
Západočeská univerzita v Plzni 
Fakulta aplikovaných věd 

 
 
 
 
 

METODY REDUKCE VELIKOSTI DYNAMICKÝCH SÍTÍ 
 
 

Ing. Libor Váša 
 
 

disertační práce  
k získání akademického titulu doktor 

v oboru Informatika a výpočetní technika 
 
 
 
 
 
 
 
 
 
 

 
Školitel: Prof. Ing. Václav Skala, CSc. 

Katedra: Katedra informatiky a výpočetní techniky 
 
 
 
 
 

Plzeň 2008 
 



University of West Bohemia 
Faculty of Applied Sciences 

 
 
 
 
 

METHODS FOR SIZE REDUCTION OF DYNAMIC 
MESHES 

 
 

Ing. Libor Váša 
 
 

doctoral thesis  
submitted in partial fulfilment of the requirements for a degree of Doctor of 

Philosophy in Computer Science and Engineering 
 
 
 
 
 
 
 
 
 
 

 
Supervisor: Prof. Ing. Václav Skala, CSc. 

Department: Department of Computer Science and Engineering 
 
 
 
 
 

Pilsen 2008 
 
 
 
  



 
 
 
 
 
Prohlášení 
 
 
Předkládám k posouzení a obhajobě disertační práci zpracovanou na závěr doktorského studia 
na Fakultě aplikovaných věd Západočeské univerzity v Plzni. Prohlašuji, že tuto práci jsem 
vypracoval samostatně, s použitím odborné literatury a dostupných pramenů uvedených 
v seznamu, jenž je součástí této práce. 
 
 
V Plzni dne 10. května 2008 
 

Ing. Libor Váša 



Abstract

This work focuses on processing of dynamic meshes, i.e. series of triangular
meshes of equal connectivity which represent an evolution of a model surface in
time. The main goal is to reduce the storage and transmission cost. The work
covers the state of the art in the fields of compression and simplification of trian-
gular meshes, and presents several novel methods for dynamic mesh compression
and comparison.

By compression we mean methods of encoding the mesh without altering its
connectivity. Usually some sort of vertex position prediction is used, combined
with delta coding of residuals. PCA (Principal Component Analysis) based com-
pression methods are also discussed.

The simplification methods on the other hand reduce the storage cost of
a dynamic mesh by changing its connectivity. There are only a few methods
that are directly targeted on dynamic mesh simplification, and therefore we also
discuss methods for static mesh simplification.

In the last section of the state of the art we present methods for comparing
dynamic meshes that can be used to evaluate the processing methods. We present
the currently used metrics and point out their advantages and disadvantages.

In the second part of the thesis, we will present novel methods for dynamic
mesh compression, based on PCA. We will first show a combination of PCA and
Edgebreaker, which will be improved by using simplification as a part of the
algorithm, and further extended by new advanced prediction techniques. We will
also show a method for compression of PCA basis, which is useful for achieving
low bitrates.

We will show that our final algorithm achieves better results than the state
of the art methods using the traditional KG error measure. Finally, we will also
derive a new measure focused on the actual perceived quality of the decompressed
mesh, which provides high correlation with the results of subjective testing that
we have performed.

keywords: animation, compression, triangle mesh, dynamic mesh, simplifica-
tion, reduction, PCA, error measure, perception, quality



3

Abstrakt

Tato práce se zabývá zpracováńım dynamických śıt́ı. Dynamickou śıt́ı rozumı́me
sérii trojúhelnikových śıt́ı se stejnou konektivitou, která představuje časový vývoj
objektu. Naš́ım hlavńım ćılem je sńıžeńı velikosti datové reprezentace dynamické
śıtě. Tato práce pokrývá současný stav výzkumu v oblastech komprese a simpli-
fikace dynamických śıt́ı a navrhuje nové algoritmy pro kompresi a porovnáváńı
dynamických śıt́ı.

Kompreśı označujeme takové metody uložeńı dynamické sitě, které neměńı
jej́ı konektivitu. Obvyklým postupem je vytvořeńı nějakého prediktoru polohy
vrcholu, jehož predikce je pak korigována pomoćı delta-coding strategie. Práce
rovněž popisuje metody založené na PCA (Principal Component Analysis) a
waveletové dekompozici.

