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Abstract

Triangle surface models are nowadays most often types ohgeir objects description
in computer graphics. Therefore, the problem of fast vigatibn of this type of data is
often being solved. The speed of high performance rendemgines is usually bounded
by the rate at which triangulated data is sent into the mach@®ne can reduce the time
needed to transmit the set of triangles by compressing theldgical information and
decompressing at the rendering stage. As neighboringtaashare an edge, it is possible
to avoid sending the common vertices twice by special oréi¢niangles, called triangle
strip.

We introduce our algorithm for stripification of Delaunajatrgulated irregular net-
works (TIN). The method does not produce stunning resulissitls fast enough to create
previews for different levels of detail of Delaunay triategion during the incremental
construction.

For triangle meshes we have designed a new stripificaticoridign based on Hamil-
tonian path search in a dual graph of triangulation. As fawasknow, this algorithm
produces the lowest number of strips in linear time. We hés@ @roposed a modification
of this algorithm that deals with the weights in the dual dgrépallow a better control of
stripification process.

As tetrahedral meshes are becoming very important dataeseptation in many graphic
and volume computation applications, we present somedaitéte art of tetrahedral strips.
We also show, how to extend our triangle stripping algoritbritetrahedral meshes. Some
early tests and results on the field of tetrahedral strigibosare included.

We have suggested a new specialized stripification algorftr purely quadrilateral
meshes. For these type of meshes, the algorithm produdesjbadity stripifications.

Finally, we present a comparison of some of the most impbg#ipification algo-
rithms on a set of reallife and artifical objects. We also shHow the topology can influ-
ence the stripification process.



Abstrakt

V dneSnim s@té pcitatové grafiky pdt trojuhelnikové s& k asto pouzivanym reprezen-
tacim.Castym Gkolem péitatové grafiky je rychlé zobrazovani takovychto siti. V mnoha
pfipadech je rychlost zobrazovani limitovana propustnsigfnice. Jednou z moznosti,
jak snizit mnoZstvi dat, je komprese topologické informpa® pfenos po sérnici a jeji
dekomprese az v GPU. ProtozZe sousedici trojuhelniky s#fiejoly na spoléné hrae,

je mozné snizit mnoZzstvi dat tim, Ze tyto vrcholy poSlemeladou dvojici sousedicich
trojihelnikll pouze jednou. K tomu jéeba sousedici trojuhelniky pospojovat do souvis-
lych past (stripl).

V této praci je navrZzenoékolik algoritml pro hledani trojahelnikovych pasli piiama
vstupni data. V ékterych pipadech (nafklad terénni modely) médme k dispozici pouze
mnozinu vrcholll. Je tedy nutné nejprve wyiitdrojuhelnikovou sit, ktera je nasledn
prevedena do pastiéstoZze nami navrzena metoda neprodukiijéSgkvalitni stripifikace,
urychleni i vykreslovani je dostatmé. Tuto metodu Ize navic pouzit opako&d@hem
vytvéreni sié a poskytnout tak uzivateli rychly nahled uz pgkolik bod{ a s fibyvajicimi
body tento nahled Zpsiovat.

NejCasgjSi ulohou je usp@dani jiz existujici trojuhelnikové gitNami navrzena me-
toda vychéazi z hledani hamiltonovské cesty v dualnim grajatelnikové si&. Dosazené
vysledky jsou velmi kvalitni a z nam znamych algoritm@ shnnicasovou sloZitosti vy-
tv&ii navrzena metoda nejmensiges past. Bdanim vah do duélniho grafu je navic mozné
proces vytvéeni past Iépe kontrolovat a vyfei pasy pozadovanych viastnosti.

U objemovych dat se v poslednicBkolika letech z&tSuje vyznanttyrstennych siti.
Proto uvadime lehky Givod do problematiky vyiteaictyrstennych past (tetrahedral strips).
Zaroveh uvadime roz&éni naSeho algoritmu prétyfsttnné sié a porovnani nasich vy-
sledki s existujicimi metodami.

V nékterych pipadech nemusi byt model definovan trojuhelnikovou digi checr@
n-uhelnikovou. Proipadctyrahelnikové si& jsme navrhli algoritmus, ktery vytéiaelmi
kvalitni stripifikaci (z ndm znamych algoritmt nejlepsi).

V neposlednifacé uvadime porovnaniékolik vyznamnych metod pro vyti@ni past
na realnych i urélych datech a ukazeme vliv pravidelnosti topologie naegsk stripifi-
kace.
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Introduction

Triangulated surface models are nowadays the most oftess tppbgeometric objects de-
scription in computer graphics. Therefore, the problemast Fisualization of this type
of data is often being solved. The speed of high performageéaring engines is usually
bounded by the rate at which triangulated data is sent irgarthAchine. One can reduce
the time needed to transmit the set of triangles by comprgske topological information
and decompressing at the rendering stage. As neighborangles share an edge, it is
possible to avoid sending the common vertices twice by speciler of triangles, called
triangle strip.

In this chapter, we make a very short introduction to the fenmtof triangle strips. The
overview of the thesis is included in the end of this chapter.
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Triangle surface models (often calleteshesare nowadays the most often types of
geometric objects description in computer graphics. Thesgels are often used in various
kind of applications such as CAD/CAM, VR, medical data or corepgames. To increase
the visual realism, the number of triangles that repregéetsbject is increasing, while the
rendering should be performed in the real-time. Theretbeeproblem of fast visualization
of this type of data is often being solved.

The performance of today’s rendering hardware is usually iggh and the speed of
the rendering is bounded not only by the power of the GPU lsatlay the the rate at which
the triangulated data is sent into the GPU. To decrease thararof data, one can use some
techniques to prevent sending of unnecessary trianglgs ¥esibility culling) or some kind
of simplification of complex objects (e.g., Continuous Leg€Detail — (C)LOD). Still it
is important to reduce the time needed to transmit the setiaigles by compressing
the topological information and decompressing at the rengstage.

1.1 Triangle Strips

Using a traditional way of encoding of triangle meshes wedrtbeee vertices to specify
one triangle. As neighboring triangles share an edge anddftees of this edge, the
vertices are sent to the rendering pipeline multiple tinies typical mesh, the number of
vertices is about twice higher than the number of triandhass each vertex is specified six
times on average.

A sequential tristrigs a sequence of+ 2 vertices that representdriangles: in Figure
1.1 (@) the sequence (1,2,3,4,5,6) corresponds to trian§ylexs, A234, A345 and A456.
Using the sequential tristrip, the transmit costariangles can be reduced by the factor
of three (from3 - n ton + 2 vertices).

2 4 6 2 4 2 4
%BV@VL 1: 1></ 5 W 5
1 3 5

(2)

6 6
(b) ()

Figure 1.1: An example of a sequential triangle strip (a), a generalized triangle st a
triangle fan (c).
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There also exist situations where the triangle adjaceneg st allow a sequential
encoding. In Figure 1.1b) the sequence (1,2,3,4,5,6) produces an invalid triadgles.
An extra vertex has to be added to change the sequence 18,413%5,6). This operation
is called aswapand tristrips with swaps are callg@neralized tristrips Still, the transmit
cost is reduced more than twice (fradmn ton + 2 4+ swaps vertices).

In some special cases it is also possible to use a speciabtgemeralized triangle strip
called atriangle fan Thefanis defined by the central vertex and its neighboring vertices
In Figure 1.1(c) the fan is defined by a sequence (3,1,2,4,5,6). As the lerigtiedan is
usually very low (the average number of neighboring vesticea usual mesh is six), it is
not used very often in practice.

As triangle strips can potentially reduce the amount of datded for rendering, they
are widely supported by the graphic hardware and graphiearidgs (OpenGL, DirectX,
etc.).

To increase the speed of rendering, modern GPUs contain [aSifR@ vertex cache
(of size of tens of vertices) that prevents the re-procgssfralready cached vertex. To
maximize the benefit of vertex cache, the mesh triangles twale rendered in an order
which is somehow local — to minimize the average cache migs (BCMR), which is
defined as a ratio of cache misses to total number of triaragidst depends on the size
of the cache:

number of cache misses

ACMR(k) =
(k) number of triangles

Containing the last two vertices, triangle strips behavg wall on systems with vertex
cache of size two. Although for systems with larger cach&mgle strips are not neces-
sarily the fastest way of rendering, still, they providethgerformance rendering on many
low-end and mid-end GPUs.

1.2 Thesis Overview

We start with possible classifications of stripfication aitjons and with a short overview
of existing algorithms in Chapter 2.

In Chapter 3, we introduce our algorithm for stripification@élaunay triangulate ir-
regular networks (TIN). The method does not produce stigr@sults, but it is fast enough
to create previews for different levels of detail of Delayt@angulation during the incre-
mental construction.
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We have developed a stripification algorithm based on anrigthgo for searching a
Hamiltonian path. As far as we know, this algorithm produtteslowest number of strips
of all linear time algorithms. The description of our newaithm is presented in Chap-
ter 4.

Next (Chapter 5), we show how to modify this algorithm to proeleven better results.
The modification is based on a weighted dual graph of trisatgarl. We also demonstrate
the possibilities of this modification using a very simpleigté criterion. Surprisingly,
using this criterion, the algorithm produces stripificataf very good quality.

The importance of computation and visualization of tetdwhbmeshes is growing in
last few years. In Chapter 6, we present a short introductidettahedral strips, and we
show that our algorithm can be modified for tetrahedra strips

In Chapter 7, we describe a new specialized stripificationrdtym for purely quadri-
lateral meshes. For these type of meshes, the algorithmupeschigh quality stripifica-
tions.

We also include a set of tests of several important methods/&the reader a better
possibility to compare stripification methods. This conigam is done on a set of reallife
models and on a set of artifical objects. We have also stutiethfluence of topology on
the quality of stripification. Some of our experiments arglits are discussed in Chapter 8.

Finally, we conclude this work in Chapter 9 and we suggestraépessible direcions
for our future work.



State of the Art

In this chapter we present a list of nearly thirty existingpstication algorithms. As the
number of stripification algorithms is quite high, first weopose several ways how to
classify them.
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2.1 Classification

Triangle stripification algorithms can be categorized inesal different ways. Here we
enumerate five classifications that can be used:

1. According to the type of input data (isolated verticesngles, etc.).
2. According to the type of meshes (static meshes, CLOD., etc.)

3. According to the type of optimization (minimization ofmber of strips, minimiza-
tion of number of vertices).

4. According to the type of heuristic function (local hetiosglobal heuristic).

5. According to the hardware support (optimization for ggntaches).

One of the possible classifications is based on the type ot agta. The first category
of algorithms takes only the geometrical information (i@nly the vertices) as an input
[AHMS96, VKO03]. Typically, these algorithms work only witlata sets on a plane or
with a height field. The second category takes triangles efntlodel and tries to build
triangle strips, not necessarily a single strip, withowaralpes in topology [AHB90, Kor99,
Ste01, SKP02, VK04a]. The third category is more generat tekes polygons that are
triangulated with respect to the stripification [ESV96b, MBO, CC99, Tau02]. The last
category takes either triangles or polygons and insertestra vertices (Steiner points)
to achieve a single triangle strip [AHMS96, VFG99, EGO04].this paper, we will focus
on category two and three according to this classification.

The majority of stripification algorithms is designed foatst meshes (i.e. meshes
without changes in topology). As the complexity of some stdal models is very high,
the need of visualization of view-dependent meshes is grgwi here are two approaches
to use triangle strips in LOD meshes. First, special stagifon methods that produce
a stripification with some properties [BRRCO01, Ste01, VFG99] secbnd, special data
structures and algorithms that can manage the strips dtivengiew-dependent visualiza-
tion [ESAV99, SP03, RCBR04, DBPMO5]. In this work, we use onlyistateshes for our
comparison.

Furthermore, the term 'optimal stripification’ is not unejy determined. One can op-
timize the stripification algorithm to produce a low numbéwertices needed for strips
to decrease the amount of data sent through the bus to therreg@ngine and speed up
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the rendering. As the initialization of a new triangle stipsts some extra time, it is also
desirable to minimize the number of generated triangles{$te01, PS03, VK04a]. Usu-
ally, it is not possible to minimize both these parameteisnae — decreasing the number
of triangle strips often leads to increase in the number dfces (due to higher number of
swaps, needed to preserve the strip) and vice versa. Ve, dfte stripification algorithms
contain more heuristic functions for vertex or strip op#zation. In our comparison we use
both types of heuristic functions if possible, to show thituence of vertex/strip trade off
on the rendering speed.

We can also classify the stripification algorithms accagdimthe type of the heuristic
function. Very often, the heuristic function only decidasvhich direction the strip should
continue. For such a decision only some local criterion figent. To obtain a better
stripification, some global heuristic is necessary [ESV&a01, EMX02, EG04].

Todays GPUs contain large vertex caches and their use caificagtly reduce the
bandwidth. This criterion was taken into account and séwagarithms that respects the
vertex cache were developed [Hop99, BDOO].

In the next section we describe most of the published stgtiin algorithms classified
according to the type of input data. As the number of strigtfan algorithms is quite high,
the list of algorithms is probably not complete.

2.2 Algorithms
Stripfication of Set of Points

Arkin et al. [AHMS96] suggested two algorithms that can éeemHamiltonian triangula-
tion (i.e., the triangulation that can be covered by a sistfip) from a set of points in 2.5D.
The first algorithm (the Insertion algorithm) is based onfttwt that splitting a triangle into
three new triangles by a new vertex insertion does not bileaktrip. As the triangulation
created by this algorithm contains a lot of narrow triangtesy proposed another algo-
rithm (the Onion algorithm). This algorithm computes a detested convex hulls. These
convex hulls partition the set of points to a set of convexudirthat are triangulated and
stripified each with a single strip. Strips from neighborengnuli are concatenated to a
single strip covering the whole mesh. Still the quality of tiesulting triangulation is not
very high.
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In [VKO3] an algorithm for fast Delaunay stripification isguested. The algorithm is
based on an incremental insertion algorithm for DT [KZ02]siinply traverses the DAG
structure (Directed Acyclic Graph - it is used for a fast kbwa of vertices in a mesh) and
concatenates strips if possible. The method is fast but tiaditg of stripification is not
very good.

Stripfication of Triangle Meshes

One of the first algorithms for stripification of a mesh with@hanges in topology was
developed in SGI [AHB9O0]. It is a greedy algorithm that cousts the strips by adding
adjacent triangles with the lowest degree, which tends éadashort strips. As this algo-
rithm is easy and fast, its modification has been used in mérgr algorithms. Kornmann
[Kor99] extended this algorithm by adding some other degjaionditions. In [SKP02] an
algorithm that creates multiple strips concurrently udimg SGI algorithm is suggested.
Behr [BAO2] improved the speed of the SGI algorithm and sutggeto execute a ran-
domized stripification process for several times to obtabetter stripification. Vaétek
[Van02] have made a comparison of SGI methods using diftdreuaristic techniques.

Stewart [Ste01] proposed a method that works on the duahgréphe triangulation
(i.e., the graph where each node corresponds to a triandladacent triangles are con-
nected with an edge in the graph). He presented a new grapatope tunneling which
can reduce the number of strips by one. This operator candeerapeatedly to improve the
quality of stripification. Furthermore this operator canused during the mesh simplifica-
tion. The number of strips produced by this algorithm is Gevy but it takes a long time to
produce a stripification as the algorithm uses a breadthsiarch. Some improvements of
this method were suggested in [PS03, PS04]. Porcu [PSS&5kaggested an algorithm
that maintains the stripification in progressive meshess @lgorithm uses lookup tables
to repair a stripification after a vertex split operation. Whee quality of stripification
falls bellow some critical threshold, the tunneling operas used.

Another algorithm that produces very low number of trianglieps is presented in
[VKO4a]. Itis based on the idea that triangle strips has tthgough triangles with only two
neighbors, otherwise the strip would be broken. This atgoristarts with many triangle
strips that are being concatenated as the stripificatiooggocontinues. This algorithm
was extended in [VKO4b]. This extension uses a weightedigtareate a stripification
that is preserved during a simplification process.
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For the progressive meshes, Belmonte [BRRCO01] suggested th@&laigohat uses a
weighted spanning tree of the dual graph to construct thy@fstation. The assignment of
weights is guided by the simplification criterion (i.e., eddhat will be collapsed first has
lower weight and vice versa). The algorithm can handle 3Dhegs

Speckmann [SS97] introduced an algorithm designed only if§r(triangulated irreg-
ular networks). The algorithm constructs a spanning trae ithbased on the euclidean
distance of the current triangle to an arbitrary point. Sadpanning tree has two nice
properties: first, the branches of the tree typically aldézrfrom left to right (i.e., strips
contains only a low number of swaps); and second, there iseed to store the span-
ning tree explicitly as it depends on the geometry of the TINe algorithm is very fast
but the stripification is not very good. On the other side,hesd is no need to store any
information about the strips, it can be used for large data se

Estkowski [EMX02] suggested a more theoretical algorithat uises integer program-
ming to obtain an optimal decomposition into triangle srigAs the complexity of this
algorithm is quite high@(n?)), it is not possible to use it for real models.

Sima [SimO04] proposed a new stripification method based omiam energy prob-
lem in Hopfield nets. Similar approach was presented by Bib§pZ04]. Although these
algorithms are very slow and produce stripifications of agerqualities, the main idea is
very original and interesting.

