 72 38 66 89 106 118 128 140 147
41 89 45 75 99 116 129 139 151 158

6 14 23 26 28 30 31 31 31 31
12 25 40 48 54 59 62 63 63 63
18 36 55 67 79 88 94 97 98 98
25 49 73 89 103 114 121 125 127 128
31 61 91 112 130 144 153 157 160 162  

1 3 3 6 2 3 3 4 4 4
4 12 8 15 5 8 10 13 15 15
8 23 14 26 10 17 22 27 32 34

14 37 23 42 17 30 39 47 54 57
20 48 29 52 20 35 46 55 64 69
26 59 33 59 22 38 50 60 71 77
33 72 38 66 23 40 52 62 74 81
41 89 45 75 24 41 54 64 76 83

6 14 23 3 5 7 8 8 8 8
12 25 40 8 14 19 22 23 23 23
18 36 55 12 24 33 39 42 43 43
25 49 73 16 30 41 48 52 54 55
31 61 91 21 39 53 62 66 69 71  

c) after the second division d) the result 

Figure 6.6: The partitioning of summed-area table in E2 into 5 groups. 

In our parallel approaches (see Section 7), we use a simple random subdivision or median 
based subdivision, while in distributed approaches (see Section 8) Mueller’s approach is 
preferred. Comparison of different strategies can be found in Section 9 and also in [Koh04b]. 
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7 Parallelization for Symmetric Multiprocessors 
In the previous section, we defined two parallelization purposes: to compute the Delaunay 
triangulation in as short time as possible and to compute the Delaunay triangulation of big 
data sets (theoretically unlimited). In this section, we propose several parallel algorithms that 
fulfill the first purpose.  

We have chosen symmetric multiprocessors with several processors and shared memory as a 
parallel platform for these algorithms because of these three reasons. First, the time needed 
for synchronization is lower on the architectures with shared memory than on architectures 
with distributed memory. Next, the parallelization for this architecture is easier for the 
implementation, which allows us to develop algorithms that are simple to be implemented 
even by a person focused on computer graphics without a deep knowledge of parallel 
computations. Finally, symmetric multiprocessors belong to common equipment of 
laboratories; thus nothing special is needed.  

We start several threads (usually one per each processor) and let them to insert points 
simultaneously into the triangulation stored in the shared memory. Indeed, we have to prevent 
a thread to perform a non-consistent modification somehow. In order to achieve as short 
construction time as possible, we decided to use the DAG structure for the location of 
simplices to be subdivided – see also discussion in the previous section. 

7.1 Parallel Location Phase 
In the location phase of the algorithm, the DAG structure is accessed read-only in such a 
manner to find the simplex containing the point to be inserted. As the algorithm modifies 
leaves only, all parent nodes in the DAG may be tested simultaneously without any troubles. 
To determine which child of the currently tested node can be accessed without the 
synchronization, we added a parameter into each node in the DAG structure. If the i-th bit in 
the value of this 3-bits (4-bits in E3) long parameter is set to one then the i-th child is a leaf 
and has to be accessed exclusively. As any synchronization negatively influences the 
efficiency of the algorithm, the non-leaf children are tested first.  

Figure 7.1 explains the meaning of the parameter in E2. For an easier understanding, let us 
indicate by a letter L that the first bit is set to one (i.e., the first – left – child is a leaf), 
similarly M for the second bit and R for the third bit. Thus, for example in the “MR node” the 
thread can test the triangle in the left branch but testing triangles in the middle and right 
branches has to be synchronized. 

 

MRLMLM 

LMR

 

Figure 7.1: The classification of the nodes in the DAG. 
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7.2 Parallel Subdivision and Legalization Phases 
In the subdivision and the legalization phases, a thread has to access one or more nodes and 
modify them. To avoid the collisions of the thread (in the meaning of simultaneous 
modification of the same node), we need to implement some synchronization mechanism. 
There are two possibilities of synchronization: the thread gets the exclusive access either to all 
leaves together or only to the currently requested node. We have identified three basic 
principles (they will be more discussed in the following text) according to these possibilities: 

• Batch – several searching threads do the location and only one specialized thread handles 
the subdivision and the legalization phases. 

• Pessimistic – all threads do the same work, however, the subdivision and the legalization 
can be done only in a critical section to ensure an exclusive access to the shared DAG.  

• Optimistic – all threads do simultaneously all parts of the algorithm, if they want to 
modify a simplex, they need to get an exclusive access to it. 

Let us note that batch and pessimistic principles are useless when some walking technique is 
used for the location instead of a hierarchical structure (such as the DAG). 

7.3 Batch Principle and Batch Method 
In the batch principle, there are several searching threads and one specialized thread. When a 
searching thread (producer) finishes its unsynchronized location, it puts an index of the 
currently inserted point into a queue in the shared memory. The specialized thread (consumer) 
gets the index from this queue, completes the location of the node to be subdivided, 
subdivides it and processes the legalization.  

If the queue is empty, the specialized thread must wait, if it is full, the searching thread(s) 
must wait. The key issue is how long the queue should be to prevent the waiting of the 
threads. A long queue implies greater possibility that the unsynchronized part of the location 
stops for many points in the same node and the specialized thread will spend more time to 
complete the location. Even worse is to have a short queue because the queue would be full in 
a short time and the performance would decrease. According to our experiments [Koh04c], 
the queue length of 1024 seems to be optimal.  

This method seems reasonable only for such a case when the time spent in the location is 
larger than 50%. Therefore, it makes no sense to consider it in E3. According to profiling of 
the sequential algorithms (see Section 6), we can roughly estimate that the batch method in E2 

should achieve the highest speed-up when 3 searching threads are used at the architecture 
with four processors. Algorithms for searching thread(s) and the specialized thread are 
described in Figure 7.2.  

7.4 Pessimistic Principle and Pessimistic Method 
In this case, all threads do the same work. When a thread needs to access a leaf-node in the 
location phase, it enters the critical section, finishes the location on the leaf level, performs 
the subdivision and the legalization, and finally leaves the critical section.  

The pessimistic method is simple but critical sections can be expected to limit its speedup. As 
usually two threads do not need to enter the critical section exactly at the same time, one 
thread performs the location and another one performs simultaneously the subdivision or the 
legalization for some time before the first thread (i.e., the thread that has just finished the 
location) has to start its waiting. It allows using this method even in the case when the 
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location phase does not consume more than 50%, i.e., pessimistic method is also available in 
E3 but a substantial speed-up cannot be expected. The algorithm for inserting threads of 
pessimistic method is described in Figure 7.3. As it can be seen, this algorithm does not differ 
too much from the sequential algorithm given in Figure 5.1. 
The searching thread 
Input:  A set Sk = { p0 , p1 , ..., pm - 1 } of  m points in E2, Sk ⊂ S 
 
for r := 0 to m - 1 do begin   
 Locate the triangle T0 containing pr on the level of the parents  
        of the leaves in the DAG structure; 
 if the shared queue is full then wait; 
 put {T0 , pr } into the queue end; 
 
The special thread 
Input:  Requests {Ti, pj} in the shared queue 
 
while not all points inserted do begin  
 if the shared queue is empty then wait; 
 get { T0 , p0 }from the queue; 
 Locate the triangle T1 ∈ DT(S) containing p0; //start at T0 
 Subdivide T1;  // in the case where p0 lies on the shared edge, say  
    //between T1 and T2, then subdivide also T2. 
 //Legalize all new triangles 
 while there is an unchecked edge E do 
  if the edge E violates DT criterion 
          then perform local transformation 
end; 

Figure 7.2: Parallel construction - the batch method 

The insertion thread 
Input:  A set Sk = { p0 , p1 , ..., pm - 1 } of  m points in E2, Sk ⊂ S 
 
for r := 0 to m - 1 do begin   
 Locate the simplex S0 containing pr on the level of the parents  
        of the leaves in the DAG structure; 
 Enter a critical section; 
 Locate the simplex S1 ∈ DT(S) containing pr; //start at S0 
 Subdivide S1;  //in the case where pr lies on the shared edge or face 
    //then subdivide also the appropriate adjacent simplices 
 
 //Legalize all new simplices 
 while there exist an unchecked face (or edge) F do 
  if the face F violates DT criterion  
          then perform local transformation;  
 Leave a critical section; 
end; 

Figure 7.3: Parallel construction - the pessimistic method. 

7.5 Optimistic Principle and Optimistic Methods 
Although in the worst case the insertion of the point causes a modification of the whole 
triangulation (i.e., all leaves are modified), changes are usually limited to several nodes of the 
DAG only. Figure 7.4 shows an example of the locality of changes in the triangulation in E2. 
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When a new point is inserted, only those triangles, whose circum-circles contain this point, 
have to be modified. In the figure, these triangles are marked by the dark gray color. No other 
triangles are modified.  

 

Figure 7.4: The locality of changes in the triangulation in E2. Inserted point is marked by a cross. 

As the order of insertion of the points is randomized, it is very probable that the set of the 
nodes accessed due to the insertion of the point Pi and the set of the nodes accessed due to the 
insertion of the point Pi+1 are two disjunctive sets. Therefore, synchronization strategy that 
allocates all leaves to only one thread (like in the batch and pessimistic methods) is a kind of 
luxury. Let us consider a more efficient strategy. In the shared memory, sets Mt of accessed 
nodes (t = 0 – k-1, where k is number of used threads) are created. The sets are distributed 
among all threads. Each thread can access any set for read-only purpose and its own set for 
write purpose also. The work of the thread Ti can be described by the following algorithm:  

1. Empty set Mi  

2. Perform the location 

3. Insert all nodes that are needed into the set Mi. Note: the detection of the nodes and 
their insertion to the set has to be done as an atomic operation. 

4. If the intersection of Mi and Mj (j = 0 – k-1 and j≠ i) is not empty then wait until Mj is 
modified (i.e., until Tj completes the insertion of its point) and go back to 1. Note: the 
whole testing has to be done as an atomic operation. 

5. Finish the location, perform the subdivision and the legalization and go back to 1. 

The node should be accessed during the subdivision or the legalization if the currently 
inserted point lies inside the circum-sphere of node's simplex. It may not be an easy task to 
determine all such nodes at the beginning of the subdivision. Moreover, in the legalization 
phase it is necessary to apply the same test once again to perform flips, which would reduce 
the performance of the proposed parallel solution. Therefore, the set Mi is constructed 
successively, i.e., whenever a node (simplex) Sn is needed by the thread Ti, the thread makes 
the following actions: 

1. If the node Sn already exists in Mi, go to 4. 

2. If the node Sn exists in any concurrent set Mj, wait until Mj does not contain this node.  

3. Add the node Sn into Mi. 

4. Access the node Sn. 
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This solution introduces a problem of the deadlock caused by a mutual waiting of the threads. 
We have designed several methods based on the just described optimistic principle: optimistic 
method, burglary method and circum-circle method. They differ in the representation of the 
set Mi and in the strategy of the deadlock handling. 

7.5.1 Optimistic Method 
We added a "lock" parameter into each node. The zero value of the parameter means this node 
is not allocated to (locked by) any thread, non-zero value i+1 means it is allocated to (locked 
by) the thread Ti. The thread can access only nodes already locked by it. The nodes are locked 
in the locking routine except for the nodes newly created in the subdivision or the legalization 
– these nodes are automatically allocated to the creating thread Ti by the simple setting of the 
"lock" parameter to the value i+1. In the locking routine, naturally, the thread can lock the 
node only if it is not locked by another thread.  

Let us note that the lock testing and lock setting in the routine has to be done together as an 
atomic operation.  It can be done in a critical section, however, entering and leaving a critical 
section slow down the computation if we use standard techniques for the synchronization 
provided by the operating system, such as semaphores. Fortunately, it is not necessary to use 
them because low-level atomic instructions are usually available, e.g., Intel x86 provides 
atomic instructions such as XADD, CMPXCHG, lock INC or lock DEC which are 
satisfactory for our purpose – for details see [Koh04b].  

If the thread cannot lock the node, it has to perform one of the following two strategies: 

• Detection strategy – detect whether the thread should wait until the required node is 'free' 
or give up the insertion for the moment, undo all changes and return to the location part 
because the mutual waiting of the threads would cause the deadlock. This detection 
requires a short critical section and it could limit the performance of the algorithm. 

• Priorities strategy – compare whether thread priority is larger than the priority of blocking 
thread. If the result is positive, it starts to wait, otherwise it gives up the insertion for the 
moment, undoes all changes, returns back to the location part and sets its priority to 1 + 
maximum of the current priorities of all threads. In such a strategy, the thread could often 
undo the changes unnecessarily.  

According to our experiments (not presented here), we found that both strategies are more or 
less the same. Therefore, the priorities strategy is no longer considered in the next text. The 
simplified version of the algorithm for inserting threads is described in Figure 7.5. 

We decided to use pseudo-active waiting: the thread repeatedly yields its short time interval 
until it can continue. The spared time can be used by another thread. If a thread waits only for 
a short time (as usually in our case), this solution leads to greater performance than the use of 
standard resources for synchronization supported by the operating systems, such as 
semaphores, etc. 

Whenever the node is newly locked, the pointer to this node is added to a local array 
accessible just to the locking thread. According to our experiments, the fixed length of 8192 
items in this array is sufficient in E2. It is impossible to find any fixed length in E3. Therefore, 
the algorithm enlarges the array dynamically during the computation whenever it finds that 
more than 60% of the array is full.  

The thread unlocks all nodes when it completes the insertion of its current point. However, it 
is usually not necessary to keep the node locked for the whole insertion of the point. 
Therefore, we also tried to unlock the node as soon as it is detected that the node will not be 
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accessed again in this insertion of the point. Our experiments, however, show that such 
strategy is useless because it consumes more time than the original one. 

The subdivision and the legalization have to be considered as an atomic operation to ensure 
the quality of the resulting triangulation. Therefore, the transaction mechanism has to be 
incorporated in this method. When a thread modifies the node, it logs the changes into a 
journal. If the thread has to give up the insertion and return to the location phase, it reads this 
transactional journal backward and undoes the changes. The journal is implemented as a static 
stack data structure capable to hold 4096 items in E2 because, according to our experiments, 
no more than 1000 transactions are performed for any tested data set. In E3, the number of 
transactions is sometimes quite big – we have found up to 200 thousands of transactions. As it 
is unnecessarily to use such very large stack and this value is not ensured to be a maximum, 
we use a dynamic solution similar to that one used for storing locked nodes. 
The insertion thread 
Input:  A set Sk = { p0 , p1 , ..., pm - 1 } of  m points in E2, Sk ⊂ S 
 
for r := 0 to m - 1 do begin   
1: Locate the simplex S0 containing pr on the level of the parents  
        of the leaves in the DAG structure; 
 Lock S0;  //always succeeds 
 if S0 is not on the level of the parents of the leaves then begin 
  Unlock S0; 
  goto 1; 
 end; 
 
 Locate the simplex S1 ∈ DT(S) containing pr; //start at S0 
 Lock S1 and all its neighbors;  
  //in the case where pr lies on the shared edge or face then  
  //lock also the appropriate adjacent simplices and their neighbors 
 if a deadlock has been detected then begin 
  Unlock all simplices; 
  goto 1; 
 end; 
 
 Subdivide S1;  //in the case where pr lies on the shared edge or face 
    //then subdivide also the appropriate adjacent simplices 
 
 //Legalize all new simplices 
 while there exist an unchecked face (or edge) F do 
  if the face F violates DT criterion then begin 
   Lock all simplices sharing the face F and all their neighbors; 
   if a deadlock has been detected then begin 
2:    Undo all changes; 
    Unlock all simplices; 
    goto 1; 
   end;    
   perform local transformation;  
  end; 
 
3: Confirm all changes; //i.e., empty transaction journal 
 Unlock all simplices; 
end; 

Figure 7.5: Parallel construction - the optimistic method (simplified version). 
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Figure 7.6 shows a simplified version of the deadlock (it is caused by the mutual waiting of 
threads) handling in E2. Number in a triangle identifies the thread that locked the triangle. An 
arrow crossing an edge means that the thread that locked the triangle where the arrow begins 
needs to access the triangle where the arrow ends. In Figure 7.6a, the thread T3 needs to 
access a triangle that is currently locked by the thread T1, therefore, it has to wait. As the 
thread T2 needs a triangle locked by T3, it has to wait as well. The last thread T1, currently 
operating with the upper left triangle, gets an exclusive access to the adjacent triangle and it 
flips the common edge to fulfill the circum-sphere criterion. This change could violate the 
criterion elsewhere and, therefore, the thread needs to access another triangle. This triangle is 
locked, however, by the thread T2 – Figure 7.6b. As the waiting would lead to deadlock, the 
thread T1 gives up the insertion and unlocks all triangles. Now, the thread T3 can continue – 
see Figure 7.6c. Meanwhile, the thread T1 tries to insert its point once again. 
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Figure 7.6: The deadlock handling in the optimistic method – E2 case. 

7.5.2 Burglary Method 
There is no doubt that the transaction mechanism (needed for deadlock handling) negatively 
influences the performance of the parallel solution. Our experiments [Koh04b], however, 
show that the probability of the occurrence of deadlocks is almost negligible and it decreases 
with the growing number of input points. This means that the transactions are in most cases a 
kind of luxury and, therefore, some strategy, which avoids the transactions, is welcome. 

Burglary method is a modification of the optimistic method. It does not use the transaction 
mechanism, the deadlocks are handled in a different way: when a thread detects the deadlock 
(i.e., it cannot access the requested node and it cannot start to wait because its waiting would 
cause the deadlock), it grants itself a right to access all nodes locked by its counterpart and 
continues. As its counterpart waits and will wait at least until the offending thread unlocks its 
nodes, the concurrency is avoided. The algorithm for inserting threads of the burglary method 
differs from the algorithm given in Figure 7.5 only in that there is no code on lines 2 and 3. 

Figure 7.7 brings an example of deadlock handling in E2. Number in a triangle identifies the 
thread that locked the triangle. An arrow crossing an edge means that the thread that locked 
the triangle where the arrow begins needs to access the triangle where the arrow ends. In 
Figure 7.7a, the thread T3 waits for the thread T1, the thread T2 waits for the thread T3 and the 
thread T1 needs to access a triangle locked by the thread T2 – i.e., a deadlock occurs. The 
thread T1, which detected the deadlock, gains access to any triangle locked by the thread T2 
and continues – see Figure 7.7b. 

When the owner of the attacked nodes finally finishes its waiting, it has to check whether its 
original request is still valid because, although it is not very probable, the offending thread 
could have modified the currently requested node(s). In such a case, the thread cancels the 
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request and continues its work. When a request cannot be processed, the risk of the 
occurrence of some non-Delaunay simplices in the resulting triangulation is increased. If the 
cancelled requests were logged, it would be possible to correct the triangulation sequentially 
in the post-processing. However, as explained before, burglary method does not use this 
methodology because our experiments show that the probability of incorrect triangulation is 
almost zero and when it happens, the number of wrong simplices is very low (in E2 no more 
than 5 in 2 000 000 triangles).  
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Figure 7.7: The deadlock handling in the burglary method – E2 case. 

7.5.3 Circum-Circle Method 
The circum-circle method is a modification of the burglary method. The decision whether to 
access a node or wait is solved, unlike the previous optimistic methods, by a geometric test. It 
can be proved that the subdivision and the legalization influence only such simplices where 
the input point lies in their circum-spheres – let us remind Bowyer-Watson algorithm and 
Figure 7.4. Therefore, any thread that is currently inserting such a point that lies inside the 
circum-sphere of some simplex will access the node of this simplex during the insertion. It 
means that when a thread needs to access the node, it has to check whether no other currently 
inserted point lies inside the circum-sphere of the simplex of this node. If the result of this test 
is negative, the thread has to wait, otherwise it continues. Let us note that the deadlock 
handling is identical to that one used in the burglary method. Figure 7.8 shows an example of 
the use of just described geometric test. 

There are two serious problems with the circum-circle approach. Both negatively influence 
the efficiency of this method and limit its use to few processors only and, according to our 
experiments, to E2 only. The first problem is that sometimes a thread waits for a long time 
because we are unable to determine when exactly the second thread will reach the node. 
Especially a large circum-sphere can block a thread too early, i.e., the thread has to wait 
although its concurrent thread currently works with distant simplices. The second problem is 
related to the circum-sphere test evaluation. This test has to be done for each accessed node. 
However, the complexity of this test depends linearly on the number of tested points, i.e., on 
the number of used threads. 
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Figure 7.8: Example of the legalization with the circum-circle method. 

 

 

In this section, we have proposed several parallel methods for the construction of the 
Delaunay triangulation in both E2 and E3 suitable for symmetric multiprocessors and we have 
discussed expected behavior of these methods. All proposed methods were implemented and 
tested. The results of our experiments are summarized in Section 9. 
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8 Parallelization for Clusters of Workstations 
In the previous section, we focused on the development of parallel algorithms suitable for fast 
construction of the Delaunay triangulation. However, there exist also applications that need to 
deal with data sets that are impossible to be processed on symmetric multiprocessors because 
of the limited amount of shared memory on these architectures. A good example of such an 
application is the surface reconstruction based on the CRUST algorithm (see Section 10).  