Narozd́ıl od kompreśı, simplifikace dosahuj́ı sńıžeńı velikosti dat obecnou
změnou konektivity. V literatuře je popsáno jen málo metod pro simplifikaci
dynamických śıt́ı, a proto se práce zabývá rovněž metodami pro kompresi static-
kých śıt́ı a možnostmi jejich rozš́ı̌reńı.

V posledńı části popisu existuj́ıćıch technik se zabýváme metodami porov-
náváńı dynamických śıt́ı, které je možno použ́ıt pro zhodnoceńı efektivity kom-
presńıch a simplifikačńıch metod. Práce se zabývá současnými metodami pro
porovnáváńı śıt́ı a zmiňuje jejich významné nedostatky.

V druhé části textu zavedeme nové algoritmy pro kompresi dynamických śıt́ı,
založené na analýze hlavńıch komponent. Nejdř́ıve ukážeme kombinaci PCA
a algoritmu EdgeBreaker, kterou následně vylepš́ıme zahrnut́ım simplifikace do
algoritmu a rozš́ı̌reńım o nové pokročilé predikčńı techniky. Ukážeme také novou
metodu komprese báze PCA, která je užitečná pro dosažeńı ńızkého datového
toku.

Ukážeme, že náš konečný algoritmus poskytuje lepš́ı výkon než současné
metody v měř́ıtku KG error. Nakonec také odvod́ıme novou mı́ru chyby založenou
na skutečné vńımané kvalitě dekomprimované śıtě, která vykazuje vysokou ko-
relaci s výsledky realizovaného subjektivńıho testováńı.

kĺıčová slova: animace, komprese, trojúhelńıkové śıtě, dynamické śıtě, sim-
plifikace, zjednodušeńı, analýza hlavńıch komponent, měřeńı chyby, vńımáńı,
kvalita

Copyright c©2008 University of West Bohemia, Czech Republic



Acknowledgements

I would like to express my gratitude to prof. Václav Skala, the supervisor of
this work, who has provided valuable support during my whole doctoral studies.
I would also like to thank Aljoscha Smolic and Yucel Yemez for providing valuable
resources, to Nikolce Stefanoski and Khaled Mamou for numerous consultations,
to my colleagues - Martin Janda, Slavomı́r Petŕık and Petr Vaněček - for numer-
ous hints, comments and Quake battles, and to Vojtěch Hlad́ık for the help with
the GPU implementation.

I am dedicating this work to my parents, who have always supported me in
both happier and tougher times.

Finally, Gabrielle, my muse and inspiration, is to be thanked for being a great
counterpart to my work life.

This work has been supported by the project 3DTV PF6-2003-IST-2, Network of
Excellence, No: 511568 and by the project Centre of Computer Graphics, National
Network of Fundamental Research Centers, MSMT Czech Rep., No: LC 06008.



5



Contents

Contents 6

1 Introduction 4
1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 General compression techniques 8
2.1 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Entropy coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Dynamic mesh compression 11
3.1 Geometry compression of dynamic meshes . . . . . . . . . . . . . . 12

3.1.1 Predictor approaches . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.3 Pure temporal predictors . . . . . . . . . . . . . . . . . . . 12
3.1.4 Pure spatial predictors . . . . . . . . . . . . . . . . . . . . . 13
3.1.5 Space-time predictors . . . . . . . . . . . . . . . . . . . . . 14
3.1.6 Muller octree approach . . . . . . . . . . . . . . . . . . . . 15
3.1.7 Stefanoski scalable linear predictive coding . . . . . . . . . 16
3.1.8 Wavelet based compression . . . . . . . . . . . . . . . . . . 17
3.1.9 PCA based compression . . . . . . . . . . . . . . . . . . . . 18
3.1.10 PCA LPC coding . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.11 Clustering based PCA encoding . . . . . . . . . . . . . . . . 21
3.1.12 PCA + local coordinate frame approach . . . . . . . . . . . 22
3.1.13 Skinning approach to compression . . . . . . . . . . . . . . 23
3.1.14 FAMC encoder . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Triangular connectivity compression . . . . . . . . . . . . . . . . . 25
3.2.1 Topological Surgery . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Edgebreaker/cut-border machine . . . . . . . . . . . . . . . 28
3.2.3 Delphi geometry based connectivity encoding . . . . . . . . 31