Stripification of Polygonal Meshes

STRIPE[ESV964a] is one of the best known algorithms for stripifioati It has average
results for fully triangulated models (as it uses the SGbatgm), but it has very good
results for models with quads (quadrilateral faces). Therithm uses a global heuristic
to find quadrilateral patches and stripify them with a sirgjie.

Another algorithm for not fully triangulated modelsk3 SG(Fast Triangle Strip Gen-
erator) [XHM99]. The algorithm constructs a spanning tréthe dual graph of triangula-
tion. This tree is partitioned to a set of strips by dynampragramming and these strips
are concatenated if possible.

Cheng [CC99] introduced a dynamic programming based algorithirauch a trian-
gulation of a simple polygon that can be decomposed into @&mim number of triangle
strips. The complexity of the algorithm @(n?), thus it is not suitable for a practical
purpose.
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In the last years, quadrilateral meshes became a populasesgation in visualiza-
tion and computer animation. Taubin [Tau02] suggested gorihm that can cover any
connected manifold quadrilateral mesh without boundasigls a single strip. First, the
algorithm finds an Eulerian circuit, which is partitionedacset of Hamiltonian cycles.
Then, these cycles are concatenated by flipping a diagonlaéaiorresponding quad.

A new algorithm for fully quadrilateral meshes was presénte[VSKS05]. It is a
modification of greedySGI algorithm. First, the algorithm creates sequences of Reigh
boring quads. Then, these sequences are decomposed amgldrstrips. As it follows
the heuristic criterion that tends to not produce a swaprakelting stripification contains
only a low number of vertices. Creating the sequence of quesisfid producing the trian-
gle strips afterward (i.e., splitting quads to trianglespecting the sequence) significantly
reduces the number of strips.

Stripification with Inserted Steiner Points

To obtain a single strip during the stripification procesdsipossible to insert special
vertices (Steiner points) that usually change only theltapobut not the geometry of the
mesh. An algorithm that produces a single strip triangoiatf manifolds is proposed in
[EGO04]. It is based on a perfect matching algorithm. By remgwall matching edges
from the dual graph of the triangulation, a set of disjointleg arises. These cycles can
be connected at a cost of two new triangles per connectiore aldgorithm complexity
is higher as it uses a perfect matching algorithm (whicis) for planar graphs and
O(nlog*n) in general). According to the presented results, the numbeew triangles is
less than 2% of the input number of triangles.

Velho [VFG99] suggested a subdivision scheme for progredsiangular meshes. In
several cases it is necessary to insert Steiner verticeseseye a constant number of
triangle strips during the refinement process.

Vertex Cache

The problem of vertex caches and rendering sequences &\yclesated to the problem of
stripfication, thus we present several important works ftbisitopic.

Deering [Dee95] proposes the use of a vertex cache of moretit@a vertices to de-
crease the amount of vertex transfer from CPU to graphicsnengihe idea is to reuse
those vertices that are currently buffered in the vertexeac
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Bar-Yehuda [BYG96] studied the impact of the GPU’s buffer szeendering time
(time/space tradeoff). He has shown that a buffer of $&85./n is sufficient to render
any polygon mesh defined envertices in the minimum timé(n).

Hoppe [Hop99] presented an algorithm that optimizes tl@astips for a system of a
given memory and transparently reduces the geometry batidwhlgorithm is based on
a lookahead simulation of the vertex-cache behavior.

Bogomjakov [BG01] suggested an algorithm that produces aeramgisequences that
are not dependent on the vertex cache size. He also propasepdate algorithm that
automatically reorders the rendering sequence in progeesteshes.

A detailed description of some of the most important aldgponis as well as their com-
parison can be found in [Van04]. In this thesis, we presergraparison of some of the
existing methods and our new algorithms. This comparisorbesfound in Chapter 8.



Delaunay Stripification

In this chapter we will concentrate on 2D and 2.5D triangafet, which are often used
for terrain modeling. The terrain models are often given psiat set and it is necessary
to make a triangulation of this point set first. One of the nemshmon triangulations is
the Delaunay triangulation. This triangulation is very plaw especially because of two
facts: (1) it produces the most equiangular triangles gb@disible methods (it maximizes
the minimum angles); (2) it can be computedifn logn) time in the worst case and in
O(n) time in the expected case. It is also possible to create aldegels of detail while
using an incremental insertion algorithm for the Delaunantyulation.
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3.1 Delaunay Triangulation

At the beginning we will describe the Delaunay triangulatand structures that we use.
More details about the Delaunay triangulation are e.g. wwyB6].

Definition 1 A triangulation7’(P) of a set of points” in the Euclidean plane is a set of
edgesE such that

1. no two edges i intersect at a point not irP,
2. the edges i divide the convex hull aP into triangles.

Definition 2 The triangulationDT'(P) of a set of pointsP in the Euclidean plane is a
Delaunay triangulation of if and only if the circumcircle of any triangle @d7'(P) does
not contain any other point a? in its interior.

There exist several approaches of constructing a Delaur@agtlation, e.g.:

e divide & conquer [Dwy86],
e incremental insertion [LGS90, KZ02],

¢ high-dimensional embedding [Bro79].

Although the fastest method is divide & conquer [Dwy86] (@clkng to [SD95]), we
decided to use the incremental insertion for several resasdnide & conquer methods
are often too sensitive to numerical inaccuracy, anothesae is that the insertion method
allows us to insert points in a specific order (e.g., accgrtlirthe importance of the point)
to obtain different levels of details. Also the implemerdatof incremental insertion is
easier than the divide and conquer. While using randomizesgkmental insertion, the
algorithm is insensitive to input data configurations. Uast not least — the incremental
insertion has been already implemented in our computehgrsgroup [KZ02].

The incremental insertion algorithm is described in Figdide

The most time consuming part of the algorithm is step 2a — akdglaication of the
triangle containing the inserted point. In our approaciantyles are kept in a directed
acyclic graph (DAG) — a graph where the history of insertiod #ipping is stored.

An example of vertex insertion and edge flipping is shown iguFé 3.2. In the first
step, a new vertex is inserted. Then the correspondinggigar divided into three new
triangles (4,5,6). As the new triangles do not fulfill the &atay condition, edge flips are
performed in steps three and four.
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Input: the set of point$ in £?
Output:DT(P)

1. Create a temporary triangle (with points,, pto, pt3),
such that all points of are enclosed in it;

2. For eactp from P do

(a) Find the triangleé or edgee that contains the point
D;

(b) If the pointp lies on an edge, find the triangles
sharing this edge and subdivide them into four new
triangles

else subdivide the triangtanto three new triangles} =
(c) If new triangles do not fulfill the Delaunay condi-

tion, flip the edges (thus create new triangles) and
repeat this step.

244%

3. Remove all triangles that are incidentig, pt, or pts.

Figure 3.1: Algorithm steps for the incremental insertion of DT and an example of thegulation
construction.

3.2 Delaunay Stripification

To speed up the visualization of different levels of detkihe triangulation, it is possible to
use triangle strips. In Figure 3(@), one can see that it is possible to obtain a stripification
for each step of the triangulation process by traversindginees of the DAG structure very
quickly. This algorithm was published in [VKO03].

To improve the quality of stripification, it is necessary todify the existing algorithm
[KZ02] to avoid breaking strips. There are two steps in tlgpathm where the strip could
be broken: (a) insertion of a new vertex, and (b) flipping edgefulfill the Delaunay
condition.

While inserting a new vertex, two situations can appear.ditiserted vertex lies inside
a triangle, three new triangles are created. To preservsttipe we need only to keep the
right order of sons in the DAG (see Figure 3.3).
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(b)

Figure 3.2: An example of DAG. A new pointis inserted into a triangulation (a). Theesponding
triangle is subdivided into three new triangles (b). The triangles are clikfixethe Delaunay
condition (c) and (d).

If we don’t care about the Delaunay condition (do not perfdlips), we obtain a
Hamiltonian triangulation (as described in [AHMS96] — we gee strip for the whole
triangulation, penalized by worse quality of triangles).

In Figure 3.3 (left) an old triangulation with a strip is showin the middle, there is a
new triangulation and a new triangle strip after a vertexitisn. On the right side, there
is the corresponding DAG.

Figure 3.3: Insertion of a vertex into a triangle.

In the other situation the inserted vertex lies on an edgesutth a situation several
cases may appear. In the first case, the incoming edge lieeedge on which the strip
enters the triangle) of the first triangle and the outgoingee@.e., the edge on which the
strip leaves the triangle) of the second triangle have a comwertex. It is possible to
connect all four new triangles into one strip and continee (Sigure 3.4).
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Figure 3.4: Insertion of a vertex on an edge (case 1).

The second case, where the incoming edge of the first trigogle not share any vertex
with the outgoing edge of the second triangle, is the modilproatic. In this case it is not
possible to insert all four new triangles into a strip andwa s&ip has to be created.

There are two possibilities: (1) Insert three new triangbethe existing strip and create
one new single-triangle strip (in Figure 3.5 triangle 4);(®y to avoid the single-triangle
strip it is possible to divide the strip and insert triangesnd 4 to the first strip and triangles
5 and 6 to the second strip.

Figure 3.5: Insertion of a vertex on an edge (case 2).

In the last case, the first triangle lies in another strip ttitensecond one. The new
triangles are simply inserted into the existing strips (Sigeire 3.6).

Q

|
1

Figure 3.6: Insertion of a vertex on an edge (case 3).
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To make the Delaunay triangulation, each new triangle has thecked and if it does
not fulfill the condition, it is necessary to flip the edge. Agaeveral cases may appear.
When the incoming edge of the first triangle does not sharetexverith the outgoing edge
of the second triangle, it is possible to connect both neangies into a strip (Figure 3.7).

Figure 3.7: Edge flipping (case 1).

If the incoming and outgoing edges share a vertex, a newestnigingle strip has to be
created (Figure 3.8).

Figure 3.8: Edge flipping (case 2).

If the two flipped triangles lie in the same strip but do notrelacommon edge in the
strip, the existing strip is divided into two strips (Figus®).

Q0

\
\

;
R4
7

Figure 3.9: Edge flipping (case 3).
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In the last case the two triangles do not belong to the sanpe sAfter the edge is
flipped, the beginning of the first strip is connected to the eithe second strip and vice
versa (Figure 3.10).

SLOLS,

: ;
\~
S \
\.

Figure 3.10: Edge flipping (case 4).

1

NG

When the insertion and flipping step is finished, it is posdibkxtract the stripification.
It can be performed in three steps:

¢ In the first step, the algorithm is traversing the leaves ef AG (triangles of the
final triangulation). If it is possible, it connects the trgde to an existing strip, if
not, a new strip containing this triangle is created.

¢ Inthe second step the algorithm goes through the list gfsemd tries to concatenate
strips into longer ones. To detect whether two strips coelddnnected or not, each
strip has a pointer to its terminal triangles and each teartimmangle points to the
corresponding strip.

e To speed up the visualization, we can use the OpenGL ventaysaor vertex buffers.
To be able to use this extension, the algorithm has to exwextices of each strip
into a continuous block of memory in the last step.

3.3 Test and Results

This algorithm was implemented in Borland Delphi 6.0. It hasftested on a set of 16
randomly generated and 8 real terrains. Experiments hase ferformed on a PC AMD
Duron 850MHz with 256MB of RAM, running on MS Windows 2000 syist. The imple-
mentation was compared 8RIPE 1.QEva98] with default settings (compiled with gcc,
I/O operations excluded from time measurement) and to my iovahementation oSGl
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algorithm [Van02]. This comparison is not completely faiecause unlike this algorithm,
bothSTRIPEandSGlalgorithms are more general and work also for fully 3D modBlg
as far as we know, there are no public free methods for ous dasnodels. Naturally,
times of I/O operations have been excluded from measurement

In Table 3.1 the name and description of all methods is ptinténese names are used
in the following tables. In Table 3.2 the number of triangéesl vertices in models is
shown.

DT Delaunay triangulation only
DTS Delaunay stripification
DTS(O) | DTS time minus DT time
(only the time of stripification)
SGI Our implementation of SGI method
STRIPE | STRIPE (default settings)

Table 3.1: Methods.

model | # of vertices| # of triangles
1 4,897 9,774

2 13,829 27,642

3 15,820 31,617

4 20,014 40,016

5 41,853 83,678

6 60,244 120,465

7 70,433 140,841

8 100,000 199,114

Table 3.2: Models.

Next tables show comparison of tBE'Sto STRIPEand toSGIL Table 3.3 shows the
time needed for stripification. The time for the Delaunaipsication is only 2-5% higher
than the Delaunay triangulation without stripification¢epgt of the model 1, which is too
small to give reliable results). In comparison$d RIPE the DTS is about 8-15 times
faster. Itis also more than five times faster than3i& algorithm. This speedup is caused
by several things. Nearly all temporary structures are sibledirectly inDTSwhile in
other algorithms we need to create them. The order of ilgedi triangles into strips is
done simply by traversing the DAG leaves. The concatenatidrangle strips is done via
a greedy algorithm which is very fast.
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model | DT DTS | DTS(O) | STRIPE | SGI 3000 4
—x—DTS
1 190 | 210 20 70 2500 - L+
---4--- STRPE
2 701 | 721 20 201 g 2000 | —o—sal 4
3 832 | 851 19 230 | |2 150 o
c --0
4 1072 | 1132 60 290 < i s rcaa
g 1000 e
5 2634 | 2714 80 591 500 #I_F-‘///@'
6 4086 | 4197 111 872 . M
7 4917 | 5108 191 1091 0 50000 100000 150000 200000
8 6349 | 6599 250 1261 Number of triangles

Table 3.3: Runtime in milliseconds (grey cells emphasize the best values, black celiasine the
worst values).

Table 3.4 shows the number of strips needed for a model. Weearhat botlfSGI
andSTRIPEcreates approximately three times less triangle strips BRES This is quite
surprising because we have expected an algorithm thaesradaw number of strips. This
problem is caused by a big amount of flips during the triartgaraprocess (6 flips per
vertex on average).

model | DTS | STRIPE| SGI 14000 1

1 252 242 12000 1 e

2 697 672 | | & % _;_Sg.

3 795 769 % 80009

4 946 929 g 8000 1

5 2052 | 1895 |2 “*] R
6 2759 | 2627 20001 e

7 3288 3144 ’ 0] 50(;00 100600 15(;000 200‘000
8 3445 | 3363 Number of triangles

Table 3.4: Number of strips in a model.

Table 3.5 lists the number of vertices in strips for all aitfons. TheDTSalgorithm
produces 5-6% more vertices than SiERIPEand 8—11% more vertices than t8&1

There could be two reasons why is our algorithm worse in thebar of vertices than
SGI or STRIPE First, the number of strips is higher. Second, in the dtcgiion there
exists a lot of fan-like strips caused by the flips (see Figuid). Therefore a combination
of triangle strips and triangle fans could bring some addai reduction.
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model | DTS STRIPE | SGI 350000 |
LRl 14,589 | 14,175 300000 |
VNN 41,489 40,243 250000
VIRYZN 47,429 | 45,936
Xkl 59,805 | 57,707
iciMeViN 125090 120,887
AEEleel] 179,222 | 172,991 50000 1
ryy RNl 209,703 | 202,607 ° o o — o~
IR0 294,706 | 280,387 Number of triangles

200000 -

150000 -

100000 -

Number of vertices

0o N O O~ W N P

Table 3.5: Number of vertices in strips.
In Figure 3.11 (left) a new vertex is inserted into a triargiain. After the insertion,

flips are performed and the order of triangles in the stripghsnged. The color intensity
marks out the order of triangles.

y-

Figure 3.11: Insertion of a vertex changes the order of triangles (the color intensitksnaut the

order of triangles).

The main goal of stripification is the speedup of rendering.Tdble 3.6, we present
the average number of frames per second for non-stripifiedieirend for models stripi-
fied with DTS STRIPEandSGL To use the power of the graphic card, we have used the
OpenGL display lists.

As shown in the table, using the triangle strips significairtcreases the speed of
rendering. This speed-up increases with the increase othummplexity, as the data
bandwidth is becoming more critical. For most cases, thpifstation produced by5Gl
algorithm is rendered most quickly. Although the stripifioa produced by our new algo-
rithm is the slowest, the differences in rendering speechar@ery high.
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model DTS | STRIPE

SGl

49.2 | 50.2
50.1 50.4
38.0 38.7
34.6 36.3
26.2 | 26.9
206 | 21.3
19.8 | 19.9
13.7 | 15.0

0 N O O A W N PP

50.7
50.1
38.6
35.7
27.3
22.2
20.4
15.5

50000 100000

Number of triangles

150000

200000

Table 3.6: Number of frames per second.

3.4 Summary

We have developed and implemented a new algorithm for tulatign and stripification of

models based on Delaunay triangulation using incrememsakiion algorithm with DAG.

As far as we know, this is the first algorithm which is able teate triangle strips together
with the construction of triangulation. Our algorithm isfaenough to create previews
for different levels of detail of Delaunay triangulationu®to greater number of triangle

strips, it is better to use some other algorithm for the fit@bication.

Although our algorithm produces higher number of strips,3peedup is sufficient for
the previews. There is probably still a place for reducing tlumber of strips by some

improvements in the insertion and flipping stage.