Cluster of workstations is a collection of independent computers, interconnected via a 
network, that are capable of collaborating on a task. As the number of computers in the 
collection can be theoretically unlimited, cluster offers theoretically unlimited computational 
power and storage. Therefore, it is an ideal parallel architecture for the construction of the 
Delaunay triangulation of big data sets, which is our goal. 

We let several processors to insert points simultaneously into the triangulation distributed 
over local memories. There are three important issues: loading of input data, storing of output 
triangulation and communication during the process (including sending and receiving data) 
that need to be discussed.  

8.1 Loading and Storing 
In the case of symmetric multiprocessors, input data set is loaded into the shared memory by 
one processor and then all processors are able to access the entire set, i.e., to operate with all 
input points. However, clusters do not share memory or program execution space. For cluster 
of workstations, there are two possibilities. If the input data set is stored on a shared device, 
processors can load the entire input set into their local memories. Let us note that the shared 
device could be a network drive, FTP or WWW server, etc. If the input data set is stored 
locally and accessible only to one processor, this processor is responsible for sending the 
required data to all its counterparts. Both approaches have pros and cons. 

The loading of input data set from the shared device is very simple; there is even no 
difference between loading from a local storage and a network drive. On the other hand, as 
the loading time grows with the number of processors, the performance of parallel algorithm 
drops down. Therefore, in practice, we are limited to small number of processors only. In 
order to overcome this drawback, the input data set can be mirrored on several shared devices 
and some processors then will load data from one device while other processor from another 
one. In the extreme, each processor has its own copy of the input data set. There are two 
problems. First, mirroring requires additional user effort. Next, big data, even if it is 
compressed, might need hundreds of megabytes on the storage medium. That is why the 
proposed solution is not always welcome or even possible. 

In the case that data is accessible to just one processor, the problem is more complex. The 
straightforward solution is to let this processor, so called sender, to load the data into the local 
memory and then successively send it in one part to every processor (receiver). A receiving 
processor waits inactively until the data is available and then it immediately starts the 
construction of the Delaunay triangulation. It is clear that the delay between times when the 
first and the last contacted processor is able to start grows with the number of processors. This 
negatively influences the workload balance and, therefore, the performance of the parallel 
algorithm drops down. In practice, this approach is useful only for small clusters.  

A possible improvement is to exploit multicasting, i.e., the data is sent just once but received 
almost simultaneously by all receivers. Multicasting, however, usually is not reliable and a 
message may never be received by one or more processors because of possible failures in the 
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network. Let us note that there is also a reliable version of multicasting [Liu04], however, it 
introduces a lot of overhead.  

Another possibility is to split the input data set into several parts and transmit them to all 
processors successively. When processors receive the first part, they can start their work. This 
solution is quite efficient, especially if it is combined with multicasting, however, as it 
requires complex synchronization between processors, it is not simple to be implemented. 

Let us discuss another thing related to the loading of input data set. There is no doubt that the 
performance of parallel algorithm increases with the decreasing amount of data to be sent via 
network. In the case of loading from a shared device, we usually have to transfer the whole 
data set. However, when the data has to be sent, we can simply employ some fast existing 
compress utility in order to reduce the transmitted amount. Unfortunately, losless 
compression is often not very helpful. As many applications do not require exact precision, it 
is possible to use some lossy compression algorithm. 

Until now, we have assumed that all processors obtain the entire input data set. However, this 
kind of luxury is not always possible because data sets can be very large, e.g., Michelangelo’s 
statue of Barbuto requires at least 4 GB (see Section 10). Better strategy is to let a processor 
store only points that it needs. Among these points, of course, points to be inserted by this 
processor belong. The remaining points usually lie near the boundary of the local part of 
triangulation. The simple way is, therefore, to store all the points to be inserted by adjacent 
processors. By the term adjacent processors we mean that they handle insertion of points 
lying in adjacent regions. Another way is to store remaining points on the demand, which 
means that when a processor needs to access coordinates of a point not stored in its local 
memory, it contacts the appropriate processor and downloads the requested information. As 
this approach consumes additional time (because of the communication), the performance of 
algorithm is reduced. On the other hand, it significantly spares memory occupation. Let us 
note that since input data set has been distributed, it is necessary to implement some 
mechanism available to map the index of a point into the pointer to local memory where the 
coordinates of this point are stored. Two mechanisms will be described later in this section. 

Let us briefly discuss several possible scenarios that might occur after processors have 
finished the construction of the Delaunay triangulation. First, processors store the result 
directly on a shared device into one or more files (one file requires some synchronization) or, 
if there is no such device, they send the result to one processor responsible for storing. In the 
second case, a technique for the compression of meshes can be used in order to reduce the 
amount of transferred data. There are plenty of methods suitable for the compression of 
triangular meshes and some of them can be extended to E3 as well. A comparison of these 
methods Grabner [Gra03] brings.  

For some applications, e.g., for FEM or surface reconstruction, the construction of the 
Delaunay triangulation is only the first step and they continue with the processing of the 
resulting triangulation in such a manner to achieve the desired purpose. As the further process 
is often parallelized, it is pointless to store the Delaunay triangulation on a centralized place. 

8.2 Communication between Processors 
During all phases of parallel construction, it is necessary to exchange some data between 
processors, i.e., to communicate. In a general scheme, the processor sends a message 
representing a request. The message is delivered to a receiver, which processes the request 
and sends a message in response. In turn, the reply may trigger a further request, which leads 
to a subsequent reply, and so forth. 
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No matter whether the sender waits inactively for the response on its request or it works 
meanwhile on something else, any communication consumes time, which negatively 
influences the performance of parallel algorithm. In order to develop an efficient parallel 
algorithm, it is necessary to minimize the amount of required communication and 
synchronization (synchronization between computers implies communication). 

There are several basic communication models [Liu04]. Each of them provides different level 
of abstraction. At the lowest level, there is the socket API, a programming interface based on 
pure message passing. A processor wishing to communicate with another processor must 
create an instance of a programming construct termed a socket. This socket represents a 
relation between these two processors, a sender and a receiver. Using a socket, processors 
may exchange data as follows: the sender writes a message into the socket and at the other 
end, the receiver reads the message from the socket. For these purposes, the socket API 
provides a set of basic operations such as send, blocking and non-blocking receive, etc. As the 
socket API is a mechanism of a low level of abstraction, the development of a complex 
application using this API is difficult and takes a lot of time. On the other hand, because of its 
low latency, the socket API may be the most appropriate for an application that calls for a fast 
response time or for a system with minimum resources. Let us note that the socket API is the 
base networking stuff available on all operating systems (including MS Windows or Unix) 
and its use does not need an additional installation. 

On higher level of abstraction, there are two famous systems for distributed computing, 
Parallel Virtual Machine (PVM) and Message Passing Interface (MPI). Similarly to the socket 
API, both systems provide a set of operations for message transmission. These operations 
handle message routing and perform data conversion for incompatible architectures (e.g., 
conversion between little and big endian) and other tasks that are necessary for operation in 
a heterogeneous network environment. PVM and MPI provide routines for synchronization 
between processes via barriers. MPI, moreover, offers a set of advanced operations suitable 
for scattering data (typically vectors) over processors or their gathering, which is very useful 
for many applications (especially in mathematical sciences). MPI and PVM support an 
automatic execution of user program on each computer registered for the distributed 
computing, i.e., users are not required to launch applications manually like in the socket API 
model. One little drawback with PVM and MPI is that only programs written in C or Fortran 
are supported. 

The previously described models work well, however, if a distributed application needs to be 
developed more rapidly or be developed by a person without a deep knowledge of distributed 
computation, models that are more abstract are desired. The Remote Procedure Call (RPC) or 
object oriented the Remote Method Invocation (RMI) allow programmers to build network 
applications using a programming construct similar to a local procedure call. When 
a processor, the client, needs to make a request to another one, the server, it issues a remote 
procedure call to the server. Similarly, as in the case of local procedure calls, this call triggers 
a predefined action in the procedure provided by the server. At the completion of the 
procedure, the server returns a result of the call to the caller (client). 

Let us describe the communication between processors in more detail. The client application 
calls a proxy1 procedure. This routine retrieves required parameters from the client address 
space and translates them as needed into some standard format for transmission over the 
network. Afterwards, it calls functions in the RPC library to send the request and its 

                                                 
1 Proxy is an interface-specific object that packages parameters for that interface in preparation for a remote 
method call. A proxy runs in the address space of the sender and communicates with a corresponding stub . 
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parameters to the server. The RPC library at the server accepts the request and calls the server 
stub2 procedure. The stub retrieves the parameters from the network buffer and converts them 
from the network transmission format to the format the server needs. The server stub then 
calls the actual remote procedure on the server. When the remote procedure completes, 
a similar sequence of steps returns the output data to the client. The client proxy converts data 
into requested format and writes it into the client memory. Afterwards, the proxy returns the 
result to the calling program on the client. The calling procedure continues as if the procedure 
had been called on the same computer.  

As all proxies and stubs are created automatically by the compiler, the development of 
a distributed application using for the communication the model we have just described is 
straightforward. Moreover, the RPC middleware allows to programmers to implement their 
client and server applications using different programming languages (e.g., C#, C++, Java, 
etc.) and run them on different platforms (little vs. big endian, 32-bit vs. 64-bit, Unix vs. 
Microsoft) without the need to add any line of code. On the other hand, this high level of 
abstraction introduces big overheads and, therefore, if response time and resource 
consumption are a concern, it may be more appropriate to use the socket API. 

Let us note that, usually, the RPC stuff is not used directly but programmers exploit CORBA 
or DCOM technologies [Liu04]. In our opinion, both architectures provide more or less the 
same functionality. Unlike the CORBA technology, the DCOM works on Microsoft platforms 
only. As the DCOM is a part of Microsoft Windows, it can be used immediately without any 
need to install additional tool. Due to the required registration of distributed programs, the 
DCOM is able to launch automatically the application containing the server code. Strong 
security incorporated to the DCOM protects remote procedures to be called by not authorized 
client application possibly written by a network attacker. On the other hand, to configure 
distributed applications to work properly is quite difficult (unlike the CORBA), especially for 
a person who is not familiar with networking. 

8.3 Distributed Computing 
As there is no shared memory on clusters, only part of the triangulation is available on one 
computer. In order to get the Delaunay triangulation, the consistency on boundaries of local 
parts must be ensured. It can be done either in the post-processing according to pure Divide & 
Conquer strategy or in the pre-processing similarly to the Hardwick’s algorithm (see 
Section 4) or successively during the whole process of insertion.  

The first solution (i.e., the post-processing) suffers from several serious drawbacks. First, the 
merging of two local parts is limited to just one processor and usually it is required that both 
parts are stored in the local memory of this processor, which means that we need to transmit 
a lot of data. In the worst-case, the whole Delaunay triangulation is present on one computer. 
Next, the implementation is not simple, especially if the stress is put on the efficiency or we 
want to avoid the necessity to have all data in one local memory. 

A parallel algorithm that constructs Delaunay edges or faces on boundaries in the pre-
processing is supposed to be very efficient because after that each processor can triangulate its 
group of points without any need to communicate. On the other hand, we need to know all 
points in advance, thus this approach is useless for applications that construct the Delaunay 
triangulation from points arriving online (possibly, samples of some measurement). 
                                                 
2 The stub is an interface-specific object that unpackages the sent parameters and calls the required user method. 
The stub runs in the receiver's address space and communicates with a corresponding proxy in the sender's 
address space. 
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Moreover, to construct the joint, it is very often required to have an access to all points, which 
limit the use of this approach to smaller data sets. Let us note that the incremental insertion 
algorithm used for local triangulation demands the incorporation of constraints, which makes 
it slightly more difficult to be implemented. We propose an algorithm based on this strategy 
in the section discussing possible extensions – see Section 11. 

Finally, last option is to keep the Delaunay triangulation consistent in any time of the 
insertion of points. It is clear that we cannot avoid communication, which negatively 
influences the efficiency. On the other hand, points may arrive online and the implementation 
of an algorithm exploiting this approach seems to be quite simple. Boundaries between local 
parts of the triangulation can be either dynamic or static. In the case of dynamic boundaries, 
boundaries are formed by edges of triangles (or faces of tetrahedral in E3). When a triangle 
having at least one edge as a part of boundary has to be subdivided or any of its edges has to 
be swapped, the boundary has to be updated – see Figure 8.1a. If workloads should retain 
balanced, a good heuristics is required. Let us note that there is a necessity to construct 
sequentially the initial triangulation in order to get initial boundaries. 

Dynamic boundaries are used also by Chrisochoides et al. in their approach (see Section 4) 
and, therefore, we can adopt their solution for our purpose. However, there is another problem 
not solved by Chrisochoides. As boundaries dynamically change, some of points originally 
assigned to one processor might be no longer in its region and, therefore, we need to resent 
them to the appropriate processor. Indeed, it consumes some additional time.  

a) dynamic boundaries b) static boundaries 

Figure 8.1: The swap operation on a boundary between two local triangulations and a possible result 
of this operation on the boundary shape. 

Static boundaries are simple and natural for static distribution of points over processors (see 
Section 6). Boundaries remain unchanged for the whole process and, therefore, no point has to 
be resent – see Figure 8.1b. Initial triangulation is also not required. In comparison to 
dynamic boundaries, an algorithm using static boundaries is quite simple to be implemented. 
On the other hand, as boundaries cross over some simplices, the access to these shared 
simplices has to be synchronized, which reduces the overall performance of parallel 
algorithm. There is about √N shared simplices in the triangulation in E2 and about 3√N2 in E3, 
where N is the number of points. Figure 8.2 acknowledges this for a uniform data set.  
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Figure 8.2: The cut of an object containing N uniformly distributed points has approximately √N in E2 
and 3√N·3√N in E3 points in its vicinity. 

Due to these properties, we have decided to use static boundaries in our algorithms. The 
question is how to deal with operations (subdivisions or local transformations) that require an 
access to shared simplices. Three basic principles can be identified (they will be more 
discussed in the following text): 

• Operation flow – the operation with its parameters (e.g., coordinates of point to be 
inserted) is sent to all processors sharing the required simplices and these processors 
perform the operation using their local copy of shared data. New shared simplices are 
created in local memories of contacted processors as the result of the operation. 

• Data flow – required shared simplices are retrieved from their remote places of storage 
using the optimistic principle (see Section 7) for the synchronization, the operation is 
performed and modified simplices are sent to be stored back in their remote storage. 

• Mixed flow – the operation with its parameters is send to the appropriate processor, this 
processor performs the operation and all local consequential operations and sends the 
resulting data to the initiator. 

8.4 Operation flow 
This approach is based on farmer-worker strategy (see Section 2). There are several workers 
responsible for the insertion of points into the triangulation stored in their local memories and 
one specialized processor (farmer), called interface, responsible for the loading of input data 
sets, the subdivision of points and the storing of constructed triangulation. The interface also 
provides some mechanism for the synchronization of workers.  

From the point of view of any worker, say W1, there are three kinds of simplices in the 
Delaunay triangulation to be considered during the insertion – see Figure 8.3: 

• A local simplex lies fully inside the region assigned to the given worker W1 and it is stored 
in the local memory of this processor. No synchronization is required to access local 
simplices. Let us note that local simplices are the most numerous group. 

• A shared simplex overlaps at least two regions (one of them is processed by the worker 
W1). It is stored redundantly in local memories of all processors responsible for these 
regions and also in the local memory of the interface. Simultaneous modification of 
shared simplices has to be avoided and, therefore, some synchronization is necessary (i.e., 
the interface has to be contacted).  



57 

• A remote simplex is stored in the local memory of another processor. However, when the 
processor W1 modifies a shared simplex, it has to know the identification of the remote 
simplex adjacent to the shared one in order to update the neighborhood correctly.  

  

a) worker W1 b) worker W2 

Figure 8.3: An example of the Delaunay triangulation in E2 distributed over two processors (boundary 
is denoted by thick vertical line) – local triangles are white, shared triangles are denoted by light gray  

and remote triangles by dark gray. 

Each worker runs two threads. While the main thread successively inserts its points into the 
triangulation, the second thread handles requests sent by remote processors (i.e., other 
workers or the interface). Indeed, the work of both threads must be synchronized. When 
a worker needs to perform operation, i.e. the subdivision or the local transformation, such that 
it requires the modification of the content of a shared simplex, the worker contacts the 
interface to perform this operation in a synchronized way. Actually, it means that the worker 
enters a distributed critical section. The interface enters a local critical section, finds the 
appropriate shared simplex and performs the operation. For each new simplex constructed 
during the operation, the interface then determines which processors share this simplex. After 
that, the interface contacts all workers (including the originator of this synchronized 
operation) that share any simplex modified during the operation sending them information 
about the operation. These workers receive the message sent by the interface in the second 
thread, perform the operation and acknowledge the change to the interface. From the 
description of the operation flow we gave so far, it is clear that shared simplices are processed 
and stored redundantly. Let us note that as the run of the main and the second thread must be 
synchronized (we have to avoid simultaneous modification of the same simplex), a critical 
section is used for this purpose.  

When all contacted processors performed the operation, the interface proceeds with the 
consequential operations, i.e., with the legalization of shared simplices. Indeed, it introduces 
another communication because any operation with a shared simplex must be processed by 
every worker sharing this simplex. When these operations are finished, the interface leaves 
a critical section and sends an acknowledgment to the worker that initiated the processing of 
the synchronized operation. After receiving this message, the initiator continues with further 
legalization and then it proceeds with the insertion of next point. The simplified version of the 
operation flow algorithm is described in Figure 8.4. 
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Worker - the insertion (main) thread 
Input:  A set Sk = { p0 , p1 , ..., pm - 1 } of  m points in E2, Sk ⊂ S 
 
for r := 0 to m - 1 do begin   
 Locate the simplex S0 containing pr in the DAG structure; 
 if S0 or any of its neighbors is shared then begin 
  Send the operation (subdivision) to the interface; 
  Wait for the reply;  //i.e., until the operation is finished 
  Enter a critical section; 
 end else begin 
  Enter a critical section; 
  Subdivide S0; 
 end; 
 
 //Legalize all new simplices 
 while there is an unchecked face (or edge) F  do begin 
   Leave a critical section; 
   if the face F violates DT criterion then begin 
    if any of participating simplices is shared then begin 
     Send the operation (swap) to the interface; 
     Wait for the reply; 
    end else begin 
     Enter a critical section; 
     Perform local transformation;  
     Leave a critical section; 
    end; 
   end; 
   Enter a critical section; 
  end; 
 end; 
 Leave a critical section; 
end; 
 
 
Worker - the receiving (second) thread 
 
while not all points inserted do begin 
 Receive the operation from the interface; 
 Perform the subdivision or the local transformation; 
 
 //Legalization 
 for each outer face (or edge) F of new created simplices do 
  mark F as unchecked; 
 Send reply to the interface; 
end; 
 
 
Interface - main thread 
 
while not all points inserted do begin 
 Receive the operation from the worker W1; 
 Enter a critical section; 
 Perform the subdivision or the local transformation; 
 Send operation to every worker sharing any of modified simplices; 
 Wait for replies; //from all workers 
 Leave a critical section; 
 Send reply to the worker W1; end; 
 

Figure 8.4: Parallel construction - the operation flow (simplified version). 
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Let us now describe the operation flow in detail. The first problem to be discussed is how to 
uniquely identify simplices in the triangulation and exploit this identification to retain the 
connectivity between simplices. As the triangulation is distributed, we cannot use 32-bits 
pointers to identify simplices like in the parallel solution. Let us, therefore, assign an integer 
value to every simplex. Positive values are used for local simplices, negative values for 
shared. By checking the highest bit of the simplex identification, processor easily determines 
whether the simplex is local or shared and according to the outcome of this test, it decides 
how the operation (e.g., subdivision) should be handled. While an assignment of value to 
a shared simplex is done in a synchronized way (i.e., via the interface), a local simplex is 
evaluated by its proper worker independently, i.e. without any communication. This, however, 
means that it is necessary to add some information to identify local simplices in the 
triangulation. Such information is, naturally, the processor identifier. 

We could either use these pairs of identifiers (i.e., processor ID and simplex ID) anywhere in 
the algorithm or proceed with traditional pointers and use simplices identifiers only in cases 
when pointers cannot be exploited. As the use of pointers is much faster and pointers are 
suitable for local simplices, which are the most numerous group in the triangulation, the 
second option is preferable. Therefore, identifiers are used only by the interface, which allows 
to it to retain the connectivity of the triangulation.  

Figure 8.5 shows a part of triangulation in E2
 and its appropriate data structure. As remote 

nodes (and triangles) are not physically stored in the local memory, shared simplices on 
workers cannot refer to these nodes using pointers and, therefore, an invalid (not null) value is 
used. In figure, this value is denoted by letter R. The invalid value informs workers that they 
need to contact the interface in order to retain the connectivity between the given shared 
simplex and the remote one or to perform an operation with these simplices (e.g., the swap). 
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a) worker 1 b) interface c) worker 2 

Figure 8.5: An example of the Delaunay triangulation in E2 and its appropriate data structure (upper 
images). Local triangles are white and shared triangles are light gray. Remote triangles are denoted 

by dark gray. Dashed arrows between nodes show the connectivity. While pointers are used on 
workers, the interface uses triangles identification – a pair of integers in triangles (and nodes). 

