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Abstract

Triangle surface models are nowadays most often types of geometric objects description

in computer graphics. Therefore, the problem of fast visualization of this type of data is

often being solved. The speed of high performance renderingengines is usually bounded

by the rate at which triangulated data is sent into the machine. One can reduce the time

needed to transmit the set of triangles by compressing the topological information and

decompressing at the rendering stage. As neighboring triangles share an edge, it is possible

to avoid sending the common vertices twice by special order of triangles, called triangle

strip.

We introduce our algorithm for stripification of Delaunay triangulated irregular net-

works (TIN). The method does not produce stunning results, but it is fast enough to create

previews for different levels of detail of Delaunay triangulation during the incremental

construction.

For triangle meshes we have designed a new stripification algorithm based on Hamil-

tonian path search in a dual graph of triangulation. As far aswe know, this algorithm

produces the lowest number of strips in linear time. We have also proposed a modification

of this algorithm that deals with the weights in the dual graph to allow a better control of

stripification process.

As tetrahedral meshes are becoming very important data representation in many graphic

and volume computation applications, we present some stateof the art of tetrahedral strips.

We also show, how to extend our triangle stripping algorithmfor tetrahedral meshes. Some

early tests and results on the field of tetrahedral stripification are included.

We have suggested a new specialized stripification algorithm for purely quadrilateral

meshes. For these type of meshes, the algorithm produces high quality stripifications.

Finally, we present a comparison of some of the most important stripification algo-

rithms on a set of reallife and artifical objects. We also show, how the topology can influ-

ence the stripification process.



Abstrakt

V dnešním sv̌eťe pǒcítǎcové grafiky paťrí trojúhelníkové síťe k často používaným reprezen-

tacím.Častým úkolem pǒcítǎcové grafiky je rychlé zobrazování takovýchto sítí. V mnoha

případech je rychlost zobrazování limitována propustnostísb̌ernice. Jednou z možností,

jak snížit množství dat, je komprese topologické informacepro p̌renos po sb̌ernici a její

dekomprese až v GPU. Protože sousedící trojúhelníky sdílejí vrcholy na spolěcné hraňe,

je možné snížit množství dat tím, že tyto vrcholy pošleme prokaždou dvojici sousedících

trojúhelníků pouze jednou. K tomu je třeba sousedící trojúhelníky pospojovat do souvis-

lých pásů (stripů).

V této práci je navrženo ňekolik algoritmů pro hledání trojúhelníkových pásů pro různá

vstupní data. V ňekterých p̌rípadech (nap̌ríklad terénní modely) máme k dispozici pouze

množinu vrcholů. Je tedy nutné nejprve vytvořit trojúhelníkovou sít’, která je následně

převedena do pásů. Přestože námi navržená metoda neprodukuje příliš kvalitní stripifikace,

urychlení p̌ri vykreslování je dostatěcné. Tuto metodu lze navíc použít opakovaně b̌ehem

vytvá̌rení síťe a poskytnout tak uživateli rychlý náhled už pro několik bodů a s p̌ribývajícími

body tento náhled zpřešnovat.

Nejčasťejší úlohou je uspǒrádání již existující trojúhelníkové sítě. Námi navržená me-

toda vychází z hledání hamiltonovské cesty v duálním grafu trojúhelníkové síťe. Dosažené

výsledky jsou velmi kvalitní a z nám známých algoritmů s lineárníčasovou složitostí vy-

tvá̌rí navržená metoda nejmenší počet pásů. P̌ridáním vah do duálního grafu je navíc možné

proces vytvá̌rení pásů lépe kontrolovat a vytvářet pásy požadovaných vlastností.

U objemových dat se v posledních několika letech zv̌etšuje význam̌ctyřsťenných sítí.

Proto uvádíme lehký úvod do problematiky vytvářeníčtyřsťenných pásů (tetrahedral strips).

Zárověn uvádíme rozšíření našeho algoritmu prǒctyřsťenné síťe a porovnání našich vý-

sledků s existujícími metodami.

V některých p̌rípadech nemusí být model definován trojúhelníkovou sítí, ale obecňe

n-úhelníkovou. Pro p̌rípadčtyřúhelníkové síťe jsme navrhli algoritmus, který vytváří velmi

kvalitní stripifikaci (z nám známých algoritmů nejlepší).

V neposlední̌raďe uvádíme porovnání několik významných metod pro vytváření pásů

na reálných i um̌elých datech a ukážeme vliv pravidelnosti topologie na výsledek stripifi-

kace.
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Introduction

Triangulated surface models are nowadays the most often types of geometric objects de-

scription in computer graphics. Therefore, the problem of fast visualization of this type

of data is often being solved. The speed of high performance rendering engines is usually

bounded by the rate at which triangulated data is sent into the machine. One can reduce

the time needed to transmit the set of triangles by compressing the topological information

and decompressing at the rendering stage. As neighboring triangles share an edge, it is

possible to avoid sending the common vertices twice by special order of triangles, called

triangle strip.

In this chapter, we make a very short introduction to the problem of triangle strips. The

overview of the thesis is included in the end of this chapter.
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Triangle surface models (often calledmeshes) are nowadays the most often types of

geometric objects description in computer graphics. Thesemodels are often used in various

kind of applications such as CAD/CAM, VR, medical data or computer games. To increase

the visual realism, the number of triangles that representsthe object is increasing, while the

rendering should be performed in the real-time. Therefore,the problem of fast visualization

of this type of data is often being solved.

The performance of today’s rendering hardware is usually very high and the speed of

the rendering is bounded not only by the power of the GPU but also by the the rate at which

the triangulated data is sent into the GPU. To decrease the amount of data, one can use some

techniques to prevent sending of unnecessary triangles (e.g., visibility culling) or some kind

of simplification of complex objects (e.g., Continuous Level-of-Detail – (C)LOD). Still it

is important to reduce the time needed to transmit the set of triangles by compressing

the topological information and decompressing at the rendering stage.

1.1 Triangle Strips

Using a traditional way of encoding of triangle meshes we need three vertices to specify

one triangle. As neighboring triangles share an edge and thevertices of this edge, the

vertices are sent to the rendering pipeline multiple times.In a typical mesh, the number of

vertices is about twice higher than the number of triangles,thus each vertex is specified six

times on average.

A sequential tristripis a sequence ofn+2 vertices that representsn triangles: in Figure

1.1 (a) the sequence (1,2,3,4,5,6) corresponds to triangles∆123, ∆234, ∆345 and∆456.

Using the sequential tristrip, the transmit cost ofn triangles can be reduced by the factor

of three (from3 · n to n + 2 vertices).

Figure 1.1: An example of a sequential triangle strip (a), a generalized triangle strip (b) and a

triangle fan (c).
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There also exist situations where the triangle adjacency does not allow a sequential

encoding. In Figure 1.1(b) the sequence (1,2,3,4,5,6) produces an invalid triangle∆456.

An extra vertex has to be added to change the sequence to (1,2,3,4,3,5,6). This operation

is called aswapand tristrips with swaps are calledgeneralized tristrips. Still, the transmit

cost is reduced more than twice (from3 · n to n + 2 + swaps vertices).

In some special cases it is also possible to use a special typeof generalized triangle strip

called atriangle fan. Thefan is defined by the central vertex and its neighboring vertices.

In Figure 1.1(c) the fan is defined by a sequence (3,1,2,4,5,6). As the length of the fan is

usually very low (the average number of neighboring vertices in a usual mesh is six), it is

not used very often in practice.

As triangle strips can potentially reduce the amount of dataneeded for rendering, they

are widely supported by the graphic hardware and graphic libraries (OpenGL, DirectX,

etc.).

To increase the speed of rendering, modern GPUs contain a small FIFO vertex cache

(of size of tens of vertices) that prevents the re-processing of already cached vertex. To

maximize the benefit of vertex cache, the mesh triangles haveto be rendered in an order

which is somehow local – to minimize the average cache miss rate (ACMR), which is

defined as a ratio of cache misses to total number of trianglesand it depends on the sizek

of the cache:

ACMR(k) =
number of cache misses

number of triangles

Containing the last two vertices, triangle strips behave very well on systems with vertex

cache of size two. Although for systems with larger caches, triangle strips are not neces-

sarily the fastest way of rendering, still, they provide high performance rendering on many

low-end and mid-end GPUs.

1.2 Thesis Overview

We start with possible classifications of stripfication algorithms and with a short overview

of existing algorithms in Chapter 2.

In Chapter 3, we introduce our algorithm for stripification ofDelaunay triangulate ir-

regular networks (TIN). The method does not produce stunning results, but it is fast enough

to create previews for different levels of detail of Delaunay triangulation during the incre-

mental construction.
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We have developed a stripification algorithm based on an algorithm for searching a

Hamiltonian path. As far as we know, this algorithm producesthe lowest number of strips

of all linear time algorithms. The description of our new algorithm is presented in Chap-

ter 4.

Next (Chapter 5), we show how to modify this algorithm to produce even better results.

The modification is based on a weighted dual graph of triangulation. We also demonstrate

the possibilities of this modification using a very simple weight criterion. Surprisingly,

using this criterion, the algorithm produces stripification of very good quality.

The importance of computation and visualization of tetrahedral meshes is growing in

last few years. In Chapter 6, we present a short introduction to tetrahedral strips, and we

show that our algorithm can be modified for tetrahedra strips.

In Chapter 7, we describe a new specialized stripification algorithm for purely quadri-

lateral meshes. For these type of meshes, the algorithm produces high quality stripifica-

tions.

We also include a set of tests of several important methods togive the reader a better

possibility to compare stripification methods. This comparison is done on a set of reallife

models and on a set of artifical objects. We have also studied the influence of topology on

the quality of stripification. Some of our experiments and results are discussed in Chapter 8.

Finally, we conclude this work in Chapter 9 and we suggest several possible direcions

for our future work.



State of the Art

In this chapter we present a list of nearly thirty existing stripification algorithms. As the

number of stripification algorithms is quite high, first we propose several ways how to

classify them.
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2.1 Classification

Triangle stripification algorithms can be categorized in several different ways. Here we

enumerate five classifications that can be used:

1. According to the type of input data (isolated vertices, triangles, etc.).

2. According to the type of meshes (static meshes, CLOD, etc.).

3. According to the type of optimization (minimization of number of strips, minimiza-

tion of number of vertices).

4. According to the type of heuristic function (local heuristic, global heuristic).

5. According to the hardware support (optimization for vertex caches).

One of the possible classifications is based on the type of input data. The first category

of algorithms takes only the geometrical information (i.e., only the vertices) as an input

[AHMS96, VK03]. Typically, these algorithms work only withdata sets on a plane or

with a height field. The second category takes triangles of the model and tries to build

triangle strips, not necessarily a single strip, without changes in topology [AHB90, Kor99,

Ste01, SKP02, VK04a]. The third category is more general as it takes polygons that are

triangulated with respect to the stripification [ESV96b, XHM99, CC99, Tau02]. The last

category takes either triangles or polygons and inserts some extra vertices (Steiner points)

to achieve a single triangle strip [AHMS96, VFG99, EG04]. Inthis paper, we will focus

on category two and three according to this classification.

The majority of stripification algorithms is designed for static meshes (i.e. meshes

without changes in topology). As the complexity of some industrial models is very high,

the need of visualization of view-dependent meshes is growing. There are two approaches

to use triangle strips in LOD meshes. First, special stripification methods that produce

a stripification with some properties [BRRC01, Ste01, VFG99] andsecond, special data

structures and algorithms that can manage the strips duringthe view-dependent visualiza-

tion [ESAV99, SP03, RCBR04, DBPM05]. In this work, we use only static meshes for our

comparison.

Furthermore, the term ’optimal stripification’ is not uniquely determined. One can op-

timize the stripification algorithm to produce a low number of vertices needed for strips

to decrease the amount of data sent through the bus to the rendering engine and speed up
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the rendering. As the initialization of a new triangle stripcosts some extra time, it is also

desirable to minimize the number of generated triangle strips [Ste01, PS03, VK04a]. Usu-

ally, it is not possible to minimize both these parameters atonce – decreasing the number

of triangle strips often leads to increase in the number of vertices (due to higher number of

swaps, needed to preserve the strip) and vice versa. Very often, the stripification algorithms

contain more heuristic functions for vertex or strip optimization. In our comparison we use

both types of heuristic functions if possible, to show the influence of vertex/strip trade off

on the rendering speed.

We can also classify the stripification algorithms according to the type of the heuristic

function. Very often, the heuristic function only decides in which direction the strip should

continue. For such a decision only some local criterion is sufficient. To obtain a better

stripification, some global heuristic is necessary [ESV96a, Ste01, EMX02, EG04].

Todays GPUs contain large vertex caches and their use can significantly reduce the

bandwidth. This criterion was taken into account and several algorithms that respects the

vertex cache were developed [Hop99, BD00].

In the next section we describe most of the published stripification algorithms classified

according to the type of input data. As the number of stripification algorithms is quite high,

the list of algorithms is probably not complete.

2.2 Algorithms

Stripfication of Set of Points

Arkin et al. [AHMS96] suggested two algorithms that can create a Hamiltonian triangula-

tion (i.e., the triangulation that can be covered by a singlestrip) from a set of points in 2.5D.

The first algorithm (the Insertion algorithm) is based on thefact that splitting a triangle into

three new triangles by a new vertex insertion does not break the strip. As the triangulation

created by this algorithm contains a lot of narrow triangles, they proposed another algo-

rithm (the Onion algorithm). This algorithm computes a set of nested convex hulls. These

convex hulls partition the set of points to a set of convex annuli that are triangulated and

stripified each with a single strip. Strips from neighboringannuli are concatenated to a

single strip covering the whole mesh. Still the quality of the resulting triangulation is not

very high.
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In [VK03] an algorithm for fast Delaunay stripification is suggested. The algorithm is

based on an incremental insertion algorithm for DT [KŽ02]. It simply traverses the DAG

structure (Directed Acyclic Graph - it is used for a fast location of vertices in a mesh) and

concatenates strips if possible. The method is fast but the quality of stripification is not

very good.

Stripfication of Triangle Meshes

One of the first algorithms for stripification of a mesh without changes in topology was

developed in SGI [AHB90]. It is a greedy algorithm that constructs the strips by adding

adjacent triangles with the lowest degree, which tends to avoid short strips. As this algo-

rithm is easy and fast, its modification has been used in many other algorithms. Kornmann

[Kor99] extended this algorithm by adding some other deciding conditions. In [SKP02] an

algorithm that creates multiple strips concurrently usingthe SGI algorithm is suggested.

Behr [BA02] improved the speed of the SGI algorithm and suggested to execute a ran-

domized stripification process for several times to obtain abetter stripification. Vaňeček

[Van02] have made a comparison of SGI methods using different heuristic techniques.

Stewart [Ste01] proposed a method that works on the dual graph of the triangulation

(i.e., the graph where each node corresponds to a triangle and adjacent triangles are con-

nected with an edge in the graph). He presented a new graph operator – tunneling which

can reduce the number of strips by one. This operator can be used repeatedly to improve the

quality of stripification. Furthermore this operator can beused during the mesh simplifica-

tion. The number of strips produced by this algorithm is verylow but it takes a long time to

produce a stripification as the algorithm uses a breadth-first search. Some improvements of

this method were suggested in [PS03, PS04]. Porcu [PSS05] also suggested an algorithm

that maintains the stripification in progressive meshes. This algorithm uses lookup tables

to repair a stripification after a vertex split operation. When the quality of stripification

falls bellow some critical threshold, the tunneling operator is used.

Another algorithm that produces very low number of trianglestrips is presented in

[VK04a]. It is based on the idea that triangle strips has to gothrough triangles with only two

neighbors, otherwise the strip would be broken. This algorithm starts with many triangle

strips that are being concatenated as the stripification process continues. This algorithm

was extended in [VK04b]. This extension uses a weighted graph to create a stripification

that is preserved during a simplification process.
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For the progressive meshes, Belmonte [BRRC01] suggested the algorithm that uses a

weighted spanning tree of the dual graph to construct the stripification. The assignment of

weights is guided by the simplification criterion (i.e., edges that will be collapsed first has

lower weight and vice versa). The algorithm can handle 3D meshes.

Speckmann [SS97] introduced an algorithm designed only forTIN (triangulated irreg-

ular networks). The algorithm constructs a spanning tree that is based on the euclidean

distance of the current triangle to an arbitrary point. Sucha spanning tree has two nice

properties: first, the branches of the tree typically alternate from left to right (i.e., strips

contains only a low number of swaps); and second, there is no need to store the span-

ning tree explicitly as it depends on the geometry of the TIN.The algorithm is very fast

but the stripification is not very good. On the other side, as there is no need to store any

information about the strips, it can be used for large data sets.

Estkowski [EMX02] suggested a more theoretical algorithm that uses integer program-

ming to obtain an optimal decomposition into triangle strips. As the complexity of this

algorithm is quite high (O(n2)), it is not possible to use it for real models.