Multi-Path Algorithm

In this chapter we describe a new algorithm for stripificatas static, fully triangulated
meshes and some of its extensions. This algorithm is basedoal graph of triangulation
and it produces a stripification with very low number of tgéastrips.
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4.1 Multi-Path Algorithm for Hamiltonian Cycles

The stripification problem is related to the problem of skarg of the Hamiltonian cycles
in the dual graph, i.e., a path connecting all nodes of a graghing each node exactly
once.

Christophides [Chr75] and Kocay [Koc92] introduced a Mubltittralgorithm for find-
ing Hamiltonian cycles. This algorithm is based on an extnaisearch of paths in a
graph. The algorithm starts with an arbitrary node and anident edge. While recur-
sively extending the path, edges that are incident to the neHich is in the middle of the
path, are removed, because there is no possibility to use@Hamiltonian path visits each
node only once). In some cases, this edge removal leadstingtaf a new path. The al-
gorithm stops in the case that a Hamiltonian cycle was folihé.algorithm works well for
Hamiltonian graphs (i.e., graphs that contain a Hamiltortgcle). For non-Hamiltonian
graphs, it is necessary to explore all possibilities, theam take a long time.

4.2 Stripification

From the Multi-Path algorithm, we have taken the basic idémamake a path containing
a node of degree of two and one of its adjacent nodes — and veerhadgified it to better
suitability for stripification problem.

Our new algorithm does not build one strip at a time, but itee a strip for each
suitable group of triangles and concatenates these sfrgsssible. Such an approach
produces triangle strips of about the same length and itawasiort or singleton strips (i.e.,
strips containing one triangle).

According to the degree and status of a corresponding natthe idual graph all trian-
gles are classified into sets.

e U; —the set of unconnected nodes of degreec {0, 1,2, 3}. Such a node represents
a triangle that is not connected in a strip.

e (; — the set of connected nodes of degigec {1,2}. A triangle represented by
such a node is connected to a strip over one edge (i.e., it aadary triangle of
some strip). As there is no possibility to extend a strip fraroonnected node of
degree zero, such nodes are classified.as

e T —the set of fully connected nodes. It represents triang)laisare inside strips.
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The algorithm begins by adding the neighboring informatidgo the dual graph of the
triangulation. Considering the number of neighbors, allesare classified into tHé sets
(all nodes are unconnected at the beginning).

After this initialization part, the main loop of the strimétion process can start. The
algorithm chooses one node from the graph following thiernisi order:

1. anunconnected node frdify — a triangle without neighbors (it is a singleton triangle
and there is no possibility to connect it to a strip)

2. an unconnected node froth — a triangle with one neighbor (we have to connect it
to the neighbor to avoid the singleton strips)

3. aconnected node froftf, — a triangle that is an endpoint of a strip and that has one
neighbor (it is good to connect it to its neighbor, to avoid #trip breaking)

4. an unconnected node frob} — a triangle with two neighbors (a strip should go
through such a triangle)

5. a connected node frofit, — a connected triangle with two neighbors
6. an unconnected node fraify — an unconnected triangle with three neighbors

An edge incident to the selected node and the other node @ddfe are chosen. A
new strip containing triangles corresponding to the setbabdes is created and the edge
is removed from the dual graph. If one (or both) of selectediesds already a connected
node (i.e., itis an endpoint of some strip), the new striptbdse concatenated.

Both selected nodes are moved to a corresponding set: anneuted node of degrée
is moved to connected- 1 set, a connected node of any degree is moved to fully conthecte
setT'. If a node is moved to th€ set, it is also necessary to remove all its remaining edges
and to update the status and degree of its neighbors.

To avoid an infinite triangle strip (loop), a simple test whahecks the endpoints of the
current strip is performed. If there is an edge connectiegetiwo endpoints, it is removed
and the status of neighboring nodes is updated.

The main loop is performed as long as there are some not falyected nodes in
the dual graph. In the end, a simple method is used to decanthedist of triangles in
strips into a list of vertices of strips (including swaps)e Wuppose that the orientation of
all triangles of the input mesh is consistent. The stripif@aprocess is running in linear
time.

In Figure 4.1 a pseudocode for the Multi-Path stripping atgm is shown.
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input: list of triangles
output: list of triangle strips
begin

Creat e nei ghbors;
Cl assi fy nodes;

while there is any node in the graph do
Choose starting node t1;
Choose nei ghboring node t2 to node t1;
Add edge (t1,t2) to the list of strips;
Try to concatenate the new edge with some existing strip;
Renove edge (t1,t2) fromthe dual graph;
Check loop in strips;
end while;

Extract StripsVertices;
end;

Figure 4.1: Pseudo code for the Multi-Path stripping algorithm.

4.3 An Example

Now we will present an example. Figure 4a2shows the triangulation and its correspond-
ing dual graph. In the beginning all nodes are classifiedliitsets.

In the first step (Figure 4.®)), aU2 node and one incident edge is chosen. This edge
is removed from the graph, and a strip of length two is crealdek node is moved from
U, to ¢ and its neighbor is moved frofd; to Cs.

In the next step (Figure 4@2)), a nodeC'l is available, so the algorithm processes it.
The remaining edge of the nodél is removed from the graph and a new strip of length
two is created. As the node is already a part of a strip, thesestrips are concatenated.
The C; node is now moved t@" (a fully connected node). A similar situation appears in
the next two steps (Figure 4(@),(e)).

Now (Figure 4.2f)), an edge connecting1 andC?2 node was removed from the graph
and the strip was created. As both nodes are already codnadéferent strips, all three
strips are concatenated into one. The status of both noddsargyed tdl’ and the un-
processed incident edge of th& node is removed. By this step, the incidért changed
its status td/2.
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L2 U3 U3 U2 U3 U3 U2 U3 U3 W2 U3 U3
’Q u3 ’Q us ’Q u3 ’0 c2
0 u2 0 u2 e u2 0 c1
u2 u2 ¢ u2 T u2 T u2

(a) (b) (c) (d)
U2 U3 U3 L2 Uz U3
’Q c2 ’Q c2
< L T
T c1 T T
(e) (f)

Figure 4.2: Algorithm steps. The original triangulation and its dual graph (a). In (e strip

starting from aU5 node is created and it is extended in the next step (c). As the highegiilposs
priority set isU5, another strip is created (d) and following the rules, it is extended (e).glrdi
(), the two already existing strips are concatenated. This leads to an edyeval (a dashed line).
The final stripification contains one triangle strip (g).

When there are onl§” nodes in the graph, the stripification is done (Figure (4)2
Finally, the algorithm converts the strips (which are listsieighboring triangles) to lists
of vertices of the strips.

4.4 Experiments and Results

Our new algorithm has been implemented in Borland Delphi &.08as been tested on a
set of well known models (Table 4.1). The experiments weréopmed on a PC INTEL
Pentium 4, 1.8GHz, 512MB of RAM, running on MS Windows XP. Natly, times of I/O
operations have been excluded from measurements.

We have chosen models that are often used in other papersamrdalable on the
internet [Sta, Geo, CYB]. All our models are fully trianguldiso we decided to compare
our new algorithm Multi-Path) to SGI-based method [Van02]. As our new algorithm
produces very low number of triangle strips, we also decidecbmpare it toTunneling
algorithm [Ste01], with the default settings. As far as wewnthe tunneling algorithm
produces the lowest number of triangle strips.
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# | model # vertices| # polygons
1| cow 2905 5804
2 | demi 9138 17506
3 | bunny 35947 69451
4 | dinosaur 56194 112384
5 | balljoint 137062 274120
6 | club 209779 419554
7 | hand 327323 654666
8 | dragon 437645 871414
9 | happy buddhd 543652| 1087716
10 | blade 882954 1765388

Table 4.1: Set of testing models.

Stripification

A comparison of number of strips created by various methe®gdsown in Table 4.2.

We can see that the number of strips produced/ioti-Path algorithm is nearly four
times lower than the number of strips produced $$1 For lower resolution models
(< 300k of triangles), our new algorithm produces even lesgoes than tunneling. For
large models, our algorithm produces approximately 40%erstips than tunneling.

On the other side, our new method produces at least three tower number of strips
than other stripification methods (Table 4.3).

In the next table (Table 4.4), a comparison of number of eestin strips is presented
(number of vertices is in thousands). The difference in tbelmer of vertices could
not be as big as the difference in the number of strips, bectnese are two theoretical
boundaries. The number of vertices could not be lower thannumber of triangles
(for a sequential strip, covering the whole triangulatiany it could not be higher than
3 - number of triangles for a set of isolated triangles @r- number of triangles for
a connected set of triangles.

The Multi-Path algorithm produces less vertices than thenelingalgorithm, but it
produces about 5% more vertices than 8@l Although this difference is not so big, it
could lead to a lower frame-rate. In the next chapter, we shgwssible way, how to
improve the algorithm.
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# | model SGI | Tunneling | Multi-Path
1| cow 98 19 17
2 | demi 335 137 97
3 | bunny 601 188 156
4 | dinosaur 1177 267 308
5 | balljoint 2279 707 690
6 | club 2658 909 978
7 | hand 8997 1944 2227
8 | dragon 17399 3672 4876
9 | happy buddhaakygs 4219 5809

10 | blade 5537 5863
25k
—O— Sal ———-—0
- =A - Tunneling A -
20 _ o Mult-Path /
uf
o 15k 1 /
2 /
® /
* 10k A
/
Q5K o (T o

0Ok 500k 1000k
# triangles

1500k

2000k

Table 4.2: Comparison of number of triangle strips in a model (grey cells emphtsédgest values,

black cells emphasize the worst values).

We have also tested the distribution of length of triangtgstin the mesh. In Figure
4.3, the distribution of length for the ’happy buddha’ datas shown (the number of strips
of the current length is divided by the total number of sirips

As our new algorithm uses a global criterion, it does not poeda big number of ex-
tremely short triangle strips. If we compaulti-Path to the SGI method, which uses a
local criterion, the difference is apparent. We were ssgatiby the strip length distribu-
tion of Tunneling which also uses a global criterion, but produces a lot oftehatrips.
This is probably caused by the SGI-based algorithm, whiclséd to give a quick initial

stripification forTunneling
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method bunny | dragon
Multi-Path 156 | 4876
Tunneling [Ste01] 188 3672
Silva [SKP02] 599 | 16222
SGI [Van02] 601 | 17399
SGI [AHB90] 705 | 17653
STRIPE [ESV96Db] 917 | 19935
FTSG [XHM99] 618 | 20571

30

Table 4.3: Comparison of number of triangle strips in a model (for more methods).

# | model SGI | Tunneling | Multi-Path
1| cow 8 8
2 | demi 23 24
3 | bunny 87 95
4 | dinosaur 148 158
5 | ball joint 358 387
6 | club 532 582
7 | hand 876 921
8 | dragon 1237 1254
9 | happy buddha 1546 1564
10 | blade 2294 2425
3,0M
—O— SGI
2,5M +{= A= = Tunneling
—O— Multi-Path ,
.g
>
H*
o,0m ‘ ‘ ;
0Ok 500k 1000k 1500k 2000k
# triangles

Table 4.4: Comparison of number of vertices in strips. The number of vertices ipus#nds.
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Figure 4.3: Comparison of strip length distribution for 'happy buddha’ (the numbestops of the
current length is normalized by the total number of strips).

Performance

Finally, we have compared runtime of algorithms (Table 4T5)e time includes the alloca-
tion of all necessary memory (excluding memory for modellits.e., array of vertices and

array of indices), construction of all data structuresfigle neighbors, etc.) and the strip-
ification process itself. For theunnelingalgorithm, the time foiSGl initial stripification

is also included.

Both SGI and Multi-Path are linear time algorithm and their running time is signif-
icantly lower thanTunneling To create a stripification (including all data structureg)
'blade’, which consists of nearly 1.8 millions of trianglege need less than 18 seconds,
on Intel Pentium IV 1.8Mhz.

The Tunnelingalgorithm is very slow, and the speed is not comparable tercdlh
gorithms. Although the stripification process is usuallyrappocessing, the tunneling
algorithm with the default settings is not usable for largedeis. We also were not able
to create a stripification of ’blade’ by tunneling on our tegtmachine, due to a lack of

memory, so we have used a different machine (it took more thaours on dual Pentium
4 XEON 2GHz, 1GB RAM, running on Linux).
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# | model SGI | Tunneling | Multi-Path
1| cow 0.1 0.1
2 | demi 0.4 0.4
3 | bunny 0.9 0.8
4 | dinosaur 1.5 1.2
5 | ball joint 3.5 3.8
6 | club 6.2 4.9
7 | hand 7.6 6.4
8 | dragon 9.5 8.0
9 | happy buddha 11.7 10.2
10 | blade 26.0 17.1
30,0s T
| —[— SGlI
25,0s 1 : - =A - Tunneling /D
| —O— Multi-Path 7
20,0s - :
é 15,08 1
10,0s !
5,05
0,0SL T T T
Ok 500k 1000k 1500k 2000k
# triangles

Table 4.5: Comparison of runtime. Times are in seconds.

Output examples

Figure 4.4 shows a visual comparison of the 'cow’ and the fiyamodel. It is obvious
that theSGI algorithm (top) produces more triangle strips than T@nelingalgorithm
(middle) orMulti-Path (bottom). As theSGl strips are covered by less vertices (i.e., there
is a small number of swaps), they are straight and narrow. Byrast, Tunnelingand
Multi-Path produce triangle strips that cover huge compact areas omégh. Such a
behavior can be useful for some additional data reduction, @ew-dependent culling of
triangle strips.
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4.5 Summary

We have designed and implemented a fast and effective mé&dhatripification of static
meshes. This method is based on dual-graph and it uses d glitddaon for strip creation.

Figure 4.4: Output examples. The 'cow’ has 5804 triangles. It is stripified with 98 strging SGI
(top), 19 strips using Tunneling (middle) and 17 strips using Multi-Path (bottd he 'bunny’ has
69451 triangles. It is stripified with 601 strips using SGI (top), 188 stripsqu$imneling (middle)
and 156 strips using Multi-Path (bottom).
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It produces a stripification with very low number of trianglips, but it contains higher
number of swaps (i.e., the number of vertices is higher). dlgerithm itself is easy to
understand and easy to implement.

Probably there is still a place to create even less triangfesdy using the loops, which
occasionally appear in the stripification. In the presemlgdrithm, we remove edges that
could lead to such a loop to speed up the algorithm. On the stte, such loops could
be very useful, because they can be disconnected on any segnteconcatenated with
some other strip, which is starting/ending in the neighbothof this loop.



Extended Multi-Path Stripification

In the previous chapter, we have described a new stripieatigorithm based on a dual
graph of a triangulation. In this chapter we show, how to mattthe algorithm by giving
weights to nodes and edges of the graph. We also demonstratihé extension works on

a simple weight function.
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5.1 The Extension

The number of strips produced by the Multi-Path algorithiweisy low (as far as we know,
there is no other linear time algorithm producing such a launher of strips). On the
other side, the number of vertices is higher than the numbegrtices produced by other
algorithms. In this section we propose an extension of théiNpath stripification algo-
rithm that allows better control of stripification procesglaamong others it can decrease
the number of vertices.

As the Multi-Path stripification is based on a graph algonitlthere is a possibility
to influence the stripification process by adding weightsh dual graph. No matter
what these weights represent, they can be handled in two: lagsveights are given to
the nodes of the graph and the nodes of highest/lowest degeegrocessed first; or the
weights are given to the edges of the graph and the edges loédtitpwest degree are
processed first. In both cases, the weights can be eithear gtatynamic. In our method,
we use a combination of all above mentioned cases. We agsigwdights to all nodes
of triangulation and we dynamically compute the weight ajeds a weight difference of
nodes that are connected by this edge.

To include the weight criterion into the stripification pess, it is necessary to slightly
modify the algorithm described on Figure 4.1. The origingbathm finds the highest
possible priority list of nodes and it chooses the first nadenfthe set (see Section 4).
To choose the best candidate, we have to traverse the whalésndidates and find the
node that has the lowest weight difference from its neigf#)orAs we have to traverse
the whole set of possible candidates in each stripificatiep, $he algorithm complexity is
higher than linear. Luckily, the number of candidates iswawsy high in real life situations.
It is also possible to terminate the searching, when the hteiidference is equal to zero.

Choosing the Weights

The weight function can be chosen in many different ways adeépends on the feature
of stripification we want to improve (CLOD, visibility cullmy etc.). This makes our new
algorithm very flexible.

To demonstrate how the weights influence the final stripibicatwe decided to use
weights according to the X-coordinates of vertices of gian (there is no special reason
to choose X axis and, as we show in the next section, the direof the weight function
does not influence the quality of stripification too much).cls@ criterion should lead
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to straight strips coplanar to YZ plane. We supposed thatdtiierion could decrease the
number of vertices in the stripification as the strips areamuiess straight (i.e., less swaps
is needed). Surprisingly, this criterion also decreasesitimber of strips as we show in
the next section.

Although the above described function produces very gosult® the real challenge is
to find some topologically based functions for better sficption and functions for strip-
fication of progressive meshes.

5.2 Tests and Results

The original Multi-Path algorithm, as well as our new extenshave been implemented
in Borland Delphi 7.0. All experiments were performed on a R@DAAthlon XP 2800+,
2.1GHz, 512MB RAM, ATl Radeon 9600 with 64MB memory, runningd® Windows
XP. Naturally, times of I/O operations have been excludethfmeasurements. The algo-
rithm was tested on the same set of modelMati-Path algorithm (Table 4.1)

In the next sections, we compare several important factostripification. The num-
ber of strips and number of vertices in strips shows the cesgion level. Although the
stripification process is usually done in preprocessingestéhe running time is still im-
portant for large data sets. To be able to stripify large skt low memory requirements
are important. The speed of rendering shows the speedupvéisaaichieved. Finally, we
show how the direction of weight function axis influencesstreification.