Now, it is time to describe the operation flow algorithm step by step. At the beginning of 
computation, it distributes the input points over the working processors (see Section 6). It is 
clear that a processor needs to know coordinates of its points and also coordinates of points 
lying outside of its area but belonging to vertices of simplices shared by this processor. 
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Unfortunately, it is impossible to predict which remote points (i.e., points processed by 
another processor) will be used. We can, therefore, either store the whole input set in the 
memory or send coordinates of remote points successively during the computation and store 
them into some additional data structure, which is of course slower but allows us to deal with 
larger data sets. Let us note that a hash table suits for this purpose well. We can use the 
highest bit in the index of point to determine whether the given point is remote, i.e., 
coordinates are stored in the hash table, or local one, i.e., its coordinates are elsewhere. The 
use of the highest bit allows us also to apply an efficient test on a simplex to find out whether 
this simplex is shared (at least one of its vertices is a remote point) or local.  

After the distribution of points, the interface constructs the first auxiliary simplex, sends it to 
all processors and they start with insertion of their points. The location of the simplex to be 
subdivided is identical to the location in the sequential algorithm, i.e., no synchronization is 
needed (unlike the parallelization for symmetric multiprocessor), and no matter whether some 
hierarchical structure to speed-up the location is used, e.g., the DAG, or some walking 
technique is employed. This is because there is only one thread (on one processor) operating 
with the local part of triangulation at one time. 

Now, we describe how different operations are handled. For easier understanding, we focus 
on E2 case. Let us assume that the processor W1 wants to insert a point into the triangulation 
and it already somehow managed to find the triangle to be subdivided. If the triangle and all 
neighbors of this triangle are local, the subdivision operation is processed without any 
synchronization because it does not influence the workspace of another processor. If the 
triangle is local but there is just one shared neighbor, we can handle this case also without any 
communication by reusing of the identification of the triangle to be subdivided for the new 
triangle adjacent to the shared one as follows – see Figure 8.6. After the triangle T1 is 
subdivided into three triangles T3, T4 and T5, the connectivity between these new triangles and 
the triangles adjacent to the triangle T1 has to be updated. The triangle T2 is shared and, 
therefore, the processor has to contact the interface to change the reference on T1 stored in the 
node of T2 to reference on T4. If we, however, swap identifiers of triangles T1 and T4, no 
communication is required because, although the triangle T1 is different, the connectivity has 
not been modified. 

In the case that there are at least two shared neighbors, the communication cannot be avoided 
and the processor has to contact the interface and send it identifications of the shared triangle, 
previous local triangle and new local triangle. The interface finds the data structure for the 
shared triangle using a lookup table (in an ideal case, a perfect hash is exploited) and updates 
the information.  
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a) before the subdivision b) after the subdivision 

Figure 8.6: The operation of subdivision of local triangle with just one shared neighbor (denoted by 
light gray) and appropriate changes in the DAG structure. Dashed arrows show the connectivity 

between triangles, solid arrows history of changes (i.e., the parent triangle and its children). 
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If the triangle to be subdivided is the shared one, the situation is more complex because the 
subdivision must be handled in a synchronous way. The processor, therefore, sends the 
identification of the shared triangle and information about the point to be inserted to the 
interface. Let us note that if the whole input set is loaded on every processor, it is sufficient to 
send only index of this point, otherwise its coordinates must be specified in the message. The 
interface enters a critical section, finds the shared triangle, subdivides it and assigns identifiers 
of negative values to new triangles. For each new triangle, it then determines which 
processors share the triangle. This is done by comparing the geometric position of the triangle 
and the bounding boxes of every processor. Figure 8.7 shows different cases that must be 
detected. If a new triangle is not shared, i.e., it lies fully inside one bounding box only, it is 
discarded, otherwise identifiers of processors are stored into the data structure of the triangle. 
Assuming that processors are labeled by integers forming an arithmetic progression with 
difference one, we store their identification in a bit-array, where the i-th bit is one if the i-th 
processor shares the triangle. If the number of processor is limited to some small value, e.g., 
32, the binary array can be superseded by an integer. 

     

a) remote b) shared c) local d) shared e) shared 

Figure 8.7: Different mutual positions of a triangle and a bounding box. 

After the interface finishes the subdivision, it contacts all processors (including the originator 
of this synchronized operation) that share the subdivided triangle sending them its identifier, 
the point to be inserted and also some additional information such as identifiers of new 
triangles. As the main thread could be suspended (e.g., because the processor waits for the 
response from the interface), the message is received in the second thread. The main thread, 
however, may perform some local operation and we have to avoid simultaneous modification 
of the triangulation. Therefore run of both threads, i.e., the main thread and the second thread, 
must be synchronized. We use a critical section that is entered in the main thread at the 
beginning of the algorithm, left and immediately reentered in each step of the legalization, left 
also before the processor contacts the interface and reentered after the synchronized operation 
is performed and, finally, left when all points were inserted. When the message from the 
interface is received (in the second thread), the processor enters the critical section, performs 
the operation, leaves the critical section and acknowledges the change to the interface. Let us 
note that remote triangles are not constructed. As the main thread enters and leaves this 
critical section regularly, the time spent by the second thread inactively is not significant.  

When all processors performed the operation, the interface proceeds with the legalization of 
shared triangles and after that it leaves the critical section and sends a message to the 
originator informing that the operation has been finished. Let us note that any synchronized 
operation consumes a lot of time and, therefore, an inactive waiting for its completion harms 
the efficiency of the algorithm. It seems reasonable to start several insertion threads (similarly 
as in the pessimistic method for symmetric multiprocessors) and when a thread has to contact 
the interface, another thread is released and it continues with insertion of its point. This 
approach, indeed, requires some additional time for maintenance of these insertion threads 
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and some time for their synchronization and, therefore, it is an open question how many 
threads should be used. We can expect that to employ more than four threads is useless.  

The legalization offers more cases to be dealt with. If both triangles and all their neighbors are 
local or there is just one shared neighbor or there are just two shared neighbors not sharing 
a vertex, e.g., positioned as in Figure 8.8, the operation is performed locally exploiting the 
trick with the swap of identifiers as in the subdivision. If local triangles to be legalized have 
more than two shared neighbors or their neighbors contain the same vertex, this trick does not 
help and the interface has to be contacted to update the connectivity. 
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a) before the legalization b) after the legalization 

Figure 8.8: The operation of legalization of local triangles with just one shared neighbor (denoted by 
light gray) and appropriate changes in the DAG structure. Dashed arrows show the connectivity 

between triangles, solid arrows history of changes (i.e., the parent triangle and its children). 

When the first triangle, i.e., the triangle from which the wave of legalization comes, is local 
and the second one is shared, the operation has to be performed, similarly to the subdivision 
of a shared triangle, in a synchronized way. Thus the processor contacts the interface, the 
interface performs the local transformation (i.e., swap), contacts all processors sharing at least 
one of triangles sending them all required information and when these processors complete 
the operation, the interface continues with the legalization of newly created triangles and 
when the process stops, the originator of the synchronized request continues with its work.  

During the legalization on the interface, other two cases might appear: either both triangles 
are shared or the first one is shared and the second one is local. The first case is handled 
similarly to the previously described one. It is clear that if the second triangle is local, the 
legalization cannot proceed on the interface because the information about the local triangle is 
missing and, therefore, the interface contacts the processor having the triangle inside its 
bounding box. This processor enters a critical section, inserts sent identifications of triangles 
into a local queue of postponed swaps and leaves the critical section. The interface then 
proceeds with the legalization elsewhere.  

A processor processes postponed swaps stored in the queue when it finishes the insertion of 
current point. As the triangulation could change, it is necessary to check whether the 
operation is still valid, i.e., both triangles exist. If the outcome of this test is positive, the 
processor contacts the interface providing it by information about vertices of local triangle in 
order to perform the synchronized operation. 

Figure 8.9 summarizes all cases that require synchronized processing. Let us note that the 
subdivision stage when the point to be inserted lies on an edge is handled similarly to the 
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local transformation between shared and local triangles – indeed, the information about the 
point to be inserted must be added into the message. 

  

a) the subdivision b) the legalization 

Figure 8.9: Synchronized operations  in E2, the point to be inserted is denoted by a cross, the 
direction of legalization wave by an arrow, white triangles are local, light gray shared and dark gray 

triangles inaccessible to the processor originating the request. 

The extension of synchronized operations to E3 is straightforward, however, the 
implementation is quite complex because we need to differentiate many cases, which is 
caused by the fact that each kind of transformation considered in the sequential algorithm 
introduces several different cases for a parallel algorithm. The insertion of a point on a 
common edge of shared and remote tetrahedra seems to be extremely difficult. These 
implementation problems significantly harm usefulness of the described algorithm. 

When the insertion finishes, each working processor extracts its local simplices and the 
interface extracts its shared simplices. The interface collects all extracted parts and their union 
forms the requested Delaunay triangulation.  

The operation flow that we have just described suffers from several problems. First, as the 
number of operations to be handled in a synchronized way grows with the increasing number 
of processors and the interface can process only one request at a time, the performance of the 
algorithm drops down very quickly. Let us propose an improvement of the described 
algorithm that could significantly reduce the number of requests. The first local simplex is 
constructed when a processor finished insertion of the first three (or, in E3, four) points into 
the triangulation. As points are inserted in a random order (reasons are described in Section 
5), the area covered by this first simplex may be small and, therefore, the probability that the 
next point lies inside this local simplex is low, i.e., synchronization will be probably needed. 
Using the grid from Mueller’s algorithm for points subdivision (see Section 6), we can find 
better starting points in corners of the bounding box – see Figure 8.10. As the first local 
simplex is now larger, we reduced the number of insertions into shared simplices, i.e., the 
number of requests is decreased and, therefore, the efficiency grows. 

As the construction of the first local simplex must be done in a synchronized way, it should be 
faster to let the interface prepare a primary triangulation of points lying in corners and send 
this triangulation to every processor. 

Despite all these improvements, the interface is still a bottleneck and, therefore, the overall 
number of processors is limited to a small number. Indeed, some functionality of the interface, 
e.g., the subdivision of points, could be moved onto working processors, which could bring 
a better scalability of the system. However, it would also make the implementation more 
complex. Fortunately, if we focus with the operation flow on E2 case only, we do not need to 
employ large number of processors because, in practice, the largest data set needed to be 
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processed contain about 20 millions of points, which can be handled by 5 processors using 
a walking technique (the DAG would require up to 16 processors). 

  

a) random b) in corners 

Figure 8.10: The influence of selection of the first four points on the size of area covered by local 
triangles in E2, white triangles are local, light gray shared. 

8.5 Data flow 
The data flow approach is an extension of the optimistic method described in Section 7 for 
clusters of workstations. Each processor can access any simplex in the Delaunay triangulation 
for any purpose. At the beginning of computation, the first processor, master, constructs the 
auxiliary big simplex and sends its identification to all other processors, workers. Unlike the 
operation flow, every simplex is stored only on one computer and, therefore, it is possible to 
fully identify a simplex by a pair {ID, ptr}, where ID is an integer uniquely identifying the 
processor in whose local memory is the simplex stored and, indeed, ptr is the traditional 32-
bits local pointer to this storage. We supersede all 32-bits pointers used in data structures 
implemented in the original sequential program by this 64-bits long full identification. 

Afterwards, each processor starts the insertion of its points into the triangulation. Whenever 
the processor W1 needs to operate with the content of a remote simplex (i.e., to access the data 
of a node describing this simplex), it sends a request specifying the full identification of 
simplex to the processor W2, which stores this simplex, and it waits for the reply. When W2 
processor receives a request for a simplex, it simply extracts the location of the simplex in its 
local memory from the sent identification and sends the data of this simplex in a response. 
There is no doubt that the extraction is much faster than the searching for simplex in a hash 
table used in the operation flow. After the processor W1 receives data, it performs the 
operation. If the operation involves a modification of the simplex, the processor sends the 
modified data back to W2 and the processor W2 updates the content of the simplex. Let us note 
that as concurrent modification of a simplex by two or more processors has to be avoided, we 
need, indeed, to implement some synchronization mechanism.  

Any communication takes some time and, therefore, it affects significantly the overall 
performance of the algorithm. In order to improve the efficiency, it is necessary to reduce the 
amount of data to be transferred per one communication and the amount of required 
communication. As a processor accesses the same simplex several times during the insertion 
of a point, it is useful to store the retrieved remote simplex into a temporary storage, cache, 
and send the data of requested simplex only if the cached version is outdated. Then, when 
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the processor W1 wants to access a remote simplex, it specifies the version currently available 
to it in the request. If the simplex stored in the local memory of W2 has been updated since the 
processor W1 obtained its version (or the simplex has not been ever cached), the data of the 
required simplex is sent in response, otherwise the request is just acknowledged (by 
a message of zero length). Let us note that since the processor accessed the remote simplex 
for the modification purpose, the cached version is always the current one until the insertion 
of its current point is completed because it cannot be simultaneously being modified by 
another processor. This means that we can avoid any communication. A general scheme of 
the data flow approach with caching is given in Figure 8.11. 

It is quite clear that the cache size is limited and, therefore, it might not be capable to hold all 
remote simplices required during the computation. If the cache is full, then before a new 
simplex can be stored in, one of simplices currently in the cache must be removed. A simple 
and very popular basic replacement policy is Least-Recently-Used (LRU) that always 
removes the simplex that was accessed least recently. An implementation of the LRU policy 
usually exploits double linked list data structure sorted by timestamps of accesses to simplices 
in the ascending order. We slightly modified this policy in such a manner that it is not allowed 
to remove simplex that has been accessed for the read or modification purposes since the 
insertion of the current point started. If the cache is full and no simplex can be removed, then 
the cache is temporally enlarged.  
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Figure 8.11: An example of a general scheme of the data flow approach for a triangulation of seven 
simplices distributed over two processors. 

Figure 8.12 demonstrates the behavior of caching. Let us suppose to have a cache currently 
capable to hold just three items. We want to insert a point into the triangle T7 in the 
triangulation from Figure 8.11. To complete the subdivision, the processor needs to access 
already cached triangle T6, which causes the move of the pointer to T6 into the head of the 
LRU list – see Figure 8.12a. In the legalization, the processor needs to operate with neighbors 
of the triangle T6. First, it accesses the triangle T9 and places this triangle into the cache. 
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Indeed, the LRU list describing the organization of the cache is updated. Now, the cache is 
full and, therefore, the processor removes the least recently used triangle T4 from the cache 
and uses the newly free entry for the triangle T5 – see Figure 8.12b. As the legalization 
proceeds, it is necessary to access triangles T10 and T11. All triangles in the cache were 
accessed during the insertion of the current point and, therefore, we cannot remove any 
triangle from the cache. The current cache size is increased and triangles T10 and T11 are 
placed in. When the processor completes the insertion of its point, there remain 5 triangles in 
the cache – see Figure 8.12c. If the current cache size is beyond the allowed limit, the cache is 
shortened destroying entries occupied by least recently used triangles.  
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c) if no triangle can be 
replaced, the cache is enlarged 

Figure 8.12: An example of the behavior of caching policy during the insertion of a point. Changes in 
the triangulations are shown in the left, changes in the cache organization in the right. Bold text 

denotes head of the LRU list, shaded slots in the cache contain triangles that have been accessed 
since the insertion started. 

Although the performance is greatly enhanced due to the caching strategy, the communication 
still stands for a serious bottleneck. Let us, therefore, propose another improvement. When a 
processor needs to access a simplex, it will likely require an access to at least one adjacent 
simplex in a near future. A precise detection of simplices that are going to be accessed is not 
an easy task and it is quite time consuming. As the number of adjacent simplices, i.e., 
neighbors, is small, let us to retrieve them all in one communication. Although only some of 
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them will be accessed, the efficiency of the proposed algorithm, according to our experiments, 
is greatly improved. This is because the actual time needed for the transferring of data via 
100 Mbs Ethernet network is negligible in comparison with the time consumed in routines for 
sending and receiving of the request (even if the low-level fast socket API is used). It would 
be also possible to retrieve neighbors of neighbors in the same message or we can go even 
further and retrieve neighbors of these simplices. As the time needed for the detection of 
simplices to be retrieved grows with the increasing level of recursion and, indeed, the time for 
actual transferring grows proportionally to the number of bytes, it is a question, how many 
simplices should be requested in one message. 

We have just given a general overview of the data flow approach. Now, let us describe the 
data flow in detail. It is quite clear that a simplex can be accessed simultaneously by all 
processors that need this simplex for the read-only purpose. Simultaneous modification is not 
possible and, therefore, when a processor wants to modify a simplex, it has to contact the 
owner of this simplex, i.e., the processor that stores the simplex, and get an exclusive access 
to the simplex. As it was already discussed in Section 7 (see the optimistic principle), this can 
be done with a use either of the Delaunay empty circum-sphere property, or of memory locks. 
The first option, according to our results (see Section 9), does not work in E3 efficiently and, 
therefore, we decided to exploit the second one. Let us remind the approach of memory locks. 
A "lock" parameter is added into each simplex. The zero value of the parameter means that 
the simplex is unlocked and non-zero value j+1 means that it is locked by the processor Wj. 
When the processor Wk receives from the processor Wi a request to get an exclusive access to 
some simplex, it has to lock this simplex for Wi. If the simplex has been already locked for 
another processor Wj, the processor starts a new thread and waits (in this thread) until the 
required simplex is 'free'. Afterwards, the simplex is locked for Wi, a reply is sent to Wi and 
the thread terminates its work. Let us note that a processor unlocks all its simplices when it 
completes the insertion of its current point. According to our experience, the successive 
unlocking of simplices during the insertion is useless. 

It is necessary to avoid mutual waiting of processors, i.e., the deadlock. Therefore, whenever 
the processor cannot lock a simplex, it has to perform some check in order to decide whether 
it can start waiting. We can identify two different check strategies. In the priorities strategy, 
the processor can proceed with waiting only if its priority is larger than the priority of 
blocking processor. This test is very simple. Moreover, if priorities are static, i.e., they do not 
change during the computation, the processor does not need to communicate. On the other 
hand, this strategy is too cautious and, therefore, the processor often undoes the changes 
unnecessarily, which could increase the number of communications. According to our 
experience, better choice is the detection strategy where the processor checks directly whether 
the waiting would cause the deadlock. This detection requires always some communication. 
A local “waiting-for” variable was added into the address space of every processor. The zero 
value of this variable means that the processor does not wait and non-zero value i+1 means 
that it waits for the processor Wi. Let us suppose the processor Wk has found out that the 
simplex required for the modification purpose by the processor Wi is already locked by the 
processor Wj. It sends, therefore, a message informing about the existence of blocking 
processor Wj to Wi. The processor Wi sets the “waiting-for” variable to j+1 and acknowledges 
the message. Afterwards, Wk. sends a query message to the processor Wj. When a processor 
receives the query message, it has to check its “waiting-for” variable. If the value is not zero 
and does not equal to i+1, the query cannot be evaluated by the processor and, therefore, it is 
forwarded to the appropriate processor denoted by this value. Otherwise, the processor sends 
a reply to Wk. informing it that the deadlock has been, the value is i+1, or has not been, the 
value is zero, detected. If the processor Wk receives the negative outcome of detection, it waits 
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inactively until the simplex is not locked, then it sends a message to Wi in order to reset its 
"waiting-for" to zero and repeat the try to lock the simplex for the processor Wi. 

In the case that the deadlock has been detected, a message about the failure is sent and the run 
of the waiting thread on Wk is terminated. The processor Wi has to reset its "waiting-for" to 
zero, undo all changes performed in the subdivision or the legalization and return back to the 
location phase. Therefore, the transaction mechanism has to be incorporated into the data 
flow. When a processor wants to access a simplex for the modification purpose first time, so 
called shadow copy of the whole content of this simplex is created. If the processor has to 
give up the insertion, the content of simplex is restored using the data from its shadow copy. 
Memory allocated for shadow copies is released, i.e., shadow copies are destroyed, after the 
processor completes the insertion of its current point. A shadow copy is also created when the 
simplex should be updated by sent data but the processor currently accesses this simplex in 
another thread running on this processor.  

This means that shadow copies always store already confirmed and consistent version of 
triangulation. The processor sends the shadow copy of simplex instead of its current content 
because this content might be being modified at the time of simplex retrieval and, therefore, 
the current data may be inconsistent. Let us note that if an inconsistent data were retrieved and 
cached, it could seriously affects the quality of the resulting triangulation or it could even lead 
to a program crash (especially, in cases that the performed changes had to been undone). It is 
clear that when the simplex is to be retrieved for the modification purpose, there is no shadow 
copy of this simplex or the copy contains the current data.  
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a) changes in the triangulation e) after the second insertion on the 
second processor 

g) the result 

Figure 8.13: The insertion of two points into the triangulation by two processors (their simplices are 
denoted by white and gray colors) and the appropriate changes in the DAG data structure (dashed 

arrows denote the connectivity between triangles, solid arrows history of changes); shadow copies are 
in rounded rectangles – see text. 
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Figure 8.13 shows an example of the use of shadow copies. For easier understanding, the 
example is given in E2. There are two processors, say W1 and W2, each one wants to insert 
a point into the triangulation. The processor W1 stores all white triangles (e.g., T1 and T2) and 
the processor W2 stores any gray triangle (e.g., T3) – see Figure 8.13a, b. After successful 
detection of the triangle T1 to be subdivided, the processor W1 locks triangles T1 and T2, 
creates new triangles T4, T5 and T6, creates shadow copies of triangles T1 and T2, and, finally, 
modifies the content of T1 and T2 to reflect the performed changes – see Figure 8.13c. 