6



CONTENTS 7

3.2.4 Valence-drive connectivity encoding . . . . . . . . . . . . . 31
3.3 Tetrahedral connectivity compression . . . . . . . . . . . . . . . . . 34

3.3.1 Grow&Fold . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Cut-border . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Dynamic mesh simplification 37
4.1 Static triangular mesh simplification . . . . . . . . . . . . . . . . . 37

4.1.1 Schroeder decimation . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Attene SwingWrapper . . . . . . . . . . . . . . . . . . . . . 40
4.1.3 Geometry images . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.4 Edge collapse . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.5 Quadric based . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.6 Locally volume preserving edge collapse . . . . . . . . . . . 46

4.2 Dynamic mesh simplification . . . . . . . . . . . . . . . . . . . . . 49
4.2.1 Decimation of dynamic meshes . . . . . . . . . . . . . . . . 49
4.2.2 Geometry video . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.3 Quadric based simplification in higher dimension . . . . . . 51
4.2.4 TetFusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.5 Average quadric based simplification . . . . . . . . . . . . . 55
4.2.6 Quadric based multiresolution mesh . . . . . . . . . . . . . 56

5 Evaluation tools 58
5.1 PSNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 KG-Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 DA error (Ribbon measure) . . . . . . . . . . . . . . . . . . . . . . 60
5.4 Mesh, METRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5 Triangle difference . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.6 Error measures summary . . . . . . . . . . . . . . . . . . . . . . . 63

6 Testing data 66
6.1 Chicken sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 Dolphin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 Cow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 Dance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.5 Human jump (human) . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.6 Falling cloth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.7 Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.8 Snake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 Proposed error measures 72
7.1 4D tetrahedral mesh representation . . . . . . . . . . . . . . . . . . 72

7.1.1 4D metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



CONTENTS 3

7.2 Error vectors measure . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.3 Spatio-temporal edge difference . . . . . . . . . . . . . . . . . . . . 78

7.3.1 Spatial error . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3.2 Temporal error . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.3.3 Overall error and its parameters . . . . . . . . . . . . . . . 82

7.4 Performed subjective testing . . . . . . . . . . . . . . . . . . . . . . 82

8 Proposed compression methods 91
8.1 Connectivity driven dynamic mesh compression (Coddyac) . . . . 91

8.1.1 PCA in Coddyac . . . . . . . . . . . . . . . . . . . . . . . . 92
8.1.2 PCA basis encoding . . . . . . . . . . . . . . . . . . . . . . 93
8.1.3 PCA coefficient prediction . . . . . . . . . . . . . . . . . . . 94

8.2 Combined compression and simplification . . . . . . . . . . . . . . 95
8.2.1 Algorithm details . . . . . . . . . . . . . . . . . . . . . . . . 97

8.3 Progressive predictors . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.3.1 Least squares prediction (LSP) . . . . . . . . . . . . . . . . 99
8.3.2 RBF based predictor (RBFP) . . . . . . . . . . . . . . . . . 103

8.4 Encoding of basis for PCA represented animations . . . . . . . . . 105
8.5 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.5.1 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9 Experimental results 114
9.1 Coddyac results and STED considerations . . . . . . . . . . . . . . 114
9.2 Combined compression and simplification results . . . . . . . . . . 125
9.3 Progressive predictors results . . . . . . . . . . . . . . . . . . . . . 133
9.4 Cobra results and considerations . . . . . . . . . . . . . . . . . . . 141
9.5 Comparison of the proposed compression methods . . . . . . . . . 151
9.6 Performance comparison against the state of the art . . . . . . . . 151
9.7 GPU implemetation of decompression . . . . . . . . . . . . . . . . 156

10 Conclusions and future work 157

A Subjective testing questionnaire 159

B List of authors publications 160

Bibliography 162



Chapter 1

Introduction

Computer graphics is one of the most constantly developing fields in computer
science. While the growth of processing power of common PCs seems to slow
down in the last years, computer graphics related hardware is developing still very
rapidly, and computer graphics as a supporting science is reaching to problems
that seemed impossible to solve just a few years ago.