Stripification

As the creation of a new strip is quite a time consuming oparathe number of strips is
an important factor of stripfication quality. A comparisohnumber of strips created by
various methods is shown in Table 5.1.

Our new algorithm produces very low number of triangle stapd for many models,
it produces the lowest number of strips from all algorithrRer models of hand, happy
buddha and dragon, the number of strips is higher than thebeuwf strips produced
by tunneling. This fact is caused by the high topological gadmetrical irregularity of
these models (these models contain large number of verichgh degree, for visual
comparison see the dinosaur Figure @land the happy buddha Figure 3} models).
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model SGI | Tunneling | MPath | EMPath
cow 19 17 16
demi 137 97 94
bunny 188 | 156 86
dinosaur 267 308 197
balljoint 707 690 381
club 909 978 454
hand 1944 | 2227 1646
dragon 3672 | 4876 4380
buddha 4219 | 5809 5250
blade 5537 | 5863 4281

Table 5.1: Number of strips in models (grey cells emphasize the best values, elickmphasize
the worst values).
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Figure 5.1: Visual comparison of topological regularity of objects. (a) shows thdehof dinosaur
which is quite regular, contains only a low number of vertices with a highesegnd most of the
vertices has degree six, unlike the model of happy buddha in (b) whighhlky irregular.

Vertices

The number of strips is not the only factor that influencesémelering speed. The number
of vertices that are beeing sent through the bus is also weppitant. A comparison of
number of vertices is presented in Table 5.2.
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model SGI | Tunneling| MPath | EMPath
cow 8K 8K 8K
demi 23K 24K 24K
bunny 87K 95K 86K
dinosaur| 148K 158K 150K
balljoint 358K 387K 355K
club 532K 582K 537K
hand 876K 921K 890K
dragon | 1237K 1254K | 1243K
buddha | 1546K 1564K | 1552K
blade 2294K 2425K | 2364K

Table 5.2: Number of vertices in strips.

Usually, the algorithms that produce a low numbers of stppxiuce high numbers
of vertices, as maintaining a long strip costs some additiswaps. Although our new
algorithm produces a low number of strips, it also producesimiower number of vertices
than theTunnelingor Multi-Path algorithm. In the case of very regular models, the number
of vertices is close to or even lower th8&1.

Running Time

The stripification is usually done in preprocessing stagdeivisualization, thus the run-
ning time of stripification process is not crucial. On theesthand it should not take too
much time. The running times are shown in Table 5.3.

The time includes the allocation of all necessary memorglgekng memory for model
itself, i.e., array of vertices and array of indices), camstion of all data structures (triangle
neighbors, etc.) and the stripification process itself.

As our new algorithms searches for the best possible caedidaeach stripification
step, the algorithm complexity is higher than the compleaftMulti-Path. In comparison
to theTunnelingthe running time of our algorithm is still low and it can be dsven for
large data. Furthermore, this weak point can be reduced img s®me additional data
structures such as priority queues or buckets to speedigetigossible candidate choice.
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model SGI | Tunneling | MPath | EMPath
cow 0.16 0.49 0.14 0.37
demi | 0.65 0.50
bunny 0.69 176.66 0.72 1.08
dinosaur| 1.03 72.12 1.81 1.62
balljoint 3.75 176.39 3.46 28.36
club 5.76 629.46 5.96 63.97
hand 5.30 586.63 6.14 20.50
dragon 7.96 iNyyoyd 1098 | 276.26
happy 10.31 Rl 13.37| 338.98
blade 17.76 /AN 20.61| 151.52

Table 5.3: The computation time in seconds.

Rendering Speedup

To measure the rendering speedup, we use the OpenGL digitayHach vertex is defined
by its position (12 Bytes) and normal vector (12 Bytes). To shiog/benefit of vertex
strips, we also present the speed of rendering while draumogdered triangles and while
drawing triangles ordered by Bogomjakov’s reordering meétfeG01] (for this method,
we present the rendering speed achieved by vertex buffectsjhat are much faster than
display list for this method).

model Triangles| Bogomjakov* | SGI | Tunneling | MPath | EMPath
cow 654.7 | 644.4 651.1| 650.1 645.2
demi 639.6 | 614.3 618.3| 618.0 618.0
bunny 291.5| 336.3 352.2| 348.8 341.6
dinosaur 217.9| 269.9 278.2| 276.6 276.1
balljoint 98.7 | 136.3 139.5| 138.8 138.6
club 95.2| 94.1 95.5 95.7 95.1
hand 48.2| 58.6 64.0 64.5 64.7
dragon 472 | 37.7 48.4 50.1 50.0
happy 4541 30.0 38.7 40.5 40.4
blade 13.1| 1938 24.4 24.4 24.6

Table 5.4: The average FPS (display lists; *vertex buffer objects).
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While using triangles, for most of the models the frameratabsut 2 — 2.5 times
smaller than the framerate of stripified objects. This raboresponds to the theoretical
assumption (strips can reduce the amount of data by a faictiore® in the best case). The
effect of topology compression is also visible in high resion models (dragon, buddha
and blade); when using the triangle representation, theecfizhese models exceeds the
amount of GPU memory and makes the rendering unbearably slow

Memory Requirements

As different algorithms use different data structures,ahmunt of allocated memory can
differ (Table 5.5). To measure the memory usage, we wrotenasimple program that
scans the running processes and stores the memory usagef feaktripification process.
As the scanning is not continuous, some inaccuracy may appea

We also include the average bytes per processed triangle3@rbé computer. This
ratio can be used to compute the maximal size of model thabeatripified on a machine
with a given size of memory.

model SGI | Tunneling | MPath | EMPath
cow 0.5 20 20
demi 21 3.4 3.5
bunny 6.8 9.4 9.7
dinosaur| 9.3 14.4 14.9
balljoint | 21.0 33.3 34.3
club 34.9 50.0 51.6
hand 53.9 78.0 80.5
dragon 71.5 104.4 107.7
happy 88.9 129.8| 133.9
blade 143.3 207.1 213.8
bytes/tri 86 125 129

Table 5.5: The amount of allocated memory in MB.

The SGl algorithm does not use too many additional data structurdstae memory
requirements are very low. As our new algorithm does not ngespecial structures, the
memory requirements are nearly the same as the oriinidti-Path and they are about
four times lower than the memory requirements of Tmanelingalgorithm.



EXTENDED MULTI-PATH STRIPIFICATION 42

Impact of rotation

As the weight function that we use for the stripification degeon the orientation of the
model (or on the orientation of axis of weight function), wevk also included a test of
impact of rotation transformation. We have rotated the rhoflbunny and the model of
dragon around the Z axis and we have made the stripificatioalforientations with five
degree step.

The behavior of our new algorithm for regular meshes is shawngure 5.2 (the bunny
model).
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Figure 5.2: Impact of rotation to the stripification quality. Rotating the model of bunnyiadZ
axis with weight function according to the X coordinate.

As the vertex distribution in many objects is more or lessaligned (see Figure
5.3 (@) the rotation of the object (or of the direction of weight &tion) by 45 degrees
decreases the quality of stripification (the number of eerias well as the number of strips
increases). This fact is well visible on the graph. We alstuitle a visual comparison of
two extreme cases; the rotation by 145 degrees producegp#icdtion with 124 strips
and nearly 90k of vertices (Figure 5(B)) and the rotation by 270 degrees produces a
stripification with 70 strips and 87k of vertices (Figure &g. Although the differences
are quite high, our new method produces better stripifinatianTunnelingor Multi-Path
even for the worst case.

The behavior of Extended Multi-Path for irregular mesheshswn in Figure 5.4
(dragon model).
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(a) (b)

Figure 5.3: Impact of rotation to stripification quality. Rotating the model of bunny atbrdraxis
with weight function according to the X coordinates cause changes of st & stripification
process. Figure (a) shows the structure of vertices in the model. Hgupresents the stripification
of model rotated by 145 degrees, which is the worst case, and Figuprgsents the stripification
of model rotated by 270 degrees, which is the best case.
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Figure 5.4: Impact of rotation to stripification quality. Rotating the model of dragon asbid axis
with weight function according to the X coordinate.

In the case of highly irregular meshes, the rotation of theal{or of the direction of
weight function) does not influence the quality of stripifioa too much. The stripification
has higher number of strips th@anneling but lower tharMulti-Path.

The above tests show that choosing the axis aligned direofieveight function is a
good choice in most of the cases, as most of the objects isareJo get better results, it
is important to suggest some function that is based on adgjuall criterion, or to suggest
a specialized function for a concrete type of input data.
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5.3 Summary

We have designed and tested a new stripification method leesadVulti-Path Stripifica-
tion algorithm [VKO04a]. Using weights in a dual graph of trgulation, this method allows
the user to influence the final stripification.

We have also suggested one possible weight function thatigaty improve the qual-
ity of stripification, especially for topologically regul&riangle meshes. Using this func-
tion, our new method produces stripification with very lowmaer of triangle strips (in
many cases even lower thannnelingalgorithm, which, as far as we know, produces the
lowest number of strips from all existing methods), that eveered with lower number
of vertices. The algorithm complexity is close@n) and it is possible to process large
datasets.

Our new algorithm offers a wide area of possibilities forptication. In the future
work, we would like to explore some other weight functionattban produce even better
stripfication and that are not so sensitive to topologicdl g@mometrical irregularity.



Multi-Path for Tetrahedral Meshes

The importance of computation and visualization of tettthbmeshes is getting very
important in the last years. In this chapter we present at shivoduction to tetrahedral
strips and we show the modification Bulti-Path algorithm for tetrahedral strips.
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6.1 Tetrahedral Meshes

For many 3D applications, the real-time rendering is neangss$n many of these applica-
tions, only the surface of the visualized scene is neces3aryake the full advantage of
modern graphic hardware, the high level primitives such@RRS or subdivision surfaces
are converted to a set of triangles (or triangle strips).

However, there exists large area of applications, wheresthiace visualization is
not sufficient and the complete volume rendering is necggsaedical application, hy-
dro/aerodynamic computation, etc.). Similarly to suradhere are two possible ways
of volume representation — regular grid, which can be rezlguite easily with the pro-
grammable GPUs, but which lacks some properties such aByl@daptive resolution;
and tetrahedral meshes, which are more complicated to mematewhich are more flexi-
ble providing locally adaptive resolution, integrationthivpolygons or fitting to complex
boundaries.

Using the full advantage of triangle rendering hardware gpttmized algorithms for
visibility sorting, the tetrahedral renderers are regeathieving an interactive frame rates
using the Projected Tetrahedra algorithm. While tetraHadeshes are nowadays used
mainly for simulation and visualization of vector fields anddical research, the possibil-
ity of real-time volume rendering will bring up a huge areagpplications such as highly
realistic atmospheric effects, high resolution volumdsttuing or visual feedback of sim-
ulation of deformations.

6.2 Tetrahedral Strips

Increasing the complexity of scenes, the same problem offioent data bandwidth as in
triangle meshes arises. King [KCWO01] et al. suggested antacthre for tetrahedral
volume rendering and an OpenGL API extension to supporalietiral strips that can
decrease the transmission cost of topology. Furthermbeetdtrahedral strip primitive
can improve the vertex cache management when renderirzdnéetral meshes on GPUs
that support vertex caching and updatable vertex arrays.

Unfortunately, the description of the tetrahedral connégtis more difficult than in
triangle meshes for two reasons:

e Itisimpossible to use the term ’left-right alternations, there are no obvious notions
of 'left’, right’, or "alternating’ sequence.
e Itis not possible to orient tetrahedra incident to a giveresein a simple way.
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To deal with the added dimension of tetrahedral meshespdassible to consider sim-
plicial complexes in general. Let's suppose thatimensional subcomplexes nfdimen-
sional simplicial complex are equivalent for varyih@ndn, if n—k is constant. Using this
assumption, a vertex of a triangle € 0, n» = 2) is equivalent to an edge of a tetrahedron
(k = 1,n = 3). This is also true for edges and faces — as every edge irgkeianesh is
incident to two triangles at most, each face in tetrahedeshnis incident to two tetrahedra
at most. Now, using an edge as a basic element, it is possitkfine a tetrahedral fan and
tetrahedral strip:

Tetrahedral Fan

A tetrahedral fanis a sequence of tetrahedra which share a common edge. Usng t
tetrahedral fan, the transmit costrotetrahedra can be reduced by the factor of four (from
4 -nton + 3 vertices). The important fact is that generally it is notgbke to include the
entire neighborhood of any vertex, while using a tetrahddra

Although the tetrahedral fan is quite a simple primitivejsitnecessary to carefully
define the syntax to make it clear which vertices define thencomedge. In his suggested
extension, King used a consistent notation of the fan asarCtpenGL triangle fan, i.e.,
the first two vertices define the edge that is shared.

The suggested OpenGL extension adds a primitive GL_TET _HAN, which can be
used in a very similar way as a triangle fan primitive. If pagsverticesvy, vy, vs, ..., Us,
three tetrahedravgv,vovs, vovivsvy @anduvgvivavs) Will be rendered.

gl Begi n( GL_TET_FAN_EXT)
gl Vert ex(v0) Vs 4
gl Vertex(vl) V
gl Vertex(v2)
gl Vertex(v3) // tetra 0123
gl Vertex(v4) // tetra 0134 Vo

gl Vertex(vh) // tetra 0145
gl End() v,

Figure 6.1: An example of OpenGL API extension and a corresponding tetrahtzargk CWO01].
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Tetrahedral Strip

A tetrahedral stripis a sequence of tetrahedra that are connected by shareq] fade
not all of them necessarily share one common edge. Simitartyiangle strips, for the
tetrahedral strip, the application has to send four vestafehe first tetrahedron, and then
a single vertex for each tetrahedron in the strip.

Like in the case of triangle strips, there exist two categgdf tetrahedral strips. In the
case of a sequential strip, each four consecutive vertgggesent a tetrahedron. To be able
to draw a generalized tetrahedral strip, it is necessargttoduce sswaplike operation.
Using the zero area tetrahedron to perform the swap can lgeexpensive, as it would be
necessary to send three vertices. For this reason, King f{@W01] suggested to send
a flag indicating which of the four vertices that were proeess the previous step should
be replaced.

To have a maximal benefit from the tetrahedral strips, twpities are suggested
to distinguish between the sequential and generalizegl stine simpler primitive is the
GL_SEQUENTIAL_TET_STRIP_EXT. The use of this primitive isry easy and intuitive
— the first four vertices specify the first tetrahedron andhdalfowing vertex replaces the
first vertex of the previous tetrahedron. The primitive GIENEERAL_TET_STRIP_EXT
is more complicated, as the programmer has to send a flag tsehwehich vertex should
be replaced (GL_REPLACE_VERTEX_EXT _1,2,3,4) by calling ReplaceVertexEXT
function. This extension makes the general tetrahedigl gtimitive very flexible.

gl Begi n( G._GENERAL_STRI P_EXT)
gl Vertex(vO0)
gl Vertex(vl)
gl Vertex(v2)
gl Vertex(v3) // draws tetra 0123
gl Repl aceVer t exEXT(
G._REPLACE _VERTEX_EXT_1)
gl Vertex(v4) // draws tetra 1234
gl Repl aceVert ex EXT(
GL_REPLACE VERTEX_EXT_3)
gl Vertex(v5) // draws tetra 1245
gl End()

gl Begi n( GL_SEQUENTI AL_STRI P_EXT)
gl Vertex(vO0)
gl Vertex(vl)
gl Vertex(v2)
gl Vertex(v3) // tetra 0123
gl Vertex(v4) // tetra 1234
gl Vertex(vb) // tetra 2345
gl End()

Figure 6.2: An example of OpenGL API extension and a corresponding tetrahgeeljalential strip
and generalized strip [KCWO01].
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6.3 Existing Stripification Methods

As far as we know, King et al. [KCWO01] proposed the first tetrahéstripification algo-
rithm. It is based on a simple greedy heuristic algorithmachhs equivalent to th&Gl
stripification for triangles. They choose the first unviditetrahedron as the start of the
strip. Then, they choose one of its neighbors as the next reoflthe strip and repeat
this step. If there is no other neighbor, the algorithm mgurack to the first tetrahedron
of the strip, and extends the strip by choosing another heighThis process is repeated
as long as there are any unvisited tetrahedra in the mesh.bakic algorithm produces a
stripification with the mean strip size of 9-14 tetrahedmairiprove the greedy algorithm,
they also used several heuristics:

1. Choosing randomly.
2. Choosing the tetrahedron with the fewest unvisited neighb
3. Choosing a sequential order first.

4. Attempt to create a fan first, then switch to another varian

According to the results, method 2 produces the best stgifin, which is in fact an
extension of thesGlI algorithm for tetrahedral meshes. The average length ostitigs
increases up to 49 tetrahedra.

Similar stripification method is presented by Weiler et &YMKEO4]. For unknown
reason, they report an average strips length of 10 tetraHedfewest unvisited neighbor
strategy and length of 5 for sequential strips.