Now, the second processor, W2, performs the location of triangle that contains its point. Let us 
suppose that during this detection it requires an access to the triangle T2. It, therefore, contacts 
the processor W1 and the contacted processor W1 sends the shadow copy of T2 in a response. 
Although the sent content version of the triangle is not the current one, it is sufficient for the 
testing. When the processor W2 locates the triangle T3 to be subdivided, it has to lock triangles 
T3 and T2. The triangle T2 is remote one and, therefore, the processor has to contact the 
processor W1. As the triangle T2 is currently locked, the processor W2, however, must wait 
until the triangle is free (i.e., until the insertion is completed). When the processor W1 finishes 
the insertion, shadow copies are destroyed, the triangle T2 is locked for the processor W2 and 
the current version of the triangle is sent to this processor – see Figure 8.13d. 

The processor W2 performs the subdivision (see Figure 8.13e) and sends the new version of 
the triangle T2 back to its owner (i.e., W1) to be stored. Let us suppose that the processor W1 
meanwhile began to insert next point and has accessed this triangle for read-only purpose. 
Therefore, the sent data is not used to update the triangle T2 immediately but a shadow copy 
with this data is created and when the processor W1 finishes the insertion of its current point 
or it is going to modify the triangle T2, this shadow copy is used to update the content of the 
triangle – see Figure 8.13e, f. 

Let us discuss the efficiency of the proposed data flow approach. There is no doubt that the 
performance rapidly decreases with the growing number of communications, i.e., with the 
number of accesses to remote simplices. If we subdivide points with a respect to their 
geometry, e.g., by Mueller’s algorithm (see Section 6), it is highly probable (because of the 
locality of operations) that a processor will access in the subdivision and the legalization only 
simplices lying fully inside its region and simplices lying in adjacent regions near boundaries 
of this region. As a processor constructs new simplices in its local memory, we expect that the 
majority of accessed simplices are local and, therefore, there is no need to communicate, 
which is, indeed, time consuming. Figure 8.14 shows an example of position of local 
simplices in the triangulation. 

.   

Figure 8.14: The Delaunay triangulation in E2 distributed over two processors. White triangles are 
stored in the local memory of the first processor, light gray are stored in the local memory of the 

second processor. 
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In the first steps of insertion, the triangulation consists of several large simplices that cross 
over boundaries. These simplices are remote at least for one processor, i.e., this processor has 
to communicate in order to access them. As they are large, it is quite probable that a point to 
be inserted lies inside some of them. Therefore, it seems reasonable to apply the same trick as 
in the operation flow and let the interface to prepare a primary triangulation of points lying in 
corners and send this triangulation to every processor. 

If a hierarchical structure is used to speed-up the location, there are, however, still many 
nodes on upper levels of the structure describing remote simplices and, therefore, the 
communication is unavoidable. This is definitely true for the DAG – see Figure 8.15. If the 
first processor wants to insert the point denoted by a cross into the triangulation, it will have 
to retrieve 6 remote simplices and test them to locate the simplex, local simplex, to be 
subdivided. One possible solution to this problem is to keep top part of the hierarchical 
structure always in the cache. The key issue is where to cut the structure. If the cut is too high, 
the number of communications will be large and the performance of the algorithm quite low. 
On the other hand, if the cut is too low, many nodes will have to be duplicated, which limits 
the size of input data set that can be processed.  

    

Figure 8.15: An example of the insertion of first 3 points into the triangulation distributed over two 
processors (the boundary is denoted by a thick vertical line) and the appropriate changes in the DAG 

structure on "white" processor. White nodes denote local triangles, gray denote triangles stored 
remotely, i.e., in the local memory of "gray" processor. 

Therefore, a better strategy could be to avoid the use of hierarchical structures and exploit 
some walking technique, which, moreover, allows us to handle larger data sets on fewer 
computers. It is possible to adopt the uniform grid constructed in the points subdivision stage 
to speed-up the location. In each cell of the grid, we can store the pointer on data structure of 
some simplex (at the beginning it is the first auxiliary simplex) that will be used for all points 
lying inside this cell as a starting simplex for the walking algorithm. When a new simplex is 
created, the pointer on the simplex data structure is stored to every cell containing at least one 
vertex of this simplex. Using this approach, we can expect that (especially for uniformly 
sampled points) the walking technique will need to test only few simplices. Another location 
strategy based on a uniform grid was proposed by Žalik et al. in [Žal03]. 

Let us remind that the changes performed during the insertion of a point are confirmed and 
simplices unlocked when this insertion is completed. It might cause a communication 
between processors. Although a processor requires, in the worst-case, to access all simplices 
in the triangulation during the insertion, in practice, only few simplices are accessed. As the 
communication is time consuming, the algorithm could run faster if the confirmation of 
changes is postponed until several points are inserted. It is a question, how many points 
should be inserted in one transaction. If this number is too big, the processor locks large areas 
and, therefore, there is a bigger probability that another processor has to wait inactively or 
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even give up the insertion due to a deadlock. Moreover, as larger amount of memory is 
reserved for the cache, the processor may have not enough memory to complete its work. 

The advantage of the described data flow approach is its simplicity – it can be easily 
implemented in E2 and in E3 as well. On the other hand, it requires, despite all improvements, 
a huge amount of communication and, therefore, the performance is limited. As there is no 
centralized computer, we can expect better scalability than in the case of the operation flow 
but lower efficiency because of the intensive communication effort. 

As the data flow is an extension of the optimistic method described in Section 7.5, the 
simplified version of data flow algorithm is similar to the algorithm of the optimistic method 
given in Figure 7.5. The main difference is that when a simplex is to be locked, it is 
necessary, to detect whether the simplex is stored locally or not. If the outcome of this test is 
positive, the local locking routine is called. Otherwise, the appropriate processor is contacted 
and this processor calls the locking routine. Actually, this means that for remote simplices the 
routine is called remotely. The same policy applies for the confirmation of changes performed 
during the insertion. 

8.5.1 Virtual Shared Memory (VSM) Manager 
The data flow approach can be easily adopted for parallelization of various applications. This 
led us to the idea to develop an application independent software layer that provides universal 
routines for the manipulation with data, no matter whether the data is stored locally or 
remotely, and means for synchronization between processors. As this layer actually simulates 
the shared memory, we call it Virtual Shared Memory (VSM) manager. A schema of the 
distributed computing under the VSM is shown in Figure 8.16.  

Application 1

VSM Manager

LM
Mem Cache

Network

Application 2

VSM Manager

LM
Mem Cache

 

Figure 8.16: A distributed computing using the VSM on two computers, LM is the local memory. 

The idea to simplify the parallelization for parallel computers with distributed memory by the 
use of a hardware or software solution that simulates the shared memory is very old, it was 
proposed by Kai Li in his PhD thesis from 1986 [Kai86], but it has became popular in recent 
few years (see also DSM in Section 2.1). While the first works were mainly intended for the 
massive parallelism, recent solutions are dedicated to clusters of workstations. They differ in 
the level of abstraction that provide. Some of them allow users to continue to operate with 
traditional 32-bits pointers limiting them to access at most 2GB of total memory. Such 
systems are typically used by applications that are quite time consuming but do not require 
a big amount of memory. Other solutions overcome this drawback by introducing a 
generalized 64-bits long pointer, which either requires unnecessarily complicated changes in 
user source codes or the use of specialized compiler shipped within the solution (e.g., 
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commercial systems Linda or Paradise). In his PhD thesis [Bil98], Bilas gives a nice survey of 
virtual shared memory systems and discusses problems with their performance. 

The main part of our approach is the VSM library (briefly the VSM). It is an object library 
dynamically or statically linked to a user application. From the distributed point of view, there 
is a necessity to have two programs: master and worker. In the system, there is just one 
running instance of master program and any number of running instances of worker program. 
One instance runs, typically, on one computer. It is possible to start more instances on one 
computer but it degrades, except for the case that the user application introduces an intensive 
synchronization, the performance of computation. The master program is responsible for the 
initialization of computation, which usually involves displaying of a setup dialog allowing the 
user to set parameters for the calculation, e.g., the name of data set, thresholds for filtering, 
etc. The worker program is dedicated for the calculation only and it cannot interact with the 
user. Very often master and worker programs are written according to the farmer-worker 
programming model (see Section 2). However, it is not a condition and both programs may 
implement the same algorithm, e.g., both participate to the construction of DT(S). 

The master program is executed manually by the user and it calls the master initiation routine 
of VSM passing the minimal and maximal number of computers to be used for the 
computation and the name of configuration file as arguments. From the specified file, the 
VSM reads UNC or IP addresses of computers available in the cluster. For each such an 
address, the VSM attempts to contact a special utility, the VSM admin, running on the 
background of the appropriate computer and sends it the worker program (including all 
required binary and initialization files). Usually, the VSM admin is launched automatically by 
the operating system when it starts and terminated when it shutdowns. The utility stores the 
sent files onto the local disk and executes the worker program.  

When the worker program starts, it calls the VSM worker initialization routine. This routine 
starts a listening thread responsible for receiving of all incoming requests and waits until the 
computation can start. The utility sends a confirmation to the computer from which the 
request came. When a sufficient number of workers, i.e., instances of worker program, run, 
the VSM master initiation routine assigns a unique number identification, starting from zero, 
to every instance. The master is always denoted by the zero value. Afterwards, it sends a 
message containing all addresses and identifications to every worker. Each worker establishes 
the connection with other workers. Now, everything is prepared for the computation. 
Initiation routines finish and the execution of user code proceed. 

At the beginning of computation, the application (both master and worker) calls the VSM to 
register data structures that should be distributed over computers. During the registration, it 
specifies a user unique identification of data type, the size of this type, references (pointers) 
used in this type and a maximal number of elements of this data type that can be created in the 
local memory. For example, in the Delaunay triangulation, we register the data structure 
describing a simplex, i.e., the node. 

Typically, the application also calls the VSM to create synchronization primitives. Barriers, 
critical sections, manual-reset and auto-reset events are supported. A barrier is used to 
synchronize work of a group of processors. When a processor reaches the barrier, it has to 
wait until all its counterparts reach this barrier. Barriers are an ideal choice for an algorithm 
divided into stages where one stage must be finished before the algorithm can proceed with 
next stage, e.g., in the construction of the Delaunay triangulation, the insertion of all points 
must complete before the resulting triangulation can be stored. As critical sections and events 
are notoriously known synchronization primitives, we omit their description. Let us, however, 
explain the difference between manual-reset and auto-reset events. When a manual-reset 
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event is signaled, it remains in this state until it is manually set to non-signaled state. Usually, 
all processors waiting for the event are released. An auto-reset event is automatically reset to 
the non-signaled state after a single waiting processor has been released. 

The VSM offers the use of so-called atoms. An atom is an indivisible piece of data, usually 
very small, that is stored in the local memory of one computer but it is accessible from any 
computer. By the term indivisible, we mean that the application cannot read individual bytes 
of atom but it has to read it as a whole into some local temporary storage and access data in 
this storage. The same rule is applied for the modification of atom. Typically, the application 
exploits atoms to exchange small pieces of data such as values of counters, names of input 
data sets, settings of computation, etc. An access to an atom is considered always as an atomic 
operation, i.e., only one processor may operate with the same atom at one moment. Besides 
standard read and write operations, the VSM supports also more sophisticated operations, 
e.g., the operation that modifies the atom only if its value matches a given mask, which is 
useful for low overhead synchronization. 

Whenever the application needs to allocate a new element of the registered data type, instead 
of calling standard allocation routine, e.g., new or malloc, it calls the Add operation provided 
by the VSM for this purpose. A traditional pointer, 32-bits long, is returned to the application. 
What is very important is that the VSM allows to programmers to continue using of standard 
pointers, which means that the content of an element can be read and modified in the same 
way as in the original sequential program and, therefore, there is no need to change source 
code. Internally, the element, indeed, is identified by a 64-bits number. The VSM operation to 
translate local pointer to this identifier is available. If the application operates with some 
hierarchical structure, the master program, usually, sends the identifier of root node to every 
worker using an atom and a manual-reset event. In our case, it is the first constructed simplex.  

When the application wants to operate with the content of data element for read-only purpose, 
it has to call the Get operation passing the full identification or, if the element is stored locally 
or it is cached, the traditional pointer to the element as an argument. If it is necessary, the 
VSM retrieves the data from the appropriate owner and places it into the cache. Afterwards, it 
retrieves all refereed elements and updates 32-bits pointers in the structure to point to proper 
place. Figure 8.17 shows an example of two steps of successive traversal of a hierarchical 
structure. After the first call of the Get operation, passing the pointer on the root element as an 
argument, the application can access the entire root element (i.e., its data and any pointer 
stored in this element) and the data in any refereed element. Pointers in refereed elements, 
however, might be invalid (in figure, they are denoted by gray color). In the following step, 
the application moves to the element refereed by the second pointer (i.e., “Pointer 2”) and 
performs another call passing the proper pointer as an argument.   

Let us note that once elements have been retrieved in the Get operation, they are valid and 
cannot be removed from the cache until the application calls the CancelUpdate or the Update 
operation (will be explained later). 

If the application needs to modify the element, it calls the Edit operation. As simultaneous 
modification must be avoided, the VSM in this operation attempts to get for the caller an 
exclusive access to this element, i.e., to lock the element. If the access cannot be granted, the 
application is suspended until the blocking application finishes modification of the element. 
In the case that the waiting would cause a deadlock, the Edit fails and the calling application 
has to return in the control flow to the stable state and to call CancelUpdate operation. The 
VSM then undoes all not confirmed changes and unlocks all elements. If no deadlock is 
detected, the application has to call from time to time the Update operation to confirm the 
changes and to unlock elements. Both operations also reorganize the cache and release 
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memory that is no longer needed. After their call, any pointer provided to the application by 
the VSM is invalid and, therefore, it is needed to call either the Get or the Edit again. 
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a) after the call of Get(Pointer) b) after the call of Get(Pointer.Pointer2) 

Figure 8.17: An example of the successive update of 32-bits pointers used in the application. Valid 
content is placed in white boxes, invalid in gray. Bold text denotes pointer that is used as an argument 

for the Get operation. 

The VSM offers similar functionality for arrays of elements. An item in the array is accessed 
via pointer that is returned from the Get or the Edit operations called, naturally, with an index 
to the array as an argument. Using the indexer operator supported by almost any object 
oriented programming language, arrays in the original sequential code by objects can be 
superseded with minimal effort. 

The advantage of the proposed VSM approach is the simplicity of its programming interface, 
which opens a possibility to parallelize a sequential algorithm even by a person not focused 
on distributed computing. Primarily, 32-bits pointers are supported; their translations to 64-
bits long identifiers and vice versa are for the user transparent. It minimizes the number of 
changes to be done in order to parallelize the algorithm. On the other hand, the provided 
higher level of abstraction introduces quite a big overhead, especially for hierarchical 
structures, e.g., the DAG. It harms the efficiency of algorithm parallelized with the VSM. 

8.6 Mixed flow 
Mixed flow combines the operation flow and the data flow approaches. Unlike the operation 
flow, it does duplicate neither the storage nor the computational effort. In comparison to the 
data flow, processors cannot operate with any simplex and the amount of data to be 
transferred is reduced. A simplex can be modified only by its supervising processor, which is 
the processor having the majority of its vertices inside its region or, in the case that we cannot 
determine the majority, the processor owning the vertex with the highest index. If a processor 
wants to modify a simplex that it does not supervise, it sends the operation to the appropriate 
supervisor and proceeds with another point. When a processor receives the operation, it enters 
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the request into a queue of postponed operations. Operations stored in the queue are processed 
when the processor completes the insertion of the current point. As the processing is 
postponed, the synchronization is not needed (unlike the operation flow). On the other hand, 
the triangulation could change and, therefore, some walking technique has to be used for 
subdivide operations in order to find the proper simplex. When the operation is completed, the 
processor starts the legalization of its simplices. After the legalization, the processor detects 
all simplices that have changed and sends them to the initiating processor in one message. The 
processor merges the sent part of the triangulation with its local triangulation, checks the 
boundary of sent part whether they fulfill the Delaunay criterion and, if the outcome is 
negative, it performs the legalization.  

 

p 1

 

a) local triangulations at the common boundary b) the second processor inserts the point p1, local 
triangulation on the first processor is not changed 

p 2

  

c) the first processor wants to insert the point p2, 
the second processor completes the insertion of 

the point p1 

d) the second processor performs the sent 
operation, local triangulation on the first processor 

is not changed 

  

e) local triangulations before the update, gray 
denotes the area to be updated 

f) local triangulations after the update and 
consequential legalizations 

Figure 8.18: An example of the insertion of two points lying near the boundary in E2. 
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Figure 8.18 shows an example of the insertion of two points near the boundary of regions in 
E2. The second processor wants to insert the point p1 into the triangulation. It finds the 
appropriate triangle to be subdivided. As the triangle is supervised by the processor, the 
subdivision is performed locally – see Figure 8.18b. At the same time, the first processor 
wants to insert the point p2. It would require a modification of triangle that is supervised by 
the second processor and, therefore, it sends the operation to its counterpart. Meanwhile the 
second processor finishes the insertion of p1 and continues with the processing of the sent 
operation and its consequential operations – see Figure 8.18c, d. The modified part of the 
triangulation is transmitted and the first processor updates its local triangulation and proceeds 
with the legalization – see Figure 8.18e, f. 

In the mixed flow, there is a significant decrease of required communication between 
processors and of the number of synchronizations. Therefore, we can expect higher efficiency 
that in the operation flow or the data flow approaches. On the other hand, the implementation 
is not simple (especially, the consistency restore) – it is comparable with the operation flow. 
The extension into E3 is possible but extremely difficult (more than in the case of the 
operation flow) due to the numerous cases of legalization. 

 

 

 

 

In this section, we propose three different strategies for the parallelization of the construction 
of the Delaunay triangulation for clusters of workstations. While the operation flow and the 
mixed flow are suitable for E2 only, the data flow approach is general and can be simply used 
in both dimensions. Moreover, the data flow strategy, unlike the operation flow and the mixed 
flow, can be adopted for many other problems. On the other hand, its performance is 
supposed to be much worse than the performance of the operation flow. As the processing of 
large data sets is demanded especially in E3, we focus on the data flow approach in next text. 



77 

9 Experiments and Results 
Parallel and distributed solutions for the construction of the Delaunay triangulation were 
implemented in C++ under Microsoft Visual Studio.NET 2002 or Microsoft Visual 
Studio.NET 2005 Beta 1 using serial incremental algorithm implemented in Delphi 6. If not 
mentioned otherwise, we assume that the DAG structure is used to speed-up the location. In 
the operation flow, the interface subdivides input points and sends them to workers. The 
DCOM was used for the communication between processors – see Sections 8.2. In the data 
flow, points are duplicated on every computer and the low level Socket API was exploited.  

As we, unfortunately, have only very limited accesses (approximately one per half a year) to 
any suitable symmetric multiprocessor with more than two processors, the presented results 
for parallel version are a collection of different experiments at various computers. Main tests 
were done on the following machines: 

• Dell Precision 410 (2x Intel Pentium III 500 MHz, cache 512KB, 1GB RAM) with 
Microsoft Windows XP Professional operating system,  

• Dell Power Edge 6400 (4x Intel Pentium III Xeon 550MHz, cache 1MB, 4GB RAM) with 
Microsoft Windows XP Advanced Server,  

• 64-bits Dell Power Edge 7150 (4x Intel Itanium, cache 4MB, 800MHz, 2GB RAM) with 
Microsoft Windows XP Advanced Server,  

• Unisys ES5000 (8x Intel Pentium III Xeon, cache 2MB, 700MHz, 2GB RAM) with 
Microsoft Windows 2000 DataCenter operating system,  

• Dell Power Edge 8450 (8x Pentium III, cache 2MB, 550 MHz, 2GB RAM) with 
Microsoft Windows 2000 Server.  

For additional tests, Shalla (2x Celeron 533 MHz, cache 128KB, 512MB RAM) with 
Microsoft Windows 2000 Professional operating system was used. For the distributed 
solution, tests were done on these homogenous clusters of workstations: 

• 10x HP Workstation xw3100 (2x Intel Pentium IV 2.8 GHz, 2GB RAM) interconnected 
via 100Mb Ethernet with Microsoft Windows XP Professional operating system,  

• 20x HP Compaq EVO D310 (Celeron 1.7GHz, 512 MB RAM) interconnected via 100Mb 
Ethernet with Microsoft Windows XP Professional operating system. 

In our experiments, we used two kinds of testing data. The first group consists of artificially 
generated points with various distributions, such as grid, uniform, gauss, cluster, arc and 
sphere. The points were generated in a unit square. Points for grid distribution lie in a regular 
orthogonal grid. In the uniform distribution, the coordinates of points are chosen at random. 
Cluster distribution is formed by several groups of normally distributed points. Points for arc 
distribution converge to an arc. Sphere distribution provides points on the surface of a sphere. 
The arc and sphere were especially useful in testing the robustness of both serial and parallel 
implementation because these data contain many cases that are singular for Delaunay 
triangulation (e.g., 5 or more points laying on a sphere in E3). Examples of tested data sets are 
shown in Figure 9.1. For experiments on symmetric multiprocessors, the tested number of 
input points, i.e., data size N, was chosen between 1K and 1M in E2 and 1K and 250K in E3. 
The largest tested data sets consume about 1GB of memory. Distributed programs were tested 
on data sets up to 4M in E2 and 1.5M in E3.  
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a) grid data b) uniform data c) gauss data 

   

d) cluster data e) arc data - E2 only f) sphere data, projection to the 
plane xy - E3 only 

Figure 9.1: Examples of tested distributions of the input points. 