Šíma [Ším04] proposed a new stripification method based on a minimum energy prob-

lem in Hopfield nets. Similar approach was presented by Pospíšil [PZ04]. Although these

algorithms are very slow and produce stripifications of average qualities, the main idea is

very original and interesting.

Stripification of Polygonal Meshes

STRIPE[ESV96a] is one of the best known algorithms for stripification. It has average

results for fully triangulated models (as it uses the SGI algorithm), but it has very good

results for models with quads (quadrilateral faces). The algorithm uses a global heuristic

to find quadrilateral patches and stripify them with a singlestrip.

Another algorithm for not fully triangulated models isFTSG(Fast Triangle Strip Gen-

erator) [XHM99]. The algorithm constructs a spanning tree of the dual graph of triangula-

tion. This tree is partitioned to a set of strips by dynamicalprogramming and these strips

are concatenated if possible.

Cheng [CC99] introduced a dynamic programming based algorithmfor such a trian-

gulation of a simple polygon that can be decomposed into a minimum number of triangle

strips. The complexity of the algorithm isO(n3), thus it is not suitable for a practical

purpose.
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In the last years, quadrilateral meshes became a popular representation in visualiza-

tion and computer animation. Taubin [Tau02] suggested an algorithm that can cover any

connected manifold quadrilateral mesh without boundarieswith a single strip. First, the

algorithm finds an Eulerian circuit, which is partitioned toa set of Hamiltonian cycles.

Then, these cycles are concatenated by flipping a diagonal ofthe corresponding quad.

A new algorithm for fully quadrilateral meshes was presented in [VSKS05]. It is a

modification of greedySGI algorithm. First, the algorithm creates sequences of neigh-

boring quads. Then, these sequences are decomposed into triangle strips. As it follows

the heuristic criterion that tends to not produce a swap, theresulting stripification contains

only a low number of vertices. Creating the sequence of quads first and producing the trian-

gle strips afterward (i.e., splitting quads to triangles respecting the sequence) significantly

reduces the number of strips.

Stripification with Inserted Steiner Points

To obtain a single strip during the stripification process, it is possible to insert special

vertices (Steiner points) that usually change only the topology but not the geometry of the

mesh. An algorithm that produces a single strip triangulation of manifolds is proposed in

[EG04]. It is based on a perfect matching algorithm. By removing all matching edges

from the dual graph of the triangulation, a set of disjoint cycles arises. These cycles can

be connected at a cost of two new triangles per connection. The algorithm complexity

is higher as it uses a perfect matching algorithm (which isO(n) for planar graphs and

O(n log4 n) in general). According to the presented results, the numberof new triangles is

less than 2% of the input number of triangles.

Velho [VFG99] suggested a subdivision scheme for progressive triangular meshes. In

several cases it is necessary to insert Steiner vertices to preserve a constant number of

triangle strips during the refinement process.

Vertex Cache

The problem of vertex caches and rendering sequences is closely related to the problem of

stripfication, thus we present several important works fromthis topic.

Deering [Dee95] proposes the use of a vertex cache of more than two vertices to de-

crease the amount of vertex transfer from CPU to graphics engine. The idea is to reuse

those vertices that are currently buffered in the vertex cache.
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Bar-Yehuda [BYG96] studied the impact of the GPU’s buffer sizeto rendering time

(time/space tradeoff). He has shown that a buffer of size13.35
√

n is sufficient to render

any polygon mesh defined onn vertices in the minimum timeO(n).

Hoppe [Hop99] presented an algorithm that optimizes triangle strips for a system of a

given memory and transparently reduces the geometry bandwidth. Algorithm is based on

a lookahead simulation of the vertex-cache behavior.

Bogomjakov [BG01] suggested an algorithm that produces a rendering sequences that

are not dependent on the vertex cache size. He also proposed an update algorithm that

automatically reorders the rendering sequence in progressive meshes.

A detailed description of some of the most important algorithms as well as their com-

parison can be found in [Van04]. In this thesis, we present a comparison of some of the

existing methods and our new algorithms. This comparison can be found in Chapter 8.



Delaunay Stripification

In this chapter we will concentrate on 2D and 2.5D triangulations, which are often used

for terrain modeling. The terrain models are often given as apoint set and it is necessary

to make a triangulation of this point set first. One of the mostcommon triangulations is

the Delaunay triangulation. This triangulation is very popular especially because of two

facts: (1) it produces the most equiangular triangles of allpossible methods (it maximizes

the minimum angles); (2) it can be computed inO(n log n) time in the worst case and in

O(n) time in the expected case. It is also possible to create several levels of detail while

using an incremental insertion algorithm for the Delaunay triangulation.
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3.1 Delaunay Triangulation

At the beginning we will describe the Delaunay triangulation and structures that we use.

More details about the Delaunay triangulation are e.g. in [Dwy86].

Definition 1 A triangulationT (P ) of a set of pointsP in the Euclidean plane is a set of

edgesE such that

1. no two edges inE intersect at a point not inP ,

2. the edges inE divide the convex hull ofP into triangles.

Definition 2 The triangulationDT (P ) of a set of pointsP in the Euclidean plane is a

Delaunay triangulation ofP if and only if the circumcircle of any triangle ofDT (P ) does

not contain any other point ofP in its interior.

There exist several approaches of constructing a Delaunay triangulation, e.g.:

• divide & conquer [Dwy86],

• incremental insertion [LGS90, KŽ02],

• high-dimensional embedding [Bro79].

Although the fastest method is divide & conquer [Dwy86] (according to [SD95]), we

decided to use the incremental insertion for several reasons: divide & conquer methods

are often too sensitive to numerical inaccuracy, another reason is that the insertion method

allows us to insert points in a specific order (e.g., according to the importance of the point)

to obtain different levels of details. Also the implementation of incremental insertion is

easier than the divide and conquer. While using randomized incremental insertion, the

algorithm is insensitive to input data configurations. Lastbut not least – the incremental

insertion has been already implemented in our computer graphics group [KŽ02].

The incremental insertion algorithm is described in Figure3.1.

The most time consuming part of the algorithm is step 2a – a quick location of the

triangle containing the inserted point. In our approach, triangles are kept in a directed

acyclic graph (DAG) – a graph where the history of insertion and flipping is stored.

An example of vertex insertion and edge flipping is shown in Figure 3.2. In the first

step, a new vertex is inserted. Then the corresponding triangle is divided into three new

triangles (4,5,6). As the new triangles do not fulfill the Delaunay condition, edge flips are

performed in steps three and four.
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Input: the set of pointsP in E2

Output:DT(P)

1. Create a temporary triangle (with pointspt1, pt2, pt3),

such that all points ofP are enclosed in it;

2. For eachp from P do

(a) Find the trianglet or edgee that contains the point

p;

(b) If the pointp lies on an edgee, find the triangles

sharing this edge and subdivide them into four new

triangles

else subdivide the trianglet into three new triangles;

(c) If new triangles do not fulfill the Delaunay condi-

tion, flip the edges (thus create new triangles) and

repeat this step.

3. Remove all triangles that are incident topt1, pt2 or pt3.

Figure 3.1: Algorithm steps for the incremental insertion of DT and an example of the triangulation

construction.

3.2 Delaunay Stripification

To speed up the visualization of different levels of detail of the triangulation, it is possible to

use triangle strips. In Figure 3.2(d), one can see that it is possible to obtain a stripification

for each step of the triangulation process by traversing theleaves of the DAG structure very

quickly. This algorithm was published in [VK03].

To improve the quality of stripification, it is necessary to modify the existing algorithm

[KŽ02] to avoid breaking strips. There are two steps in the algorithm where the strip could

be broken: (a) insertion of a new vertex, and (b) flipping edges to fulfill the Delaunay

condition.

While inserting a new vertex, two situations can appear. If the inserted vertex lies inside

a triangle, three new triangles are created. To preserve thestrip, we need only to keep the

right order of sons in the DAG (see Figure 3.3).
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Figure 3.2: An example of DAG. A new point is inserted into a triangulation (a). The corresponding

triangle is subdivided into three new triangles (b). The triangles are checked for the Delaunay

condition (c) and (d).

If we don’t care about the Delaunay condition (do not performflips), we obtain a

Hamiltonian triangulation (as described in [AHMS96] – we get one strip for the whole

triangulation, penalized by worse quality of triangles).

In Figure 3.3 (left) an old triangulation with a strip is shown. In the middle, there is a

new triangulation and a new triangle strip after a vertex insertion. On the right side, there

is the corresponding DAG.

1

3

2 4

1

2 3 4

Figure 3.3: Insertion of a vertex into a triangle.

In the other situation the inserted vertex lies on an edge. Insuch a situation several

cases may appear. In the first case, the incoming edge (i.e., the edge on which the strip

enters the triangle) of the first triangle and the outgoing edge (i.e., the edge on which the

strip leaves the triangle) of the second triangle have a common vertex. It is possible to

connect all four new triangles into one strip and continue (see Figure 3.4).
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1 2

3 6

54

Figure 3.4: Insertion of a vertex on an edge (case 1).

The second case, where the incoming edge of the first triangledoes not share any vertex

with the outgoing edge of the second triangle, is the most problematic. In this case it is not

possible to insert all four new triangles into a strip and a new strip has to be created.

There are two possibilities: (1) Insert three new trianglesto the existing strip and create

one new single-triangle strip (in Figure 3.5 triangle 4); or(2) to avoid the single-triangle

strip it is possible to divide the strip and insert triangles3 and 4 to the first strip and triangles

5 and 6 to the second strip.

3

4

5 6

21

1 2

3 5

64

Figure 3.5: Insertion of a vertex on an edge (case 2).

In the last case, the first triangle lies in another strip thanthe second one. The new

triangles are simply inserted into the existing strips (seeFigure 3.6).

3 4 5 6

21

1 2

3 6

54

Figure 3.6: Insertion of a vertex on an edge (case 3).
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To make the Delaunay triangulation, each new triangle has tobe checked and if it does

not fulfill the condition, it is necessary to flip the edge. Again, several cases may appear.

When the incoming edge of the first triangle does not share a vertex with the outgoing edge

of the second triangle, it is possible to connect both new triangles into a strip (Figure 3.7).

1

2

3 4

3 4

21

Figure 3.7: Edge flipping (case 1).

If the incoming and outgoing edges share a vertex, a new single-triangle strip has to be

created (Figure 3.8).

1

2

3 4

3 4

21

Figure 3.8: Edge flipping (case 2).

If the two flipped triangles lie in the same strip but do not share a common edge in the

strip, the existing strip is divided into two strips (Figure3.9).

1

2

3 4

3 4

21

Figure 3.9: Edge flipping (case 3).
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In the last case the two triangles do not belong to the same strip. After the edge is

flipped, the beginning of the first strip is connected to the end of the second strip and vice

versa (Figure 3.10).

1

2

3 4

3 4

21

Figure 3.10: Edge flipping (case 4).

When the insertion and flipping step is finished, it is possibleto extract the stripification.

It can be performed in three steps:

• In the first step, the algorithm is traversing the leaves of the DAG (triangles of the

final triangulation). If it is possible, it connects the triangle to an existing strip, if

not, a new strip containing this triangle is created.

• In the second step the algorithm goes through the list of strips and tries to concatenate

strips into longer ones. To detect whether two strips could be connected or not, each

strip has a pointer to its terminal triangles and each terminal triangle points to the

corresponding strip.

• To speed up the visualization, we can use the OpenGL vertex arrays or vertex buffers.

To be able to use this extension, the algorithm has to extractvertices of each strip

into a continuous block of memory in the last step.

3.3 Test and Results

This algorithm was implemented in Borland Delphi 6.0. It has been tested on a set of 16

randomly generated and 8 real terrains. Experiments have been performed on a PC AMD

Duron 850MHz with 256MB of RAM, running on MS Windows 2000 system. The imple-

mentation was compared toSTRIPE 1.0[Eva98] with default settings (compiled with gcc,

I/O operations excluded from time measurement) and to my ownimplementation ofSGI
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algorithm [Van02]. This comparison is not completely fair,because unlike this algorithm,

bothSTRIPEandSGIalgorithms are more general and work also for fully 3D models. But

as far as we know, there are no public free methods for our class of models. Naturally,

times of I/O operations have been excluded from measurements.

In Table 3.1 the name and description of all methods is printed. These names are used

in the following tables. In Table 3.2 the number of trianglesand vertices in models is

shown.

DT Delaunay triangulation only

DTS Delaunay stripification

DTS(O) DTS time minus DT time

(only the time of stripification)

SGI Our implementation of SGI method

STRIPE STRIPE (default settings)

Table 3.1: Methods.

model # of vertices # of triangles

1 4,897 9,774

2 13,829 27,642

3 15,820 31,617

4 20,014 40,016

5 41,853 83,678

6 60,244 120,465

7 70,433 140,841

8 100,000 199,114

Table 3.2: Models.

Next tables show comparison of theDTS to STRIPEand toSGI. Table 3.3 shows the

time needed for stripification. The time for the Delaunay stripification is only 2–5% higher

than the Delaunay triangulation without stripification (except of the model 1, which is too

small to give reliable results). In comparison toSTRIPE, the DTS is about 8–15 times

faster. It is also more than five times faster than theSGIalgorithm. This speedup is caused

by several things. Nearly all temporary structures are accesible directly inDTSwhile in

other algorithms we need to create them. The order of insertion of triangles into strips is

done simply by traversing the DAG leaves. The concatenationof triangle strips is done via

a greedy algorithm which is very fast.
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model DT DTS DTS(O) STRIPE SGI

1 190 210 20 128 70

2 701 721 20 356 201

3 832 851 19 402 230

4 1072 1132 60 514 290

5 2634 2714 80 1163 591

6 4086 4197 111 1690 872

7 4917 5108 191 1941 1091

8 6349 6599 250 2432 1261

Table 3.3: Runtime in milliseconds (grey cells emphasize the best values, black cells emphasize the

worst values).

Table 3.4 shows the number of strips needed for a model. We cansee that bothSGI

andSTRIPEcreates approximately three times less triangle strips than DTS. This is quite

surprising because we have expected an algorithm that creates a low number of strips. This

problem is caused by a big amount of flips during the triangulation process (6 flips per

vertex on average).

model DTS STRIPE SGI

1 638 252 242

2 1785 697 672

3 2030 795 769

4 2625 946 929

5 5457 2052 1895

6 7753 2759 2627

7 9074 3288 3144

8 12048 3445 3363

Table 3.4: Number of strips in a model.

Table 3.5 lists the number of vertices in strips for all algorithms. TheDTSalgorithm

produces 5–6% more vertices than theSTRIPEand 8–11% more vertices than theSGI.

There could be two reasons why is our algorithm worse in the number of vertices than

SGI or STRIPE. First, the number of strips is higher. Second, in the stripification there

exists a lot of fan-like strips caused by the flips (see Figure3.11). Therefore a combination

of triangle strips and triangle fans could bring some additional reduction.
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model DTS STRIPE SGI

1 15,390 14,589 14,175

2 43,651 41,489 40,243

3 49,874 47,429 45,936

4 63,012 59,805 57,707

5 131,921 125,090 120,887

6 189,790 179,222 172,991

7 222,116 209,703 202,607

8 261,001 294,706 280,387

Table 3.5: Number of vertices in strips.

In Figure 3.11 (left) a new vertex is inserted into a triangulation. After the insertion,

flips are performed and the order of triangles in the strip is changed. The color intensity

marks out the order of triangles.

Figure 3.11: Insertion of a vertex changes the order of triangles (the color intensity marks out the

order of triangles).

The main goal of stripification is the speedup of rendering. In Table 3.6, we present

the average number of frames per second for non-stripified model and for models stripi-

fied with DTS, STRIPEandSGI. To use the power of the graphic card, we have used the

OpenGL display lists.

As shown in the table, using the triangle strips significantly increases the speed of

rendering. This speed-up increases with the increase of model complexity, as the data

bandwidth is becoming more critical. For most cases, the stripification produced bySGI

algorithm is rendered most quickly. Although the stripification produced by our new algo-

rithm is the slowest, the differences in rendering speed arenot very high.
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model DT DTS STRIPE SGI

1 45.6 49.2 50.2 50.7

2 38.1 50.1 50.4 50.1

3 22.4 38.0 38.7 38.6

4 18.6 34.6 36.3 35.7

5 13.1 26.2 26.9 27.3

6 9.5 20.6 21.3 22.2

7 8.7 19.8 19.9 20.4

8 7.1 13.7 15.0 15.5

Table 3.6: Number of frames per second.

3.4 Summary

We have developed and implemented a new algorithm for triangulation and stripification of

models based on Delaunay triangulation using incremental insertion algorithm with DAG.