6.4 Modification of Multi-Path Algorithm

Similarly to triangle meshes, we can have a dual graph odhetiral mesh. Using the
simplicial complex generalization, we obtain a graph, wehesich node corresponds to a
tetrahedron and tetrahedra that share a face are conngcteddrige in the graph. The
main difference is that each node can have four neighborsadf three.

To modify the Multi-Path algorithm for tetrahedral meshes, have to add two new
classification sets &, for unconnected tetrahedra with four neighbors; aidor con-
nected tetrahedra with three neighbors (see Chapter 4).eTiessets have the lowest
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priority and in fact, the tetrahedra from these groups aeel wery rarely, as each tetrahe-
dral mesh has a boundary 7.

6.5 Test and Results

We compared our method to both known tetrahedral stripifinaélgorithms [KCWO01,
WMKEO4]. King [KCWO01] suggested four different stripificationethods (we denote
them asnl-m4) and Weiler [WMKEO04] suggested two methods: for sequentiggsand
for generalized strips (we denote themsegjandgen). As we did not obtain the data
sets from King and Weiler, we present the results of strigifts of random datasets with
uniform distribution of about the same size (for models pnésd in [KCWO1], we have
only an estimation of number of tetrahedra from the numbetrgis and the average length
of strips).

In the Table 6.1 we present the comparison of number of simipsmodel. Similarly
to triangle stripification, our method produces a striptima with much lower number of
strips than other methods.

models [KCWO1] [WMKEO4] | M-Path
name tetrahedra| vertices m1l m2 m3 m4 seq gen
bracket ~3418 367 | 222 398 349
3349 550 18
phoenix 12936 | 20108 | 1000| 441 | 1231 882 122
langley 70125| 13832 | 4745| 1432| 4907 | 3763 | 16169| 7274
70318 | 10600 483
Spx 103488| 37320 24009 | 11161
106678 | 35000 1561
f117 ~240000 22203 | 6504 | 20578 | 10030
243751| 80000 3563

Table 6.1: Comparison of number of tetrahedral strips in a model.

To show the distribution of length of tetrahedral stripsthia Table 6.2 we present the
average length of strips and maximal length of strips in a@h{abth values are presented
in one cell, separated by slash).
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models [KCWO1] [WMKEO04] M-Path
name tetrahedral vertices ml m2 m3 m4 seq gen
bracket ~3418 440/9 | 119/15 188/9 | 148/10
3349 550 847/186
phoenix 12936| 20108| 182/13| 347/29| 962/11| 293/15 522/106
langley 70125| 13832 370/15| 865/49| 3486/14| 676/19| 281/4 | 2249/10
70318 | 10600 901/146
SpX 103488 | 37320 281/4 | 2235/9
106678 | 35000 413/68
f117 ~240000 404/11| 1472/37| 6238/12| 2229/24
243751| 80000 508/68

Table 6.2: Comparison of the longest and average length of the strips in a modil Ybhues are
presented in one cell, separated by slash).

Both existing algorithms produce a few long strips and a loshodrt strips or even
isolated tetrahedra. Such a distribution of length of strgonot very good. Our algorithm
does not produce these long strips, and the length of ghissimi the stripification is more
equal. Our stripification also usually tends to avoid théaisal tetrahedra and the shortest
strip in most of the cases is the connection of two tetrahedra

6.6 Summary

As the problem of hardware volume visualization is very im@ot in many computer
graphics applications, it is very probable that some kintethedral topology compres-
sion and reordering will be necessary.

We proposed a modification of our Multi-Path algorithm fangsfication of tetrahe-
dral meshes. In comparison to existing algorithms ([KCWO01, WB0K]), our algorithm
produces much lower number of tetrahedral strips. Unfatiely, we are not able to make
more comparisons, as the topic of tetrahedral stripificaisoquite new and there is no
hardware on which we can measure the rendering speedup tdtoaledral strips.



Quadrilateral Meshes Stripification

In this chapter a new algorithm for stripification of purelyagirilateral meshes is described.
The algorihtm is based on tH#&Gl algorithm. Creating strips of quads and splitting them
into triangle strips afterwards can significantly improve fuality of stripification and
increase the rendering speed.
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7.1 Quadrilateral Meshes

Quadrilateral meshes are nowadays very often used to stdreisualize various geomet-
ric objects in many applications such as computer games awermdustry (subdivision
surfaces [Z2S00]), medical and scientific visualizationlywoe rendering, surface recon-
struction from slices [SS04]), etc. In many of these appilices a real time visualization is
required. The speed of todays’ high performance renderiggnes is very often bounded
by the rate at which the data is sent into the machine. Fumibwes, most of the rendering
engines can handle only triangle faces, thus the numbeiroftyes increases.

7.2 Triangle and Quad Strips

To draw an independent setofjluads (quadrilaterals), we need to transthnertices. To
reduce the amount of transmitted data, it is possible tothaiquads into two triangles and
connect them into triangle strips (or tristrips). In somaginic libraries a special type of
primitives used for quads can be found (e.g., OpenGL). Remglef quad strips is usually
slower than rendering of triangle strips and the number dices is equal or higher than
the number of vertices using tristrips (as we show next).

A sequential triangle striggan represent quads withj + 4 vertices: in Figure 7.13)
the sequence (1,2,3,4,5,6) represents quads3 and 3465 (or trianglesA123, A324,
A345 andAb46). A sequential quad strips a sequence gf+ 4 vertices that represenis
quads: in Figure 7.1b) the sequence (1,2,3,4,5,6) represents qudadd3 andO3465.

(@) (b)

Figure 7.1: An example of sequential triangle strif@) and a sequential quad strijb).

In general situations, the quad adjacency must not allowgaesgial encoding. In
Figure 7.2(a) the sequence (1,2,3,4,5,6,7,8) produces an invalid teahc7. An extra
vertex has to be added to change the sequence to (1,2,%4/3). Using quad strip, the
situation is worse. In Figure 7(®) the sequence (1,2,3,4,5,6,7,8) produces an invalid quad
05687. To avoid this situation, it is necessary to mak&asapat a cost of three additional
vertices, i.e., a sequence (1,2,3,4,5,6,6,6,6,4,8,7).
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Figure 7.2: An example of a generalized triangle str{g) and a generalized quad strifb).

From the above example it is obvious that triangle stripsnaoee general and more
efficient than quad strips. For this reason we concentrateamyle strips only. There are
two possibilities how to construct triangle strips from maity triangulated meshes. The
first approach is to use some algorithm that triangulatetattes and then any stripification
algorithm can be used. This way is general and can be usedyotype of polygonal
meshes. The main disadvantage of this approach is thatstrameprofit from the fact that
the polygon can be triangulated arbitrarily. The other apph searches for strips in the
untriangulated model and triangulates faces on the fly. @ncipproach often leads to a
better stripification.

To obtain a good stripification we decided for the second @gghr. Detailed descrip-
tion of our new algorithm is presented in the next section.

7.3 QStrip Algorithm

Our new algorithm@STRIB is designed for meshes that are fully quadrilateral. Iisea
on a similar idea as th8GI algorithm for triangle meshes. As we are not working on a
triangulated mesh, first we construct strips of quadridsermhen we sequentially traverse
these strips and triangulate the quadrilaterals with r@dpehe triangle strips.

In the first step, the algorithm chooses a quadrilateral withw number of neighbors
to start a new strip. This choice minimizes the number ofts$toips. In Figure 7.3a), the
stripification process started in a quadrilateral with tvesghbors and an isolated quadri-
lateral ) appeared. Usually we can avoid such a situation by startorg & quadrilatral
with low a number of neighbors 7(B).

The chosen quadrilateral is removed from the mesh and isexied into the strip. The
mesh is locally updated to reflect the quadrilateral remoiaw the algorithm chooses
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v

() (b)
Figure 7.3: An example of a bada) and a good(b) choice of the starting quadilateral.

a neighboring quadrilateral that will be adjacent in thépstiTo decrease the number of
vertices in the final stripification, the algorithm prefetialty chooses a quadrilateral that
does not produce a swap. The chosen quadrilateral is agawvesl from the mesh and

inserted into the strip. These steps are repeated as longsagassible (i.e., as long as

there is a neighboring quadrilateral). If the mesh stillteoms some quadrilaterals, a new
strip is started. A pseudo-code of this algorithm is presgim Figure 7.4.

input: list of quads
output: strips of quads

while there is any quad in the mesh do
start a new strip
choose a quad with the | owest nunber of neighbors
add the quad to the current strip
renove the quad fromthe nesh
| ocal Iy update the nesh
while t here exists a nei ghbor of the current quad do
choose a nei ghboring quad that does not produce a swap
if such a quad does not exist then choose arbitrarily
add the quad to the current strip
renove the quad fromthe nesh
updat e the nesh
end while
end while

Figure 7.4: Pseudo-code of the algorithm.

The algorithm complexity i€ (s - ¢ + ¢), whereq is the number of quads andis
number of strips in the final stripification, as we neegy) steps to find the starting quad
for each strip. To speed up this algorithm, we use a prionitgwe for finding the quad
with the lowest number of neighbors. Using such a structecrahses the complexity of
finding the starting quad t©(1), and the algorithm complexity is reduced®s + q).
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After the stripification phase, it is necessary to decompbsdists of quads into ver-
tices of triangle strips. To provide a correct (counterekloise) orientation of triangle
strips in the final mesh, it is necessary to start the firshgfia of the strip in a counter-
clockwise manner. This determines the diagonal of the fuisidg As we cannot choose
the first diagonal, three different situations can appeaFigure 7.5a) a sequential strip
for four quads is shown. If the sequence of quads is not $itaggstrip is preserved at a
cost of one swap (Figure 7(B)) or two swaps (Figure 7.&)).

(@) (b) (©

Figure 7.5: A straight sequence of quads can be covered by a sequential (glriffo preserve a
strip in a non-straight sequence of quads, it is necessary to use @pe @yor two swaps(c).

As the input meshes are fully 3D, in some cases it is not plessibsplit the quad
arbitrarily, otherwise an incorrect triangle appears. tSacsituation appears when two
guads are neighboring via two edges (see Figureay,.§uadrilateral$11234 and05432).

To avoid an incorrect triangle (Figure 7(B)), at least one of the quads has to be split
along the diagonal that starts in the vertex that is not comfopthese two quads (Figure
7.6(c)). Respecting this criterion may lead to more swaps in the $imgdification. Luckily
this situation does not appear very often in a real life model

@) (b) ()

Figure 7.6: When two quads{1234 andd5432) have two common edgéa), an incorrect triangle
may appear(b); the incorrect triangle is grey colored. To avoid it, at least one of thedsuaas to
be split along the diagonal that starts in the vertex that is not common foe tiwes quads(c).
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7.4 Experiments and Results

Our new algorithm has been implemented in Borland Delphi 8.@ part of a program
for surface reconstruction from orthogonal slices (th@nstructed mesh is purely quadri-
lateral). The experiments were performed on a PC INTEL Bend, 2.8 GHz, 2 GB of
RAM, ATI FireGL T32 graphic card, running on MS Windows XP.

As our algorithm is designed specially for quad meshes, tiadity of stripification is
very high. We have compared our stripification algorithmhvtie STRIPEv.2 [Eva98],
which is also designed for a quadrilateral meshes, and hW&tR TSG[XHM99], which can
handle non-triangulated meshes. Both algorithms were dethpiith gcc/cygwincom-
piler.

A comparison of stripification methods is presented in Tahle In the first two
columns the number of vertices and the number of quads oé#ited model is presented.
In the next columns the number of strips and number of ves{iceluding swaps) obtained
by the tested algorithm is shown.

STRIPE FTSG QSTRIP

vertices | quads| strips | vertices| strips | vertices| strips | vertices
2112 | 2114 88 5101 5675 4 4903
4000 | 4002 111 9517 10955 33 9516
8240 | 8236 140 | 17096 21549 8 17922
12592 | 12588 | 391 | 29050 33725 32 28290
16288 | 16290| 393 | 36570 43333 37 36558
25712 | 25714 | 570 | 57181 [EuielsZ aumeyacCHl 49 57386
36264 | 36266 | 817 | 79957 YV EEEEcIst{oXN 44 80078
41919 | 42005 | 1356 | 98276 pelu-pmmkwiiel 102 | 95998

Table 7.1: Comparison of stripification methods. For each method the number o strig the
number of vertices in strips (including swaps) is presented (grey celihasize the best values,
black cells emphasize the worst values).

Our new method produces more or less the same number ofesd&STRIPE but
usually it covers the mesh by much smaller number of strippdeially for larger mod-
els). Although th&=TSGmethod produces a very good stripification for fully triategad
models, for quadrilateral models it produces stripificatath very high number of ver-
tices and strips in comparison to t8& RIPEor the QSTRIP The main reason for this big
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AAAAAAAAL 240

(a) STRIPE — 393 strips (b) FTSG — 788 strips

(c) QSTRIP — 37 strips

Figure 7.7: Visual comparison of stripification of a model of a tap (16290 vertices).

difference is that th& TSGmakes a triangulation of the quadrilateral mesh first and the
it stripifies the triangulated model. TI8TRIPEalgorithm did not surprisingly create large
parches but usually it created long sequential strips oflgisee Figure 7.@&). As these
strips do not contain swaps, the number of vertices in thé $ini@ification is comparable
to our new algorithm although ti8TRIPEcontains much higher number of strips. A vi-
sual comparison of the tested algorithms is presented ur&ig.4. The tap model contains
16288 vertices and 16290 quads.

As the STRIPEalgorithm outputs the stripification during the stripificat process, it
is not possible to exclude the time of I/O operations. Fos teason we have included
the time of I/O operations in all measurements, which caseasignificant errors. To
minimize these errors, all time measurements were perfdfive times and the minimal
time is presented. Such a measurement can be a bit unfag 8TfRIPEalgorithm, as the
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write operation is not continuous, but on the other handthésreal time that is needed for
stripification. The comparison of running times is publigire Table 7.2.

vertices| quads| STRIPE | FTSG | QSTRIP
2112 0.14 0.25
4000 0.25 0.30
8240 0.70 0.39
12592 0.97 0.51
16288 131 0.60
25712 2.06 0.84
36264 2.89 1.11
41919 3.10 1.28
50
---¢-- STRIPE
2 A1 - FTsG
S 30 --—-o--QSTRP
(] K
£ 50 - &
£ R
£ 10 - N
0 Lpge g S SRR S !
0 10000 20000 30000 40000
No. of quads

Table 7.2: Comparison of running times (in seconds). For each method the rutiniegincluding
I/0 operations) is presented.

The running times of thE TSGare comparable to th@STRIP The difference in the
running times can be partially caused by the cygwin emuta@és some functions have to
be called from the cygwin dynamic library, but the main reasoprobably the dynamic
programming part of theTSGalgorithm.

The most time consuming step in tBd RIPEalgorithm is the global analysis which
searches for the patches. As this global analysis searbbdsrgest possible sequence
of quads in both directions for each quad, it lias:?) complexity for fully quadrilateral
meshes.

Inthe last table (Table 7.3) we present the average frara¢F&S) for models stripified
by the tested methods and a ratio of this frame rate to theefrate for models rendered
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with quads. For the measurement we used OpenGL and vertéer lnbjects (VBO) as
they are preferred in new GPUs [NVI03]. When using VBO, a setialist of vertices is
sent to the GPU (i.e., for each quad, four vertices are sengdch triangle, three vertices
are sent — 6 vertices for a quadrilateral face — and for eaighadt vertices including swaps
are sent).

no. of QUADS TRIS STRIPE FTSG QSTRIP
quads| FPS | ratio | FPS| ratio | FPS| ratio | FPS | ratio | FPS | ratio
2114 | 234 | 1.00 252 | 1.08| 238 | 1.02| 240 | 1.03
4002 | 291 | 1.00 305| 1.05| 312 | 1.07| 320 | 1.10
8236 | 229 | 1.00 285| 1.25| 276 | 1.21| 283 | 1.24
12588 | 180 | 1.00 220 | 1.22| 214 | 1.19| 224 | 1.25
16290 | 166 | 1.00 207 | 1.25| 200 | 1.21| 218 | 1.31
25714 125| 1.00 167 | 1.33| 159 | 1.27| 176 | 1.40
36266 99| 1.00 139 | 1.40| 130 | 1.32| 146 | 1.48
42005| 80 | 1.00 111 1.39| 100 | 1.25| 111 | 1.40

---A -- TRIANGLES ---¢-- STRIPE
---%-- FTSG ---©-- QSTRIP
1.5 .. 8:
B} SR o
o @ ------- DGR
o ,gf
1.0 BA
A A A A A A
0.5 \ ‘ ‘ ‘
0 10000 20000 30000 40000
No. of quads

Table 7.3: Comparison of frame rate achieved with models rendered with quadsgteisrand
tested stripifications.

As for a triangle mesh we have to send 1.5 times more verti@asfor a quadrilateral
mesh, the frame rate is much lower even though renderingragle primitive is faster than
rendering a quadrilateral.

Although the number of vertices using triangle strips isrlyevice smaller than the
number of vertices when using quads, the speed up is not twgteer. The reason is
similar to the quad vs. triangle speed up (e.g. drawing thedte strip primitive is more
time consuming than drawing the quad).