Besides the artificial data sets, we tested real data sets of terrain models (e.g., Crater Lake 
with 100 001 points) and some popular surface models (e.g., whale with 52 635 points, 
CTMayo with 98 869 or bell with 213 373). Most of these models were obtained from the 
Stanford repository [Sta99] and Žalik database [Žal99]. In our experiments, there were no 
observable performance differences between real and uniform data sets of comparable sizes. 

For each data size, we tested several different data sets with the same distribution except for 
the real data. The artificial data sets were generated and stored on the disk before the 
experiment. Experiments were repeated several times (at least five times) to increase 
reliability of the results. Let us note that the differences in time consumed by the different 
data sets with the same number of points did not exceed 10%. The resulting speed-up was 
calculated as the median of the total sequential time divided by the median of the total parallel 
time. Time for I/O operations (i.e., reading the point file into the memory and storing the 
resulting triangulation onto disk) is excluded. We prefer to use the median rather than the 
average because in this way we eliminate singular cases. The difference between the results of 
both functions, however, is insignificant. The efficiency is computed as the speed-up divided 
by the number of used processing elements. 

The distribution influences the types of local transformations and the linearity and the growth 
of the number of the required local transformations, i.e., it affects the total time. The different 
number of local transformations for various types of data also means different number of 
nodes in the DAG structure. If we plot the dependence of the total runtime on the size of the 
DAG structure for both sequential and parallel algorithms, these functions of the 
dependencies behave very similarly in almost all cases – see Figure 9.2. The different rate of 
the growth of the dependency can be noticed in E3 for grid data sets. The explanation is as 
follows. The transformations of two tetrahedra to two or four to four need to lock more nodes 
than other types of transformations and, therefore, they consume more time. However, 'two-
two' and 'four-four' local transformations are rare for other than grid distribution where they 
have on average about 20% of all transformations. 
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The just described characteristic of the dependency of runtime on the size of the DAG allows 
us to estimate the parallel behavior of our parallel algorithms for any data distribution if we 
know the parallel behavior for another data distribution and sequential behavior of both these 
data distribution are available. This possibility was exploited to limit number of experiments 
on symmetric multiprocessors with more processors (to which we have only a limited access) 
and we have chosen uniform data sets as representative.  

In the next text, we assume (if not specified otherwise) that in the case of parallel versions for 
symmetric multiprocessors, points are subdivided randomly into k groups (k is the number of 
used threads) in such a manner to ensure equal number of points in each group. Let us further 
assume that in the case of distributed versions for clusters of workstations we use a modified 
Mueller’s algorithm described in Section 6. As two insertions of m points of the same point 
distribution take almost the same time, no dynamic load balancing is necessary and, in the 
distributed case also unwanted. 
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Figure 9.2: The dependency of the total time on the number of nodes in the DAG structure. 

9.1 The Results of Batch Method 
Figure 9.3 shows the achieved speed-up for batch method for uniform data sets. The speed-up 
is mainly influenced by the number of input points. At first, the speed-up quickly increases 
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with the growing size of the input data set, then for some sizes, it is almost constant and when 
larger data sets are processed, it tends to decrease slowly.  
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a) Dell Precision 410 (2 PEs) b) Dell Power Edge 6400 (4 PEs) 

Figure 9.3: Speed-up of batch method when 2 - 8 searching threads were used. 

Let us discuss this behavior. The algorithm has to process one subdivision and zero or more, 
say L, swaps after the location. Time needed for one subdivision, indeed, does not depend on 
the data size. Although in the worst case swaps go through the whole triangulation, usually 
they are local and thus L is limited to a small number in average. It means that the time 
needed for the legalization is also independent of the size of the data set. While expected 
complexity of both parts is O(1), expected complexity of the location is O(log N) and, 
therefore, time needed to locate a triangle is significantly dependent on the data size. How 
does this fact influence speed-up? When the data set is too small, the searching threads 
produce many points in a short time, the shared queue becomes full and the searching threads 
have to wait. The possibility of waiting drops quickly down with growing data size and, 
therefore, we can notice a quick increase in speed-up. When the searching threads are unable 
to insert the point into the queue in time, the queue becomes empty and the specialized thread 
has to wait. As this situation happens rarely and, moreover, in such a case, only one thread has 
to wait, the performance decreases very slowly.  

It is clear that the optimal efficiency is reached when no thread has to wait and just one 
element to be processed is in the shared queue. Let us assume the PRAM computational 
model, i.e., the model of the architecture with an unlimited number of processors, common 
shared memory and unrealistically cheap synchronization between processors. For a given 
data set, the sequential algorithm spent the total time t1 in the location and the total time t2 in 
the subdivision and the legalization. In such a case, to achieve highest efficiency for this given 
data set, we have to use k searching threads, where k is equal to the round(t1 / t2). If the result 
of t1 / t2 is an integer, the achieved efficiency is optimal.  

The number of available processors is, however, limited to PEmax in the real architectures. Let 
us assume that k+1 is the total number of all threads (searching + specialized threads) for a 
given data set and, moreover, for a given architecture, k+1 > PEmax. Which strategy is better: 
to let k+1 threads run and admit sharing of the processor time among more threads or use at 
most PEmax threads and admit waiting of threads in the algorithm? According to our 
experiments, the waiting of the threads has greater negative impact on the efficiency if k+1 is 
not 'too different' of PEmax. Figure 9.3a shows a good example. 
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There is no configuration (i.e., number of used searching threads) ideal for all data sizes. 
Therefore, we recommend a modification of the proposed batch method in such a manner to 
get an improved batch method that automatically estimates the number of threads that should 
be used for the location according to the number of input points. According to Figure 9.3b, 
the best configuration seems to be 3:1 (i.e., 3 searching threads and 1 specialized thread) and 
4:1 for larger data sets (up to 1 000 000). Let us note that it corresponds to the results of 
analysis of the sequential algorithm as it was presented in Section 6. Use of five searching 
threads comes to consideration for data sets with more than approximately 1.5 millions of 
points. Although we did not perform an experiment on a multiprocessor with more than 4 
PEs, we cannot expect that the batch method would achieve a good speed-up on such 
computer because the location part in E2 consumes only 75% of the total time for common 
data sizes (i.e., up to one million). Probably, there exist such large data sets that would feed 
more PEs, however, computation of such data sets using the DAG structure needs more 
memory than is available on any 32-bits computer. Therefore, this method seems to be 
scalable only up to 4 PEs for common data sizes and, moreover, usable only in E2 because the 
location in E3 consumes less than 50% of the total time. 

Let us now discuss the possibility of super-linear speed-up recognizable in almost all graphs 
presented in this paper. The super-linear speed-up means that the speed-up is bigger than the 
number of used processors. This situation generally may appear; two main reasons are in 
[Sie94]. The problem was analyzed in detail by Sun et al. [Sun95]. Typically, it is caused by a 
more efficient use of the memory cache and the caches of the processors. A memory cache 
influences also the time needed for processing data in the algorithm. For example, the data 
loaded into the cache for the thread T0 are needed also for threads T1 and T2 that access them 
when they are still in the cache, thus they do not need additional time for their loading. This 
case is rare for the sequential algorithm. The importance of cache effects grows with the size 
of the DAG structure, i.e., the number of points to be inserted. Effect of the processors caches 
is, especially in batch method, notable. There is no doubt that the code stored in the cache 
runs faster than the code stored in the RAM. The multiprocessors often have big caches able 
to hold large pieces of code or blocks of data. The code of the location phase is simple and 
short, thus it fits in the cache. As for the sequential algorithm, it persists there for some time 
and then it is partially replaced by code needed for the subdivision or legalization, it means 
that the RAM has to be often accessed. However, in the batch method, searching threads do 
only the location, therefore, their code can be in the caches for longer time and so the location 
version takes a noticeably shorter time. Figure 9.4 brings a confirmation of the cache-effect. 
We compared speed-up achieved at Shalla (cache 128 KB), Dell Precision 410 (cache 512 
KB) and Dell Power Edge 6400 (cache 1 MB) for the batch method. To ensure comparable 
environment, we limited the run of the algorithm to two processors in case of PE 6400. 

 
Speed-up 

N Shalla 
128 KB 

P 410 
512 KB 

PE 6400 
1024 KB 

1 000 1.132 1.072 1.642 
5 000 1.698 1.787 2.218 

10 000 1.606 1.910 2.391 
50 000 1.695 2.039 2.342 
100 000 1.749 2.025 2.422 
500 000 1.745 2.079 2.399 

Figure 9.4: Influence of cache-effect on speed-up at three different computers for the batch method 
with the configuration 3:1 (run limited to 2 PEs). 
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Caches are not the only reason for the noted super-linear behavior. Speed-up is also 
influenced by the internal parallelization of the kernel of the operating system. Our further 
experiments show that when a sequential algorithm runs on the first processor (like in our 
testing), it takes about 4% longer than when it runs on any other processor.  

9.2 The Results of Pessimistic Method 
Figure 9.5 shows achieved speed-up for pessimistic method for uniform data sets. Speed-up 
increases with growing number of input points. The optimal efficiency of this method is 
reached when a thread enters a critical section without waiting. This condition is equivalent to 
the condition of optimal efficiency in batch method and, therefore, the results in E2 are 
similar. As the location in E3 takes only about 30%, threads always have to wait. Therefore, 
the use of more than 2 PEs in E3 makes no sense. 
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Figure 9.5: Speed-up of pessimistic method - Dell Power Edge 7150 (64 bits, 4 PEs). 

9.3 The Results of Optimistic Method and Burglary Method 
Figure 9.6 shows the achieved speed-up for optimistic method and burglary method for 
uniform data sets. Speed-up increases with the growing number of input points and with the 
growing number of used threads. In burglary method, the transactions are avoided. It has, 
indeed, a positive impact on the total time needed for the construction. On the other side, 
burglary method requires more complicated locking routine than optimistic method and it 
introduces some additional tests necessary for the decision whether to continue in the 
legalization or not. It negatively influences the efficiency. Although number of the 
transactions required per one insertion in E2 is similar to number of the transactions required 
per one insertion in E3, the numbers of calling locking routine are different – methods in E3 
need several times more callings. That is why burglary method achieves slightly higher speed-
up than optimistic method in E2 and lower speed-up in E3. 

According to our previous experiments [Kol02, Koh03b], both methods should be scalable at 
least up to 8 PEs. As we have no longer access to an appropriate multiprocessor, let us present 
the results of experiments with older versions of our algorithm. Since that time, we have 
reduced the number of required synchronization and, therefore, one can expect better results 
using the current version. Figure 9.7 acknowledges the scalability of the optimistic method.  
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Figure 9.6: Speed-up of optimistic method (OPT) and burglary method (BG) - Dell Power Edge 7150 
(64 bits, 4 PEs). 
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Figure 9.7: Speed-up and the efficiency of the optimistic method for grid data sets. The results are 
valid for older versions only. The experiments ran on Dell Power Edge 8450 (8 PEs) for E2 and on 

UniSys ES5000 for E3. 
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9.4 The Results of Circum-Circle Method 
Our preliminary experiments revealed that circum-circle method is useless in E3 because the 
threads have to wait very often. The reason is that circum-spheres occupy a large part of the 
space. Figure 9.8 presents the achieved speed-up for circum-circle method for uniform data 
sets in E2. Speed-up grows with the growing number of input points but the efficiency of the 
algorithm quickly decreases with the increasing number of used threads. The reasons for the 
decrease are two: the complexity of the geometric tests and the possibility that a point inserted 
by a concurrent thread lies inside the larger circum-circle (constructed for narrow triangles) 
grows with the number of used threads.  
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Figure 9.8: Speed-up of circle-circum method - Dell Power Edge 6400. 

9.5 Experiments with Different Data Point Distributions 
Let us discuss the influence of various distributions on the run of our methods. Figure 9.9 
shows samples of Delaunay triangulations for different data point distributions in E2. 

 
  

a) uniform data set b) gauss data set c) cluster data set 

Figure 9.9: Examples of triangulations of different types of data point distribution in E2. 

Figure 9.10 demonstrates the efficiency of optimistic method in E2 for different data point 
distributions. As we can see, the differences in speed-up among the distributions are almost 
insignificant – up to 12% (on average the difference does not exceed 8%). Batch, pessimistic 
and burglary methods behave similarly (see [Kol03, Koh04c]). 
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Figure 9.10: Speed-up of the optimistic method in E2 for different types of data point distribution - Dell 
Power Edge 6400 (4 PEs). 

A slightly different situation occurs when circum-circle method is tested – see Figure 9.11. It 
seems that the method of circum-circle is useless for arc data sets and the most efficient for 
cluster data sets. The reason for such behaviour is directly related to the previously described 
problem of circum-circles of narrow triangles. In arc data sets, many triangles are narrow, 
thus many circum-circles are huge and the probability that a thread has to wait is quite high. 
Figure 9.12 shows an example of the Delaunay triangulation of arc data set.  
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Figure 9.11: Speed-up of the circum-circle method for different data point distributions - Dell Power 
Edge 6400 (4 PEs). 

On the other hand, when dealing with cluster data sets, the possibility grows slower than 
when dealing with other distributions. It is caused by the fact that insertion of a point into one 
cluster rarely influences another cluster, thus if the thread T0 works with a cluster A and the 
thread T1 works with a cluster B then the probability that T0 or T1 will have to wait is almost 
zero. Therefore, we can see better speed-up for large cluster data sets. 
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a) the entire Delaunay triangulation b) the detail of selected area 

Figure 9.12: An example of the Delaunay triangulation of 100 points lying on arc. 

Pessimistic, optimistic and burglary method in E3 achieve similar results for all tested data 
point distributions with one exception: optimistic and burglary methods for grid data sets 
achieve lower speed-up than for any other data sets. It is caused by the necessity to lock more 
nodes in the subdivision and/or the legalization (see the beginning of Section 9). However, the 
grid points are not a typical input - if the user prefers a structured mesh, he will probably not 
use the Delaunay triangulation. 

9.6 Experiments with Real Data Sets 
Besides artificial data, we tested real data sets from [Sta99, Žal99] – see Figure 9.13. The 
experiments were done under the same conditions as were applied on the generated data sets. 
There is usually no significant difference between the results of experiments with real data 
sets and uniform data sets when corresponding numbers of input points are compared.  

  

a) E2 b) E3 

Figure 9.13: Examples of triangulations of real data sets. 
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Figure 9.13a shows an example of real data set in E2. It is a digital elevation model of Crater 
Lake, USA containing 100 001 points. Batch method (configuration 3:1) reached speed-up 
2.01 at Dell Precision 410 with 2 PEs and 4.40 at Dell Power Edge 6400 with 4 PEs. 
Optimistic method reached speed-up 2.50, 4.33, burglary method 2.50, 4.44 and circum-circle 
method 2.62, 4.09 at Dell PE 6400 with 2, 4 threads. Let us note that the model was rendered 
using the MVE visualization package [MVE]. 

Figure 9.13b shows an example of real data set in E3. It is a model of a whale containing 
52 635 points. Pessimistic method reached speed-up 1.54, optimistic method 1.95, 2.72, 3.51 
and burglary method 1.75, 2.53, N/A at Dell Power Edge 7150 with 2, 3, 4 threads. Let us 
note that the final model in Figure 6.26b was obtained from the resulting triangulation by the 
method publicated in [Var05] – see also Section 10.  

9.7 Experiments with Different Points Subdivision Strategies 
In the previously described results, we assumed that points are subdivided randomly into k 
groups (k is the number of used threads) in such a manner to ensure equal number of points in 
each group. This strategy is reasonable for methods based on the batch or the pessimistic 
principle because the subdivision and the legalization in these methods are performed by one 
thread only. For optimistic methods, however, better strategy could be a subdivision of input 
points into k groups in such a manner that not only the equal number of points in each group 
is ensured but also the bounding boxes of these groups have minimal intersection. 

The simplest way is to subdivide input points into k slabs in x-coordinate using modified 
median cut algorithm or Mueller’s algorithm – these were described in Section 6. According 
to our experiments [Kol02, Koh03b, Koh04c], however, the additional time required by a 
more sophisticated points subdivision is not counterbalanced in the computation and, 
therefore, the use of such possibilities brings worse results. The explanation is simple: the 
number of cases when a thread has to wait is, especially for larger data sets, negligible, i.e., 
the total time spent in the waiting is lower than the additional time.  

9.8 The Results of Operation Flow 
In the parallelization for clusters of workstations, unlike the parallelization for symmetric 
multiprocessors, the total time needed for the computation is not as important as the size of 
input sets that we are able to process. Figure 9.14 shows the minimal amount of memory 
required for the DAG structure in the dependency on the size of uniform data sets in E2. It can 
be seen that the requirements grow almost linearly. Let us note that for other kinds of input 
data, it behaves similarly. As a program running under Microsoft Windows platform on 32-
bits computer, widely used equipment, may take up to 2GB of memory, it is impossible to 
process data sets containing at least 3 millions of points on one computer. As it is necessary to 
store also coordinates of points and, usually, some miscellaneous data structures, the memory 
consumption is, in practice, larger.  

DAG DAG N Nodes Size [MB] N Nodes Size [MB] 
5 000 44 734 3 1 000 000 8 956 681 598 

10 000 89 286 6 2 000 000 17 935 024 1 197 
50 000 449 012 30 3 000 000 26 902 836 1 796 

100 000 899 293 60 3 500 000 31 386 289 2 095 
500 000 4 489 882 300 4 000 000 35 870 048 2 395 

Figure 9.14: The size of the DAG structure in the dependency on the number of points in E2 (uniform 
data sets were tested). 
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Figure 9.15 shows the total time required to process smaller uniform data sets on various 
number of computers using the operation flow without any improvement. Let us note that we 
could not perform an experiment on two computers for a data set with one million of points 
because the total amount of memory available on these computers (i.e., about 800 MB) for the 
computation of such data set was insufficient.  
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Figure 9.15: The scalability of the operation flow method without any improvement in E2 – tested 
uniform data sets on cluster of HP Compaq EVO D310.  

Surprisingly, the time increases with the growing number of employed processors and in the 
case of small data set with 100 000 points, it increases almost linearly. The reason is quite 
simple. When a processor needs to operate with a shared simplex, it has to communicate and 
some synchronization between processors is unavoidable. The amount of shared simplices 
increases proportionally to the number of processors. An operation with a shared simplex has 
to be performed by every computer sharing this simplex and by the interface. Therefore, the 
total time spent by the processing of such operations grows with the number of computers 
employed for the computation. As the processor that invoked the operation with a shared 
simplex is suspended and has to wait inactively until the operation is finished (see Section 8), 
operations with shared simplices are performed actually sequentially. As the total time 
required by the processing of an operation with a shared simplex is much larger than the total 
time required by the processing of an operation with a local simplex, efficiency of the 
algorithm rapidly decreases as we use more computers. Figure 9.16 shows the number of 
synchronized operations, i.e., operations with shared simplices, and their influence on the 
runtime of the algorithm in the dependency on the number of processors. 

Synchronized operations N PEs Total 
Time [s] Count Time Time / PE [s] 

100 000 2 20.3 7982 4.5 / 22.2% 2.3 / 11.1% 
100 000 4 28.2 21277 12.5 / 44.3% 3.1 / 11.1% 
100 000 6 38.8 40908 24.9 / 64.2% 4.2 / 10.7% 
100 000 8 46.8 64791 40.2 / 85.9% 5.0 / 10.7% 

1 000 000 4 111.7 107446 67.3 / 60.3% 16.8 / 15.1% 
1 000 000 6 143.3 169843 107.7 / 75.2% 18.0 / 12.5% 
1 000 000 8 159.1 214122 155.6 / 97.8% 19.5 / 12.2% 

Figure 9.16: The amount of synchronized operations (operations with shared simplices) in E2 in the 
dependency on the number of processors and the total time required for the processing of these 
operations in comparison with the total time consumed for the computation. Uniform data sets on 

cluster of HP Compaq EVO D310 were tested. 
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It can be seen that each processor spends more than 10% of the total construction time 
inactively by waiting for the completion of some synchronized operation. With larger number 
of processors, the total time consumed by the interface grows – see also Figure 9.17. As this 
time is an overhead, no wonder that the algorithm is not scalable. 

0
20
40
60
80

100
120
140
160
180

2 4 6 8PEs

Ti
m

e 
sp

en
t i

n 
sy

nc
. o

pe
rs

 
[s

]

10000

1000000

 

Figure 9.17: The total time spent by the interface to handle synchronized operations in the 
dependency on the number of working processors – tested uniform data sets on cluster of HP 

Compaq EVO D310. 