In the past, computer graphics gave answers to some non-trivial questions
related to displaying and processing virtual models. The key issue for most of the
computer graphics related problems is the problem of computational complexity.
In other words, the results in computer graphics must not only be correct, but
they also need to be delivered in a reasonable time.

The problems of computer graphics span from the data acquisition (polygo-
nization and tessellation algorithms) through various processing techniques (sim-
plification, stripification etc.) up to the displaying itself (shading, rendering).
Most of the algorithms in each of the areas are designed to provide the best pos-
sible quality/performance ratio, so that current limited hardware can process as
complex (and therefore realistic) scenes as possible. However, the recent develop-
ment of accelerating hardware is not making the old problems and their solutions
obsolete, it merely allows larger new problems to be solved.

A typical case where recent hardware progresses have allowed broadening of
horizons of solvable problems is the current possibility of studying time-variant
cases of problems that were so far only studied in their static forms. Current
hardware allows real-time acquisition of data on one hand, while emerging display
devices allow delivering full 3D impression of a dynamic virtual scene to the user.
The applications span from scientific problems, such as dynamic volume data
processing, up to pure entertainment, such as 3D television.

While some of the current algorithms used for processing of static scenes can

4



CHAPTER 1. INTRODUCTION 5

be used directly for the dynamic case, a large group of existing solutions cannot
be used in dynamic case at all, or only at high processing cost. This gives us a
wide new area for research, where it seems to be useful to take a look at the old
problems from a slightly different point of view. The sophisticated algorithms for
static problems give us a good platform for such research, but for many problems
a completely new approaches are likely to rise.

Problem of storage requirements is closely related to the general performance
criterion. Large and complex meshes allow high precision, but also require high
processing power. The problem of transmission of models is also of increasing
importance, as today’s network connections are still limited in their bandwidth.

The problem of reduction of storage requirements has been addressed by
several approaches for the case of static meshes, while in recent years a more
complex dynamic case is also being considered, which is also the main topic of
this work. We will show the main current approaches used for both static and
dynamic case.

1.1 Problem definition

In this work we will focus our effort on a special case of the problem described
in the introduction. We will be considering the case of constant connectivity
dynamic triangular meshes, and we will investigate possibilities of compression
and simplification of such meshes.

A triangular mesh is a spatial dataset, which represents a surface of an ob-
ject. It consists of geometry and topology. Geometry information is usually
represented by a set of three component vectors, where each vector represents
one point in 3D space. Topology information is usually represented by a set of
index triplets, where each triplet represents indices of three vertices of the mesh
topology, which form a triangle.

For some algorithms it is crucial to differentiate between the so-called manifold
and nonmanifold meshes. Manifold meshes are defined by several additional
conditions for the mesh topology. These are:

• each edge is shared by at most two triangles

• neighborhood of each vertex is topologically equivalent with a disc or a
border.

Of importance is also a so-called simple mesh. A simple mesh is a genus 0 mani-
fold mesh, i.e. a closed single component mesh with no holes. Such mesh can be
mapped onto a sphere, and it is often used as the simplest basic case on which
algorithms are demonstrated.



CHAPTER 1. INTRODUCTION 6

A dynamic mesh is an ordered set of static meshes, where subsequent meshes
represent the development of the mesh over time. In other words, dynamic mesh
represents an animation of a 3D surface. In the most usual case, we have one
mesh for each frame that is captured, and the time span between the meshes is
1/frame rate. However it is possible to also consider meshes where each frame
carries explicit information about the time when it occurs, and where the inter-
frame times are not equal.

One important assumption for this work is the one of constant connectivity
of the input. We assume that the topology information does not change between
subsequent frames. This implies that we have the explicit information about
the correspondence of vertices, edges and triangles of subsequent frames. It also
implies that the number of vertices and triangles does not change throughout
the animation. We can also see the situation as a simple movement of vertex
position over time, where each vertex moves between two subsequent frames
from it’s position in the first frame to it’s position in the second frame.