QUADRILATERAL MESHESSTRIPIFICATION 61

The comparison of frame rates of individual stripificatiorthods did not get any
surprising results. ThETSGproduces a stripification that is rendered at the lowestdéram
rate as it contains high number of vertices and strips. Tigifstation produced by our
algorithm runs at highest frame rate as the number of veracel strips is low. Although
STRIPEproduces a stripification of nearly the same number of \&st&@sQSTRIR the
frame rate is in the middle betwe&STRIPandFTSG This is caused by the fact that
STRIPEstripification contains higher number of strips and stgrnnew triangle strip
costs some extra time.

In all these tests our new algorithm reached the best rediilitse tests are a bit unfair
to STRIPEandFTSGas these algorithms can handle more general type of megshése o
other side as far as we know, there is no other algorithm desdlidor fully quadrilateral
meshes, thus we have chosen the best existing algorithms.

7.5 Summary

We have designed and implemented a new stripification algorfior quadrilateral meshes.
As we know the mesh structure, we can exploit it and produdgtaduality stripification.
In comparison to other methods that can stripify not fullpigulated meshes, our new
algorithm produces a stripification with lower number offstrand vertices.

There is still some place to improve the quality of stripifioa. One of possible ways
for the future work is to investigate the behavior of vertexiwes that are implemented in
todays GPUs and adapt the stripification to maximize the fitesfehe cache.



Stripification and Topology

In this chapter we present an overall comparison of sevegat important stripification
algorithms. The tests are performed on a set of real life isoae well as on a set of
artificial objects. We also show, how the triangle connélgtinfluences the stripification

process.
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8.1 Comparison

In this section we introduce a comparison of several algor#t that create a stripification
without changes in topology. We have chosen the algoritiatsare somehow important
or interesting and their implementations are freely até@an the Internet (or they can be
obtained via email). For all tests, we have used PC INTELiBen#, 2.8GHz, 1024MB
of RAM, running on MS Windows XP with ATI FireGL T32 GPU (32MB).

Table 8.1 presents an overview of the tested algorithms. fif$tecolumn shows the
short name of the algorithm as it was presented in this p&sahe programming language
and the compiler can influence the speed of the program, tendecolumn ("Compiler"”)
shows the used compiler. A short name under which the algorwill be presented in
tables is shown in the column "Label" (last character of thelalistinguishes the strip
minimizing algorithm — S; and the vertex minimizing algbri — V). For all algorithms we
have used the default parameters or parameters that werameended by the authors. The
concrete parameters are mentioned in the column "Pararhetery often, the algorithm
has implemented both the vertices minimizing function dredstrips minimizing function.

Algorithm Compiler Label | Parameters Minimizing
SGI Delphi SGS | -LNLN strips
SGV | -LS vertices
MStrip Cygwin,gcc| MSS | -m2 strips
MSV | -m2-q vertices
STRIPE Cygwin, gcc| STS | -l strips
STV | q vertices
FTSG Cygwin, gcc| FTS | -dfs -concat -sgi| strips
FTV | -dfs-concat -alt| vertices
Tunneling Cygwin, gcc| TUS strips
Multi-Path Delphi MPS strips
Extended Multi-Path| Delphi EMS strips

Table 8.1: Algorithms overview.

e SGI — SG(S/V)Although the originaltomesh.ccode is available on the Internet
[AHB], we have used our own implementation of this algorititmorder to ex-
periment with various heuristic functions [Van02]. We haged the standard SGI
method (-LNLN) and vertex minimizing heuristic (-LS) forehests.
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e MStrip — MS(S/V)The source code of the program is available on the Inte8ieP]
under the GNU General Public License. The number of the $anmabus strips was
set to two which produces the best results in most cases. €asurement for both
heuristics (strips minimizing, vertices minimizing (-qyas performed.

e STRIPE — ST(S/VYhe source code of the program is freely available on therint
net [Eva98] for non-commercial use. The mesh is exportethguhe stripification
process, thus it is not possible to exclude the time of I/Orajgens. The tests are
performed with two heuristic functions: "Look ahead one lenehoosing the next
polygon" (-) and "Choose the polygon which does not produceaps (-q). The
tests are performed with STRIPE version 2, which is much faste

e FTSG — FT(S/V)The program is free for non-commercial purposes only adrit
be obtained via e-mail [Xia]. The tests were performed with depth-first search
heuristic (-dfs) and enabled concatenation of strips atn The next triangle deci-
sion was based on tI&Gl criterion (-sgi — strips minimizing) and on alternating the
left-right turns (-alt — vertices minimizing).

e Tunneling — TUSThe program is not available on the internet, but it can aiobd
via e-mail from the author. The tests were performed withd&kult settings. The
program does not contain any vertex minimizing heuristic.

e Multi-Path — MPS The program is available on request. The version we used for
tests does not have any parameter that can influence thdicatipn quality. It
minimizes the number of strips.

e Extended Multi-Path — EM3xtension of Multi-Path algorithm is available on re-
guest. As well as Multi-Path algorithm, it minimizes the riagn of strips.

All experiments were performed on a PC INTEL Pentium 4, 2.2G*5B RAM, ATI
T32, running on MS Windows XP. Naturally, times of 1/O opé&vas have been excluded
from measurements (excepT RIPE.

8.2 Real Models

For our tests, we have used the same set of models as in peshapters (Table 4.1).
These models are freely available for non-commercial megp@nd they can be found in
many papers on stripification.
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Vertices

In Table 8.2, a comparison of number of vertices in stripsresented. The number of
vertices determines the size of data needed for the model tHe amount of data sent
to the rendering engine. The difference in the number ofcestdoes not vary too much
for different algorithms, because there are two theorktioands. The number of vertices
could not be lower thanumber of triangles+2 (for a sequential strip, covering the whole
triangulation, which is quite impossible for a real-life ded) and it could not be higher
than3 - number of triangles for a set of isolated triangles @r number of triangles for

a connected set of triangles. The Figure 8.1 shows a conopaoisvertices per triangle,
i.e., the ratio of number of vertices to the number of triasgl

algorithm SGI MStrip STRIPE FTSG Tunnel M-Path

model SGS SGV | MSS | MSV STS STV FTS FTV TUS MPS EMS
cow 8K 7K 8K 7K 7K 7K 7K 8K 8K 8K
demi 23K 22K 23K 22K 22K 23K 22K 24K 24K 24K
bunny 87K 82K 86K 82K 83K 85K 82K 99K 94K 86K

dinosaur 148K 139K | 147K | 140K
balljoint 358K | 338K | 355K | 341K
club 532K 505K | 527K | 507K
hand 876K | 812K
dragon 1237K | 1130K
happy 1546K | 1410K
blade 2294K | 2135K

141K 145K 140K 159K 159K 150K
343K 346K 340K 386K 387K 355K
512K 522K 508K 581K 582K 537K
825K 856K 824K 939K 921K 890K
1153K | 1196K | 1156K | 1261K | 1254K | 1243K
1439K | 1492K | 1443K | 1574K | 1563K | 1552K
2160K | 2249K | 2166K | 2542K | 2426K | 2364K

Table 8.2: Number of vertices in strips (in thousands; grey cells emphasize thedlest, black
cells emphasize the worst values).

The vertices minimizing algorithms -SGI (SGV) STRIPE (STVMStrip (MSV)and
FTSG (FSV)— produce nearly the same number of vertices. The averagdov/ffhese
algorithms is about 1.25. TH&GI (SGVlgorithm produces stripifications with the lowest
number of vertices (1.23 V/T in average). As this algoritiincy chooses the triangles
which do not cause a swap, the low V/T is compensated by a hugéer of strips.

The STRIPE (STS)lgorithm produces a stripification with an average V/T dldod7.

In our opinion there is some bug in the code, as this algorphoduces a high number
of vertices and also a high number of strips (although it ghounimize the number of
strips).
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Figure 8.1: Graph of average number of vertices in strips per triangle.

It is quite interesting that nearly all algorithms, exc@pnneling (TUSpnd STRIPE
(STS) have the same behavior. For the bunny, club and blade matiegdi{ have nearly
a regular structure), the average V/T is very low, on the roside, the average V/T for
the dragon and for the happy buddha is more than 10% highenilaBibehavior is also
noticeable in the average length of strips (Figure 8.2).

The results oMSTRIPalgorithms are not published for all models, as the algoritid
not work well on the Windows platform (for high resolution deds, the program crashed).

Strips

The number of strips produced by the tested algorithms aeepted in Table 8.3. The
number of strips as well as the number of vertices is cruoiattie rendering speed. As
starting a new strip takes some extra time, a huge numbeanafjte strips slows down the
rendering. On the other side, minimization of the numbertops often leads to higher
number of vertices (swaps).

For better comparison, the average length of trianglesstapresented in the Figure
8.2. As mentioned earlier, nearly all algorithms have amidehavior which depends on
topological regularity of the mesh.

The Tunneling (TUS)Multi-Path (MPS)and Extended Multi-Path (EMSalgorithm
produce more than three times lower number of triangle sthjpn all other algorithms.
On the other side, to obtain such long triangle strips, itisassary to use swaps (thus all
these algorithms produce higher number of vertices).
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algorithm SGI MStrip STRIPE FTSG Tunnel M-Path

model SGS SGV | MSS | MSV STS STV FTS FTV TUS | MPS | EMS
cow 98 352 78 127 141 136 105 312 19 17 16
demi 335 1183 [PEE] 419 456 418 286 | 1020 139 99 94

bunny 648 3560 575 | 1174 1531 1229 618 3238 166 154 86
dinosaur 1177 WA 1271 | 2422 2470 2498 1346 6411 260 324 197
balljoint 2279 VL7 2519 | 5746 6145 5820 2446 | 15371 536 705 381

club 2658 EPKRlE 3111 | 7782 9210 | 8184 | 3054 | 21148 750 963 454
hand 8997 Y YN 15309 | 15422 | 10394 | 38779 1590 | 2166 | 1646
dragon 17399 ARy 22928 | 25356 | 20571 | 58377 3331 | 4832 | 4380
happy 21578 JERSENK] 28563 | 31550 | 25576 | 72271 3710 | 5845 | 5250
blade 23125 gkt 41128 | 35952 | 26779 | 99890 4606 | 5902 | 4281

Table 8.3: Number of strips achieved by the tested algorithms.
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Figure 8.2: Graph of average length of strips.

The differences in the number of strips are very high. Bi@&d (SGShlgorithm pro-
duces stripification with more than 20 times higher numbestaps than thelunneling
(TUS)or Extended Multi-Path (EMS)

Rendering Speed

As the triangle strips are mainly used to speed up the vizatadn, we have also tested the
rendering speed of models stripified by different techngg{i@ble 8.4 and 8.5; the speed
is stated in FPS — frames per second). For the comparisonawee used two different
techniques: display lists, which are precompiled and calpeanodified during the running
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time; and vertex buffer objects that allow modifications [[N¥]. We also present the
rendering speed for original mesh (TRI) and the rendering@pe mesh that is reordered
to have a better ACMR by Bogomjakov’s method [BG01](BOG).

algorithm Tris SGI MStrip STRIPE FTSG Tunnel M-Path

model BOG SGS | SGV | MSS | MSV STS | STV FTS FTV TUS MPS | EMS
cow 358.0 | 350.8 | 353.8 | 355.8 | 358.6 | 355.9 | 354.5| 344.7| 359.5| 360.3 | 358.0
demi 3589 | 351.1 | 357.9 | 353.6 | 358.8 | 353.7 | 357.3 | 347.9| 360.4 | 360.3 | 358.8
bunny 231.7 | 217.7 | 226.3 | 221.4 | 236.6 | 221.5 | 222.8 | 210.1 240.5 | 234.8 | 229.4
dinosaur 228.1 | 216.2 | 227.2 | 224.4 | 227.7 | 2249 | 226.0 | 216.5 2314 | 231.1 | 229.8
balljoint 1345 | 125.1 | 1341 | 126.2 | 134.1 | 131.6 | 133.0 | 124.9 136.9 | 136.9 | 135.9
club 984 | 916| 981 | 958 | 979 | 964 | 974 | 915 99.8 | 100.0 | 99.0
hand 69.0 62.7 68.9 67.5 67.8 63.0 71.1 70.9 70.7
dragon 55.0 48.1 54.4 53.0 53.5 48.8 56.7 56.6 56.4
happy 45.4 39.5 44.8 43.6 44.0 40.1 46.6 46.7 46.5
blade 28.4 25.8 28.3 27.2 27.9 25.8 29.3 29.1 29.0

Table 8.4: The average FPS using display lists.

While using the display lists, the commands are compiled f@penGL's high-level
command language into low-level hardware commands anddtorthe memory. When-
ever the list is being drawn, these precompiled data is usedve a lot of function calls
and compilations. This rendering method is very fast, bediit be used for static data only.
It also does not use the vertex caches, as vertices are défyniedl coordinates and not
by table of vertices and indices to this table (this is thsoeawhy the speed of randomly
ordered triangles and cache friendly ordered trianglesasin the same).

As shown in the Introduction, to draw a setrofndependent triangles, it is necessary
to sendn * 3 vertices. As we use the lighting, we also need 3 normals. Each vertex
coordinate and normal is defined by three floating point numfen 4 bytes). Thus, the
real size of data isn x (33 %4+ 3*3x%4) = nx 72 B, e.g., for model of hand
(419554 triangles), the size of data is 28.8 MB (as the usdd &Gftains 32 MB memory,
rendering an object with higher number of triangles leads sgnificant slowdown). The
first benefit of triangle strips is that the critical size ofaebis about twice higher. The
second benefit is that it is possible to re-use the last twestoamed vertices, thus avoid
some transformation and lighting computation.

Using the stripification significantly increases the spelexkndering while using dis-
play lists. The speedup is higher than 2.5 and the diffeebetween different stripifi-
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cation techniques are smaller than 15%. The highest fragseeaie reached with models
stripified by Tunnelingand Multi-Path (generally, strip minimizing methods seem to pro-
duces more suitable stripification for rendering).

algorithm Tris SGI MStrip STRIPE FTSG Tunnel M-Path

model TRI BOG SGS | SGV | MSS | MSV STS | STV FTS FTV TUS MPS | EMS
cow 359.8 | 354.2 | 341.3 | 350.0 | 350.8 | 354.5| 350.1 | 349.6 | 336.9 | 357.3| 357.1 | 354.8
demi 363.1 | 351.3 | 324.6 | 350.6 | 340.2 | 350.9 | 342.7 | 350.1 | 324.8| 354.7 | 356.0 | 353.6
bunny 213.3 | 187.9 | 162.0 | 184.0 | 165.2 | 192.0 | 174.3 | 177.9 | 158.5 202.6 | 193.9 | 188.0
dinosaur 179.0 | 165.5 | 122.2 | 160.6 | 148.3 | 164.0 | 150.6 | 156.5 | 135.8 172.1 | 167.9 | 161.9
balljoint 87.4 76.2 53.9 75.6 70.2 77.9 69.9 72.7 56.1 82.3 80.9 78.1
club 913 | 728| 357| 73.7| 675| 771| 678 | 714 | 40.2 825 | 80.8| 74.6
hand 68.7 56.1 55.3 50.3 51.6 22.3 63.9 61.1 58.8
dragon 55.2 | 48.1 373 | 36.8| 450 | 16.2 51.9 | 50.3| 50.9
happy 47.8 41.2 30.1 27.3 33.4 13.1 13.9 43.6 44.2
blade 0.2 10.5 7.1 11.0 8.0 9.4 6.7 13.6 11.6 10.2

Table 8.5: The average FPS using vertex buffer objects with indexed primitives.

The vertex buffer objects (VBO) consist of two (or more) ag:ayhe first array defines
the vertices coordinates (it is also possible to define atktex properties such as normals,
colors or texture coordinates), the second array definegriafiitives (triangle, triangle
strips) as sets of indices to the vertex array. Such an appr&ws to use the integrated
vertex cache. The real size of data is approximatgly:24 + n x 12 = n * 24 B, wheren
is the number of triangles ariflis the number of vertices.

As the Bogomjakov’s method produces well ordered triangles ACMR is 0.72, see
Table 8.6), the rendering speed is very high. The positifecebf the vertex cache is
noticeable if we compare this speed to the speed of rendefingordered triangles. Al-
though the speed higher than the rendering speed of stdpifeedels rendered by VBO,
for most of the models, it is lower than rendering speed a@pisied models rendered by
display lists. But similarly to display lists, there is a bigpd down in speed for large mod-
els (triangle model of blade with more than 1.7 million o&trgles is larger than 40 MB,
this size can be reduced to less than 30 MB by triangle strips)

The lower speed of rendering of triangle strip models canawsed by two facts: the
ACMRIs higher than in Bogomjakov’s method, thus more verticeghawe transformed
multiple times; and there is a function call overhead whsang strips, as each strip has to
be sent separately to the GPU, while all triangles can beis@mte call.
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ACMR

New graphic cards often contain a small vertex cache (in ®énsrtices) that can signif-
icantly speed up the rendering, as cached vertices do ndttodee processed repeatedly.
To maximize the benefit of this vertex cache, the strips sandiave to preserve the lo-
cality to minimize the average cache miss ra@MR). The theoretical upper bound is
about 3.0 — each afi vertices has to be processed every time, thus in an averagie me
ACMR(k) = $2 = 3. The theoretical lower bound is 0.5 as each vertex has todjeeda

at least onceACM R(k) = 5% = 0.5). In Table 8.6, we present tieCMRfor the vertex
cache of size 16, which is used quite often.

algorithm Tris SGI MStrip STRIPE FTSG Tunnel M-Path

model TRI | BOG | SGS | SGV | MSS | MSV | STS | STV | FTS | FTV TUS | MPS | EMS
cow 0.73 | 0.83| 098 | 085 | 0.95| 0.80 | 0.92| 0.92 | 1.03 0.78 | 0.81 | 0.83
demi 0.73 | 081 | 097 | 0.86 093 | 081 | 091 | 0.88| 1.01 080 | 081 | 0.84
bunny 0.74| 090 | 099 | 092 | 099 | 0.82| 0.96 | 0.97 | 1.03 0.81| 0.87 | 0.90
dinosaur 0.73 | 086 | 099 | 0.88| 096 | 0.81| 0.93| 0.93 | 1.03 0.80 | 0.82 | 0.87
balljoint 0.73 | 0.88| 099 | 089 | 098 | 0.82| 0.94| 0.96 | 1.03 0.81| 0.82| 0.86
club 0.73 | 091 | 099 | 092 | 098 | 0.82| 0.95| 0.96 | 1.03 082 | 0.84| 0091
hand 0.72 | 0.84 | 0.99 081 | 091 091 | 1.02 0.79 | 082 | 0.83
dragon 0.71 | 0.79 | 0.97 0.80 | 0.87 | 0.87 | 1.01 0.77 | 0.78 | 0.79
happy 0.71 | 0.79 | 0.97 080 | 087 | 0.86 | 1.01 0.77 | 0.78 | 0.78
blade 0.73 | 0.87 | 0.99 0.81| 092 | 093 | 1.03 0.79 | 0.85| 0.86

Table 8.6: The average cache miss rate (ACMR) for cache size k = 16 (grey cefibasize the
best values, black cells emphasize the worst values).