As far as we know, this is the first algorithm which is able to create triangle strips together

with the construction of triangulation. Our algorithm is fast enough to create previews

for different levels of detail of Delaunay triangulation. Due to greater number of triangle

strips, it is better to use some other algorithm for the final stripification.

Although our algorithm produces higher number of strips, the speedup is sufficient for

the previews. There is probably still a place for reducing the number of strips by some

improvements in the insertion and flipping stage.



Multi-Path Algorithm

In this chapter we describe a new algorithm for stripification of static, fully triangulated

meshes and some of its extensions. This algorithm is based ona dual graph of triangulation

and it produces a stripification with very low number of triangle strips.
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4.1 Multi-Path Algorithm for Hamiltonian Cycles

The stripification problem is related to the problem of searching of the Hamiltonian cycles

in the dual graph, i.e., a path connecting all nodes of a graph, visiting each node exactly

once.

Christophides [Chr75] and Kocay [Koc92] introduced a Multi-Path algorithm for find-

ing Hamiltonian cycles. This algorithm is based on an exhaustive search of paths in a

graph. The algorithm starts with an arbitrary node and any incident edge. While recur-

sively extending the path, edges that are incident to the node, which is in the middle of the

path, are removed, because there is no possibility to use them (Hamiltonian path visits each

node only once). In some cases, this edge removal leads to starting of a new path. The al-

gorithm stops in the case that a Hamiltonian cycle was found.The algorithm works well for

Hamiltonian graphs (i.e., graphs that contain a Hamiltonian cycle). For non-Hamiltonian

graphs, it is necessary to explore all possibilities, thus it can take a long time.

4.2 Stripification

From the Multi-Path algorithm, we have taken the basic idea –to make a path containing

a node of degree of two and one of its adjacent nodes – and we have modified it to better

suitability for stripification problem.

Our new algorithm does not build one strip at a time, but it creates a strip for each

suitable group of triangles and concatenates these strips if possible. Such an approach

produces triangle strips of about the same length and it avoids short or singleton strips (i.e.,

strips containing one triangle).

According to the degree and status of a corresponding node inthe dual graph all trian-

gles are classified into sets.

• Ui – the set of unconnected nodes of degreei; i ∈ {0, 1, 2, 3}. Such a node represents

a triangle that is not connected in a strip.

• Ci – the set of connected nodes of degreei; i ∈ {1, 2}. A triangle represented by

such a node is connected to a strip over one edge (i.e., it is a boundary triangle of

some strip). As there is no possibility to extend a strip froma connected node of

degree zero, such nodes are classified asT .

• T – the set of fully connected nodes. It represents triangles that are inside strips.
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The algorithm begins by adding the neighboring informationinto the dual graph of the

triangulation. Considering the number of neighbors, all nodes are classified into theUi sets

(all nodes are unconnected at the beginning).

After this initialization part, the main loop of the stripification process can start. The

algorithm chooses one node from the graph following this priority order:

1. an unconnected node fromU0 – a triangle without neighbors (it is a singleton triangle

and there is no possibility to connect it to a strip)

2. an unconnected node fromU1 – a triangle with one neighbor (we have to connect it

to the neighbor to avoid the singleton strips)

3. a connected node fromC1 – a triangle that is an endpoint of a strip and that has one

neighbor (it is good to connect it to its neighbor, to avoid the strip breaking)

4. an unconnected node fromU2 – a triangle with two neighbors (a strip should go

through such a triangle)

5. a connected node fromC2 – a connected triangle with two neighbors

6. an unconnected node fromU3 – an unconnected triangle with three neighbors

An edge incident to the selected node and the other node of theedge are chosen. A

new strip containing triangles corresponding to the selected nodes is created and the edge

is removed from the dual graph. If one (or both) of selected nodes is already a connected

node (i.e., it is an endpoint of some strip), the new strip hasto be concatenated.

Both selected nodes are moved to a corresponding set: an unconnected node of degreei

is moved to connectedi−1 set, a connected node of any degree is moved to fully connected

setT . If a node is moved to theT set, it is also necessary to remove all its remaining edges

and to update the status and degree of its neighbors.

To avoid an infinite triangle strip (loop), a simple test which checks the endpoints of the

current strip is performed. If there is an edge connecting these two endpoints, it is removed

and the status of neighboring nodes is updated.

The main loop is performed as long as there are some not fully connected nodes in

the dual graph. In the end, a simple method is used to decompose the list of triangles in

strips into a list of vertices of strips (including swaps). We suppose that the orientation of

all triangles of the input mesh is consistent. The stripification process is running in linear

time.

In Figure 4.1 a pseudocode for the Multi-Path stripping algorithm is shown.
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input: list of triangles

output: list of triangle strips

begin

Create neighbors;

Classify nodes;

while there is any node in the graph do

Choose starting node t1;

Choose neighboring node t2 to node t1;

Add edge (t1,t2) to the list of strips;

Try to concatenate the new edge with some existing strip;

Remove edge (t1,t2) from the dual graph;

Check loop in strips;

end while;

ExtractStripsVertices;

end;

Figure 4.1: Pseudo code for the Multi-Path stripping algorithm.

4.3 An Example

Now we will present an example. Figure 4.2(a) shows the triangulation and its correspond-

ing dual graph. In the beginning all nodes are classified intoUi sets.

In the first step (Figure 4.2(b)), aU2 node and one incident edge is chosen. This edge

is removed from the graph, and a strip of length two is created. The node is moved from

U2 to C1 and its neighbor is moved fromU3 to C2.

In the next step (Figure 4.2(c)), a nodeC1 is available, so the algorithm processes it.

The remaining edge of the nodeC1 is removed from the graph and a new strip of length

two is created. As the node is already a part of a strip, these two strips are concatenated.

TheC1 node is now moved toT (a fully connected node). A similar situation appears in

the next two steps (Figure 4.2(d),(e)).

Now (Figure 4.2(f)), an edge connectingC1 andC2 node was removed from the graph

and the strip was created. As both nodes are already connected in different strips, all three

strips are concatenated into one. The status of both nodes ischanged toT and the un-

processed incident edge of theU3 node is removed. By this step, the incidentU3 changed

its status toU2.
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Figure 4.2: Algorithm steps. The original triangulation and its dual graph (a). In (b) anew strip

starting from aU2 node is created and it is extended in the next step (c). As the highest possible

priority set isU2, another strip is created (d) and following the rules, it is extended (e). In figure

(f), the two already existing strips are concatenated. This leads to an edge removal (a dashed line).

The final stripification contains one triangle strip (g).

When there are onlyT nodes in the graph, the stripification is done (Figure 4.2(g)).

Finally, the algorithm converts the strips (which are listsof neighboring triangles) to lists

of vertices of the strips.

4.4 Experiments and Results

Our new algorithm has been implemented in Borland Delphi 6.0.It has been tested on a

set of well known models (Table 4.1). The experiments were performed on a PC INTEL

Pentium 4, 1.8GHz, 512MB of RAM, running on MS Windows XP. Naturally, times of I/O

operations have been excluded from measurements.

We have chosen models that are often used in other papers and are available on the

internet [Sta, Geo, CYB]. All our models are fully triangulated, so we decided to compare

our new algorithm (Multi-Path) to SGI-based method [Van02]. As our new algorithm

produces very low number of triangle strips, we also decidedto compare it toTunneling

algorithm [Ste01], with the default settings. As far as we know, the tunneling algorithm

produces the lowest number of triangle strips.



MULTI -PATH ALGORITHM 28

# model # vertices # polygons

1 cow 2905 5804

2 demi 9138 17506

3 bunny 35947 69451

4 dinosaur 56194 112384

5 balljoint 137062 274120

6 club 209779 419554

7 hand 327323 654666

8 dragon 437645 871414

9 happy buddha 543652 1087716

10 blade 882954 1765388

Table 4.1: Set of testing models.

Stripification

A comparison of number of strips created by various methods is shown in Table 4.2.

We can see that the number of strips produced byMulti-Path algorithm is nearly four

times lower than the number of strips produced bySGI. For lower resolution models

(< 300k of triangles), our new algorithm produces even less vertices than tunneling. For

large models, our algorithm produces approximately 40% more strips than tunneling.

On the other side, our new method produces at least three times lower number of strips

than other stripification methods (Table 4.3).

In the next table (Table 4.4), a comparison of number of vertices in strips is presented

(number of vertices is in thousands). The difference in the number of vertices could

not be as big as the difference in the number of strips, because there are two theoretical

boundaries. The number of vertices could not be lower than2 + number of triangles

(for a sequential strip, covering the whole triangulation)and it could not be higher than

3 · number of triangles for a set of isolated triangles or2 · number of triangles for

a connected set of triangles.

The Multi-Path algorithm produces less vertices than theTunnelingalgorithm, but it

produces about 5% more vertices than theSGI. Although this difference is not so big, it

could lead to a lower frame-rate. In the next chapter, we showa possible way, how to

improve the algorithm.
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# model SGI Tunneling Multi-Path

1 cow 98 19 17

2 demi 335 137 97

3 bunny 601 188 156

4 dinosaur 1177 267 308

5 ball joint 2279 707 690

6 club 2658 909 978

7 hand 8997 1944 2227

8 dragon 17399 3672 4876

9 happy buddha 21578 4219 5809

10 blade 23125 5537 5863

Table 4.2: Comparison of number of triangle strips in a model (grey cells emphasizethe best values,

black cells emphasize the worst values).

We have also tested the distribution of length of triangle strips in the mesh. In Figure

4.3, the distribution of length for the ’happy buddha’ dataset is shown (the number of strips

of the current length is divided by the total number of strips).

As our new algorithm uses a global criterion, it does not produce a big number of ex-

tremely short triangle strips. If we compareMulti-Path to theSGI method, which uses a

local criterion, the difference is apparent. We were surprised by the strip length distribu-

tion of Tunneling, which also uses a global criterion, but produces a lot of shorter strips.

This is probably caused by the SGI-based algorithm, which isused to give a quick initial

stripification forTunneling.
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method bunny dragon

Multi-Path 156 4876

Tunneling [Ste01] 188 3672

Silva [SKP02] 599 16222

SGI [Van02] 601 17399

SGI [AHB90] 705 17653

STRIPE [ESV96b] 917 19935

FTSG [XHM99] 618 20571

Table 4.3: Comparison of number of triangle strips in a model (for more methods).

# model SGI Tunneling Multi-Path

1 cow 8 8 8

2 demi 23 24 24

3 bunny 87 97 95

4 dinosaur 148 159 158

5 ball joint 358 387 387

6 club 532 585 582

7 hand 876 941 921

8 dragon 1237 1261 1254

9 happy buddha 1546 1574 1564

10 blade 2294 2561 2425

Table 4.4: Comparison of number of vertices in strips. The number of vertices is in thousands.
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Figure 4.3: Comparison of strip length distribution for ’happy buddha’ (the number ofstrips of the

current length is normalized by the total number of strips).

Performance

Finally, we have compared runtime of algorithms (Table 4.5). The time includes the alloca-

tion of all necessary memory (excluding memory for model itself, i.e., array of vertices and

array of indices), construction of all data structures (triangle neighbors, etc.) and the strip-

ification process itself. For theTunnelingalgorithm, the time forSGI initial stripification

is also included.

Both SGI andMulti-Path are linear time algorithm and their running time is signif-

icantly lower thanTunneling. To create a stripification (including all data structures)of

’blade’, which consists of nearly 1.8 millions of triangles, we need less than 18 seconds,

on Intel Pentium IV 1.8Mhz.

The Tunnelingalgorithm is very slow, and the speed is not comparable to other al-

gorithms. Although the stripification process is usually a preprocessing, the tunneling

algorithm with the default settings is not usable for large models. We also were not able

to create a stripification of ’blade’ by tunneling on our testing machine, due to a lack of

memory, so we have used a different machine (it took more than1 hours on dual Pentium

4 XEON 2GHz, 1GB RAM, running on Linux).
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# model SGI Tunneling Multi-Path

1 cow 0.1 1.2 0.1

2 demi 0.4 1.6 0.4

3 bunny 0.9 77.4 0.8

4 dinosaur 1.5 128.3 1.2

5 ball joint 3.5 372.5 3.8

6 club 6.2 804.0 4.9

7 hand 7.6 881.0 6.4

8 dragon 9.5 1345.0 8.0

9 happy buddha 11.7 1793.7 10.2

10 blade 26.0 N/A 17.1

Table 4.5: Comparison of runtime. Times are in seconds.

Output examples

Figure 4.4 shows a visual comparison of the ’cow’ and the ’bunny’ model. It is obvious

that theSGI algorithm (top) produces more triangle strips than theTunnelingalgorithm

(middle) orMulti-Path (bottom). As theSGI strips are covered by less vertices (i.e., there

is a small number of swaps), they are straight and narrow. By contrast,Tunnelingand

Multi-Path produce triangle strips that cover huge compact areas of themesh. Such a

behavior can be useful for some additional data reduction, e.g., view-dependent culling of

triangle strips.
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4.5 Summary

We have designed and implemented a fast and effective methodfor stripification of static

meshes. This method is based on dual-graph and it uses a global criterion for strip creation.

Figure 4.4: Output examples. The ’cow’ has 5804 triangles. It is stripified with 98 strips using SGI

(top), 19 strips using Tunneling (middle) and 17 strips using Multi-Path (bottom). The ’bunny’ has

69451 triangles. It is stripified with 601 strips using SGI (top), 188 strips using Tunneling (middle)

and 156 strips using Multi-Path (bottom).
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It produces a stripification with very low number of trianglestrips, but it contains higher

number of swaps (i.e., the number of vertices is higher). Thealgorithm itself is easy to

understand and easy to implement.

Probably there is still a place to create even less triangle strips by using the loops, which

occasionally appear in the stripification. In the presentedalgorithm, we remove edges that

could lead to such a loop to speed up the algorithm. On the other side, such loops could

be very useful, because they can be disconnected on any segment and concatenated with

some other strip, which is starting/ending in the neighborhood of this loop.



Extended Multi-Path Stripification

In the previous chapter, we have described a new stripification algorithm based on a dual

graph of a triangulation. In this chapter we show, how to extend the algorithm by giving

weights to nodes and edges of the graph. We also demonstrate how the extension works on

a simple weight function.
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5.1 The Extension

The number of strips produced by the Multi-Path algorithm isvery low (as far as we know,

there is no other linear time algorithm producing such a low number of strips). On the

other side, the number of vertices is higher than the number of vertices produced by other

algorithms. In this section we propose an extension of the Multi-Path stripification algo-

rithm that allows better control of stripification process and among others it can decrease

the number of vertices.

As the Multi-Path stripification is based on a graph algorithm, there is a possibility

to influence the stripification process by adding weights to the dual graph. No matter

what these weights represent, they can be handled in two ways: the weights are given to

the nodes of the graph and the nodes of highest/lowest degreeare processed first; or the

weights are given to the edges of the graph and the edges of highest/lowest degree are

processed first. In both cases, the weights can be either static or dynamic. In our method,

we use a combination of all above mentioned cases. We assign the weights to all nodes

of triangulation and we dynamically compute the weight of edge as a weight difference of

nodes that are connected by this edge.

To include the weight criterion into the stripification process, it is necessary to slightly

modify the algorithm described on Figure 4.1. The original algorithm finds the highest

possible priority list of nodes and it chooses the first node from the set (see Section 4).

To choose the best candidate, we have to traverse the whole set of candidates and find the

node that has the lowest weight difference from its neighbor(s). As we have to traverse

the whole set of possible candidates in each stripification step, the algorithm complexity is

higher than linear. Luckily, the number of candidates is notvery high in real life situations.

It is also possible to terminate the searching, when the weight difference is equal to zero.

Choosing the Weights

The weight function can be chosen in many different ways and it depends on the feature

of stripification we want to improve (CLOD, visibility culling, etc.). This makes our new

algorithm very flexible.

To demonstrate how the weights influence the final stripification, we decided to use

weights according to the X-coordinates of vertices of triangles (there is no special reason

to choose X axis and, as we show in the next section, the direction of the weight function

does not influence the quality of stripification too much). Such a criterion should lead
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to straight strips coplanar to YZ plane. We supposed that this criterion could decrease the

number of vertices in the stripification as the strips are more or less straight (i.e., less swaps

is needed). Surprisingly, this criterion also decreases the number of strips as we show in

the next section.

Although the above described function produces very good results, the real challenge is

to find some topologically based functions for better stripification and functions for strip-

fication of progressive meshes.

5.2 Tests and Results

The original Multi-Path algorithm, as well as our new extension have been implemented

in Borland Delphi 7.0. All experiments were performed on a PC AMD Athlon XP 2800+,

2.1GHz, 512MB RAM, ATI Radeon 9600 with 64MB memory, running onMS Windows

XP. Naturally, times of I/O operations have been excluded from measurements. The algo-

rithm was tested on the same set of models asMulti-Pathalgorithm (Table 4.1)

In the next sections, we compare several important factors of stripification. The num-

ber of strips and number of vertices in strips shows the compression level. Although the

stripification process is usually done in preprocessing stage, the running time is still im-

portant for large data sets. To be able to stripify large datasets, low memory requirements

are important. The speed of rendering shows the speedup thatwas achieved. Finally, we

show how the direction of weight function axis influences thestripification.