First what can be done is to reduce the number of synchronized operations that are required 
just for retaining the connectivity by reusing old identifications for new simplices (see 
Section 8). This, according to our further experiments, however, does not bring a substantial 
improvement because the total time spent in these operations is negligible (about 0.3%). To 
decrease the time spent inactively by the waiting, we tried to run more insertion threads on 
one computer. As only one thread may run at one time, some mechanism to synchronize the 
work of threads is necessary. Before a thread starts to wait for the completion of 
a synchronized operation, it releases another thread and the released thread proceeds with the 
insertion of its point. Figure 9.18 shows the total time required for the processing of uniform 
data sets up to four millions of points on 8x HP Compaq EVO D310 for various number of 
threads used for the insertion.  
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Figure 9.18: The total time required for the construction of the Delaunay triangulation in E2 of uniform 
data sets on 8x HP Compaq EVO D310 for 1, 2, 4 and 6 insertion threads. 
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Despite our expectation, the overhead introduced by the synchronization of threads is hardly 
counterbalanced in the computation and, therefore, the use of more threads speed-ups the 
construction only by about two percents if four insertion threads are used (see right graph in 
Figure 9.18). For different number of threads, results are worse. Let us point out that the total 
required time shows a logarithmical trend. This is caused by the fact that the number of local 
simplices grows with the number of input points faster than the number of shared simplices 
and, therefore, the efficiency increases. That is also the reason why the difference between 
times achieved by algorithms with one and four insertion threads is for a four millions data set 
lower than for smaller data sets. 

If we let the interface construct the primary triangulation, as it was proposed in Section 8.4, it 
would bring additional speed-up. Unfortunately, this improvement is not implemented at 
present. According to our preliminary experiments, however, it seems that the speed-up might 
reach the value 1.4, which could partially eliminate the problem with scalability.  

No matter what we do, the necessity to duplicate the computational effort stands for a serious 
bottleneck and, therefore, we cannot expect that the operation flow method would offer also 
big efficiency besides the possibility to process large data sets. As the extension of the 
operation flow into E3 is quite difficult due to the big number of cases that must be considered 
and the results from E2 version are not definitely positive, we decided not to use the operation 
flow, and prefer the data flow, for E3 case.  

9.9 The Results of Data Flow 
We used the data flow for the parallel construction of Delaunay triangulation in E3. Keeping 
the problem with scalability of the operation flow in mind, we decided to exploit the low level 
socket API for the communication in the data flow (unlike the slow DCOM that was used in 
our implementation of the operation flow) because a larger amount of communication than in 
the operation flow has to be expected. The data flow also requires transmitting of more data. 
Figure 9.19 shows the dependence of the total time spent for the sending of data via the 
socket API on the size of this data. The total time consists of two contributions. First, it is an 
overhead introduced by the socket API. Next, it is the time required for the transfer of data 
itself. The measurement was done on 10Mb Ethernet. It can be seen that for smaller sizes (up 
to about 256 bytes), the socket API consumes larger time than is the transferring time. Let us 
note that if we consider also an overhead introduced by the VSM routines or 100Mb Ethernet 
is available, the size of data for which the overhead time is still larger than the transfer time is 
larger. Therefore, the algorithm runs faster if more simplices are retrieved in one 
communication, even if only some of them will be accessed. According to our experiments, if 
a simplex is to be accessed in the subdivision or the legalization phase, an adjacent simplex 
will be also accessed with the probability of 40% in a near future. If the confirmation of 
changes is performed once per insertion of 10 points, the probability increases to 50%. As the 
probability is quite low, the ideal number of simplices to be retrieved in one communication is 
also low. We found out that to retrieve a simplex with simplices in its neighborhood of three 
levels of recursion (i.e., neighbors, neighbors of neighbors and neighbors of neighbors of 
neighbors) is optimal.  
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Figure 9.19: The total time required for the sending of data via the socket API in the dependence on 
data size, Intel Celeron 533 MHz, 10Mb Ethernet. 

Despite this improvement, the first experiments, when we used the DAG structure to speed-up 
the location, gave desperate results. The processing on a uniform data set with 25 000 points 
on two computers interconnected via 100 Mb Ethernet consumed about 6 minutes. Although 
the same amount of points was assigned to both processors, we found out that the first 
processor might finish up to one minute earlier than the second one. We tried, therefore, to 
incorporate dynamic load balancing: when the processor is idle, it sends a request to its 
counterpart and the contacted processor sends some of its points in a response. As the 
insertion of these points requires access to remote simplices, the communication effort grows. 
While the dynamic load balancing sometimes helps and the algorithm runs faster, sometimes 
this growth is killing – we needed even about 11 minutes to handle the considered data set. 
Therefore, we decided not to resent points.  

Our further investigation showed that the imbalance is caused by the different number of 
accesses to remote simplices stored in non-leaves levels of the DAG structure. Since the time 
when the master processor sent the full identification of the auxiliary simplex, it, typically, 
has inserted several points into the triangulation, i.e., several levels in the DAG have been 
constructed before it receives the first retrieval request from the second processor. Therefore, 
while top levels of the DAG are local for one processor, for another processor these levels are 
remote and must be retrieved. We tried to construct sequentially some primary triangulation 
and sent it with its appropriate DAG structure to every processor in order to avoid remote 
accesses to top levels of the structure. The performance of the algorithm was enhanced.  

Furthermore, we investigated the influence of various insertion strategies on the number of 
remote simplices that must be accessed. First, we tried to insert points in a random order into 
the triangulation. Next, we tried to insert points cell by cell, i.e., all points lying in a cell of 
the grid used for Mueller’s algorithm for the subdivision of points are inserted and then the 
algorithm proceeds with the insertion of points from next (adjacent) cell. Finally, points are 
inserted so that in each step, a point from the current cell is inserted and then the algorithm 
continues with next cell, i.e., this cell becomes the current one. All these strategies were tested 
for the DAG location approach and the remembering stochastic walking technique. The 
results of this experiment are given in Figure 9.20. Although the test was done for small data 
set, it shows the tendency of the data flow: the best choice is to use the walking technique.  
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Insertion order Location technique Remote simplices [%] 

random DAG 45.5
grid cells, cell at once DAG 53.0
grid cells, cell successively DAG 33.7
random walking 2.8
grid cells, cell once walking 2.6
grid cells, cell successively walking 3.7
8 points from corner cells, then random walking 2.2

Figure 9.20: The amount of remote simplices that have to be accessed to insert 1000 of uniformly 
distributed points by two processors into the triangulation in E3. 

Using the walking approach, the workload is quite balanced and we were able to process the 
data set with 25 000 points in about 4 minutes. Let us note that points laying in corner cells of 
the grid were inserted first, the rest points were inserted in a random order (see Section 8.4). 
The walking technique offers also one important property: it does not need any additional 
memory. Figure 9.21 compares the memory requirements (in nodes) of both location 
techniques for uniform data sets. As it can be seen, there is about 6 times more tetrahedra in 
the resulting Delaunay triangulation than points. If the DAG hierarchical structure is 
exploited, the algorithm consumes about 8 times more nodes than in the walking technique.  

 
uniform data sets real data sets 

N DAG walking N DAG walking 
1 000 47 907 6 330 2 905 147 380 19 010 

10 000 522 015 66 483 9 199 493 611 62 403 
100 000 5 355 671 672 138 22 625 1 281 827 156 155 
200 000 10 732 525 1 346 669 98 869 4 995 099 649 403 
240 000 12 889 278 1 616 453 213 373 19 732 714 1 517 812 

Figure 9.20: The amount of nodes constructed by the DAG and the walking location techniques. 

Figure 9.21 shows the total time required for the processing of uniform data sets up to one 
million of points on 8x HP Workstation xw3100 (using the walking technique). As it can be 
seen, the approach is not scalable. We have identified several reasons for such a behavior.  

First, when a processor wants to get an exclusive access to a simplex that is already locked for 
another processor, the deadlock detection must be performed. When the number of used 
processors increases, the number of waiting processors, naturally, grows. This means that the 
number of processors that must be contacted in order to determine whether the processor is 
allowed to start the waiting also grows. The total time required for the deadlock detection, 
therefore, is linearly proportional on the number of processors and this, indeed, harms the 
efficiency of algorithm.  

Next, when a remote simplex and simplices in its neighborhood are to be retrieved, the 
number of owners of these simplices, typically, grows with the increasing number of 
processors. This means that the total time consumed by the algorithm in order to retrieve 
remote simplices grows as more and more processors are used.  
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Figure 9.21: The total time required for the construction of the Delaunay triangulation in E3 of uniform 
data sets on 8x HP Workstation xw3100 – the walking technique was exploited. 

Last, however, the most serious reason is that the retrieval of remote simplices is too 
expensive to be counterbalanced by operations with local simplices. According to our 
experiments, any communication requires at least 7.5 ms, however, the local insertion of 
a point (i.e., no remote simplex is necessary) takes about 0.2 ms only.  This means that at least 
55 points has to be inserted locally to counterbalance one communication. We have found out 
further that a processor accesses about 75 different simplices during the insertion of a point. 
As it was already presented in Section 8, if the Delaunay triangulation is distributed over two 
processors, there is about 3√T2 remote simplices where T is the total number of tetrahedra. It is 
quite clear that this amount increases with the growing number of processors (e.g., it is 2⋅3√T2 
for 4 PEs). Therefore, a simplex is the remote one at least with the probability p1 = 1 / 3√T2. 
A processor accesses a remote simplex during the insertion of a point with the probability p2 = 
75⋅p1, which means that it inserts 1 / p2 points locally per one insertion when it has to 
communicate in order to retrieve a remote simplex. Let us consider the construction of the 
Delaunay triangulation of a data set with one millions points using two processors. As the 
triangulation contains about 6 millions of tetrahedra (see Figure 9.20), the expected number 
of remote simplices is 185. Therefore, the processor accesses a remote simplex during the 
insertion of a point with the probability p2 = 0.2%. By a simple calculation, we get that the 
processor has to communicate in order to retrieve a remote simplex once per 500 local 
insertions. On the first sight it does not seem as a bad result, however, we have to point out 
that the operation with a remote simplex involves at least three communications (one is 
required for the retrieval of the simplex for read-only purpose, one for write purpose and one 
for its update). Therefore, the processor communicates approximately once per 150 local 
insertions, which is only about three times larger than the minimal number of local insertion 
needed to counterbalance the communication effort (i.e., 55). Without any doubt, if more 
processors are used or a smaller data set is processed, this value decreases. This means that 
the communication effort is never counterbalanced in the computation and that is why the 
algorithm is not scalable. It is very unfortunate that this problem had never crossed our mind 
until the solution was implemented and tested. 
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Let us consider several possible improvements to the proposed data flow approach. First what 
can be done is to start several insertion threads on every processor. When a thread requires to 
communicate, run of another thread is released and it proceeds with the insertion of a new 
point. We already used this strategy in the operation flow, however, without any significant 
improvement and, therefore, there is no reason to believe that it would bring speed-up of the 
data flow approach. As simplices are locked, this solution might even achieve an opposite 
effect because it increases the probability of deadlock, i.e., the number of cases when a 
processor has to undo its work. 

Whenever a processor completes the insertion of a point (or insertion of few points) and 
performs the confirmation of changes, the data of a modified remote simplex is sent to the 
appropriate owner of this simplex. Afterwards, if the processor needs to access the same 
simplex, it needs to communicate to check whether its cached version is the current one. Very 
often, especially in the early phase of the insertion, a remote simplex is checked several times 
with the same result: the caller has the current version. This led us to an idea to let simplices 
to migrate, i.e., whenever a processor gets an exclusive access to the simplex, it becomes its 
owner and performs any change of this simplex without a necessity to communicate as long 
as its ownership lasts. It is clear that when a processor wants to access a remote simplex, it 
may need to contact several processors before it reaches the current owner. Moreover, for 
each simplex, this solution would require to store its current address. We tried, therefore, 
another approach. Let us define a page as a continuous block of memory. Under MS 
Windows platforms, this block is usually 4096 bytes long. A simplex is stored in just one 
page; there are about 45 simplices per one page (one simplex needs about 90 bytes). When a 
remote simplex is to be accessed, the whole page is retrieved. If a simplex is going to be 
modified, the ownership of its appropriate page is changed, i.e., the page migrates. 

Our preliminary experiments with pages, however, show that this approach is even slower 
than the original one. The reason is that it is impossible to store adjacent simplices on the 
same page and, therefore, a processor has to get an exclusive access to many pages, i.e., to 
change their ownership, in order to insert a point. This leads to the rapid increase of deadlocks 
in the computation, i.e., cases when a processor has to undo its work are frequent. A cure to 
this problem could be to let several processors to modify the same page and to decide whether 
a collision has occurred (i.e., one byte in a page has been modified by more processors) 
during the confirmation of performed changes. There is no doubt that the implementation of 
this strategy is quite complex and there is no insurance that it would bring the improvement. 

9.10 Comparisons and Summary 
We have described several parallel methods for the construction of the Delaunay triangulation 
based on randomized incremental insertion with local improvements. We focused on two 
different goals. The first one was to speed-up the computation of the Delaunay triangulation 
and, the second one, to process large data sets. In order to achieve the first goal, we designed 
several methods for multiprocessors with shared memory and limited number of processors, 
typically 2 or 4. The implementation of the developed methods is available as a part of the 
Modular Visualization Environment [MVE] – a software package developed at our institute. 

According to our experiments, we found the methods almost insensitive to the point 
distribution of input data set. They differ in the complexity of implementation, scalability and 
efficiency (considered for the optimal number of processors). Batch method is limited to few 
processors only and usable in E2 only, however, it is very efficient and simple to be 
implemented. Pessimistic method is the simplest method to be implemented but inefficient. 
Optimistic method needs more complicated implementation but this method is efficient and 
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scalable. Burglary method is also complicated, however, very efficient in E2 (not that efficient 
in E3) and scalable. Circum-circle method is very efficient in E2 when 2 threads are used.  

The simplicity, scalability and average efficiency of all methods are summarized in 
Figure 9.22 – higher number means that a method is more simple, scalable or efficient. The 
grades were assigned by our best personal opinion and experience, especially in the case of 
the simplicity criterion. According to these results, it is quite clear that each method has its 
pros and cons and, therefore, a researcher should use a method that is the most suitable for 
their purpose. If a general solution is required, optimistic method seems to be the best choice. 

E2 E3 Method Simplicity Scalability Efficiency Simplicity Scalability Efficiency 
Batch 2 1 3 N/A N/A N/A 

Pessimistic 3 2 0 3 0 0 
Optimistic 0 3 2 0 3 2 
Burglary 1 3 3 1 3 1 

Circum-circle 2 0 1 N/A N/A N/A 

Figure 9.22: Comparison of all parallel methods (higher value means higher evaluation). 

The comparison of the best speed-ups achieved by optimistic method and speed-up achieved 
by other existing parallel algorithms is given in Figure 9.23. As far as we know, there are no 
published results of any parallel algorithm based on the incremental insertion principle. 
Therefore, we choose the Hardwick's algorithm [Har97], DeWall and InCode algorithms 
[Cig93] for the comparison. These algorithms were described in Section 4. All our methods 
ran at Dell Power Edge 7150, the Hardwick's algorithm at SGI Power Challenge, DeWall and 
InCode algorithms ran at nCUBE 2 system model 6410. As the experiments ran at different 
machine and speed-up evaluation differs, it is impossible to say without any doubt whether 
one method is more or less efficient than another one. Let us, however, claim that the results 
achieved by our optimistic method are comparable. 

 
2D 3D PEs OPT Har–Ble OPT DeWall InCode 

2 1.75 1.82 1.66 1.70 1.79 
4 3.25 3.33 3.67 2.46 3.11 
8 5.711 5.88 4.422 3.05 5.31 

1 From previous results (at present we have no access to multiprocessor with 8 PEs 
and, therefore, we are unable to repeat the experiment), expected similar 

2 From previous results (at present we have no access to multiprocessor with 8 PEs 
and, therefore, we are unable to repeat the experiment), expected higher 

 

Figure 9.23: Comparison of best speed-ups achieved by optimistic method (OPT), Hardwick's 
algorithm [Har97] (Har-Ble), DeWall and Incode algorithms [Cig93] for uniform data sets. 

For larger data sets, two different parallel algorithms suitable for clusters of workstations 
were implemented. Although they are able to process data sets of theoretically unlimited 
sizes, in practice, we are limited to data sets with several millions of points because the 
processing of larger data sets would consume too much time. The main reason of huge time 
consumption is the inefficiency of algorithms. There are several options how to improve the 
efficiency and scalability but these require further research and we are not quite sure whether 
they would bring the desired improvement. According to the achieved results, we decided not 
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invest any development effort for the implementation of the mixed flow proposed in Section 8 
because, although this approach requires less amount of communication than the operation 
and data flow approaches, the mixed flow still needs to communicate too often to achieve 
scalable results. An algorithm that does not need to communicate during the insertion is, 
therefore, probably the only choice if a good efficiency and scalability is required besides the 
possibility to handle larger data sets. We propose such an algorithm in Section 11. 

Although the current solution is inefficient, the possibility to process larger data sets itself is 
still a good result of our research. In the next section, we show an application exploiting our 
data flow approach. 
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10 Surface Reconstruction 
Surface reconstruction is a common problem in computer graphics. Given a set of points 
sampled from some surface, i.e., points in E3, a triangle mesh interpolating or approximating 
these points has to be obtained. The importance of the task has grown in the last years as the 
scanning devices became cheaper and more applicable. Many algorithms based on various 
approaches, e.g., warping, incremental construction and spatial subdivision, have been 
developed for this problem. It is not a goal of this thesis to give a detailed description of the 
surface reconstruction problem. A survey of existing approaches and their comparison can be 
found in the PhD thesis by Varnuška [Var05]. 

Let us focus on spatial subdivision methods. The basic property of the methods based on 
spatial subdivision is that the boundary hull (convex hull, box around points, etc.) of the point 
input set is divided into independent areas. A typical example is the division by a regular grid, 
adaptive by an octree or an tetrahedronization. The Delaunay triangulation is very popular 
because, as it can be proved, the surface reconstructed from the given points set is the sub-
graph of the DT(S) and, therefore, it is much easier to find the proper surface using the 
Delaunay triangulation than in the case that another spatial subdivision is used. One of the 
first algorithms exploiting the Delaunay triangulation was proposed by Boissonat [Boi84]. It 
removes successively outer tetrahedra from the triangulation until all points lie on the surface. 
The rest of tetrahedra then compose the volume of the object. Amenta et al. [Ame02] 
proposed the CRUST algorithm. Again, the first step is the computation of the Delaunay 
triangulation. By the dualization, the Voronoi diagram of the point set is obtained and some 
specific information from the Voronoi diagram is used for the selection of triangles supposed 
to be on the surface from the Delaunay triangulation. The CRUST produces nice results for 
sufficiently sampled data of the closed smooth objects. If an object contains sharp edges, it is 
undersampled or the sampling introduced some noise, then some artifacts, e.g., holes or 
overlapping triangles, may appear in the reconstructed surface. Varnuška [Var05] suggests 
several improvements to the CRUST algorithm to handle such problematic data sets. 

Let us describe the algorithm by Varnuška. First, if it is necessary, the amount of noise 
present in the point set is reduced using a technique based on the approximation of the normal 
vectors in every point and on the estimation of surface location. Then, the Delaunay 
triangulation in E3 is computed. For each point, tetrahedra that are incident with this point are 
found, the appropriate Voronoi cell is constructed (the centers of circum-spheres of these 
tetrahedra form the Voronoi vertices of the cell) and the normal vector and so-called poles for 
the given point are computed from the cell. Afterwards, each tetrahedron face is tested using 
the information about normals and poles of its vertices whether it could be on the surface or 
not. The surface formed by the selected faces may not be a manifold; it may contain fans of 
overlapping triangle, holes etc. Therefore, some additional steps are required to get the final 
surface. In these steps, incorrectly reconstructed places are detected and repaired. Details can 
be found in the thesis [Var05]. 

A typical real data set, e.g., points scanned on a statue [Mich], contains several millions of 
points. A surface reconstruction of such a data set demands a lot of memory. This is definitely 
true for algorithms based on the spatial subdivision and especially for the CRUST. For each 
input point, at least 124B are needed in order to store all required information such as 
coordinates of this point, coordinates of its poles and the normal vector. A tetrahedron in the 
Delaunay tetrahedronization takes 54B to store its vertices, pointers to adjacent tetrahedra, 
circum-sphere, volume, etc. Finally, 62B are consumed to store triangle vertices, pointers to 
adjacent triangles, normal and information for surface extraction. According to our 
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experiments (see Section 9), there are about 6 times more tetrahedra than points in the 
triangulation, which means that the final surface might consists of up to 12 times more 
triangles (usually two faces of tetrahedron lies on surface) . The processing of a data set with 
one million of points, therefore, requires at least 850 MB of memory. If the double-precision 
arithmetic is preferred, these memory requirements increase. Let us also note that if a 
hierarchical structure, e.g., the DAG, is exploited to speed-up the construction of the 
Delaunay triangulation, the CRUST consumes at least 3 times larger amount of memory. As 
the current sequential implementation by Varnuška trades memory for speed, it is able to 
handle data sets only up to 250 000 points on a computer with 1GB of memory. In practice, it 
is, however, necessary to deal with much larger data sets. Figure 10.1 shows a few examples 
of large real data sets.  

  
 

a) Lucy, size: 14M points, 
estimated memory requirement: 

approx.10GB 

b) St. Matthew, size: 186M 
points, estimated memory 

requirement: approx. 150GB 

c) Barbuto, size: 350M points, 
estimated memory requirement: 

approx. 300GB 

Figure 10.1: Examples of large real data sets from the Stanford repository [Mich, Sta99]. 