In general, the vertex minimizing algorithm produce worsedering sequence for all
models. This is caused by the way the algorithms work. As #neyninimizing the number
of vertices, the strips produced by these algorithms aaggstt, thus they are not localized.
Although the stripification algorithms are not designedéoger vertex caches, the ACMR
is quite low (the difference betwedmunnelingand Bogomjakov’s method is about 10%).

Execution Time

The time of the stripification process is actually not veryatal, as the stripification is
usually made in a preprocessing stage. The execution tinesgted in Table 8.7 do not
include the 1/O operation (except tIs¥ RIPEalgorithm, where the output operation runs
during the stripification process).
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algorithm Tris SGI MStrip STRIPE FTSG Tunnel M-Path
model BOG | SGS | SGV | MSS | MSV | STS* | STV* | FTS | FTV TUS MPS EMS
cow 0.33 | 0.05| 0.02 | 0.01 0.01 0.20 0.22 | 0.02 | 0.02 0.64 0.03 0.03
demi 1.01| 009 | 0.02| 0.04| 0.04| 0.64 0.64 | 0.06 | 0.06 Xyl 0.09 0.16
bunny 466 | 0.38| 0.14 | 0.19 0.19 2.36 240 | 0.27 | 0.28 101.72 0.40 0.67
dinosaur 7.75| 064 | 022 | 034 | 034 | 3.63 3.66 | 0.45 | 0.47 LIRSl 0.69 1.06
balljoint 2093 | 164 | 0.64 | 0.99 1.01 8.89 895 | 1.19 | 1.19 109.67 1.74 15.42
club 3445 | 254 | 092 | 150 | 151 | 1356 | 13.79 | 1.80 | 1.81 EK[Y@XE 2.64 | 32.13
hand 57.18 | 3.52 | 1.20 26.37 | 26.30| 2.24 | 221 343.06 3.64 11.51
dragon 84.38 | 5.02 | 1.92 27.39 | 27.16 | 3.25 | 3.48 EEGYPRLE 5.18 | 134.80
happy 113.21| 6.30 | 2.56 33.90 | 3356 | 4.12 | 4.42 897.42 6.49 | 163.09
blade 118.51| 9.89 | 4.08 86.33 | 86.48 | 6.24 | 6.58 |EeLrNGN 10.24 72.16

Table 8.7: The computation time in seconds (grey cells emphasize the best valuds céls
emphasize the worst values; * as tB&@RIPEalgorithm saves the result during the stripification
process, it is impossible to show the time of stripification and we present thletitne minus
average of I/O times for other algorithms).

All algorithms excepSTRIPE Extended Multi-Patland Tunnelingproduce the stripi-
fication in about the same time. One reason whySA®IPEis slow is that the algorithm
saves the result during the stripification process and imoissible exclude the 1/O time
from the measurement (we present the total running time snine average time of 1/0
operations for other algorithms).

As Tunnelingsearches for a tunnel with a breadth first search method feah strip
endpoint, the complexity of the algorithm is higher tlafm) and the execution time is not
comparable to other algorithms.

The running time oExtended Multi-Paths higher mainly for irregular meshes, as in
irregular mesh, it takes longer time to find the node with miadiweight difference.

The SGI-LS algorithm is the fastest one, as it uses a verylsigrerion and it does
not make the lookahead search.

Memory Usage

As different algorithms use different data structures, @n@ount of allocated memory
can differ (Table 8.8). To measure the memory usage, a profrat scans the running
processes (using win32 API CreateToolhelp32Snapshotifumycnd stores the memory
usage peak for a process is used. As the scanning is not goninsome inaccuracy may
appear.
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algorithm SGlI MStrip STRIPE FTSG Tunneling M-Path

model SGS | SGV | MSS | MSV STS STV FTS FTV TUS MPS | EMS
cow 11 1.6 4.6 5.1 3.5 4.1 2.3 2.0 2.0 2.1
demi 2.1 2.4 6.0 6.5 8.3 8.1 4.2 3.3 3.4 3.6
bunny 6.8 6.0 | 124 12.9 27.0 26.9 13.6 12.9 9.4 9.9
dinosaur 9.3 11.0 17.6 18.1 42.2 42.5 17.5 17.5 14.4 15.2
balljoint 21.0 222 | 374 37.9 | 100.5 | 100.6 38.8 38.8 33.3 349
club 349 | 34.0| 552 | 55.2| 152.8| 1529 | 58.0| 58.0 50.0 | 525
hand 53.9 52.0 237.3 | 237.3 | 118.2 | 118.2 78.0 81.9
dragon 715 | 68.0 315.2 | 315.2 | 122.1 | 122.1 104.4 | 109.6
happy 88.9 | 86.0 391.8 | 392.8 | 190.2 | 190.2 129.8 | 136.3
blade 143.3 | 136.3 430.5 | 427.2 | 298.8 | 298.8 207.1 | 211.2

Table 8.8: The amount of allocated memory in MB (grey cells emphasize the bessyalack
cells emphasize the worst values).

TheTunnelingis the most memory consuming stripification program of ttstete pro-
grams. This is not very surprising as the algorithm needgeaiajdata structure to maintain
the information about the tunnels. The memory usadgeTdRIPEs also very high, but we
do not know the reason. As far as we know, it does not need awyadstructures (it works
on the same principle as the SGI algorithm), furthermore sthips are being saved during
the stripification process into a file.

8.3 Regular Data

We have also tested the behavior of these algorithms on #iciattobject — torus. This
object has several advantages: it has no borders, all egtiias six neighboring triangles
and it is very easy to generate a torus with various compleir our tests, we have used
20-sided torus with 20 to 10000 segments. We present onljntst important tables, i.e.,
number of strips (Table 8.9) and number of vertices (Talle)s.

All strip minimizing algorithms (except MStrip, which starbuilding two strips and
does not succeed to connect them) produce a single stigpfisation. The number of
strips produced by vertex minimizing methods (except STRERpends on the number of
sides of the torus and on the divisibility of number of segta@md number of sides.

The number of vertices is presented in Table 8.10. Nearlynathods produce a strip-
ification of about the same size as the number of trianglekarstripified model. As the
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algorithm SGI MStrip STRIPE FTSG Tunneling M-Path
model SGS | SGV | MSS | MSV STS | STV | FTS | FTV TUS | MPS | EMS
20x20 1 2 17 1 1 1 1 1
20x50 1 19 2 19 1 1 9 1 1 1
20x100 1 19 2 19 1 1 19 1 1 1
20x200 1 19 2 19 1 1 19 1 1 1
20x500 1 19 1 1 19 1 1 1
20x1000 1 19 1 19 1 1 1
20x2000 1 19 1 19 1 1
20x5000 1 19 1 19 1 1
20x10000 1 19 1 19 1 1

Table 8.9: Number of strips achieved by the tested algorithms.

stripification produced by STRIPE (STS) seems to produceomarstrips, the number of
vertices is higher (Figure 8.@)). The Multi-Path algorithm produces a stripification that
contains a high number of swaps, thus the number of vertscesry high (Figure 8.8),
the brightness indicates the order of triangle in the strlpck is the first triangle in the
strip, white is the last).

algorithm SGI MStrip STRIPE FTSG Tunneling M-Path

model SGS | SGV | MSS | MSV STS | STV FTS FTV TUS MPS | EMS
20x20 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K
20x50 2K 2K 2K 2K 3K 2K 2K 2K 2K 2K
20x100 4K 4K 4K 4K 6K 4K 4K 4K 4K 4K
20x200 8K 8K 8K 8K 12K 8K 8K 8K 8K 8K
20x500 20K 20K 29K | 20K 20K 20K 20K 20K
20x1000 40K 40K 59K 40K 40K 40K 40K
20x2000 80K 80K 117K 80K 80K 80K
20x5000 200K | 200K 292K 200K | 200K 200K
20x10000 | 400K | 400K 584K 400K | 400K 400K

Table 8.10: Number of vertices achieved by the tested algorithms.

We do not present running times, as the time for stripificatoes not vary too much
from the time of stripification of irregular meshes. For tlaeng reason we do not show
the memory usage that mainly depends on the number of teéarmgjlthe input mesh. As
nearly all methods produce the same number of vertices aydormg straight strips, i.e.,
the vertex cache is used only for common edges, in most das@<iVR is closeto 1. The
only significant difference in ACMR is produced by STRIPE (SFijure 8.3(@), which
produces a "random" stripification and the ACMR is comparabl@EMR on irregular
meshes+0.80).
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Figure 8.3: Examples of stripification of regular torus. The stripification produced Bg &lgo-
rithm is quite irregular (a). The Multi-Path algorithm produces a stripification with a high number
of swaps — the brightness indicates the order of triangle in the gtn)p

8.4 Topology

We were surprised by the similar behavior of all algorithmrsvarious models (Figures 8.1
and 8.2) and on regular data, and we have performed a setest®fwhether it is possible
to improve or worsen the quality of stripification by changesopology (i.e., changes of
degrees of vertices). We have chosen two extreme modelsylaund dragon) and we have
computed the histogram of vertex degrees (Figure 8.4).
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Figure 8.4: Histogram of degree of vertices. The bunny model is quite regular & timan 70% of
vertices have degree six. With less than 33% of vertices of degree switin® vertices of degree
15, the dragon model is highly irregular.
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First, we have tested, what will happen with the quality ap#ication if we make the
bunny model irregular. To do this, we have randomly swap@0Q@, 20000 and 30000
edges. The random swapping has changed the histogram @edegfr vertices as shown
in Figure 8.5. We have used these inputs a we have perforneestripification for each
tested method.
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Figure 8.5: Histogram of degree of vertices. The edges in the bunny model wetemdy swapped,
which produces more irregular model.

Increasing the irregularity, the number of vertices (TablEl) and the number of strips
(Table 8.12) increases as we have expected. For nearlygalitims, the number of ver-
tices used in stripification increased about 10-15%, agégidar mesh, the possibility of
sequential strip decreases, thus the number of swaps isthifysiTunnelingandMulti-Path
produces triangle strips with high number of swaps evendgular meshes, the increase
of vertices is not so high.

algorithm SGl MStrip STRIPE FTSG Tunneling M-Path

model SGS | SGV | MSS | MSV STS | STV | FTS | FTV TUS | MPS | EMS
bunny 87K | 82K | 86K | 82K | 102K | 83K | 85K | 82K 99K 94K 89K
10k 97K 90K 96K 91K | 102K | 91K | 94K | 92K 100K | 100K 98K
20k 99K 90K 98K 91K | 102K | 92K | 96K | 94K 100K | 100K | 100K
30k 100K 90K 98K 91K | 103K | 92K | 96K | 94K 100K | 100K | 101K

Table 8.11: Number of vertices achieved by the tested algorithms for original bu®y,2Dk and
30k random swaps.

While increasing the number of vertices in strips, the ACMRrdases as the strips are
becoming more local (Table 8.14). Although the low ACMR slaaaiprove the rendering
speed, the increase of number of strips and number of veii¢eo high and the rendering
does not vary too much (Table 8.13).
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algorithm SGI MStrip STRIPE FTSG Tunneling M-Path
model SGS | SGV | MSS | MSV STS | STV FTS | FTV TUS | MPS | EMS
bunny 648 | 3560 573 | 1173 | 1531 | 1229 618 | 3238 166 154 88
10k 1143 | 5626 | 1117 | 1749 | 1655 | 1816 | 1417 | 4555 225 325 242
20k 1520 | 6206 | 1414 | 1879 | 1861 | 2014 | 1815 | 5044 290 490 430
30k 1644 | 6537 | 1590 | 1975 | 2048 | 2101 | 2059 | 5140 346 639 605
Table 8.12: Number of strips.
algorithm SGI MStrip STRIPE FTSG Tunneling M-Path
model SGS | SGV | MSS | MSV STS | STV FTS FTV TUS MPS | EMS
bunny 2321 | 218.1 | 226.2 | 220.8 | 236.7 | 221.5 | 223.2 | 210.4 240.7 | 235.2 | 229.2
10k 236.1 | 216.9 | 228.9 | 220.6 | 234.8 | 229.1 | 231.9 | 210.1 239.3 | 237.9 | 237.6
20k 236.1 | 218.1 | 2285 | 221.2 | 234.1 | 230.9 | 232.4 | 210.5 237.4 | 2346 | 235.9
30k 234.6 | 218.1 | 228.2 | 221.9 | 233.1| 230.9 | 2325 | 210.0 236.5 | 232.3 | 2325
Table 8.13: The rendering speed in frames per second (FPS).
algorithm SGI MStrip STRIPE FTSG Tunneling M-Path
model SGS | SGV | MSS | MSV | STS | STV | FTS | FTV TUS | MPS | EMS
bunny 099 | 099 | 092| 099 | 082 | 0.96 | 0.97 | 1.03 0.81 | 0.87 | 0.90
10k 098 | 098 | 0.83| 0.89| 081 | 0.87 | 0.87 | 1.02 0.78 | 0.79 | 0.80
20k 096 | 0.96 | 0.81 085 | 0.79 | 0.83 | 0.84 | 1.00 0.76 | 0.78 | 0.78
30k 095| 095| 0.80| 0.84 | 0.78 | 0.80 | 0.82 | 0.99 0.75| 0.77 | 0.78

Table 8.14: The average cache miss rate (ACMR) for cache lsizel6.

The processing time of most of the algorithms does not deparibde regularity of the
mesh (Table 8.15). As the Extended Multi-Path algorithmeisigned for regular meshes,
the processing time is higher for irregular meshes. In @aguleshes, there usually exist
several candidates with zero weight difference, thus thecbéng for the next triangle is
done very quickly. In irregular meshes, it is usually neaeg$o search in larger list of
possible candidates for the minimal weight different, viahirecreases the processing time.

algorithm SGI MStrip STRIPE FTSG Tunneling M-Path

model SGS | SGV | MSS | MsSV STS | STV FTS | FTV TUS | MPS | EMS
bunny 0.386 | 0.125 | 0.189 | 0.191 | 2.996 | 3.043 | 0.265 | 0.266 101.282 | 0.396 | 0.675
10k 0.342 | 0.141 | 0.193 | 0.193 | 2.986 | 2.961 | 0.265 | 0.288 16.048 | 0.351 | 0.957
20k 0.354 | 0.140 | 0.193 | 0.194 | 2.970 | 2.959 | 0.266 | 0.288 10.266 | 0.360 | 0.951
30k 0.353 | 0.141 | 0.193 | 0.197 | 2.974 | 2.955 | 0.266 | 0.288 10.203 | 0.365 | 1.953

Table 8.15: The processing time in seconds.
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Surprisingly, theTunnelingalgorithm is much faster for irregular meshes (for a bunny
model with 30 thousand of edge swaps, the time decreases &gta bf 10). This is
probably caused by the minimal length of tunnels that carobed in irregular meshes. In
regular mesh, the strips are usually long and straight, ttireisunnels (i.e., a path between
ends of two different strips) are long. As the tunnels arecdesl by a breadth first search
algorithm, the running time is drastically increasing.