Stripification

As the creation of a new strip is quite a time consuming operation, the number of strips is

an important factor of stripfication quality. A comparison of number of strips created by

various methods is shown in Table 5.1.

Our new algorithm produces very low number of triangle strips and for many models,

it produces the lowest number of strips from all algorithms.For models of hand, happy

buddha and dragon, the number of strips is higher than the number of strips produced

by tunneling. This fact is caused by the high topological andgeometrical irregularity of

these models (these models contain large number of verticesof high degree, for visual

comparison see the dinosaur Figure 5.1(a) and the happy buddha Figure 5.1(b) models).
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model SGI Tunneling MPath EMPath

cow 98 19 17 16

demi 335 137 97 94

bunny 648 188 156 86

dinosaur 1177 267 308 197

balljoint 2279 707 690 381

club 2658 909 978 454

hand 8997 1944 2227 1646

dragon 17399 3672 4876 4380

buddha 21578 4219 5809 5250

blade 23125 5537 5863 4281

Table 5.1: Number of strips in models (grey cells emphasize the best values, black cells emphasize

the worst values).

Figure 5.1: Visual comparison of topological regularity of objects. (a) shows the model of dinosaur

which is quite regular, contains only a low number of vertices with a high degree and most of the

vertices has degree six, unlike the model of happy buddha in (b) which ishighly irregular.

Vertices

The number of strips is not the only factor that influences therendering speed. The number

of vertices that are beeing sent through the bus is also very important. A comparison of

number of vertices is presented in Table 5.2.
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model SGI Tunneling MPath EMPath

cow 8K 8K 8K 8K

demi 23K 24K 24K 24K

bunny 87K 97K 95K 86K

dinosaur 148K 159K 158K 150K

balljoint 358K 387K 387K 355K

club 532K 585K 582K 537K

hand 876K 941K 921K 890K

dragon 1237K 1261K 1254K 1243K

buddha 1546K 1574K 1564K 1552K

blade 2294K 2561K 2425K 2364K

Table 5.2: Number of vertices in strips.

Usually, the algorithms that produce a low numbers of stripsproduce high numbers

of vertices, as maintaining a long strip costs some additional swaps. Although our new

algorithm produces a low number of strips, it also produces much lower number of vertices

than theTunnelingor Multi-Pathalgorithm. In the case of very regular models, the number

of vertices is close to or even lower thanSGI.

Running Time

The stripification is usually done in preprocessing stage ofthe visualization, thus the run-

ning time of stripification process is not crucial. On the other hand it should not take too

much time. The running times are shown in Table 5.3.

The time includes the allocation of all necessary memory (excluding memory for model

itself, i.e., array of vertices and array of indices), construction of all data structures (triangle

neighbors, etc.) and the stripification process itself.

As our new algorithms searches for the best possible candidate in each stripification

step, the algorithm complexity is higher than the complexity of Multi-Path. In comparison

to theTunnelingthe running time of our algorithm is still low and it can be used even for

large data. Furthermore, this weak point can be reduced by using some additional data

structures such as priority queues or buckets to speedup thebest possible candidate choice.
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model SGI Tunneling MPath EMPath

cow 0.16 0.49 0.14 0.37

demi 0.65 0.97 0.50 1.02

bunny 0.69 176.66 0.72 1.08

dinosaur 1.03 72.12 1.81 1.62

balljoint 3.75 176.39 3.46 28.36

club 5.76 629.46 5.96 63.97

hand 5.30 586.63 6.14 20.50

dragon 7.96 1177.27 10.98 276.26

happy 10.31 1580.71 13.37 338.98

blade 17.76 N/A 20.61 151.52

Table 5.3: The computation time in seconds.

Rendering Speedup

To measure the rendering speedup, we use the OpenGL display lists. Each vertex is defined

by its position (12 Bytes) and normal vector (12 Bytes). To showthe benefit of vertex

strips, we also present the speed of rendering while drawingunordered triangles and while

drawing triangles ordered by Bogomjakov’s reordering method [BG01] (for this method,

we present the rendering speed achieved by vertex buffer objects that are much faster than

display list for this method).

model Triangles Bogomjakov* SGI Tunneling MPath EMPath

cow 542.8 654.7 644.4 651.1 650.1 645.2

demi 456.6 639.6 614.3 618.3 618.0 618.0

bunny 157.0 291.5 336.3 352.2 348.8 341.6

dinosaur 121.1 217.9 269.9 278.2 276.6 276.1

balljoint 54.2 98.7 136.3 139.5 138.8 138.6

club 36.0 95.2 94.1 95.5 95.7 95.1

hand 23.6 48.2 58.6 64.0 64.5 64.7

dragon 3.0 47.2 37.7 48.4 50.1 50.0

happy 2.4 45.4 30.0 38.7 40.5 40.4

blade 1.5 13.1 19.8 24.4 24.4 24.6

Table 5.4: The average FPS (display lists; *vertex buffer objects).
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While using triangles, for most of the models the framerate isabout 2 – 2.5 times

smaller than the framerate of stripified objects. This ratiocorresponds to the theoretical

assumption (strips can reduce the amount of data by a factor of three in the best case). The

effect of topology compression is also visible in high resolution models (dragon, buddha

and blade); when using the triangle representation, the size of these models exceeds the

amount of GPU memory and makes the rendering unbearably slow.

Memory Requirements

As different algorithms use different data structures, theamount of allocated memory can

differ (Table 5.5). To measure the memory usage, we wrote a very simple program that

scans the running processes and stores the memory usage peakof the stripification process.

As the scanning is not continuous, some inaccuracy may appear.

We also include the average bytes per processed triangle on a32-bit computer. This

ratio can be used to compute the maximal size of model that canbe stripified on a machine

with a given size of memory.

model SGI Tunneling MPath EMPath

cow 0.5 5.1 2.0 2.0

demi 2.1 11.2 3.4 3.5

bunny 6.8 37.2 9.4 9.7

dinosaur 9.3 57.8 14.4 14.9

balljoint 21.0 137.6 33.3 34.3

club 34.9 209.3 50.0 51.6

hand 53.9 325.0 78.0 80.5

dragon 71.5 435.1 104.4 107.7

happy 88.9 540.8 129.8 133.9

blade 143.3 879.0 207.1 213.8

bytes/tri 86 524 125 129

Table 5.5: The amount of allocated memory in MB.

The SGI algorithm does not use too many additional data structures and the memory

requirements are very low. As our new algorithm does not use any special structures, the

memory requirements are nearly the same as the originalMulti-Path and they are about

four times lower than the memory requirements of theTunnelingalgorithm.
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Impact of rotation

As the weight function that we use for the stripification depends on the orientation of the

model (or on the orientation of axis of weight function), we have also included a test of

impact of rotation transformation. We have rotated the model of bunny and the model of

dragon around the Z axis and we have made the stripification for all orientations with five

degree step.

The behavior of our new algorithm for regular meshes is shownin Figure 5.2 (the bunny

model).

Figure 5.2: Impact of rotation to the stripification quality. Rotating the model of bunny around Z

axis with weight function according to the X coordinate.

As the vertex distribution in many objects is more or less axis aligned (see Figure

5.3 (a)) the rotation of the object (or of the direction of weight function) by 45 degrees

decreases the quality of stripification (the number of vertices as well as the number of strips

increases). This fact is well visible on the graph. We also include a visual comparison of

two extreme cases; the rotation by 145 degrees produces a stripification with 124 strips

and nearly 90k of vertices (Figure 5.3(b)) and the rotation by 270 degrees produces a

stripification with 70 strips and 87k of vertices (Figure 5.3(c)). Although the differences

are quite high, our new method produces better stripification thanTunnelingor Multi-Path

even for the worst case.

The behavior of Extended Multi-Path for irregular meshes isshown in Figure 5.4

(dragon model).
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Figure 5.3: Impact of rotation to stripification quality. Rotating the model of bunny around Z axis

with weight function according to the X coordinates cause changes of the result of stripification

process. Figure (a) shows the structure of vertices in the model. Figure(b) presents the stripification

of model rotated by 145 degrees, which is the worst case, and Figure (c) presents the stripification

of model rotated by 270 degrees, which is the best case.

Figure 5.4: Impact of rotation to stripification quality. Rotating the model of dragon around Z axis

with weight function according to the X coordinate.

In the case of highly irregular meshes, the rotation of the object (or of the direction of

weight function) does not influence the quality of stripification too much. The stripification

has higher number of strips thanTunneling, but lower thanMulti-Path.

The above tests show that choosing the axis aligned direction of weight function is a

good choice in most of the cases, as most of the objects is regular. To get better results, it

is important to suggest some function that is based on a topological criterion, or to suggest

a specialized function for a concrete type of input data.
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5.3 Summary

We have designed and tested a new stripification method basedon a Multi-Path Stripifica-

tion algorithm [VK04a]. Using weights in a dual graph of triangulation, this method allows

the user to influence the final stripification.

We have also suggested one possible weight function that canhighly improve the qual-

ity of stripification, especially for topologically regular triangle meshes. Using this func-

tion, our new method produces stripification with very low number of triangle strips (in

many cases even lower thanTunnelingalgorithm, which, as far as we know, produces the

lowest number of strips from all existing methods), that arecovered with lower number

of vertices. The algorithm complexity is close toO(n) and it is possible to process large

datasets.

Our new algorithm offers a wide area of possibilities for stripification. In the future

work, we would like to explore some other weight functions that can produce even better

stripfication and that are not so sensitive to topological and geometrical irregularity.



Multi-Path for Tetrahedral Meshes

The importance of computation and visualization of tetrahedral meshes is getting very

important in the last years. In this chapter we present a short introduction to tetrahedral

strips and we show the modification ofMulti-Pathalgorithm for tetrahedral strips.
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6.1 Tetrahedral Meshes
For many 3D applications, the real-time rendering is necessary. In many of these applica-

tions, only the surface of the visualized scene is necessary. To take the full advantage of

modern graphic hardware, the high level primitives such as NURBS or subdivision surfaces

are converted to a set of triangles (or triangle strips).

However, there exists large area of applications, where thesurface visualization is

not sufficient and the complete volume rendering is necessary (medical application, hy-

dro/aerodynamic computation, etc.). Similarly to surfaces, there are two possible ways

of volume representation – regular grid, which can be rendered quite easily with the pro-

grammable GPUs, but which lacks some properties such as locally adaptive resolution;

and tetrahedral meshes, which are more complicated to render, but which are more flexi-

ble providing locally adaptive resolution, integration with polygons or fitting to complex

boundaries.

Using the full advantage of triangle rendering hardware andoptimized algorithms for

visibility sorting, the tetrahedral renderers are recently achieving an interactive frame rates

using the Projected Tetrahedra algorithm. While tetrahedral meshes are nowadays used

mainly for simulation and visualization of vector fields andmedical research, the possibil-

ity of real-time volume rendering will bring up a huge area ofapplications such as highly

realistic atmospheric effects, high resolution volume sculpturing or visual feedback of sim-

ulation of deformations.

6.2 Tetrahedral Strips
Increasing the complexity of scenes, the same problem of insufficient data bandwidth as in

triangle meshes arises. King [KCW01] et al. suggested an architecture for tetrahedral

volume rendering and an OpenGL API extension to support tetrahedral strips that can

decrease the transmission cost of topology. Furthermore, the tetrahedral strip primitive

can improve the vertex cache management when rendering tetrahedral meshes on GPUs

that support vertex caching and updatable vertex arrays.

Unfortunately, the description of the tetrahedral connectivity is more difficult than in

triangle meshes for two reasons:

• It is impossible to use the term ’left-right alternation’, as there are no obvious notions

of ’left’, ’right’, or ’alternating’ sequence.

• It is not possible to orient tetrahedra incident to a given vertex in a simple way.
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To deal with the added dimension of tetrahedral meshes, it ispossible to consider sim-

plicial complexes in general. Let’s suppose thatk-dimensional subcomplexes ofn dimen-

sional simplicial complex are equivalent for varyingk andn, if n−k is constant. Using this

assumption, a vertex of a triangle (k = 0, n = 2) is equivalent to an edge of a tetrahedron

(k = 1, n = 3). This is also true for edges and faces – as every edge in triangle mesh is

incident to two triangles at most, each face in tetrahedral mesh is incident to two tetrahedra

at most. Now, using an edge as a basic element, it is possible to define a tetrahedral fan and

tetrahedral strip:

Tetrahedral Fan

A tetrahedral fanis a sequence of tetrahedra which share a common edge. Using the

tetrahedral fan, the transmit cost ofn tetrahedra can be reduced by the factor of four (from

4 · n to n + 3 vertices). The important fact is that generally it is not possible to include the

entire neighborhood of any vertex, while using a tetrahedral fan.

Although the tetrahedral fan is quite a simple primitive, itis necessary to carefully

define the syntax to make it clear which vertices define the common edge. In his suggested

extension, King used a consistent notation of the fan as in the OpenGL triangle fan, i.e.,

the first two vertices define the edge that is shared.

The suggested OpenGL extension adds a primitive GL_TET_FAN_EXT, which can be

used in a very similar way as a triangle fan primitive. If passing verticesv0, v1, v2, ..., v5,

three tetrahedra (v0v1v2v3, v0v1v3v4 andv0v1v4v5) will be rendered.

glBegin(GL_TET_FAN_EXT)

glVertex(v0)

glVertex(v1)

glVertex(v2)

glVertex(v3) // tetra 0123

glVertex(v4) // tetra 0134

glVertex(v5) // tetra 0145

glEnd()

Figure 6.1: An example of OpenGL API extension and a corresponding tetrahedralfan [KCW01].
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Tetrahedral Strip

A tetrahedral stripis a sequence of tetrahedra that are connected by shared faces, but

not all of them necessarily share one common edge. Similarlyto triangle strips, for the

tetrahedral strip, the application has to send four vertices of the first tetrahedron, and then

a single vertex for each tetrahedron in the strip.

Like in the case of triangle strips, there exist two categories of tetrahedral strips. In the

case of a sequential strip, each four consecutive vertices represent a tetrahedron. To be able

to draw a generalized tetrahedral strip, it is necessary to introduce aswaplike operation.

Using the zero area tetrahedron to perform the swap can be very expensive, as it would be

necessary to send three vertices. For this reason, King et al. [KCW01] suggested to send

a flag indicating which of the four vertices that were processed in the previous step should

be replaced.

To have a maximal benefit from the tetrahedral strips, two primitives are suggested

to distinguish between the sequential and generalized strip. The simpler primitive is the

GL_SEQUENTIAL_TET_STRIP_EXT. The use of this primitive is very easy and intuitive

– the first four vertices specify the first tetrahedron and each following vertex replaces the

first vertex of the previous tetrahedron. The primitive GL_GENERAL_TET_STRIP_EXT

is more complicated, as the programmer has to send a flag to choose which vertex should

be replaced (GL_REPLACE_VERTEX_EXT_1,2,3,4) by calling a glReplaceVertexEXT

function. This extension makes the general tetrahedral strip primitive very flexible.

glBegin(GL_SEQUENTIAL_STRIP_EXT)

glVertex(v0)

glVertex(v1)

glVertex(v2)

glVertex(v3) // tetra 0123

glVertex(v4) // tetra 1234

glVertex(v5) // tetra 2345

glEnd()

glBegin(GL_GENERAL_STRIP_EXT)

glVertex(v0)

glVertex(v1)

glVertex(v2)

glVertex(v3) // draws tetra 0123

glReplaceVertexEXT(

GL_REPLACE_VERTEX_EXT_1)

glVertex(v4) // draws tetra 1234

glReplaceVertexEXT(

GL_REPLACE_VERTEX_EXT_3)

glVertex(v5) // draws tetra 1245

glEnd()

Figure 6.2: An example of OpenGL API extension and a corresponding tetrahedralsequential strip

and generalized strip [KCW01].
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6.3 Existing Stripification Methods

As far as we know, King et al. [KCW01] proposed the first tetrahedral stripification algo-

rithm. It is based on a simple greedy heuristic algorithm which is equivalent to theSGI

stripification for triangles. They choose the first unvisited tetrahedron as the start of the

strip. Then, they choose one of its neighbors as the next member of the strip and repeat

this step. If there is no other neighbor, the algorithm returns back to the first tetrahedron

of the strip, and extends the strip by choosing another neighbor. This process is repeated

as long as there are any unvisited tetrahedra in the mesh. This basic algorithm produces a

stripification with the mean strip size of 9-14 tetrahedra. To improve the greedy algorithm,

they also used several heuristics:

1. Choosing randomly.

2. Choosing the tetrahedron with the fewest unvisited neighbors.

3. Choosing a sequential order first.

4. Attempt to create a fan first, then switch to another variant

According to the results, method 2 produces the best stripification, which is in fact an

extension of theSGI algorithm for tetrahedral meshes. The average length of thestrips

increases up to 49 tetrahedra.