As an application running under MS Windows operating system on 32-bits computer can use 
at most 2 GB, typical real data sets cannot be processed in an unmodified version in one-step 
on one computer. We could use some kind of compressed data representation or out-of-core 
technique. Such an approach, however, would slow down the processing significantly. 
Therefore, first possibility how to deal with large data sets (i.e., one million or more points) is 
to reduce the number of points and reconstruct the surface from this smaller set. This means 
that the result is only an approximation. Despite this, some reduction technique is often used. 
An interesting idea can be found in paper by Carr et al. [Car03]. Authors use radial basis 
functions on clusters of points to construct an analytical patch that is then sampled with lower 
frequency than was the original one to get new points to be used in the reconstruction process. 
As radial basis functions generate a smooth patch, the approach performs also the reduction of 
noise. On the other hand, the reconstructed surface does not interpolate the original input 
points, which is not always allowed (e.g., for the manufacturing). 

Varnuška proposed another approach. For each point, it finds such a point that is nearest to 
the given one (the so-called nearest neighbor) and merges these two points together. The 
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position of the merged point can be either the same as is the position of one of these points or 
somewhere, usually in the middle, on the line segment connecting these points. In the first 
case, the surface interpolates the selected group of points. Figure 10.2 shows an example of 
the merging of two points. Finding of pairs of points can be done with expected quadratic 
complexity by a brute-force. Better strategy is to exploit the grid bucketing technique (used 
also for the distribution of points over processors – see Section 6), which offers linear 
complexity in the expected case. Let us note that the merging process has to be repeated until 
the number of points is lower than some defined maximum. As it is, indeed, necessary to store 
coordinates of all points, this reduction approach is useful up to about 130 millions of points. 
If the information about which two points were merged (including original coordinates of 
these points) is retained, it is possible to insert removed points back to the surface using 
vertex split technique [Hop96] and so improve the result. However, it is possible for smaller 
triangulations only (up to four millions).  

  

Figure 10.2: Merging of a pair of two nearest points. Pairs of nearest points are connected by lines. 

If the object to be reconstructed contains sharp edges or the ratio of the original size and the 
reduced size is big, this solution may produce an incorrect surface (because of the 
accumulation of error introduced in the iterative decimation of points). If the reconstructed 
surface should be accurate, e.g., because it is used in the manufacturing process, it is a serious 
problem and, therefore, another approach is requested. 

Dey et al. [Dey01] presented an approach based on Divide & Conquer strategy. It subdivides 
the input dataset into several smaller groups whose min-max boxes overlap, reconstructs the 
surface of points in each group and then merges surfaces together. Using this solution, authors 
were able to handle a data set with 3.5 millions of points. There are two problems. First, the 
merging is not an easy task. Next, the reconstructed surface may suffer from artifacts, 
especially for non-uniformly sampled points or noisy data. Figure 10.3 shows an example of 
incorrect reconstruction in E2. Input points were split into four non-disjunctive groups (shaded 
areas). After the merging of partial surfaces, an obviously wrong edge appears in the result. 

Last option is to exploit a couple of computers for the data storage and processing. We 
focused on this option because it allows us to process correctly data sets of theoretically 
unlimited size and to speed up the reconstruction by a distributed computing. The CRUST 
algorithm by Varnuška is written in Borland Delphi 7.0 and it contains several tens thousands 
lines of source code. In order to simplify the parallelization of the program, we exploit the 
VSM system proposed in Section 8 that is based on the data flow principle. As the Delphi 
programming language, however, does not offer the indexer operator, the parallelization of 
access to arrays distributed over processors needs some effort. Therefore, not every data 
structure consuming a lot of memory is distributed at present (we plan to do in a near future), 
which limits the size of largest data set to 6 millions of points. Currently, we managed to 
distribute major data structures, such as the Delaunay triangulation or output triangular 
surface. As the coordinates of points are accessed frequently from many routines in our 
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implementation, we decided to duplicate them on every processor. It is not too limiting and it 
increases significantly speed of the processing.  

   

   

Figure 10.3: An example of reconstruction per partes in E2 producing an incorrect surface. 

In our current version, only the computation of DT is parallelized (results are presented in 
Section 9), all remaining parts of reconstruction run sequentially. Therefore, it is necessary to 
transmit huge amount of data, which is time consuming. As the computation of poles and 
normal vectors, extraction of triangles lying on the surface and the correction of wrong places 
including holes filling are local operations, proper parallelization would bring a significant 
improvement. We intend to do it in future work. The largest dataset that we have processed 
had 1.4M points and it was a part of the original Lucy model dataset. Its reconstruction ran on 
4xP4 interconnected via 100Mb Ethernet (see Section 9). About 5GB of memory was 
consumed and the computation took about 6 hours. Figure 10.4 shows results obtained by the 
decimation and by the distributed computing. As it can be seen, if the decimation technique is 
used, some details (e.g., brow, lips, hair and button on clothes) are lost.  

   

a) point based rendering b) decimation technique c) distributed computing 

Figure 10.4: Surface reconstruction of a part of Lucy model in comparison with the result obtained by 
point based rendering technique [Mich]. 
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Other examples of reconstructed surfaces of real data sets are presented in Figure 10.5. Let us 
note that although the time spent by the construction of the Delaunay triangulation grows 
almost linearly with the size of data set, the time consumed by the remaining parts of the 
surface reconstruction process depends also on the complexity of object (i.e., whether there is 
some noise, sharp edges, outliers, etc). Therefore, the reconstruction of a smaller data set may 
take more time than the reconstruction of a larger data set – compare the time needed for the 
reconstruction of bone and club models. Let us remind that except for the construction of the 
Delaunay triangulation, the reconstruction runs on one computer only and, therefore, it has to 
communicate very often, which explains why the total time needed for the reconstruction is so 
larger (i.e., several hours). 

 

 

Points: 
Tetrahedra: 

Triangles: 
DT time: 

Total time: 

65 894 
415 312 
117 742 

2 min 6 sec 
4 min 27 sec

Points: 
Tetrahedra:

Triangles:
DT time:

Total time:

137 062 
935 304 
274 118 

8 min 33 sec 
1 hr 38 min

a) facade of house b) bone 

 

 
Points: 

Tetrahedra: 
Triangles: 

DT time: 
Total time: 

209 779 
1 322 057 

419 500 
9 min 5 sec 

62 min 31 sec

Points: 
Tetrahedra:

Triangles:
DT time:

Total time:

437 645 
3 041 391 

857 930 
22 min 40 sec 

2 hr 2 min

c) club d) dragon 

Figure 10.5: Surface reconstruction of real data sets. Models adopted from [Var05]. 
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11 Possible Extensions 
In Section 5, we described an incremental insertion algorithm for the construction of the 
Delaunay triangulation in E2 and E3 that was used as a base for our parallelization purposes. 
Although the Delaunay triangulation is directly applicable to many various problems, e.g., the 
surface reconstruction (see Section 10), there exist plenty of applications that require to 
incorporate constraints given in the form of prescribed faces into the triangulation, to use non-
Euclidian metrics or weights of points during the computation, to delete, successively, some 
unimportant points from the triangulation. Some applications also call for the construction of 
the Delaunay triangulation in higher dimensions. In this section, we discuss possibilities of 
extension of proposed parallel algorithms to fulfill these requirements. 

11.1 Weighted Triangulations and non-Euclidian Distances 
Regular triangulations [Ede92, Fac95] are a generalization of Delaunay triangulations offering 
an extra degree of freedom by introducing weights for points. Given a point set S in Ed, a real 
valued weight wp is assigned to every point p from the set. Let us note that the weighted point 
can be interpreted as a sphere with center p and radius √wp. For each weighted point p, we 
define so-called power distance from a not weighted point z∈Ed to the point p as 
πp(z) = ⎥pz⎢2 – wp, where ⎥pz⎢ is Euclidian distance between points p and z. The geometrical 
meaning of the power distance is shown in Figure 11.1a.  

For any simplex, it is possible to find a point z such that the power distances from this point to 
every point of the simplex are the same – see Figure 11.1b. A weight equal to the square of 
the computed value of power distance is assigned to the point z. The weighted point z is called 
the orthogonal center of the simplex and the sphere with radius √wz centered at z is the 
orthosphere of the simplex. Let us note that if the weights of points of this simplex are zero, 
then the orthosphere and the circum-sphere of the simplex are identical.  
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a) the power distance from z to p b) the orthogonal center of simplex p1,p2,p3 

Figure 11.1: The geometrical meaning of power distance and orthogonal center in E2. 

A triangulation is regular only if all simplices are locally regular. A simplex p1, p2, p3 or, in 
the case of E3, p1, p2, p3, p4 is locally regular if the power distance from any point q ∈ S – {p1, 
p2, p3, p4} to the orthogonal center of the simplex is larger than the weight wq assigned to this 
point q, i.e., πz(q) > wq. It is clear that any method described in Section 3 for the construction 
of the Delaunay triangulation can be used also for the construction of regular triangulation. 
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All that is needed is it to supersede the Delaunay empty circum-sphere condition by the 
condition of regularity. Let us focus on the method of incremental insertion with local 
transformation – see Section 5. Points are successively inserted into the existing regular 
triangulation and, as in the Delaunay triangulation, if a set of adjacent simplices violates the 
condition of regularity, local transformations have to be applied. Figure 11.2 shows an 
example of local transformation in E2. The edge shared by two adjacent triangles is invalid, 
i.e., the triangles are not regular, and, therefore, it is swapped.  
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Figure 11.2: Local transformations in E2. The edge is swapped. 

If the geometrical meaning of power distance and orthogonal center is taken into account, we 
can reformulate the condition of regularity as follows. A simplex is regular, if for any point q 
from S (except for points in the vertices of the simplex) the point z' of contact of tangent to the 
orthosphere of the given simplex going through the point q does not lie inside the sphere with 
radius √wq centered at the point q – see Figure 11.2. This means that to decide whether an 
edge (or a face in E3) is invalid, i.e., whether a local transformation must be applied or not, we 
need to test the mutual position of some sphere and point. It is exactly the same test as the one 
used in the Delaunay triangulation, only spheres and points to be checked are different.  

As the test of empty circum-sphere used in the Delaunay triangulation and the test of 
regularity are, actually, the same, any parallel algorithm proposed in Sections 7 and 8 can be 
used for the construction of regular triangulation without a necessity to modify it (indeed, the 
Delaunay test has to be superseded by the test of regularity). 

Vigo et al. [Vig00] discussed a generalization of the Delaunay triangulation exploiting a non-
Euclidian anisotropically deformed space in order to create triangulation of points lying on 
a terrain surface where the shape of triangles depends on the curvature of the surface in each 
direction. In the ideal case, the algorithm produces a triangulation having edges aligned 
according to curvature directions and their length proportional to curvature (i.e., long edges in 
plane regions, short edges in curved regions). Authors show that either the Delaunay empty 
circum-circle criterion has to be replaced by a more general test of empty circum-ellipse or 
the input points have to be transformed according to the deformation of space and then the 
usual construction using Euclidian distances may be performed. No matter which solution is 
used, in both cases, any parallel algorithm proposed in Sections 7 and 8 works correctly and 
does not need any modification. Let us note that the power distance used in the regular 
triangulation is also a kind of non-Euclidian metrics.  
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11.2 Deletion of Points 
In some applications (e.g., for the decimation purpose), it is necessary to delete some points 
from the given Delaunay triangulation in such a manner that the new triangulation is also the 
Delaunay one. Algorithms based on the method of incremental insertion may easily be turned 
into fully dynamic algorithms supporting insertion or deletion of a point on demand. The 
deletion of a point p can be considered as an operation reverse to the insertion of this point. A 
simple algorithm performs successive application of local transformations until the degree of 
the point p is three or, in E3, four. Afterwards, the point can be easily removed from the 
triangulation and another sequence of local transformations is applied to restore the Delaunay 
property – see Figure 11.3. 
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Figure 11.3: The deletion of the point p from the Delaunay triangulation in E2. 

The advantage of the algorithm is its simplicity and robustness. The DAG structure or related 
hierarchical structures (e.g., [Dev98]) used to speed up the location is supported without any 
significant modification: the deletion, successively, introduces new nodes that are added to 
the structure. On the other hand, the implementation of deletion in E3 is quite complex. 
According to our opinion, the first stage of the algorithm, moreover, might not converge.  

In batch and pessimistic approaches, any modification of the triangulation is limited to one 
processor and, therefore, the generalization of algorithms to incorporate the deletion operation 
seems to be straightforward. In the operation flow, if the deletion requires to access local 
simplices only, there is also no problem. If a processor needs to operate with a shared 
simplex, the operation is performed in a synchronized way via the interface. According to our 
experiments (see Section 9), it is useful to start several working threads on each processor and 
whenever a thread is going to wait for the completion of synchronized operation, another 
thread is released and it proceeds with its work. Although it is not very probable, the thread 
might undo the transformations already done by the waiting – see Figure 11.4. The solution to 
this problem is simple: not to release any thread in the case of deletion. It is clear that the 
efficiency of the flow approach decreases with the growing number of synchronized deletions. 
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The mixed flow is just generalization of the operation flow and, therefore, it requires similar 
modifications to allow dynamic removal of vertices from the Delaunay triangulation.  
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a) the point p to be deleted, the 
degree of p is 9 

b) before the synchronized flip 
of edge e, the degree of p is 8 

c) another thread inserts the 
point q, the degree of p is 9 

Figure 11.4: The problem of deletion of the point p lying near the boundary of areas of two processors 
in the operation flow approach. 

A challenge is, however, the generalization of optimistic methods. If simplices are locked 
using a 'lock' parameter (see Section 7.5) and a transactional mechanism is exploited, as in the 
optimistic method and the data flow, there is no doubt that the work of processors is correctly 
synchronized and the parallelization is straightforward. In the burglary method and the 
circum-circle method, the deadlock is handled, however, by violated reuse of simplices locked 
for another thread. Therefore, after the waiting thread is released, it may found out that the 
triangulation has changed since it started to wait. It is exactly the same problem as it was in 
the operation flow. There is only one possible solution: repeat the process until it succeeds. If 
we expect a large number of deletion requests, the optimistic method is probably more 
suitable as it should achieve better speed-up.  

The circum-circle method introduces also another small problem. A processor may operate 
with a triangle only if no point currently being inserted by other processors lies inside the 
circum-circle of this triangle. In the case of the deletion of the point p, the point does not lie 
inside a circum-circle because it belongs to the Delaunay triangulation. It, however, lies on 
circum-circles of triangles sharing the point p. Therefore, the test has to be changed: the 
processor is allowed to modify only such a triangle that any point currently being inserted or 
deleted by other processors lies outside the circum-circle of this triangle.  

Let us discuss another approach for the deletion of a vertex from the Delaunay triangulation. 
It is based on the idea used in the Bowyer-Watson algorithm (see Section 3). Unlike the 
previous approach with local transformations, it is provably correct in any dimension. 
Usually, it runs also faster. On the other hand, the DAG is quite difficult to be updated.  

In two dimensions, the deletion of the point p means that m triangles must be removed from 
the triangulation and m – 2 new triangles must be created to fill the hole – see 
Figure 11.5a, b, e. Although m may be equal to the number of points in the triangulation, it is 
well known that the expected value of m is 6 without any assumption on the point 
distribution. In three dimensions, the situation is worse. First, the number of simplices 
required to fill the hole does not depend on the number of simplices that were removed. Next, 
the expected value of m is usually larger and it depends on the point distribution. Devillers 
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[Dev99] mentioned that for Poisson distribution it is about 27. Therefore, in the expected case 
the deletion in both dimensions influences only a local part of the triangulation. As the 
insertion of a point is also localized (see Section 7), we can expect that modified parallel 
algorithms will behave similarly to their unmodified versions, i.e., they should reach similar 
efficiency and scalability.  

A very popular algorithm for the retriangulation of hole is based on successive cutting of ears 
of this hole. Let us describe this algorithm in E2, its extension for E3

 is straightforward. Three 
topologically consecutive vertices qi, qj, qk along the boundary of the hole form an ear if the 
line segment qi, qk its inside the hole and does not cross its boundary. If the triple of vertices 
qi, qj, qk is an ear, then the triangle qi, qj, qk is constructed and the vertex qj is removed from 
the polygon describing the boundary of the hole. The algorithm continues cutting one ear in 
each step until the hole is filled. It is clear that the hole may be retriangulated, usually, in 
several ways. After the retriangulation, we have an arbitrary triangulation and, therefore, the 
newly created simplices must be tested against the Delaunay criterion and if the outcome of 
this test is negative, local transformations are performed to restore the Delaunay triangulation. 
Devillers [Dev99] proposed, however, an efficient algorithm (it requires O(m⋅log m), where m 
is the number of points forming the cavity) based on lifting of points to higher dimension. It 
picks such ears that the retriangulation is the Delaunay one and, therefore, no local 
transformation is needed. An example of retriangulation of hole is shown in Figure 11.5.  
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Figure 11.5: The deletion of the point p from the Delaunay triangulation in E2 using the hole 
retriangulation approach. 
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Batch and pessimistic methods can be again generalized without any difficulty. For all other 
methods, however, the basic problem is the temporary existence of hole in the triangulation 
because while one processor works on the retriangulation of the hole, another processor might 
want to insert a point lying somewhere in this hole and, indeed, the operation of insertion of 
a point into a hole is not defined. The solution is as follows. First, simplices to be removed are 
detected. Next, new simplices filling the hole formed by detected simplices are constructed 
and the connectivity between them is found. In the third step, the patch is connected to the 
Delaunay triangulation. Finally, the hierarchical structure used for the location is updated or 
simplices are removed. The generalization of the algorithm is, now, straightforward. 

Using the retriangulation strategy by Devillers, the deletion needs to operate only with 
simplices incident with the point p to be removed and, in order to update the connectivity, 
with their neighbors, too. It is possible to detect these simplices in advance. In the case of the 
operation flow or the mixed flow, they are simply sent as a part of operation to be performed. 
Again, it is necessary to disallow run of another thread until the deletion completes. The 
generalization of optimistic methods or the data flow is even simpler: these algorithms lock 
simplices and perform the operation. Once simplices have been locked, the deletion always 
succeeds and, therefore, neither the burglary nor the circum-circle method needs to repeat the 
request. Therefore, we can expect that a parallel algorithm using the ear cutting approach 
should be quite efficient. 

11.3 Higher Dimensions 
Several, mainly theoretical, papers, e.g., [Wat81], deal with the problem of construction of the 
Delaunay triangulation of a set of points in an arbitrary dimension Ed. Algorithms based on 
the incremental construction or higher dimensional embedding are easily extensible but the 
implementation might be quite complex. Let us remind to the reader that, in the case of higher 
dimensional embedding, to construct the Delaunay triangulation in E4, we need to compute 
the convex hull of the given points in E5, which is quite difficult for understanding. 
Algorithms based on the incremental insertion are also extensible and they offer simplicity. 
As far as we know, there is, unfortunately, no simple generalization of local transformations 
to higher dimensions. Therefore, it is necessary to use cavity retriangulation strategy 
described in Section 3. All simplices containing the point to be inserted in their circum-
spheres are located and removed from the triangulation. Afterwards, the cavity (hole) is 
retriangulated in such a manner to fulfill the Delaunay criterion. 

The problem of insertion of a point into the Delaunay triangulation in Ed is similar to the 
problem of deletion of a vertex from the triangulation by the ear cutting technique that was 
described in the previous section. Therefore, let us claim that if the extension of any of 
proposed parallel algorithms into higher dimensions is required, it will require the same 
modifications as in the case of the generalization of this algorithm to incorporate the deletion. 
In addition, the issues about the efficiency and scalability are the same. 

11.4 Constrained Delaunay Triangulation 
Constrained Delaunay triangulation is a generalization of Delaunay triangulation offering 
a possibility to incorporate some prescribed edges or faces (i.e., constraints) into the 
triangulation. Typically, these constraints are used either to express the shape of object whose 
sampled points are to be triangulated or to introduce some physical limitations. Figure 11.6 
compares the Delaunay triangulation and the CDT of the same input set in E2. The prescribed 
edges are thick. Constrained Delaunay triangulation is used in many applications, e.g., 
numerical analysis and finite element methods (FEM), pattern recognition [Pra00, Xia02], etc. 
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a) DT b) CDT 

Figure 11.6: An example of the Delaunay triangulation (DT) and the Constrained Delaunay 
triangulation (CDT) in E2. Prescribed edges are thick. 

From the point of view of the algorithm based on the incremental insertion with local 
transformations, a constraint is an edge or a face from the triangulation that cannot be flipped, 
i.e., this edge (or face) is always considered valid in the meaning of the Delaunay criterion. 
This means that the legalization stops on constraints. The best-known approach for the 
insertion of a constraint into the triangulation works as follows. First, all simplices crossed by 
this constraint are detected – see Figure 11.7a. These simplices are removed from the 
triangulation, which results in two adjacent holes separated just by the constraint. Then, both 
holes have to be retriangulated. For this purpose, the ear cutting algorithm (in its either 
original version or version by Devillers) that was presented in Section 11.2 can be used.  
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Figure 11.7: An example of the insertion of a constraint (thick edge) into Delaunay triangulation in E2. 