We have also tested, whether it is possible to improve théitgus stripification by
regularizing the input mesh. We have chosen an irregulahrfi¥zagon) and we iteratively
improved the mesh by swapping the edges that are incidenglodegree vertices. The
changes in the histogram of vertex degrees are presentadure8.6. Similarly to pre-
vious test, the number of vertices (Table 8.16) and numbstrigfs (Table 8.17) decrease
with increase of regularity.
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Figure 8.6: Histogram of degree of vertices. The edges incident to high degréieegein the
dragon model were swapped, to produce more regular model.

algorithm SGI MStrip STRIPE FTSG Tunneling M-Path

model SGS SGV | MSS | MSV STS STV FTS FTV TUS MPS EMS
dragon 1237K | 1130K 1290K | 1153K | 1196K | 1156K 1261K | 1254K | 1243K
100k 1195K | 1098K 1286K | 1119K | 1167K | 1108K 1257K | 1242K | 1227K
200k 1179K | 1087K 1287K | 1105K | 1156K | 1092K 1252K | 1237K | 1220K
300k 1177K | 1085K 1286K | 1103K | 1155K | 1091K 1254K | 1237K | 1220K

Table 8.16: Number of vertices achieved by the tested algorithms for original dragja®k, 200k
and 300k swaps of edges that are incident to high degree vertices.
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algorithm SGI MStrip STRIPE FTSG Tunneling M-Path

model SGS SGV | MSS | MSV STS STV FTS FTV TUS | MPS | EMS
dragon 17399 | 71182 22928 | 25355 | 20571 | 58377 3331 | 4832 | 4287
100k 14105 | 66036 21292 | 21899 | 17249 | 56968 2761 | 3615 | 3229
200k 13069 | 63391 20920 | 20660 | 15928 | 55965 2516 | 3430 | 2852
300k 12957 | 63121 20891 | 20914 | 15917 | 55579 2591 | 3210 | 2794

Table 8.17: Number of vertices in strips.

8.5 Summary

As the SGI vertex minimizing algorithm produces the lowest numbereatices, it seems
to be the best choice for storing data in strip represemtatue to high number of strips
produced by this algorithm, the rendering speed is low. Tgeed can be improved by
using other vertex minimizing algorithms (special4Strip and STRIPB which produce
nearly the same number of vertices as #tal

The strip minimizing algorithms produce stripificationgatlare usually rendered faster
than other stripifications. This is probably caused by thalennumber of system calls
when starting a new strip and by lower cache-miss ratio. Ttmnelingalgorithm produces
the best stripification in most of the cases, but the strigiiioc process is memory and time-
consuming. Similar stripifications can be obtainedviylti-Pathalgorithm, which is much
faster.

We show that although triangle stripping algorithms aredestigned for vertex caches,
they produce a good rendering sequences and they still hplaea in real-time applica-
tions.

We also show that the quality of stripification depends ortdipelogy of input mesh —
for regular meshes, the stripification contains a lower nemal strips and vertices, but the
ACMR is higher and vice versa.



Conclusions and Future Work

As we have presented several different stripification atlyors, in this chapter, we sum-
marize the main results of our work. We also address se\ssaés for a future work.
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9.1 Main Results

In this work, we have suggested several stripification nmgHor various kind of problems:

1. For a set of points, we have designed a method that cre&telanay stripification
in O(nlogn). This method is based on an incremental insertion methoBbétau-
nay triangulation. Although our approach produces a highlmer of vertices and
strips, still there is a significant rendering speedup. Astiethod is based on incre-
mental insertion, it can be used for visualization of leviedetails or for fast on-line
visualization (Chapter 3).

2. For fully triangulated models, we present a fast striptfan method that produces
the lowest number of strips i@ (n) time. The number of strips produced by our
method is more than three times lower than the number ofsstripduced by other
linear-time stripification methods (Chapter 4). To decrehsenumber of vertices in
the stripification and/or to give the user a better contrdtapification process, we
have also designed an extension of our algorithm (Chapter 5).

3. As the problematic of fast visualization and computatdmolume tetrahedral data
is becoming very important in many applications, we havegested a modification
of our stripification algorithm for tetrahedral meshes. f&nly to triangle meshes
stripification, our algorithm produces much lower numbernté&trahedral strips than
already existing algorithms. Unfortunately, as there ispecification and no hard-
ware support of tetrahedral meshes, we are not able to mati@acemparison of
tetrahedral stripification methods (Chapter 6).

4. As the importance of quadrilateral meshes in real-timapagter graphic increases,
we have designed a triangle stripping method for this typmeshes. According to
all our tests, our new method produces better stripificatiam any other stripifica-
tion method (Chapter 7).

We also present an overall comparison of important strigiticy methods. Our tests
were performed on a set of very often used triangular mesiesmartificial datasets. We
have also studied the impact of mesh topology on the qualistripification. We show
that although the stripification methods and triangle stiipgeneral are not designed for
the new GPUs with large vertex caches, they are still impoiitareal-time visualization
(Chapter 8).
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9.2 Future Work

The topic of stripification is quite well explored and we thithere is no need to design
some new general stripification algorithms. Still there ace for researching stripifica-
tion methods for some specialized problems:

e Although there exist some stripification methods for vigatlon of CLOD meshes
([Ste01, RCBR04, PSS05]) or view-dependent meshes ([ESAVIW,FRCBR04,
DBPMO5]), there is probably still a place to optimize thesehnds or to find some
new approaches.

e There exist a lot of topology compression algorithms faartgle meshes. Usually,
these methods are not based on stripification, thus it isssacg to use some re-
ordering or stripification algorithms to achieve a betteidering speed after decom-
pression. On the other hand, lot of these methods uses somh@kpath searching
or spanning tree algorithm to get the sequences of triaragldghere is a possibil-
ity to modify these algorithms to produce sequences thatreme strip friendly in
decompression stage.

e There is still an open problem in the field of tetrahedral nesstWe think that this
problem cannot be solved unless there will be some hardwaiost for tetrahedral
rendering and tetrahedral strips.
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B Models

In this section, we present the figures of models used in nitisédests we have performed
and the examples of the topology structure of these models.

(b) demi

(c) bunny (d) dinosaur

Figure B.1: Tested models and a part of their triangulation
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We present the tests of rendering speed and computatiorotinaarious computers.

INTEL Pentium 4 2.8GHz, 1 GB RAM, ATI FireGL T32 32MB

algorithm Tris SGI MStrip STRIPE FTSG Tunnel M-Path
model TRI ‘ BOG SGS ‘ SGV | MSS ‘ MSV STS ‘ STV FTS ‘ FTV TUS MPS | EMS
The average FPS using display lists
cow 358.0 | 350.8 | 353.8 | 355.8 | 358.6 | 355.9 | 354.5| 344.7 359.5 | 360.3 | 358.0
demi 3589 | 351.1 | 357.9 | 353.6 | 358.8 | 353.7 | 357.3 | 347.9| 360.4 | 360.3 | 358.8
bunny 231.7 | 217.7 | 226.3 | 221.4 | 236.6 | 221.5 | 222.8 | 210.1 240.5 | 234.8 | 229.4
dinosaur 228.1 | 216.2 | 227.2 | 224.4 | 227.7 | 2249 | 226.0 | 216.5| 231.4 | 231.1 | 229.8
balljoint 1345 | 125.1 | 134.1| 126.2 | 134.1 | 131.6 | 133.0 | 124.9 136.9 | 136.9 | 135.9
club 984 | 916| 981 | 958 | 979 | 964 | 974 | 915 99.8 | 100.0 | 99.0
hand 69.0 62.7 68.9 67.5 67.8 63.0 71.1 70.9 70.7
dragon 55.0 48.1 54.4 53.0 53.5 48.8 56.7 56.6 56.4
happy 454 | 395 448 | 436 | 44.0| 401 466 | 46.7| 465
blade 28.4 25.8 28.3 27.2 27.9 25.8 29.3 29.1 29.0
The average FPS using vertex buffer objects
cow 359.8 | 354.2 | 341.3 | 350.0 | 350.8 | 354.5 | 350.1 | 349.6 | 336.9 | 357.3 | 357.1 | 354.8
demi 363.1 | 351.3 | 324.6 | 350.6 | 340.2 | 350.9 | 342.7 | 350.1 | 324.8 354.7 | 356.0 | 353.6
bunny 213.3 | 187.9 | 162.0 | 184.0 | 165.2 | 192.0 | 174.3 | 177.9 | 1585 | 202.6 | 193.9 | 188.0
dinosaur 179.0 | 165.5 | 122.2 | 160.6 | 148.3 | 164.0 | 150.6 | 156.5 | 135.8 172.1 | 167.9 | 161.9
balljoint 874 | 762 | 539 | 756 | 702| 779| 699 | 727 | 56.1 823 | 809 | 781
club 91.3 72.8 35.7 73.7 67.5 77.1 67.8 71.4 40.2 82.5 80.8 74.6
hand 68.7 56.1 55.3 50.3 51.6 22.3 63.9 61.1 58.8
dragon 55.2 | 48.1 373 | 36.8| 450 | 16.2 51.9 | 50.3| 50.9
happy 47.8 41.2 30.1 27.3 33.4 13.1 13.9 43.6 44.2
blade 0.2 10.5 7.1 11.0 8.0 9.4 6.7 136 | 116 | 102
The computation time in seconds

cow 0.3 0.1 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0
demi 1.0 0.1 0.0 0.0 0.0 0.6 0.6 0.0 0.1 0.2
bunny 4.7 0.4 0.1 0.2 0.2 2.4 2.4 0.3 0.4 0.7
dinosaur 7.8 0.6 0.2 0.3 0.3 3.6 3.7 0.5 0.7 11
balljoint 20.9 1.6 0.6 1.0 1.0 8.9 9.0 1.2 1.7 154
club 34.5 2.5 0.9 15 15 13.6 13.8 1.8 2.6 32.1
hand 57.2 3.5 1.2 26.4 26.3 2.2 3.6 115
dragon 84.4 5.0 1.9 27.4 27.2 3.3 5.2 | 1348
happy 113.2 6.3 2.6 339 | 336 4.1 6.5 | 163.1
blade 1185 9.9 4.1 86.3 86.5 6.2 10.2 72.2
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AMD Athlon XP-M 2.1 GHz, 512 MB RAM, ATl Radeon Mobility 9600, 64 MB

algorithm Tris SGI MStrip STRIPE FTSG Tunnel M-Path
model TRI ‘ BOG SGS ‘ SGV | MSS ‘ MSV STS ‘ STV FTS ‘ FTV TUS MPS ‘ EMS
The average FPS using display lists
cow 658.7 | 646.6 | 623.2 | 630.5 | 626.8 | 650.2 | 610.4 | 634.9 | 609.6 617.9 | 652.5 | 647.3
demi 614.9 | 616.5 | 592.3 | 616.5 | 603.3 | 613.5| 595.6 | 611.0 | 588.7 | 612.7 | 621.7 | 620.7
bunny 180.4 | 340.3 | 315.9 | 340.3 | 309.2 | 341.8 | 321.4 | 3314 | 306.9| 350.9| 351.8| 3435
dinosaur 121.6 | 2741 | 248.1 | 273.2 | 266.2 | 270.3 | 261.7 | 270.6 | 246.5 2839 | 282.3 | 281.4
balljoint 1375 | 1214 | 136.6 | 1324 | 134.1 | 132.6 | 1354 | 1209 | 141.3| 141.3 | 14038
club 95.1 84.6 94.6 91.6 92.2 91.1 94.0 84.4 96.3 97.1 96.3
hand 62.6 | 54.8 615 | 60.9| 61.2| 524 65.0 | 654 | 65.6
dragon 48.1 38.5 46.4 44.5 46.5 35.8 47.2 50.8 50.8
happy 38.1| 309 350| 36.6| 375| 286 382 | 412 | 410
blade 235 20.6 23.1 22.8 22.7 19.3 24.0 24.6 24.8
The average FPS using vertex buffer objects
cow 654.2 | 633.7 | 594.2 | 621.1 | 607.3 | 633.0 | 616.5 | 618.1 | 583.3 | 635.6 | 642.9 | 637.9
demi 640.7 | 603.2 | 525.3 | 601.3 | 571.1 | 597.9 | 576.6 | 598.9 | 529.5 | 613.5| 616.1 | 611.8
bunny 2919 | 2475 | 205.8 | 242.4 | 214.2 | 256.1 | 226.7 | 233.8 | 202.2 273.9 | 258.5 | 249.8
dinosaur 218.3 | 202.4 | 150.1 | 1954 | 177.2 | 198.9 | 181.0 | 191.2 | 151.5 211.4 | 205.9 | 199.6
balljoint 98.8 85.7 64.4 84.6 74.6 86.7 77.4 81.1 65.4 92.9 91.2 88.2
club 954 | 764 | 56.7| 76.7| 669 | 781| 69.1| 741 | 558 86.5| 842 | 77.8
hand 43.6 48.4 37.7 37.2 32.9 34.8 26.2 43.7 42.0 40.5
dragon 26.3 | 474 | 392 38.0| 352 | 36.0| 236 441 | 429 | 432
happy 24.9 45.7 37.6 36.1 33.8 355 19.0 43.1 41.8 42.2
blade 19.2 13.2 9.6 6.1 9.2 7.6 8.5 12.4 11.3 9.5
The computation time in seconds

cow 0.4 0.1 0.0 0.0 0.0 0.2 0.3 0.0 0.1 0.1
demi 1.2 0.2 0.0 0.0 0.0 0.6 0.6 0.1 0.3 0.2
bunny 55 0.7 0.2 0.3 0.3 24 25 0.3 0.6 0.8
dinosaur 9.0 1.0 0.4 0.5 0.5 3.7 3.8 0.5 1.0 1.3
balljoint 245 25 11 14 14 9.3 9.4 15 28| 21.0
club 39.9 4.0 1.4 2.2 2.2 14.9 151 2.2 4.3 46.7
hand 65.1 4.0 1.8 28.8 | 287 24 4.2 12.6
dragon 96.3 8.0 2.8 29.0 29.7 3.7 8.1 | 205.2
happy 129.0 10.0 3.7 36.4 36.6 4.7 6.9 | 247.7
blade 271.6 10.4 6.0 7.6 7.6 7.1 12.7 | 120.2
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algorithm Tris SGI MStrip STRIPE FTSG Tunnel M-Path
model TRI ‘ BOG SGS ‘ SGV | MSS ‘ MSV STS ‘ STV FTS ‘ FTV TUS MPS | EMS
The average FPS using display lists
cow 556.9 | 539.5 | 544.3 | 543.8 | 556.0 | 551.4 | 545.6 | 530.0 560.4 | 560.6 | 555.6
demi 549.4 | 532.7 | 548.5 | 538.0 | 548.4 | 539.2 | 547.2 | 526.7 5549 | 554.4 | 551.7
bunny 308.1 | 289.4 | 299.7 | 276.4 | 313.6 | 296.1 | 298.7 | 275.7 323.9 | 315.7 | 306.5
dinosaur 296.3 | 267.9 | 294.0 | 288.9 | 294.2 | 288.6 | 2929 | 273.0 301.6 | 301.3 | 299.6
balljoint 157.7 | 143.8 | 157.6 | 153.0 | 156.3 | 153.2 | 156.0 | 142.8 | 161.8 | 161.8 | 160.2
club 111.3 | 101.1 | 111.2 | 108.0 | 110.4 | 108.1 | 109.8 | 101.1 113.6 | 113.6 | 1124
hand 75.9 67.7 75.3 73.7 74.1 67.4 78.7 78.3 78.3
dragon 58.0 50.6 58.7 56.9 57.5 49.9 61.8 61.6 61.5
happy 47.3 | 40.8 473 | 46.0| 47.1| 39.8 50.4 | 50.3| 50.1
blade 298| 265 | 29.7| 291 | 295| 29.2| 293 | 265 30.2| 309 | 309
The average FPS using vertex buffer objects
cow 562.8 | 548.1 | 520.4 | 535.9 | 530.8 | 548.2 | 539.4 | 532.5| 509.2 | 553.0 | 553.4 | 548.6
demi 565.1 | 538.8 | 487.4 | 532.8 | 514.1 | 537.2 | 519.4 | 535.8 | 489.0 547.3 | 547.1 | 544.7
bunny 282.6 | 242.7 | 210.1 | 234.1 | 2135 | 251.8 | 227.7 | 232.7 | 203.0 266.0 | 254.7 | 244.7
dinosaur 263.1 | 247.5| 184.1 | 236.7 | 213.6 | 240.9 | 221.2 | 233.4 | 188.3 255.0 | 248.0 | 2424
balljoint 129.8 | 114.6 82.3 | 111.9 97.5 | 115.0 | 103.7 | 108.6 87.3 1234 | 121.0| 1174
club 1111 | 937 | 614 | 915| 790| 939 | 835 | 886 | 682 | 103.2| 1005| 94.1
hand 45.7 52.3 42.0 41.5 36.8 38.9 30.6 47.3 459 449
dragon 275 55.3 46.2 43.7 40.5 42.8 25.8 51.4 49.9 49.9
happy 274 | 541 | 451 412 | 383 | 395| 209 50.9 | 49.3| 495
blade 23.0 34.9 27.4 28.4 24.4 26.8 24.6 25.4 15.2 329 30.5 30.2
The computation time in seconds

cow 0.3 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0
demi 0.1 0.0 0.0 0.0 0.7 0.7 0.0 0.1 0.1
bunny 4.8 0.3 0.2 0.2 0.2 2.3 2.4 0.2 0.4 0.6
dinosaur 8.1 0.5 0.3 0.4 0.4 3.6 3.6 0.3 0.6 0.9
balljoint 221 14 0.8 1.0 1.0 8.8 8.8 0.8 15 10.5
club 36.5 2.2 1.1 15 15 135 14.7 1.2 2.3 22.9
hand 61.0 3.1 1.6 29.1 | 2838 15 3.3 8.9
dragon 90.2 4.4 2.4 28.4 28.2 2.3 4.7 | 102.0
happy 1211 5.7 3.2 35.0 34.7 2.9 59| 1240
blade 232.0 9.0 5.3 5.7 56 | 99.4| 995 4.4 9.4 | 60.2