Similar stripification method is presented by Weiler et al. [WMKE04]. For unknown

reason, they report an average strips length of 10 tetrahedra for fewest unvisited neighbor

strategy and length of 5 for sequential strips.

6.4 Modification of Multi-Path Algorithm

Similarly to triangle meshes, we can have a dual graph of tetrahedral mesh. Using the

simplicial complex generalization, we obtain a graph, where each node corresponds to a

tetrahedron and tetrahedra that share a face are connected by an edge in the graph. The

main difference is that each node can have four neighbors instead of three.

To modify the Multi-Path algorithm for tetrahedral meshes,we have to add two new

classification sets –U4 for unconnected tetrahedra with four neighbors; andC3 for con-

nected tetrahedra with three neighbors (see Chapter 4). These two sets have the lowest
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priority and in fact, the tetrahedra from these groups are used very rarely, as each tetrahe-

dral mesh has a boundary inE3.

6.5 Test and Results

We compared our method to both known tetrahedral stripification algorithms [KCW01,

WMKE04]. King [KCW01] suggested four different stripificationmethods (we denote

them asm1–m4) and Weiler [WMKE04] suggested two methods: for sequential strips and

for generalized strips (we denote them asseqandgen). As we did not obtain the data

sets from King and Weiler, we present the results of stripification of random datasets with

uniform distribution of about the same size (for models presented in [KCW01], we have

only an estimation of number of tetrahedra from the number ofstrips and the average length

of strips).

In the Table 6.1 we present the comparison of number of stripsin a model. Similarly

to triangle stripification, our method produces a stripification with much lower number of

strips than other methods.

models [KCW01] [WMKE04] M-Path

name tetrahedra vertices m1 m2 m3 m4 seq gen

bracket ∼3418 367 222 398 349

3349 550 18

phoenix 12936 20108 1000 441 1231 882 122

langley 70125 13832 4745 1432 4907 3763 16169 7274

70318 10600 483

spx 103488 37320 24009 11161

106678 35000 1561

f117 ∼240000 22203 6504 20578 10030

243751 80000 3563

Table 6.1: Comparison of number of tetrahedral strips in a model.

To show the distribution of length of tetrahedral strips, inthe Table 6.2 we present the

average length of strips and maximal length of strips in a model (both values are presented

in one cell, separated by slash).
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models [KCW01] [WMKE04] M-Path

name tetrahedra vertices m1 m2 m3 m4 seq gen

bracket ∼3418 440/9 119/15 188/9 148/10

3349 550 847/186

phoenix 12936 20108 182/13 347/29 962/11 293/15 522/106

langley 70125 13832 370/15 865/49 3486/14 676/19 281/4 2249/10

70318 10600 901/146

spx 103488 37320 281/4 2235/9

106678 35000 413/68

f117 ∼240000 404/11 1472/37 6238/12 2229/24

243751 80000 508/68

Table 6.2: Comparison of the longest and average length of the strips in a model (both values are

presented in one cell, separated by slash).

Both existing algorithms produce a few long strips and a lot ofshort strips or even

isolated tetrahedra. Such a distribution of length of strips is not very good. Our algorithm

does not produce these long strips, and the length of all strips in the stripification is more

equal. Our stripification also usually tends to avoid the isolated tetrahedra and the shortest

strip in most of the cases is the connection of two tetrahedra.

6.6 Summary

As the problem of hardware volume visualization is very important in many computer

graphics applications, it is very probable that some kind oftetrahedral topology compres-

sion and reordering will be necessary.

We proposed a modification of our Multi-Path algorithm for stripification of tetrahe-

dral meshes. In comparison to existing algorithms ([KCW01, WMKE04]), our algorithm

produces much lower number of tetrahedral strips. Unfortunately, we are not able to make

more comparisons, as the topic of tetrahedral stripification is quite new and there is no

hardware on which we can measure the rendering speedup of ourtetrahedral strips.



Quadrilateral Meshes Stripification

In this chapter a new algorithm for stripification of purely quadrilateral meshes is described.

The algorihtm is based on theSGI algorithm. Creating strips of quads and splitting them

into triangle strips afterwards can significantly improve the quality of stripification and

increase the rendering speed.



QUADRILATERAL MESHESSTRIPIFICATION 53

7.1 Quadrilateral Meshes

Quadrilateral meshes are nowadays very often used to store and visualize various geomet-

ric objects in many applications such as computer games and movie industry (subdivision

surfaces [ZS00]), medical and scientific visualization (volume rendering, surface recon-

struction from slices [SS04]), etc. In many of these applications a real time visualization is

required. The speed of todays’ high performance rendering engines is very often bounded

by the rate at which the data is sent into the machine. Furthermore, most of the rendering

engines can handle only triangle faces, thus the number of primitives increases.

7.2 Triangle and Quad Strips

To draw an independent set ofi quads (quadrilaterals), we need to transmit4i vertices. To

reduce the amount of transmitted data, it is possible to split the quads into two triangles and

connect them into triangle strips (or tristrips). In some graphic libraries a special type of

primitives used for quads can be found (e.g., OpenGL). Rendering of quad strips is usually

slower than rendering of triangle strips and the number of vertices is equal or higher than

the number of vertices using tristrips (as we show next).

A sequential triangle stripcan representj quads withj + 4 vertices: in Figure 7.1(a)

the sequence (1,2,3,4,5,6) represents quads21243 and23465 (or triangles∆123, ∆324,

∆345 and∆546). A sequential quad stripis a sequence ofj + 4 vertices that representsj

quads: in Figure 7.1(b) the sequence (1,2,3,4,5,6) represents quads21243 and23465.

(a) (b)

Figure 7.1: An example of sequential triangle strip(a) and a sequential quad strip(b).

In general situations, the quad adjacency must not allow a sequential encoding. In

Figure 7.2(a) the sequence (1,2,3,4,5,6,7,8) produces an invalid triangle ∆567. An extra

vertex has to be added to change the sequence to (1,2,3,4,5,4,6,7,8). Using quad strip, the

situation is worse. In Figure 7.2(b) the sequence (1,2,3,4,5,6,7,8) produces an invalid quad

25687. To avoid this situation, it is necessary to make aswapat a cost of three additional

vertices, i.e., a sequence (1,2,3,4,5,6,6,6,6,4,8,7).
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(a) (b)

Figure 7.2: An example of a generalized triangle strip(a) and a generalized quad strip(b).

From the above example it is obvious that triangle strips aremore general and more

efficient than quad strips. For this reason we concentrate ontriangle strips only. There are

two possibilities how to construct triangle strips from notfully triangulated meshes. The

first approach is to use some algorithm that triangulates thefaces and then any stripification

algorithm can be used. This way is general and can be used for any type of polygonal

meshes. The main disadvantage of this approach is that it does not profit from the fact that

the polygon can be triangulated arbitrarily. The other approach searches for strips in the

untriangulated model and triangulates faces on the fly. Suchan approach often leads to a

better stripification.

To obtain a good stripification we decided for the second approach. Detailed descrip-

tion of our new algorithm is presented in the next section.

7.3 QStrip Algorithm

Our new algorithm (QSTRIP) is designed for meshes that are fully quadrilateral. It is based

on a similar idea as theSGI algorithm for triangle meshes. As we are not working on a

triangulated mesh, first we construct strips of quadrilaterals. Then we sequentially traverse

these strips and triangulate the quadrilaterals with respect to the triangle strips.

In the first step, the algorithm chooses a quadrilateral witha low number of neighbors

to start a new strip. This choice minimizes the number of short strips. In Figure 7.3(a), the

stripification process started in a quadrilateral with two neighbors and an isolated quadri-

lateralQ appeared. Usually we can avoid such a situation by starting from a quadrilatral

with low a number of neighbors 7.3(b).

The chosen quadrilateral is removed from the mesh and it is inserted into the strip. The

mesh is locally updated to reflect the quadrilateral removal. Now the algorithm chooses
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(a) (b)

Figure 7.3: An example of a bad(a) and a good(b) choice of the starting quadilateral.

a neighboring quadrilateral that will be adjacent in the strip. To decrease the number of

vertices in the final stripification, the algorithm preferentially chooses a quadrilateral that

does not produce a swap. The chosen quadrilateral is again removed from the mesh and

inserted into the strip. These steps are repeated as long as it is possible (i.e., as long as

there is a neighboring quadrilateral). If the mesh still contains some quadrilaterals, a new

strip is started. A pseudo-code of this algorithm is presented in Figure 7.4.

input: list of quads

output: strips of quads

while there is any quad in the mesh do

start a new strip

choose a quad with the lowest number of neighbors

add the quad to the current strip

remove the quad from the mesh

locally update the mesh

while there exists a neighbor of the current quad do

choose a neighboring quad that does not produce a swap

if such a quad does not exist then choose arbitrarily

add the quad to the current strip

remove the quad from the mesh

update the mesh

end while

end while

Figure 7.4: Pseudo-code of the algorithm.

The algorithm complexity isO(s · q + q), whereq is the number of quads ands is

number of strips in the final stripification, as we needO(q) steps to find the starting quad

for each strip. To speed up this algorithm, we use a priority queue for finding the quad

with the lowest number of neighbors. Using such a structure decreases the complexity of

finding the starting quad toO(1), and the algorithm complexity is reduced toO(s + q).
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After the stripification phase, it is necessary to decomposethe lists of quads into ver-

tices of triangle strips. To provide a correct (counter-clockwise) orientation of triangle

strips in the final mesh, it is necessary to start the first triangle of the strip in a counter-

clockwise manner. This determines the diagonal of the first quad. As we cannot choose

the first diagonal, three different situations can appear. In Figure 7.5(a) a sequential strip

for four quads is shown. If the sequence of quads is not straight, a strip is preserved at a

cost of one swap (Figure 7.5(b)) or two swaps (Figure 7.5(c)).

(a) (b) (c)

Figure 7.5: A straight sequence of quads can be covered by a sequential strip(a). To preserve a

strip in a non-straight sequence of quads, it is necessary to use one swap (b) or two swaps(c).

As the input meshes are fully 3D, in some cases it is not possible to split the quad

arbitrarily, otherwise an incorrect triangle appears. Such a situation appears when two

quads are neighboring via two edges (see Figure 7.6(a), quadrilaterals21234 and25432).

To avoid an incorrect triangle (Figure 7.6(b)), at least one of the quads has to be split

along the diagonal that starts in the vertex that is not common for these two quads (Figure

7.6(c)). Respecting this criterion may lead to more swaps in the finalstripification. Luckily

this situation does not appear very often in a real life model.

(a) (b) (c)

Figure 7.6: When two quads (21234 and25432) have two common edges(a), an incorrect triangle

may appear(b); the incorrect triangle is grey colored. To avoid it, at least one of the quads has to

be split along the diagonal that starts in the vertex that is not common for these two quads(c).
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7.4 Experiments and Results

Our new algorithm has been implemented in Borland Delphi 7.0 as a part of a program

for surface reconstruction from orthogonal slices (the reconstructed mesh is purely quadri-

lateral). The experiments were performed on a PC INTEL Pentium 4, 2.8 GHz, 2 GB of

RAM, ATI FireGL T32 graphic card, running on MS Windows XP.

As our algorithm is designed specially for quad meshes, the quality of stripification is

very high. We have compared our stripification algorithm with theSTRIPEv.2 [Eva98],

which is also designed for a quadrilateral meshes, and with theFTSG[XHM99], which can

handle non-triangulated meshes. Both algorithms were compiled with gcc/cygwincom-

piler.

A comparison of stripification methods is presented in Table7.1. In the first two

columns the number of vertices and the number of quads of the tested model is presented.

In the next columns the number of strips and number of vertices (including swaps) obtained

by the tested algorithm is shown.

STRIPE FTSG QSTRIP

vertices quads strips vertices strips vertices strips vertices

2112 2114 88 5101 113 5675 4 4903

4000 4002 111 9517 258 10955 33 9516

8240 8236 140 17096 293 21549 8 17922

12592 12588 391 29050 664 33725 32 28290

16288 16290 393 36570 788 43333 37 36558

25712 25714 570 57181 1084 67931 49 57386

36264 36266 817 79957 1522 95801 44 80078

41919 42005 1356 98276 2405 112840 102 95998

Table 7.1: Comparison of stripification methods. For each method the number of strips and the

number of vertices in strips (including swaps) is presented (grey cells emphasize the best values,

black cells emphasize the worst values).

Our new method produces more or less the same number of vertices asSTRIPE, but

usually it covers the mesh by much smaller number of strips (especially for larger mod-

els). Although theFTSGmethod produces a very good stripification for fully triangulated

models, for quadrilateral models it produces stripification with very high number of ver-

tices and strips in comparison to theSTRIPEor theQSTRIP. The main reason for this big
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(a) STRIPE – 393 strips (b) FTSG – 788 strips

(c) QSTRIP – 37 strips

Figure 7.7: Visual comparison of stripification of a model of a tap (16290 vertices).

difference is that theFTSGmakes a triangulation of the quadrilateral mesh first and then

it stripifies the triangulated model. TheSTRIPEalgorithm did not surprisingly create large

parches but usually it created long sequential strips of quads (see Figure 7.7(a)). As these

strips do not contain swaps, the number of vertices in the final stripification is comparable

to our new algorithm although theSTRIPEcontains much higher number of strips. A vi-

sual comparison of the tested algorithms is presented in Figure 7.4. The tap model contains

16288 vertices and 16290 quads.

As theSTRIPEalgorithm outputs the stripification during the stripification process, it

is not possible to exclude the time of I/O operations. For this reason we have included

the time of I/O operations in all measurements, which can arise significant errors. To

minimize these errors, all time measurements were performed five times and the minimal

time is presented. Such a measurement can be a bit unfair to the STRIPEalgorithm, as the
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write operation is not continuous, but on the other hand it isthe real time that is needed for

stripification. The comparison of running times is published in Table 7.2.

vertices quads STRIPE FTSG QSTRIP

2112 2114 0.31 0.14 0.25

4000 4002 0.51 0.25 0.30

8240 8236 8.69 0.70 0.39

12592 12588 15.18 0.97 0.51

16288 16290 10.20 1.31 0.60

25712 25714 21.79 2.06 0.84

36264 36266 50.81 2.89 1.11

41919 42005 83.58 3.10 1.28
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Table 7.2: Comparison of running times (in seconds). For each method the runningtime (including

I/O operations) is presented.

The running times of theFTSGare comparable to theQSTRIP. The difference in the

running times can be partially caused by the cygwin emulation, as some functions have to

be called from the cygwin dynamic library, but the main reason is probably the dynamic

programming part of theFTSGalgorithm.

The most time consuming step in theSTRIPEalgorithm is the global analysis which

searches for the patches. As this global analysis searches the longest possible sequence

of quads in both directions for each quad, it hasO(n2) complexity for fully quadrilateral

meshes.

In the last table (Table 7.3) we present the average frame rate (FPS) for models stripified

by the tested methods and a ratio of this frame rate to the frame rate for models rendered
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with quads. For the measurement we used OpenGL and vertex buffer objects (VBO) as

they are preferred in new GPUs [NVI03]. When using VBO, a sequential list of vertices is

sent to the GPU (i.e., for each quad, four vertices are sent, for each triangle, three vertices

are sent – 6 vertices for a quadrilateral face – and for each strip all vertices including swaps

are sent).

no. of QUADS TRIS STRIPE FTSG QSTRIP

quads FPS ratio FPS ratio FPS ratio FPS ratio FPS ratio

2114 234 1.00 229 0.98 252 1.08 238 1.02 240 1.03

4002 291 1.00 261 0.90 305 1.05 312 1.07 320 1.10

8236 229 1.00 192 0.84 285 1.25 276 1.21 283 1.24

12588 180 1.00 147 0.82 220 1.22 214 1.19 224 1.25

16290 166 1.00 130 0.79 207 1.25 200 1.21 218 1.31

25714 125 1.00 95 0.76 167 1.33 159 1.27 176 1.40

36266 99 1.00 73 0.74 139 1.40 130 1.32 146 1.48

42005 80 1.00 60 0.75 111 1.39 100 1.25 111 1.40
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Table 7.3: Comparison of frame rate achieved with models rendered with quads, triangles and

tested stripifications.

As for a triangle mesh we have to send 1.5 times more vertices than for a quadrilateral

mesh, the frame rate is much lower even though rendering a triangle primitive is faster than

rendering a quadrilateral.