Unlike the deletion of a vertex, all vertices of hole lie in the same half-plane (or half-space) 
defined by the constraint, which allows us to consider another, much easier, algorithm. It is 
based on the D&C strategy. Starting with the constraint edge (or face), in each step of the 
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recursion, the algorithm constructs a simplex such that no vertex from the hole (naturally, 
except for the vertices forming the simplex) lies inside the circum-sphere of this simplex. The 
constructed simplex issues new two edges (faces) and may split the hole into two smaller 
holes that are retriangulated in next step – see Figure 11.7b, c, d. At the end of the insertion of 
the constraint, the connectivity between simplices is updated.  

Sloan [Slo92] suggested another algorithm for the insertion of a constraint into the 
triangulation in E2. Its generalization to higher dimensions seems to be possible, however, 
very complicated. Starting from any triangle containing the first vertex of the given constraint, 
the algorithm searches the triangulation until it reaches the triangle containing the second 
vertex of the constraint. For each triangle visited during the search, the algorithm checks 
whether there is an edge intersected by the constraint. If the outcome of this test is positive, 
the edge is flipped. It can be shown that the successive performing of flips ensures that when 
the second vertex of the constraint is reached, the constraint is included in the triangulation. 
Afterwards, the legalization has to be performed in order to restore the Delaunay property of 
the triangulation. An example of such insertion of a constraint can be seen in Figure 11.8. 

  

a) after the first swap b) after the second swap 

 
 

c) after the third swap d) the result 

Figure 11.8: An example of the insertion of a constraint (thick edge) into Delaunay triangulation in E2 
using the successive application of local transformations. 

No matter which of algorithms we have just described is used, the generalization of proposed 
parallel algorithms for the CDT is, without any doubt, similar to the already discussed 
problem of the deletion of a vertex from the triangulation and, therefore, impacts of the 
generalization on the parallelization are the same.  

There is also another possibility how to insert constraints into the Delaunay triangulation. 
Maur et al. [Mau04] show that for a given set of points, it is possible to assign a weight to 
every point in such a manner that the regular triangulation of these points is identical to the 
required CDT. Although authors are focused on planar case only, the extension to E3 seems to 
be possible. Further research is needed. If we were able to convert the problem of the 
construction of the CDT into the problem of construction of the regular triangulation, the 
generalization of proposed parallel algorithms would be simple – see Section 11.1. 
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11.4.1 CDT Based Parallel Algorithm for Clusters of Workstations 
It is a sad fact that our parallel solution for clusters of workstations is not scalable due to a 
huge amount of communication (see Section 9). Inspired by the Hardwick’s approach [Har97] 
described in Section 4 and exploiting the knowledge that the legalization process stops on a 
constraint, we decided to develop an algorithm that does not need to communicate. In the first 
stage, points are subdivided into k disjunctive areas where k is the number of available 
processors. Then, edges (or, in E3, faces) such that they will be in the resulting Delaunay 
triangulation are constructed on boundaries between areas. These edges (or faces) are marked 
as constraints. Afterwards, a primary triangulation of points of these constraints is created and 
it is together with the constraints submitted to every processor. Each processor then inserts its 
points. As the constraints are Delaunay edges (or faces), they are never flipped and, therefore, 
the communication can be avoided. In the last stage, local triangulations are merged together.  

Let us describe the algorithm in detail. For easier understanding, we explain it in E2. The 
extension to E3 is simple. The first stage is very close to the Hardwick’s one. At the 
beginning, Mueller’s algorithm (see Section 6) is used to subdivide points. It requires O(N 
+k⋅R) time where N is the number of points to be triangulated and R is the number of cells in 
the grid (in the worst-case R is N). Let us note that Hardwick needs O(N⋅log N). 

For each boundary between two areas, the projection plane perpendicular to the plane of input 
points and going through the boundary is constructed. Points lying in cells along the boundary 
are projected onto this projection plane using the same approach as Hardwick, the lower 
convex hull of the projected points is found and back projection gives a set of line segments. 
Unlike the Hardwick’s algorithm, only a subset M1of all points S is used in the computation of 
the lower convex hull CH(M) and, therefore, constructed line segments may not be a part of 
the resulting Delaunay triangulation. Therefore, for each triple of points connected by two line 
segments, a circum-circle of these points is created and it is tested whether it covers only cells 
whose points were chosen for the computation of CH(M). If the outcome of this test is 
negative, points lying in adjacent cells covered at least partly by this circum-circle are added 
into the set M, the lower convex hull of M is recomputed and a new set of line segments is 
extracted – see Figure 11.9. The algorithm continues in this way until all circum-circles lie 
inside already processed cells. When it stops, line segments are edges that will be in the 
Delaunay triangulation of the input set S.  

The advantage of the described algorithm is that it allows processing of extremely large data 
sets that cannot be stored in memory of one computer, e.g., the Barbuto data set [Mich] 
having about 350 millions of points requires approximately 4GB of memory. As it, unlike the 
Hardwick’s algorithm, processes only a subset of points, it runs, in the expected case, faster. 

For the computation of convex hull, an algorithm by the incremental insertion can be used. 
The algorithm works as follows. Starting with a triangle as the initial convex hull, all points 
are successively tested whether they lie outside the current convex hull. If the result of the test 
is positive, the convex hull has to be updated in such a manner that the point lying outside 
belongs now to the new convex hull. Figure 11.10 shows an example of the whole process. 
Although the algorithm runs in the worst-case in O(m2), it requires only O(m) in the expected-
case where m is the number of points in the set M. The advantage of this algorithm is that 
when new points are added into M, the whole recalculation of convex hull CH(M) is not 
necessary; these points are simply inserted and the convex hull is updated. Therefore, to 
construct the Delaunay edges on boundaries, we need O(k⋅m) time in the expected-case, while 
the Hardwick’s algorithm consumes O(N⋅log N). 
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a) the first step 

  

b) the second step 

 

c) the resulting Delaunay triangulation 

Figure 11.9: The successive construction of Delaunay edges on boundary in E2. 
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Figure 11.10: The first five steps and the result (shown in the last image) of the construction of convex 
hull in E2 by incremental insertion. 

An auxiliary big simplex is constructed, all points of edges detected in previous stage are 
inserted into the triangulation and constraints are found – see Figure 11.11. The entire initial 
Delaunay triangulation together with the constraints is sent to every processor. Each processor 
inserts the points lying in its area bounded by constraints into the triangulation. When the 
insertion completes, the processor sends identifications of simplices containing any constraint 
to its adjacent counterparts and these processors exploit the sent information to update the 
connectivity between local triangulations (the use of a look-up table is expected).   

 

Figure 11.11: The primary Delaunay triangulation in E2; detail is shown in the right image. Constraints 
are denoted by thick edges. 
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As the algorithm does not need communicate during the insertion, it should be efficient and 
scalable. On the other hand, points cannot arrive online (except for points lying in cells whose 
points were not used for the computation of convex hull), unlike the operation, data or mixed 
flows described in Section 8. 

 

 

In this section, we have described several possible extensions to the Delaunay triangulation 
and discussed the impacts of these extensions on the parallelization. Except for a few cases, 
any parallel algorithm proposed in Sections 7 and 8 can be easily generalized to incorporate 
constraints given in the form of prescribed faces into the triangulation, to use non-Euclidian 
metrics or weights of points during the computation. 
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12 Conclusion and Future Work 
In this thesis, we discussed sequential principles of the construction of the Delaunay 
triangulation in E2

 and E3 and described the best-known existing parallel algorithms. We 
proposed several parallel algorithms based on the method of incremental insertion with local 
transformations. This method was chosen as a base for our parallelization purposes because of 
its simplicity, robustness (i.e., the quality of the resulting mesh is ensured) and its possibility 
to be easily extended for weights of points, constraints, etc. Some of these algorithms are 
suitable for symmetric multiprocessors (i.e., architectures with several processors and shared 
memory). Such a hardware configuration (especially the case with two-processors) became 
widely spread in the last few years in the computer graphics area. At present, there is a lack of 
algorithms proper for these architectures. The stress was put on the simplicity of 
parallelization so they could be implemented by a wide computer community, even by a 
person not focused on the parallel processing, and the efficiency so they could be an attractive 
choice in competition with long-existing serial and parallel algorithms.  

While some of the proposed algorithms are easy to be implemented but not very efficient 
(e.g., the pessimistic method), others prove opposite behavior (e.g., the optimistic method). 
Some of them are usable in E2 only (e.g., the batch method), other work in E3 as well. We 
implemented all algorithms in C++ and tested them carefully on workstations with up to eight 
processors. According to our experiments, we reached similar efficiency as already existing, 
more complex, parallel algorithms. This acknowledges that a development of a sophisticated 
solution consumes huge time and the resulting solution often reaches comparable efficiency 
as the simplest one – i.e., our hint is: make your solution as simple as possible. 

We also developed several algorithms for clusters of workstations (i.e., a collection of 
independent computers interconnected via network). Unlike the case of symmetric 
multiprocessors, the stress was put primarily on the ability to process large data sets that 
cannot be processed on one computer. We focus on the parallel construction of the Delaunay 
triangulation in E3 where the existence of parallel solution is more important as there exist 
many applications requiring the processing of data sets having tens millions of points, e.g., the 
surface reconstruction. We were able to handle data sets up to 4 millions in E2 and up to 1.4 
millions in E3 on a cluster of 8 workstations. Due to an intensive required communication 
between processors, unfortunately, proposed algorithms are not scalable. At the end of this 
thesis, we suggested, therefore, another algorithm suitable for the clusters of workstations. It 
is based on the CDT approach and it does not need to communicate during the insertion of 
points, thus it should be efficient. The implementation and verification of this algorithm is the 
first objective of our future research. 

We proposed and implemented an application independent software layer that provides 
universal routines for the manipulation with data, no matter whether the data is stored locally 
or remotely, and means for synchronization between processors. Actually, this layer simulates 
the shared memory and, therefore, we call it Virtual Shared Memory (VSM) manager. The 
VSM was used for the parallelization of the application of surface reconstruction (its 
sequential version was developed by Varnuška [Var05]). Currently, we managed to distribute 
major data structures, such as the Delaunay triangulation or output triangular surface. The 
computation of DT is parallelized; all remaining parts of reconstruction run sequentially. The 
second objective of our future research is to complete the parallelization of this application so 
we are able to not only process large data sets but also process them in a reasonable time – at 
present the reconstruction of a data set with 1.4 millions consumes about 6 hours. 
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In this thesis, we also discussed several possible extensions to the Delaunay triangulation and 
the impacts of these extensions on the proposed parallelization. Except for a few cases, any 
parallel algorithm can be easily generalized to incorporate constraints given in the form of 
prescribed faces into the triangulation, to use non-Euclidian metrics or weights of points 
during the computation and to allow deletion of points from the Delaunay triangulation. The 
various location strategies, e.g., the approach with the DAG or walking techniques, and their 
effect on the efficiency of proposed parallel solution were investigated 

At the end of the thesis, let us give some hints that might be useful for anybody who would 
like to develop his/her parallel algorithm that needs simultaneous browsing and modification 
of a tree or a graph, e.g., the DAG. If architecture with shared memory is considered, the most 
important rule is to minimize the number and the length of the critical sections as much as 
possible. When a shared variable has to be tested and/or modified in an atomic way, a use of 
appropriate atomic instruction takes only 20% of the time which is consumed when such a 
test or modification are implemented via critical section supported by the standard system 
tools. The heap management spends quite a lot of time in a critical section when a node has to 
be allocated (or freed). If a thread allocates an array of nodes in an advance and then 
successively simply picks the nodes from this array, better efficiency is achieved, especially 
in such a case when the shared structure is changed very often. Indeed, this simple solution 
trades time for memory. The efficiency can be also increased, if a context of routine calls is 
considered: when a thread runs some routine, some group of nodes has been already locked 
and there is no necessity to call the locking routine. For example, when inside the circum-
circle of the first triangle a point of the second triangle lies and, therefore, the edge between 
them should be swapped, the nodes of the first triangle and all its neighbors are already 
locked. Last hint: a development of a sophisticated solution consumes a huge time and the 
resulting solution often reaches comparable efficiency with the simplest one, i.e., make your 
solution as simple as possible.  

For architecture with distributed memory, e.g., clusters of workstation, the most important, as 
our experiments show, is to minimize the amount of required communication between 
processors. This is necessary, especially, in the case that a local operation (i.e., an operation 
that does not need to communicate in order to be completed) consumes a very short time 
because many of these operations are needed to counterbalance one operation that needs some 
communication. For example, the routine for the subdivision of a local simplex contains 
several instructions only and, therefore, it takes several hundreds times less time than the 
routine for the subdivision of a remote simplex. It is a reason why the data flow approach is 
not too scalable. As the communication is very expensive, some, on the first view, complex 
and unnecessary code may be efficient. The development of a parallel algorithm for 
architecture with distributed memory is quite difficult. Typically, it is being developed on 
a sequential computer. It can be, however, very confusing because even if the parallel 
algorithm seems to be efficient while it runs on this computer, its efficiency may significantly 
drop down when the algorithm is used on a cluster of workstations. Synchronization between 
processors is also not simple to be implemented. We need to avoid deadlocks caused by 
mutual waiting of processors. However, the detection of deadlock requires an intensive 
communication, which harms the efficiency. 

In this last paragraph, let us summarize the benefits of our research. We proposed several 
novel parallel algorithms for the construction of the Delaunay triangulation in E2 and E3 that 
are simple to be understood and implemented and that are robust (in the meaning of numerical 
stability). The solution is suitable for symmetric multiprocessors and clusters of workstations; 
architectures commonly used at present. Proposed algorithms can be easily generalized for the 
construction of the Delaunay triangulation in Ed

, to incorporate constraints given by a set of 
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prescribed edges (or faces), to use weights of points, etc. We also proposed a novel system 
simulating shared memory for the distributed computing. This system was used for the 
parallelization of the application of surface reconstruction from scattered point clouds based 
on the Delaunay triangulation. 
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Appendix: Activities 
Reviewed publications 
• already published 

[1] Kohout J, Hlavatý T, Kolingerová I, Skala V. Feature extraction of 2-manifold 
using Delaunay triangulation. In: Proceedings of 17th Conference on Scientific 
Computing Algorithmy 2005, Slovak University of Technology, Podbanské, 
Slovakia, March 13-18, 2005. p. 290-299 

[2] Kohout J, Kolingerová I, Žára J. Practically oriented parallel Delaunay 
triangulation in E2 for computers with shared memory. Computers & Graphics 
2004, Elsevier, Pergamon Press; 28(5):703-718. 

[3] Kohout J. Delunay triangulation in parallel and distributed environment. State of 
the Art and Concepts of Doctoral Thesis, University of West Bohemia, Czech 
Republic, 2004 

[4] Kohout J, Kolingerová I. Parallel Delaunay triangulation in E3: Make it simple. 
The Visual Computer 2003, Springer-Verlag, Heidelberg; 19(7&8): 532-548 

[5] Kohout J, Kolingerová I. Parallel Delaunay Triangulation based on Circum-
Circle Criterion. In: Proceedings of SCCG 2003, Comenius University, April 
24-26, 2003, Budmerice, Slovakia. p. 85-93 – published also in ACM 
Publishing House, NY, ISBN 1-58113-861-X 

[6] Kohout J, Kolingerová I. Parallel Delaunay Triangulation in 2D and 3D. In: 
Proceedings of East West Vision 2002, Österreichische Computer Gessellschaft, 
September 12-13, 2002, Graz, Austria. p. 143-148 

[7] Kohout J. Paralelní Delaunatova triangulace. Master Thesis, University of West 
Bohemia, Czech Republic, 2002 

[8]  Kolingerová I, Kohout J. Optimistic parallel Delaunay triangulation. The Visual 
Computer 2002, Springer-Verlag, Heidelberg; 18(8):511-529 – cited by: 

[1] Harris FC. Theory of Parallel and Distributed Processing, Course CS 
732, University of Nevada, USA, 
http://www.cse.unr.edu/~fredh/class/732/S2003/class/class31.html 

[9] Kolingerová I, Kohout J. Pessimistic threaded Delaunay triangulation by 
randomized incremental insertion. In: Proceedings of Graphicon 2000, August 
28-30, 2000, Moscow, Russia. p. 76-83 – cited by: 

[1] Gavrilova ML. Empirical studies of optimization techniques in the 
event-driven simulation of mechanically alloyed materials: iterative 
solving environments and optimization techniques for scientific 
applications. The Journal of Supercomputing, May 2004, vol. 28, no. 
2, pp. 165-176(12) 

[2] Akl SG. Inherently parallel geometric problems. Technical Report 
2004-480, Queen's University, Kingston, Canada, April 2004. 
http://www.cs.queensu.ca/home/akl/techreports/tr.ps 
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 [3] Gavrilova ML. On a nearest-neighbor problem under Minkowski and 
power metrics for large data sets. The Journal of Supercomputing, 
May 2002, vol. 22, no. 1, pp. 87-98(12) 

• accepted for the publication 

[10] Kohout J, Kolingerová I, Žára J. Parallel Delaunay triangulation in E2 and E3 for 
computers with shared memory. Parallel Computing 2005, Elsevier, North-
Holland – currently in press 

Non-reviewed publications  
• related to this work 

[11] Kohout J. Selected problems of parallel computer graphics. Technical Report 
DCSE/TR-2004-02, University of West Bohemia, Czech Republic, 2004 

[12] Kohout J. Parallel Incremental Delaunay Triangulation. In: Proceedings of 5th 
Central Europian Seminar on Computer Graphics, Comenius University, 
Budmerice, Slovakia, 2001. p. 85-94 – awarded by the third prize in the best 
paper competition 

 [13] Doubek J, Kohout J. Spojenou silou, Systém pro distribuované zpracování - 
GSD. Chip 10/01 + CD ROM, 2001. p. 154  (in Czech) 

• other 

[14] Kohout J, Mautner P, Zuzák F. Automatická detekce částic v digitálních 
mikrogramech. In: Proceedings of 15. Konference s mezinárodní účastí - 
Výpočtová mechanika '99, Nečtiny, Czech Republic, 1999. (in Czech) 

[15] Kohout J, Mautner P, Zuzák F. Metody zpracování digitálního ferogramu pro 
tribodiagnostiku. In: Proceedings of 15. Konference s mezinárodní účastí - 
Výpočtová mechanika '99, Nečtiny, Czech Republic, 1999. (in Czech) 

Presentations and talks abroad 
• December 2004 – Velká data v počítačové grafice, invited talk (in Czech),  VŠB–TU 

Ostrava, Czech Republic 

• September 2004 – Surface reconstruction as an application of Delaunay 
tetrahedronization, presentation (together with Michal Varnuška), TU Graz, Austria 

• June 2004 – Delaunay triangulation in parallel and distributed environment, presentation, 
TU Maribor, Slovenia 

• January 2004 – Paralelní rendering, invited talk (in Czech), VŠB–TU Ostrava, Czech 
Republic 

• October 2003 – Delaunay triangulation in parallel and distributed environment, 
presentation, TU Graz, Austria 

• May 2003 – Delaunay triangulation in 2D and 3D in parallel and distributed environment, 
presentation, TU Chemnitz, Germany 
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Stays and other activities 
• 2004 – main researcher of project FRVŠ 1342/2004/G1 

• September 2004 – two weeks stay at TU Graz, Austria, project Aktion 36p9 

• September 2004 – passive participation on the EG 2004 conference  

• June 2004 – one week stay at TU Maribor, Slovenia, project Kontakt 16-2003-04 

• September 2003 – passive participation on the EG 2003 conference  

• October 2003 – two weeks stay at  TU Graz,  Austria, project Aktion 36p9 

• May 2003 – one week stay at  TU Chemnitz,  Germany, Socrates-Erasmus teaching 
mobility 

• Spring 2003 – one semester study abroad at Queen's University of Bath, UK, Socrates-
Erasmus mobility 

• 2002 - 2004 – researcher of project MSMT 23500005 

• 2001 – researcher of project AV030801 

Known requests for proposed parallel code 
• Clément MENIER <Clement.Menier@inrialpes.fr>, PhD student at INRIA MOVI, 

France – Parallel 3D Delaunay triangulator (optimistic method prefered) 

• "joe alter, inc" <joealterinc@hotmail.com>, staff of a small company – Parallel 3D 
Delaunay triangulator, as the code (according to our institutional regulations) cannot 
be used in commercial applications, the request could not be fulfilled.  
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Appendix: Color Plates 

 

Figure 3.7: The projected points and the corresponding Delaunay triangulation [Har97]. Only a tiny 
part of the 3D convex hull is shown (red bold line segments). 

PE1

PE2PE3

 

PE1

PE2PE3

 

PE1

PE2PE3

 

a) the original partition b) the shared cavity c) the cavity retriangulation 

Figure 4.2: The insertion of a point (big dot) into the triangulation in E2. This insertion causes 
retriangulation of a cavity shared by three processors (PE1, PE2 and PE3) including the update of 

their regions' boundaries. The simplices belonging to the same region are shown in the same color. 
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a) the path of visibility walk, the dark gray triangle 
is currently being tested, light gray triangles were 

visited in previous steps 

b) an infinite cycle for the visibility walk [Dev01] 

Figure 5.3: The visibility walk algorithm. 

 