Although the number of vertices using triangle strips is nearly twice smaller than the

number of vertices when using quads, the speed up is not twicehigher. The reason is

similar to the quad vs. triangle speed up (e.g. drawing the triangle strip primitive is more

time consuming than drawing the quad).
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The comparison of frame rates of individual stripification methods did not get any

surprising results. TheFTSGproduces a stripification that is rendered at the lowest frame

rate as it contains high number of vertices and strips. The stripification produced by our

algorithm runs at highest frame rate as the number of vertices and strips is low. Although

STRIPEproduces a stripification of nearly the same number of vertices asQSTRIP, the

frame rate is in the middle betweenQSTRIPandFTSG. This is caused by the fact that

STRIPEstripification contains higher number of strips and starting a new triangle strip

costs some extra time.

In all these tests our new algorithm reached the best results. These tests are a bit unfair

to STRIPEandFTSGas these algorithms can handle more general type of meshes, on the

other side as far as we know, there is no other algorithm designed for fully quadrilateral

meshes, thus we have chosen the best existing algorithms.

7.5 Summary

We have designed and implemented a new stripification algorithm for quadrilateral meshes.

As we know the mesh structure, we can exploit it and produce a high quality stripification.

In comparison to other methods that can stripify not fully triangulated meshes, our new

algorithm produces a stripification with lower number of strips and vertices.

There is still some place to improve the quality of stripification. One of possible ways

for the future work is to investigate the behavior of vertex caches that are implemented in

todays GPUs and adapt the stripification to maximize the benefit of the cache.



Stripification and Topology

In this chapter we present an overall comparison of several most important stripification

algorithms. The tests are performed on a set of real life models as well as on a set of

artificial objects. We also show, how the triangle connectivity influences the stripification

process.
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8.1 Comparison

In this section we introduce a comparison of several algorithms that create a stripification

without changes in topology. We have chosen the algorithms that are somehow important

or interesting and their implementations are freely available on the Internet (or they can be

obtained via email). For all tests, we have used PC INTEL Pentium 4, 2.8GHz, 1024MB

of RAM, running on MS Windows XP with ATI FireGL T32 GPU (32MB).

Table 8.1 presents an overview of the tested algorithms. Thefirst column shows the

short name of the algorithm as it was presented in this paper.As the programming language

and the compiler can influence the speed of the program, the second column ("Compiler")

shows the used compiler. A short name under which the algorithm will be presented in

tables is shown in the column "Label" (last character of the label distinguishes the strip

minimizing algorithm – S; and the vertex minimizing algorithm – V). For all algorithms we

have used the default parameters or parameters that were recommended by the authors. The

concrete parameters are mentioned in the column "Parameters". Very often, the algorithm

has implemented both the vertices minimizing function and the strips minimizing function.

Algorithm Compiler Label Parameters Minimizing

SGI Delphi SGS -LNLN strips

SGV -LS vertices

MStrip Cygwin, gcc MSS -m 2 strips

MSV -m 2 -q vertices

STRIPE Cygwin, gcc STS -l strips

STV -q vertices

FTSG Cygwin, gcc FTS -dfs -concat -sgi strips

FTV -dfs -concat -alt vertices

Tunneling Cygwin, gcc TUS strips

Multi-Path Delphi MPS strips

Extended Multi-Path Delphi EMS strips

Table 8.1: Algorithms overview.

• SGI – SG(S/V): Although the originaltomesh.ccode is available on the Internet

[AHB], we have used our own implementation of this algorithmin order to ex-

periment with various heuristic functions [Van02]. We haveused the standard SGI

method (-LNLN) and vertex minimizing heuristic (-LS) for the tests.
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• MStrip – MS(S/V): The source code of the program is available on the Internet [SKP]

under the GNU General Public License. The number of the simultaneous strips was

set to two which produces the best results in most cases. The measurement for both

heuristics (strips minimizing, vertices minimizing (-q))was performed.

• STRIPE – ST(S/V): The source code of the program is freely available on the Inter-

net [Eva98] for non-commercial use. The mesh is exported during the stripification

process, thus it is not possible to exclude the time of I/O operations. The tests are

performed with two heuristic functions: "Look ahead one level in choosing the next

polygon" (-l) and "Choose the polygon which does not produce a swap" (-q). The

tests are performed with STRIPE version 2, which is much faster.

• FTSG – FT(S/V): The program is free for non-commercial purposes only and itcan

be obtained via e-mail [Xia]. The tests were performed with the depth-first search

heuristic (-dfs) and enabled concatenation of strips (-concat). The next triangle deci-

sion was based on theSGIcriterion (-sgi – strips minimizing) and on alternating the

left-right turns (-alt – vertices minimizing).

• Tunneling – TUS: The program is not available on the internet, but it can be obtained

via e-mail from the author. The tests were performed with thedefault settings. The

program does not contain any vertex minimizing heuristic.

• Multi-Path – MPS: The program is available on request. The version we used for

tests does not have any parameter that can influence the stripification quality. It

minimizes the number of strips.

• Extended Multi-Path – EMS: Extension of Multi-Path algorithm is available on re-

quest. As well as Multi-Path algorithm, it minimizes the number of strips.

All experiments were performed on a PC INTEL Pentium 4, 2.8GHz, 2GB RAM, ATI

T32, running on MS Windows XP. Naturally, times of I/O operations have been excluded

from measurements (exceptSTRIPE).

8.2 Real Models

For our tests, we have used the same set of models as in previous chapters (Table 4.1).

These models are freely available for non-commercial purposes and they can be found in

many papers on stripification.
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Vertices

In Table 8.2, a comparison of number of vertices in strips is presented. The number of

vertices determines the size of data needed for the model – i.e. the amount of data sent

to the rendering engine. The difference in the number of vertices does not vary too much

for different algorithms, because there are two theoretical bounds. The number of vertices

could not be lower thannumber of triangles+2 (for a sequential strip, covering the whole

triangulation, which is quite impossible for a real-life model) and it could not be higher

than3 ·number of triangles for a set of isolated triangles or2 ·number of triangles for

a connected set of triangles. The Figure 8.1 shows a comparison of vertices per triangle,

i.e., the ratio of number of vertices to the number of triangles.

algorithm SGI MStrip STRIPE FTSG Tunnel M-Path

model SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

cow 8K 7K 8K 7K 9K 7K 7K 7K 8K 8K 8K

demi 23K 22K 23K 22K 25K 22K 23K 22K 24K 24K 24K

bunny 87K 82K 86K 82K 102K 83K 85K 82K 99K 94K 86K

dinosaur 148K 139K 147K 140K 164K 141K 145K 140K 159K 159K 150K

balljoint 358K 338K 355K 341K 401K 343K 346K 340K 386K 387K 355K

club 532K 505K 527K 507K 613K 512K 522K 508K 581K 582K 537K

hand 876K 812K 966K 825K 856K 824K 939K 921K 890K

dragon 1237K 1130K 1290K 1153K 1196K 1156K 1261K 1254K 1243K

happy 1546K 1410K 1609K 1439K 1492K 1443K 1574K 1563K 1552K

blade 2294K 2135K 2609K 2160K 2249K 2166K 2542K 2426K 2364K

Table 8.2: Number of vertices in strips (in thousands; grey cells emphasize the bestvalues, black

cells emphasize the worst values).

The vertices minimizing algorithms —SGI (SGV), STRIPE (STV), MStrip (MSV)and

FTSG (FSV)— produce nearly the same number of vertices. The average V/Tfor these

algorithms is about 1.25. TheSGI (SGV)algorithm produces stripifications with the lowest

number of vertices (1.23 V/T in average). As this algorithm strictly chooses the triangles

which do not cause a swap, the low V/T is compensated by a huge number of strips.

TheSTRIPE (STS)algorithm produces a stripification with an average V/T about 1.47.

In our opinion there is some bug in the code, as this algorithmproduces a high number

of vertices and also a high number of strips (although it should minimize the number of

strips).
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Figure 8.1: Graph of average number of vertices in strips per triangle.

It is quite interesting that nearly all algorithms, exceptTunneling (TUS)andSTRIPE

(STS), have the same behavior. For the bunny, club and blade model (which have nearly

a regular structure), the average V/T is very low, on the other side, the average V/T for

the dragon and for the happy buddha is more than 10% higher. Similar behavior is also

noticeable in the average length of strips (Figure 8.2).

The results ofMSTRIPalgorithms are not published for all models, as the algorithm did

not work well on the Windows platform (for high resolution models, the program crashed).

Strips
The number of strips produced by the tested algorithms are presented in Table 8.3. The

number of strips as well as the number of vertices is crucial for the rendering speed. As

starting a new strip takes some extra time, a huge number of triangle strips slows down the

rendering. On the other side, minimization of the number of strips often leads to higher

number of vertices (swaps).

For better comparison, the average length of triangle strips is presented in the Figure

8.2. As mentioned earlier, nearly all algorithms have similar behavior which depends on

topological regularity of the mesh.

The Tunneling (TUS), Multi-Path (MPS)and Extended Multi-Path (EMS)algorithm

produce more than three times lower number of triangle strips than all other algorithms.

On the other side, to obtain such long triangle strips, it is necessary to use swaps (thus all

these algorithms produce higher number of vertices).
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algorithm SGI MStrip STRIPE FTSG Tunnel M-Path

model SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

cow 98 352 78 127 141 136 105 312 19 17 16

demi 335 1183 293 419 456 418 286 1020 139 99 94

bunny 648 3560 575 1174 1531 1229 618 3238 166 154 86

dinosaur 1177 7276 1271 2422 2470 2498 1346 6411 260 324 197

balljoint 2279 17454 2519 5746 6145 5820 2446 15371 536 705 381

club 2658 23966 3111 7782 9210 8184 3054 21148 750 963 454

hand 8997 44710 15309 15422 10394 38779 1590 2166 1646

dragon 17399 71182 22928 25356 20571 58377 3331 4832 4380

happy 21578 88143 28563 31550 25576 72271 3710 5845 5250

blade 23125 115568 41128 35952 26779 99890 4606 5902 4281

Table 8.3: Number of strips achieved by the tested algorithms.

Figure 8.2: Graph of average length of strips.

The differences in the number of strips are very high. TheSGI (SGS)algorithm pro-

duces stripification with more than 20 times higher number ofstrips than theTunneling

(TUS)or Extended Multi-Path (EMS).

Rendering Speed

As the triangle strips are mainly used to speed up the visualization, we have also tested the

rendering speed of models stripified by different techniques (Table 8.4 and 8.5; the speed

is stated in FPS – frames per second). For the comparison, we have used two different

techniques: display lists, which are precompiled and cannot be modified during the running
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time; and vertex buffer objects that allow modifications [NVI03]. We also present the

rendering speed for original mesh (TRI) and the rendering speed for mesh that is reordered

to have a better ACMR by Bogomjakov’s method [BG01](BOG).

algorithm Tris SGI MStrip STRIPE FTSG Tunnel M-Path

model TRI BOG SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

cow 319.2 361.5 358.0 350.8 353.8 355.8 358.6 355.9 354.5 344.7 359.5 360.3 358.0

demi 299.8 361.2 358.9 351.1 357.9 353.6 358.8 353.7 357.3 347.9 360.4 360.3 358.8

bunny 122.8 162.3 231.7 217.7 226.3 221.4 236.6 221.5 222.8 210.1 240.5 234.8 229.4

dinosaur 116.9 117.3 228.1 216.2 227.2 224.4 227.7 224.9 226.0 216.5 231.4 231.1 229.8

balljoint 56.7 57.2 134.5 125.1 134.1 126.2 134.1 131.6 133.0 124.9 136.9 136.9 135.9

club 39.1 39.2 98.4 91.6 98.1 95.8 97.9 96.4 97.4 91.5 99.8 100.0 99.0

hand 26.0 26.0 69.0 62.7 68.9 67.5 67.8 63.0 71.1 70.9 70.7

dragon 9.8 9.4 55.0 48.1 54.4 53.0 53.5 48.8 56.7 56.6 56.4

happy 7.8 7.5 45.4 39.5 44.8 43.6 44.0 40.1 46.6 46.7 46.5

blade 4.8 4.6 28.4 25.8 28.3 27.2 27.9 25.8 29.3 29.1 29.0

Table 8.4: The average FPS using display lists.

While using the display lists, the commands are compiled fromOpenGL’s high-level

command language into low-level hardware commands and stored in the memory. When-

ever the list is being drawn, these precompiled data is used to save a lot of function calls

and compilations. This rendering method is very fast, but itcan be used for static data only.

It also does not use the vertex caches, as vertices are definedby full coordinates and not

by table of vertices and indices to this table (this is the reason, why the speed of randomly

ordered triangles and cache friendly ordered triangles is nearly the same).

As shown in the Introduction, to draw a set ofn independent triangles, it is necessary

to sendn ∗ 3 vertices. As we use the lighting, we also needn ∗ 3 normals. Each vertex

coordinate and normal is defined by three floating point numbers (on 4 bytes). Thus, the

real size of data is:n ∗ (3 ∗ 3 ∗ 4 + 3 ∗ 3 ∗ 4) = n ∗ 72 B, e.g., for model of hand

(419554 triangles), the size of data is 28.8 MB (as the used GPU contains 32 MB memory,

rendering an object with higher number of triangles leads toa significant slowdown). The

first benefit of triangle strips is that the critical size of model is about twice higher. The

second benefit is that it is possible to re-use the last two transformed vertices, thus avoid

some transformation and lighting computation.

Using the stripification significantly increases the speed of rendering while using dis-

play lists. The speedup is higher than 2.5 and the differences between different stripifi-
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cation techniques are smaller than 15%. The highest framerates are reached with models

stripified byTunnelingandMulti-Path (generally, strip minimizing methods seem to pro-

duces more suitable stripification for rendering).

algorithm Tris SGI MStrip STRIPE FTSG Tunnel M-Path

model TRI BOG SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

cow 314.2 359.8 354.2 341.3 350.0 350.8 354.5 350.1 349.6 336.9 357.3 357.1 354.8

demi 288.0 363.1 351.3 324.6 350.6 340.2 350.9 342.7 350.1 324.8 354.7 356.0 353.6

bunny 93.1 213.3 187.9 162.0 184.0 165.2 192.0 174.3 177.9 158.5 202.6 193.9 188.0

dinosaur 64.9 179.0 165.5 122.2 160.6 148.3 164.0 150.6 156.5 135.8 172.1 167.9 161.9

balljoint 25.3 87.4 76.2 53.9 75.6 70.2 77.9 69.9 72.7 56.1 82.3 80.9 78.1

club 20.6 91.3 72.8 35.7 73.7 67.5 77.1 67.8 71.4 40.2 82.5 80.8 74.6

hand 64.4 68.7 56.1 19.4 55.3 50.3 51.6 22.3 63.9 61.1 58.8

dragon 31.3 55.2 48.1 12.2 37.3 36.8 45.0 16.2 51.9 50.3 50.9

happy 27.3 47.8 41.2 11.0 30.1 27.3 33.4 13.1 13.9 43.6 44.2

blade 0.2 0.2 10.5 7.1 11.0 8.0 9.4 6.7 13.6 11.6 10.2

Table 8.5: The average FPS using vertex buffer objects with indexed primitives.

The vertex buffer objects (VBO) consist of two (or more) arrays. The first array defines

the vertices coordinates (it is also possible to define othervertex properties such as normals,

colors or texture coordinates), the second array defines allprimitives (triangle, triangle

strips) as sets of indices to the vertex array. Such an approach allows to use the integrated

vertex cache. The real size of data is approximately:n

2
∗ 24 + n ∗ 12 = n ∗ 24 B, wheren

is the number of triangles andn
2

is the number of vertices.

As the Bogomjakov’s method produces well ordered triangles (the ACMR is 0.72, see

Table 8.6), the rendering speed is very high. The positive effect of the vertex cache is

noticeable if we compare this speed to the speed of renderingof unordered triangles. Al-

though the speed higher than the rendering speed of stripified models rendered by VBO,

for most of the models, it is lower than rendering speed of stripified models rendered by

display lists. But similarly to display lists, there is a big drop down in speed for large mod-

els (triangle model of blade with more than 1.7 million of triangles is larger than 40 MB,

this size can be reduced to less than 30 MB by triangle strips).

The lower speed of rendering of triangle strip models can be caused by two facts: the

ACMRis higher than in Bogomjakov’s method, thus more vertices have to be transformed

multiple times; and there is a function call overhead while using strips, as each strip has to

be sent separately to the GPU, while all triangles can be sentin one call.
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ACMR

New graphic cards often contain a small vertex cache (in tensof vertices) that can signif-

icantly speed up the rendering, as cached vertices do not need to be processed repeatedly.

To maximize the benefit of this vertex cache, the strips somehow have to preserve the lo-

cality to minimize the average cache miss ratio (ACMR). The theoretical upper bound is

about 3.0 – each ofn vertices has to be processed every time, thus in an average mesh

ACMR(k) = 6·n

2·n
= 3. The theoretical lower bound is 0.5 as each vertex has to be cached

at least once (ACMR(k) = n

2·n
= 0.5). In Table 8.6, we present theACMRfor the vertex

cache of size 16, which is used quite often.

algorithm Tris SGI MStrip STRIPE FTSG Tunnel M-Path

model TRI BOG SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

cow 1.74 0.73 0.83 0.98 0.85 0.95 0.80 0.92 0.92 1.03 0.78 0.81 0.83

demi 2.24 0.73 0.81 0.97 0.86 0.93 0.81 0.91 0.88 1.01 0.80 0.81 0.84

bunny 2.08 0.74 0.90 0.99 0.92 0.99 0.82 0.96 0.97 1.03 0.81 0.87 0.90

dinosaur 2.85 0.73 0.86 0.99 0.88 0.96 0.81 0.93 0.93 1.03 0.80 0.82 0.87

balljoint 2.94 0.73 0.88 0.99 0.89 0.98 0.82 0.94 0.96 1.03 0.81 0.82 0.86

club 2.95 0.73 0.91 0.99 0.92 0.98 0.82 0.95 0.96 1.03 0.82 0.84 0.91

hand 0.99 0.72 0.84 0.99 0.81 0.91 0.91 1.02 0.79 0.82 0.83

dragon 1.66 0.71 0.79 0.97 0.80 0.87 0.87 1.01 0.77 0.78 0.79

happy 1.55 0.71 0.79 0.97 0.80 0.87 0.86 1.01 0.77 0.78 0.78

blade 1.24 0.73 0.87 0.99 0.81 0.92 0.93 1.03 0.79 0.85 0.86

Table 8.6: The average cache miss rate (ACMR) for cache size k = 16 (grey cells emphasize the

best values, black cells emphasize the worst values).

In general, the vertex minimizing algorithm produce worse rendering sequence for all

models. This is caused by the way the algorithms work. As theyare minimizing the number

of vertices, the strips produced by these algorithms are straight, thus they are not localized.

Although the stripification algorithms are not designed forlarger vertex caches, the ACMR

is quite low (the difference betweenTunnelingand Bogomjakov’s method is about 10%).

Execution Time

The time of the stripification process is actually not very crucial, as the stripification is

usually made in a preprocessing stage. The execution times presented in Table 8.7 do not

include the I/O operation (except theSTRIPEalgorithm, where the output operation runs

during the stripification process).
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algorithm Tris SGI MStrip STRIPE FTSG Tunnel M-Path

model BOG SGS SGV MSS MSV STS* STV* FTS FTV TUS MPS EMS

cow 0.33 0.05 0.02 0.01 0.01 0.20 0.22 0.02 0.02 0.64 0.03 0.03

demi 1.01 0.09 0.02 0.04 0.04 0.64 0.64 0.06 0.06 0.97 0.09 0.16

bunny 4.66 0.38 0.14 0.19 0.19 2.36 2.40 0.27 0.28 101.72 0.40 0.67

dinosaur 7.75 0.64 0.22 0.34 0.34 3.63 3.66 0.45 0.47 45.86 0.69 1.06

balljoint 20.93 1.64 0.64 0.99 1.01 8.89 8.95 1.19 1.19 109.67 1.74 15.42

club 34.45 2.54 0.92 1.50 1.51 13.56 13.79 1.80 1.81 367.53 2.64 32.13

hand 57.18 3.52 1.20 26.37 26.30 2.24 2.21 343.06 3.64 11.51

dragon 84.38 5.02 1.92 27.39 27.16 3.25 3.48 672.55 5.18 134.80

happy 113.21 6.30 2.56 33.90 33.56 4.12 4.42 897.42 6.49 163.09

blade 118.51 9.89 4.08 86.33 86.48 6.24 6.58 3448.61 10.24 72.16

Table 8.7: The computation time in seconds (grey cells emphasize the best values, black cells

emphasize the worst values; * as theSTRIPEalgorithm saves the result during the stripification

process, it is impossible to show the time of stripification and we present the total time minus

average of I/O times for other algorithms).

All algorithms exceptSTRIPE, Extended Multi-PathandTunnelingproduce the stripi-

fication in about the same time. One reason why theSTRIPEis slow is that the algorithm

saves the result during the stripification process and it is impossible exclude the I/O time

from the measurement (we present the total running time minus the average time of I/O

operations for other algorithms).

As Tunnelingsearches for a tunnel with a breadth first search method from each strip

endpoint, the complexity of the algorithm is higher thanO(n) and the execution time is not

comparable to other algorithms.

The running time ofExtended Multi-Pathis higher mainly for irregular meshes, as in

irregular mesh, it takes longer time to find the node with minimal weight difference.

The SGI-LS algorithm is the fastest one, as it uses a very simple criterion and it does

not make the lookahead search.

Memory Usage

As different algorithms use different data structures, theamount of allocated memory

can differ (Table 8.8). To measure the memory usage, a program that scans the running

processes (using win32 API CreateToolhelp32Snapshot function) and stores the memory

usage peak for a process is used. As the scanning is not continuous, some inaccuracy may

appear.
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algorithm SGI MStrip STRIPE FTSG Tunneling M-Path

model SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

cow 1.1 1.6 4.6 5.1 3.5 4.1 2.3 2.0 5.1 2.0 2.1

demi 2.1 2.4 6.0 6.5 8.3 8.1 4.2 3.3 11.2 3.4 3.6

bunny 6.8 6.0 12.4 12.9 27.0 26.9 13.6 12.9 37.2 9.4 9.9

dinosaur 9.3 11.0 17.6 18.1 42.2 42.5 17.5 17.5 57.8 14.4 15.2

balljoint 21.0 22.2 37.4 37.9 100.5 100.6 38.8 38.8 137.6 33.3 34.9

club 34.9 34.0 55.2 55.2 152.8 152.9 58.0 58.0 209.3 50.0 52.5

hand 53.9 52.0 237.3 237.3 118.2 118.2 325.0 78.0 81.9

dragon 71.5 68.0 315.2 315.2 122.1 122.1 435.1 104.4 109.6

happy 88.9 86.0 391.8 392.8 190.2 190.2 540.8 129.8 136.3

blade 143.3 136.3 430.5 427.2 298.8 298.8 879.0 207.1 211.2

Table 8.8: The amount of allocated memory in MB (grey cells emphasize the best values, black

cells emphasize the worst values).

TheTunnelingis the most memory consuming stripification program of the tested pro-

grams. This is not very surprising as the algorithm needs a special data structure to maintain

the information about the tunnels. The memory usage ofSTRIPEis also very high, but we

do not know the reason. As far as we know, it does not need any special structures (it works

on the same principle as the SGI algorithm), furthermore, the strips are being saved during

the stripification process into a file.

8.3 Regular Data

We have also tested the behavior of these algorithms on an artificial object – torus. This

object has several advantages: it has no borders, all vertices has six neighboring triangles

and it is very easy to generate a torus with various complexity. For our tests, we have used

20-sided torus with 20 to 10000 segments. We present only themost important tables, i.e.,

number of strips (Table 8.9) and number of vertices (Table 8.10).

All strip minimizing algorithms (except MStrip, which starts building two strips and

does not succeed to connect them) produce a single strip stripification. The number of

strips produced by vertex minimizing methods (except STRIPE) depends on the number of

sides of the torus and on the divisibility of number of segments and number of sides.

The number of vertices is presented in Table 8.10. Nearly allmethods produce a strip-

ification of about the same size as the number of triangles in the stripified model. As the
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algorithm SGI MStrip STRIPE FTSG Tunneling M-Path

model SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

20x20 1 19 2 17 19 1 1 19 1 1 1

20x50 1 19 2 19 40 1 1 9 1 1 1

20x100 1 19 2 19 87 1 1 19 1 1 1

20x200 1 19 2 19 162 1 1 19 1 1 1

20x500 1 19 397 1 1 19 1 1 1

20x1000 1 19 801 1 19 1 1 1

20x2000 1 19 1626 1 19 1 1

20x5000 1 19 4028 1 19 1 1

20x10000 1 19 8036 1 19 1 1

Table 8.9: Number of strips achieved by the tested algorithms.

stripification produced by STRIPE (STS) seems to produce random strips, the number of

vertices is higher (Figure 8.3(a)). The Multi-Path algorithm produces a stripification that

contains a high number of swaps, thus the number of vertices is very high (Figure 8.3(b),

the brightness indicates the order of triangle in the strip;black is the first triangle in the

strip, white is the last).

algorithm SGI MStrip STRIPE FTSG Tunneling M-Path

model SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

20x20 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K

20x50 2K 2K 2K 2K 3K 2K 2K 2K 2K 3K 2K

20x100 4K 4K 4K 4K 6K 4K 4K 4K 4K 6K 4K

20x200 8K 8K 8K 8K 12K 8K 8K 8K 8K 12K 8K

20x500 20K 20K 29K 20K 20K 20K 20K 30K 20K

20x1000 40K 40K 59K 40K 40K 40K 61K 40K

20x2000 80K 80K 117K 80K 80K 122K 80K

20x5000 200K 200K 292K 200K 200K 305K 200K

20x10000 400K 400K 584K 400K 400K 610K 400K

Table 8.10:Number of vertices achieved by the tested algorithms.

We do not present running times, as the time for stripification does not vary too much

from the time of stripification of irregular meshes. For the same reason we do not show

the memory usage that mainly depends on the number of triangles of the input mesh. As

nearly all methods produce the same number of vertices and very long straight strips, i.e.,

the vertex cache is used only for common edges, in most cases the ACMR is close to 1. The

only significant difference in ACMR is produced by STRIPE (STS;Figure 8.3(a)), which

produces a "random" stripification and the ACMR is comparable to ACMR on irregular

meshes (∼0.80).
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(a) STS (b) MPS

Figure 8.3: Examples of stripification of regular torus. The stripification produced by STS algo-

rithm is quite irregular (a). The Multi-Path algorithm produces a stripification with a high number

of swaps – the brightness indicates the order of triangle in the strip(b).

8.4 Topology

We were surprised by the similar behavior of all algorithms for various models (Figures 8.1

and 8.2) and on regular data, and we have performed a series oftests, whether it is possible

to improve or worsen the quality of stripification by changesin topology (i.e., changes of

degrees of vertices). We have chosen two extreme models (bunny and dragon) and we have

computed the histogram of vertex degrees (Figure 8.4).
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Figure 8.4: Histogram of degree of vertices. The bunny model is quite regular as more than 70% of

vertices have degree six. With less than 33% of vertices of degree six andwith 2 vertices of degree

15, the dragon model is highly irregular.
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First, we have tested, what will happen with the quality of stripification if we make the

bunny model irregular. To do this, we have randomly swapped 10000, 20000 and 30000

edges. The random swapping has changed the histogram of degrees of vertices as shown

in Figure 8.5. We have used these inputs a we have performed the stripification for each

tested method.

� � � � � � � � 	 �
 �� �� �� �� ��




�


�


�


�





�
 	
�
 	
�
 	

�������������	�


�
�


�
�
��
�
��
�
�
�	
��
�
�
��
�
�

Figure 8.5: Histogram of degree of vertices. The edges in the bunny model were randomly swapped,

which produces more irregular model.

Increasing the irregularity, the number of vertices (Table8.11) and the number of strips

(Table 8.12) increases as we have expected. For nearly all algorithms, the number of ver-

tices used in stripification increased about 10-15%, as in irregular mesh, the possibility of

sequential strip decreases, thus the number of swaps is higher. AsTunnelingandMulti-Path

produces triangle strips with high number of swaps even for regular meshes, the increase

of vertices is not so high.

algorithm SGI MStrip STRIPE FTSG Tunneling M-Path

model SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

bunny 87K 82K 86K 82K 102K 83K 85K 82K 99K 94K 89K

10k 97K 90K 96K 91K 102K 91K 94K 92K 100K 100K 98K

20k 99K 90K 98K 91K 102K 92K 96K 94K 100K 100K 100K

30k 100K 90K 98K 91K 103K 92K 96K 94K 100K 100K 101K

Table 8.11:Number of vertices achieved by the tested algorithms for original bunny, 10k, 20k and

30k random swaps.

While increasing the number of vertices in strips, the ACMR decreases as the strips are

becoming more local (Table 8.14). Although the low ACMR should improve the rendering

speed, the increase of number of strips and number of vertices is too high and the rendering

does not vary too much (Table 8.13).
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algorithm SGI MStrip STRIPE FTSG Tunneling M-Path

model SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

bunny 648 3560 573 1173 1531 1229 618 3238 166 154 88

10k 1143 5626 1117 1749 1655 1816 1417 4555 225 325 242

20k 1520 6206 1414 1879 1861 2014 1815 5044 290 490 430

30k 1644 6537 1590 1975 2048 2101 2059 5140 346 639 605

Table 8.12:Number of strips.

algorithm SGI MStrip STRIPE FTSG Tunneling M-Path

model SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

bunny 232.1 218.1 226.2 220.8 236.7 221.5 223.2 210.4 240.7 235.2 229.2

10k 236.1 216.9 228.9 220.6 234.8 229.1 231.9 210.1 239.3 237.9 237.6

20k 236.1 218.1 228.5 221.2 234.1 230.9 232.4 210.5 237.4 234.6 235.9

30k 234.6 218.1 228.2 221.9 233.1 230.9 232.5 210.0 236.5 232.3 232.5

Table 8.13:The rendering speed in frames per second (FPS).

algorithm SGI MStrip STRIPE FTSG Tunneling M-Path

model SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

bunny 0.99 0.99 0.92 0.99 0.82 0.96 0.97 1.03 0.81 0.87 0.90

10k 0.98 0.98 0.83 0.89 0.81 0.87 0.87 1.02 0.78 0.79 0.80

20k 0.96 0.96 0.81 0.85 0.79 0.83 0.84 1.00 0.76 0.78 0.78

30k 0.95 0.95 0.80 0.84 0.78 0.80 0.82 0.99 0.75 0.77 0.78

Table 8.14:The average cache miss rate (ACMR) for cache sizek = 16.

The processing time of most of the algorithms does not dependon the regularity of the

mesh (Table 8.15). As the Extended Multi-Path algorithm is designed for regular meshes,

the processing time is higher for irregular meshes. In regular meshes, there usually exist

several candidates with zero weight difference, thus the searching for the next triangle is

done very quickly. In irregular meshes, it is usually necessary to search in larger list of

possible candidates for the minimal weight different, which increases the processing time.

algorithm SGI MStrip STRIPE FTSG Tunneling M-Path

model SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

bunny 0.386 0.125 0.189 0.191 2.996 3.043 0.265 0.266 101.282 0.396 0.675

10k 0.342 0.141 0.193 0.193 2.986 2.961 0.265 0.288 16.048 0.351 0.957

20k 0.354 0.140 0.193 0.194 2.970 2.959 0.266 0.288 10.266 0.360 0.951

30k 0.353 0.141 0.193 0.197 2.974 2.955 0.266 0.288 10.203 0.365 1.953

Table 8.15:The processing time in seconds.
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Surprisingly, theTunnelingalgorithm is much faster for irregular meshes (for a bunny

model with 30 thousand of edge swaps, the time decreases by a factor of 10). This is

probably caused by the minimal length of tunnels that can be found in irregular meshes. In

regular mesh, the strips are usually long and straight, thusthe tunnels (i.e., a path between

ends of two different strips) are long. As the tunnels are searched by a breadth first search

algorithm, the running time is drastically increasing.

We have also tested, whether it is possible to improve the quality of stripification by

regularizing the input mesh. We have chosen an irregular mesh (dragon) and we iteratively

improved the mesh by swapping the edges that are incident to high degree vertices. The

changes in the histogram of vertex degrees are presented in Figure 8.6. Similarly to pre-

vious test, the number of vertices (Table 8.16) and number ofstrips (Table 8.17) decrease

with increase of regularity.
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Figure 8.6: Histogram of degree of vertices. The edges incident to high degree vertices in the

dragon model were swapped, to produce more regular model.

algorithm SGI MStrip STRIPE FTSG Tunneling M-Path

model SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

dragon 1237K 1130K 1290K 1153K 1196K 1156K 1261K 1254K 1243K

100k 1195K 1098K 1286K 1119K 1167K 1108K 1257K 1242K 1227K

200k 1179K 1087K 1287K 1105K 1156K 1092K 1252K 1237K 1220K

300k 1177K 1085K 1286K 1103K 1155K 1091K 1254K 1237K 1220K

Table 8.16: Number of vertices achieved by the tested algorithms for original dragon,100k, 200k

and 300k swaps of edges that are incident to high degree vertices.
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algorithm SGI MStrip STRIPE FTSG Tunneling M-Path

model SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

dragon 17399 71182 22928 25355 20571 58377 3331 4832 4287

100k 14105 66036 21292 21899 17249 56968 2761 3615 3229

200k 13069 63391 20920 20660 15928 55965 2516 3430 2852

300k 12957 63121 20891 20914 15917 55579 2591 3210 2794

Table 8.17:Number of vertices in strips.

8.5 Summary

As theSGI vertex minimizing algorithm produces the lowest number of vertices, it seems

to be the best choice for storing data in strip representation. Due to high number of strips

produced by this algorithm, the rendering speed is low. The speed can be improved by

using other vertex minimizing algorithms (speciallyMStrip andSTRIPE) which produce

nearly the same number of vertices as theSGI.

The strip minimizing algorithms produce stripifications that are usually rendered faster

than other stripifications. This is probably caused by the smaller number of system calls

when starting a new strip and by lower cache-miss ratio. TheTunnelingalgorithm produces

the best stripification in most of the cases, but the stripification process is memory and time-

consuming. Similar stripifications can be obtained byMulti-Pathalgorithm, which is much

faster.

We show that although triangle stripping algorithms are notdesigned for vertex caches,

they produce a good rendering sequences and they still have aplace in real-time applica-

tions.

We also show that the quality of stripification depends on thetopology of input mesh –

for regular meshes, the stripification contains a lower number of strips and vertices, but the

ACMR is higher and vice versa.



Conclusions and Future Work

As we have presented several different stripification algorithms, in this chapter, we sum-

marize the main results of our work. We also address several issues for a future work.
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9.1 Main Results

In this work, we have suggested several stripification methods for various kind of problems:

1. For a set of points, we have designed a method that creates aDelaunay stripification

in O(n log n). This method is based on an incremental insertion method forDelau-

nay triangulation. Although our approach produces a high number of vertices and

strips, still there is a significant rendering speedup. As the method is based on incre-

mental insertion, it can be used for visualization of level of details or for fast on-line

visualization (Chapter 3).

2. For fully triangulated models, we present a fast stripification method that produces

the lowest number of strips inO(n) time. The number of strips produced by our

method is more than three times lower than the number of strips produced by other

linear-time stripification methods (Chapter 4). To decreasethe number of vertices in

the stripification and/or to give the user a better control ofstripification process, we

have also designed an extension of our algorithm (Chapter 5).

3. As the problematic of fast visualization and computationof volume tetrahedral data

is becoming very important in many applications, we have suggested a modification

of our stripification algorithm for tetrahedral meshes. Similarly to triangle meshes

stripification, our algorithm produces much lower number for tetrahedral strips than

already existing algorithms. Unfortunately, as there is nospecification and no hard-

ware support of tetrahedral meshes, we are not able to make a solid comparison of

tetrahedral stripification methods (Chapter 6).

4. As the importance of quadrilateral meshes in real-time computer graphic increases,

we have designed a triangle stripping method for this type ofmeshes. According to

all our tests, our new method produces better stripificationthan any other stripifica-

tion method (Chapter 7).

We also present an overall comparison of important stripification methods. Our tests

were performed on a set of very often used triangular meshes and on artificial datasets. We

have also studied the impact of mesh topology on the quality of stripification. We show

that although the stripification methods and triangle strips in general are not designed for

the new GPUs with large vertex caches, they are still important in real-time visualization

(Chapter 8).
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9.2 Future Work

The topic of stripification is quite well explored and we think, there is no need to design

some new general stripification algorithms. Still there is aplace for researching stripifica-

tion methods for some specialized problems:

• Although there exist some stripification methods for visualization of CLOD meshes

([Ste01, RCBR04, PSS05]) or view-dependent meshes ([ESAV99, SP03, RCBR04,

DBPM05]), there is probably still a place to optimize these methods or to find some

new approaches.

• There exist a lot of topology compression algorithms for triangle meshes. Usually,

these methods are not based on stripification, thus it is necessary to use some re-

ordering or stripification algorithms to achieve a better rendering speed after decom-

pression. On the other hand, lot of these methods uses some kind of path searching

or spanning tree algorithm to get the sequences of trianglesand there is a possibil-

ity to modify these algorithms to produce sequences that aremore strip friendly in

decompression stage.

• There is still an open problem in the field of tetrahedral meshes. We think that this

problem cannot be solved unless there will be some hardware support for tetrahedral

rendering and tetrahedral strips.
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• Vaněček P. Multi-Path Algorithm for Triangle Strips, TechnicalUniversity of Graz,

Austria, September 2004.
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B Models

In this section, we present the figures of models used in most of the tests we have performed

and the examples of the topology structure of these models.

(a) cow (b) demi

(c) bunny (d) dinosaur

Figure B.1: Tested models and a part of their triangulation
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(a) balljoint (b) club

(c) hand (d) dragon

(e) happy (f) blade

Figure B.2: Tested models and a part of their triangulation
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C Results

We present the tests of rendering speed and computation timeon various computers.

INTEL Pentium 4 2.8GHz, 1 GB RAM, ATI FireGL T32 32MB

algorithm Tris SGI MStrip STRIPE FTSG Tunnel M-Path

model TRI BOG SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

The average FPS using display lists

cow 319.2 361.5 358.0 350.8 353.8 355.8 358.6 355.9 354.5 344.7 359.5 360.3 358.0

demi 299.8 361.2 358.9 351.1 357.9 353.6 358.8 353.7 357.3 347.9 360.4 360.3 358.8

bunny 122.8 162.3 231.7 217.7 226.3 221.4 236.6 221.5 222.8 210.1 240.5 234.8 229.4

dinosaur 116.9 117.3 228.1 216.2 227.2 224.4 227.7 224.9 226.0 216.5 231.4 231.1 229.8

balljoint 56.7 57.2 134.5 125.1 134.1 126.2 134.1 131.6 133.0 124.9 136.9 136.9 135.9

club 39.1 39.2 98.4 91.6 98.1 95.8 97.9 96.4 97.4 91.5 99.8 100.0 99.0

hand 26.0 26.0 69.0 62.7 68.9 67.5 67.8 63.0 71.1 70.9 70.7

dragon 9.8 9.4 55.0 48.1 54.4 53.0 53.5 48.8 56.7 56.6 56.4

happy 7.8 7.5 45.4 39.5 44.8 43.6 44.0 40.1 46.6 46.7 46.5

blade 4.8 4.6 28.4 25.8 28.3 27.2 27.9 25.8 29.3 29.1 29.0

The average FPS using vertex buffer objects

cow 314.2 359.8 354.2 341.3 350.0 350.8 354.5 350.1 349.6 336.9 357.3 357.1 354.8

demi 288.0 363.1 351.3 324.6 350.6 340.2 350.9 342.7 350.1 324.8 354.7 356.0 353.6

bunny 93.1 213.3 187.9 162.0 184.0 165.2 192.0 174.3 177.9 158.5 202.6 193.9 188.0

dinosaur 64.9 179.0 165.5 122.2 160.6 148.3 164.0 150.6 156.5 135.8 172.1 167.9 161.9

balljoint 25.3 87.4 76.2 53.9 75.6 70.2 77.9 69.9 72.7 56.1 82.3 80.9 78.1

club 20.6 91.3 72.8 35.7 73.7 67.5 77.1 67.8 71.4 40.2 82.5 80.8 74.6

hand 64.4 68.7 56.1 19.4 55.3 50.3 51.6 22.3 63.9 61.1 58.8

dragon 31.3 55.2 48.1 12.2 37.3 36.8 45.0 16.2 51.9 50.3 50.9

happy 27.3 47.8 41.2 11.0 30.1 27.3 33.4 13.1 13.9 43.6 44.2

blade 0.2 0.2 10.5 7.1 11.0 8.0 9.4 6.7 13.6 11.6 10.2

The computation time in seconds

cow 0.3 0.1 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.6 0.0 0.0

demi 1.0 0.1 0.0 0.0 0.0 0.6 0.6 0.0 0.1 1.0 0.1 0.2

bunny 4.7 0.4 0.1 0.2 0.2 2.4 2.4 0.3 0.3 101.7 0.4 0.7

dinosaur 7.8 0.6 0.2 0.3 0.3 3.6 3.7 0.5 0.5 45.9 0.7 1.1

balljoint 20.9 1.6 0.6 1.0 1.0 8.9 9.0 1.2 1.2 109.7 1.7 15.4

club 34.5 2.5 0.9 1.5 1.5 13.6 13.8 1.8 1.8 367.5 2.6 32.1

hand 57.2 3.5 1.2 26.4 26.3 2.2 2.2 343.0 3.6 11.5

dragon 84.4 5.0 1.9 27.4 27.2 3.3 3.5 672.6 5.2 134.8

happy 113.2 6.3 2.6 33.9 33.6 4.1 4.4 897.4 6.5 163.1

blade 118.5 9.9 4.1 86.3 86.5 6.2 6.6 3448.6 10.2 72.2
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AMD Athlon XP-M 2.1 GHz, 512 MB RAM, ATI Radeon Mobility 9600, 64 MB

algorithm Tris SGI MStrip STRIPE FTSG Tunnel M-Path

model TRI BOG SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

The average FPS using display lists

cow 545.7 658.7 646.6 623.2 630.5 626.8 650.2 610.4 634.9 609.6 617.9 652.5 647.3

demi 458.4 614.9 616.5 592.3 616.5 603.3 613.5 595.6 611.0 588.7 612.7 621.7 620.7

bunny 157.8 180.4 340.3 315.9 340.3 309.2 341.8 321.4 331.4 306.9 350.9 351.8 343.5

dinosaur 121.5 121.6 274.1 248.1 273.2 266.2 270.3 261.7 270.6 246.5 283.9 282.3 281.4

balljoint 54.4 54.4 137.5 121.4 136.6 132.4 134.1 132.6 135.4 120.9 141.3 141.3 140.8

club 36.2 36.1 95.1 84.6 94.6 91.6 92.2 91.1 94.0 84.4 96.3 97.1 96.3

hand 23.7 23.6 62.6 54.8 61.5 60.9 61.2 52.4 65.0 65.4 65.6

dragon 4.6 4.5 48.1 38.5 46.4 44.5 46.5 35.8 47.2 50.8 50.8

happy 3.7 3.6 38.1 30.9 35.0 36.6 37.5 28.6 38.2 41.2 41.0

blade 1.6 1.6 23.5 20.6 23.1 22.8 22.7 19.3 24.0 24.6 24.8

The average FPS using vertex buffer objects

cow 530.1 654.2 633.7 594.2 621.1 607.3 633.0 616.5 618.1 583.3 635.6 642.9 637.9

demi 442.1 640.7 603.2 525.3 601.3 571.1 597.9 576.6 598.9 529.5 613.5 616.1 611.8

bunny 108.8 291.9 247.5 205.8 242.4 214.2 256.1 226.7 233.8 202.2 273.9 258.5 249.8

dinosaur 69.6 218.3 202.4 150.1 195.4 177.2 198.9 181.0 191.2 151.5 211.4 205.9 199.6

balljoint 27.8 98.8 85.7 64.4 84.6 74.6 86.7 77.4 81.1 65.4 92.9 91.2 88.2

club 21.6 95.4 76.4 56.7 76.7 66.9 78.1 69.1 74.1 55.8 86.5 84.2 77.8

hand 43.6 48.4 37.7 25.3 37.2 32.9 34.8 26.2 43.7 42.0 40.5

dragon 26.3 47.4 39.2 19.4 38.0 35.2 36.0 23.6 44.1 42.9 43.2

happy 24.9 45.7 37.6 15.6 36.1 33.8 35.5 19.0 43.1 41.8 42.2

blade 19.2 13.2 9.6 6.1 9.2 7.6 8.5 5.5 12.4 11.3 9.5

The computation time in seconds

cow 0.4 0.1 0.0 0.0 0.0 0.2 0.3 0.0 0.0 0.4 0.1 0.1

demi 1.2 0.2 0.0 0.0 0.0 0.6 0.6 0.1 0.1 0.8 0.3 0.2

bunny 5.5 0.7 0.2 0.3 0.3 2.4 2.5 0.3 0.3 157.3 0.6 0.8

dinosaur 9.0 1.0 0.4 0.5 0.5 3.7 3.8 0.5 0.5 63.3 1.0 1.3

balljoint 24.5 2.5 1.1 1.4 1.4 9.3 9.4 1.5 1.3 153.2 2.8 21.0

club 39.9 4.0 1.4 2.2 2.2 14.9 15.1 2.2 2.0 557.8 4.3 46.7

hand 65.1 4.0 1.8 28.8 28.7 2.4 2.5 523.0 4.2 12.6

dragon 96.3 8.0 2.8 29.0 29.7 3.7 3.8 1069.7 8.1 205.2

happy 129.0 10.0 3.7 36.4 36.6 4.7 4.8 1481.7 6.9 247.7

blade 271.6 10.4 6.0 7.6 7.6 7.1 7.2 2514.9 12.7 120.2
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AMD Athlon 64 2800+ 1.8 GHz, 1 GB RAM, ATI Radeon 9600 XT, 128 MB

algorithm Tris SGI MStrip STRIPE FTSG Tunnel M-Path

model TRI BOG SGS SGV MSS MSV STS STV FTS FTV TUS MPS EMS

The average FPS using display lists

cow 476.8 565.4 556.9 539.5 544.3 543.8 556.0 551.4 545.6 530.0 560.4 560.6 555.6

demi 429.0 555.8 549.4 532.7 548.5 538.0 548.4 539.2 547.2 526.7 554.9 554.4 551.7

bunny 155.6 196.5 308.1 289.4 299.7 276.4 313.6 296.1 298.7 275.7 323.9 315.7 306.5

dinosaur 135.8 135.9 296.3 267.9 294.0 288.9 294.2 288.6 292.9 273.0 301.6 301.3 299.6

balljoint 62.3 62.4 157.7 143.8 157.6 153.0 156.3 153.2 156.0 142.8 161.8 161.8 160.2

club 41.8 41.8 111.3 101.1 111.2 108.0 110.4 108.1 109.8 101.1 113.6 113.6 112.4

hand 27.6 27.5 75.9 67.7 75.3 73.7 74.1 67.4 78.7 78.3 78.3

dragon 20.9 20.9 58.0 50.6 58.7 56.9 57.5 49.9 61.8 61.6 61.5

happy 16.8 16.8 47.3 40.8 47.3 46.0 47.1 39.8 50.4 50.3 50.1

blade 3.2 3.1 29.8 26.5 29.7 29.1 29.5 29.2 29.3 26.5 30.2 30.9 30.9

The average FPS using vertex buffer objects

cow 461.4 562.8 548.1 520.4 535.9 530.8 548.2 539.4 532.5 509.2 553.0 553.4 548.6

demi 410.3 565.1 538.8 487.4 532.8 514.1 537.2 519.4 535.8 489.0 547.3 547.1 544.7

bunny 119.2 282.6 242.7 210.1 234.1 213.5 251.8 227.7 232.7 203.0 266.0 254.7 244.7

dinosaur 90.9 263.1 247.5 184.1 236.7 213.6 240.9 221.2 233.4 188.3 255.0 248.0 242.4

balljoint 37.2 129.8 114.6 82.3 111.9 97.5 115.0 103.7 108.6 87.3 123.4 121.0 117.4

club 27.7 111.1 93.7 61.4 91.5 79.0 93.9 83.5 88.6 68.2 103.2 100.5 94.1

hand 45.7 52.3 42.0 29.9 41.5 36.8 38.9 30.6 47.3 45.9 44.9

dragon 27.5 55.3 46.2 21.2 43.7 40.5 42.8 25.8 51.4 49.9 49.9

happy 27.4 54.1 45.1 17.2 41.2 38.3 39.5 20.9 50.9 49.3 49.5

blade 23.0 34.9 27.4 13.1 28.4 24.4 26.8 24.6 25.4 15.2 32.9 30.5 30.2

The computation time in seconds

cow 0.3 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.4 0.0 0.0

demi 1.0 0.1 0.0 0.0 0.0 0.7 0.7 0.0 0.0 0.6 0.1 0.1

bunny 4.8 0.3 0.2 0.2 0.2 2.3 2.4 0.2 0.2 68.1 0.4 0.6

dinosaur 8.1 0.5 0.3 0.4 0.4 3.6 3.6 0.3 0.3 28.3 0.6 0.9

balljoint 22.1 1.4 0.8 1.0 1.0 8.8 8.8 0.8 0.8 69.2 1.5 10.5

club 36.5 2.2 1.1 1.5 1.5 13.5 14.7 1.2 1.1 239.5 2.3 22.9

hand 61.0 3.1 1.6 29.1 28.8 1.5 1.6 244.8 3.3 8.9

dragon 90.2 4.4 2.4 28.4 28.2 2.3 2.4 494.4 4.7 102.0

happy 121.1 5.7 3.2 35.0 34.7 2.9 3.0 673.9 5.9 124.0

blade 232.0 9.0 5.3 5.7 5.6 99.4 99.5 4.4 4.5 2514.9 9.4 60.2