Please note that we are only making this assumption about the input data,
while the output data may be of varying connectivity. Also note that we assume
that no other information about the viewer is given, i.e. we don’t know anything
about the relative position of the camera and the object.

There are several approaches to reduction of storage requirements. The most
important aspect of reduction is the purpose of the final data. Approaches used
for reduction of scientific data follow different criteria than algorithms targeted
at human perception. In the first case, the single most important property of
reduction algorithm is the reduction/error ratio, where the error is exactly de-
termined by the nature of the data. On the other hand, when the target is
a human observer, then the main quality of a reduction algorithm is the re-
duction/disturbance ratio. In this case, the algorithms may use some special
properties of human perception to achieve better reduction rates with equal per-
ceived distortion. In this work we will not be considering reduction for scientific
purposes, our only criterion is the visual disturbance.

Our aim is to find and compare algorithms that take a dynamic mesh of con-
stant connectivity as an input, and create a different dynamic mesh, which is
visually equivalent to the original one, while its storage requirements are reduced.

The approaches to storage requirements reduction can be divided into two
main categories, compressions and simplifications. Compressions are methods
that encode the input data in a way that reduces storage requirements, while
simplifications modify the input data in order to remove parts that are not nec-
essary for the observer.

Compressions can be applied to geometry, topology or both, and we differ-



CHAPTER 1. INTRODUCTION 7

entiate between lossy and lossless compressions. Simplifications always involve
alterations to both geometry and topology.

1.2 Organization

The rest of this thesis is divided into two main parts. In the first part, we describe
existing approaches to the problem outlined above, and in the second we propose
new methods for dynamic mesh compression, and to evaluation of the distortion
caused by a compression scheme.

In the state of the art part we will first in chapter 2 give brief overview
of techniques used for data compression in general. Then we will describe ap-
proaches used for compression (chapter 3), simplification (chapter 4) and com-
parison (chapter 5) of static and dynamic triangular meshes. We will show some
drawbacks of the algorithms, some of which will be addressed in the second part.

The second part of this thesis covers our own advances in the field. First, in
chapter 6 we will describe the datasets available to us for testing. Then in chap-
ter 7 we will derive two new tools for measuring error, the 4D hausdorff distance
and the STED measure. Subsequently, we will derive new compression techniques
in chapter 8. We will give experimental results of our approaches in chapter 9,
and finally draw conclusions and give ideas for future work in chapter 10.



Chapter 2

General compression techniques

In this short chapter, we will briefly sketch two techniques used generally in data
compression - quantization and entropy coding.

2.1 Quantization

Quantization is a general technique used mainly for lossy compression algorithms.
It is used to transform a dataset consisting of floating point values into a dataset
consisting of integers, that are easy to encode. The idea is quite simple - the
dataset is analyzed to find a minimum value and the span of values. Subsequently,
each value is represented as a sum of the found minimum and a positive integer
number of constant quanta. The quantum size is determined according to the
span of the values, and the desired precision, which is usually given by the user
in bits.

Formally, having a sequence v1 . . . vn of floating point values, the quantizer
finds the minimum, maximum and span:

m = min(v1 . . . vn) (2.1)

M = max(v1 . . . vn) (2.2)

s = M −m (2.3)

and determines the quantization quantum Cq as

Cq =
s

2Q
(2.4)

where Q is a user specified constant which determines the accuracy of the
process. Subsequently each value is expressed as

8



CHAPTER 2. GENERAL COMPRESSION TECHNIQUES 9

vi = m + kCq + e (2.5)

where k is the integer number of quanta. The residual value e is neglected
and the value k is subsequently used as a representation of the original value.

In some applications the span of values is not known, or is irrelevant, and in
such cases a different value is used when computing the quantization quantum.
Typically, when vertex positions (or vertex position differences) of a mesh are
encoded, the length of the body diagonal of the mesh bounding box is used in
the denominator of the fraction in expression 2.4.

In the case of dynamic meshes, there are more options, such as largest body
diagonal over all the frames, body diagonal of the bounding box of all frames,
however we will be simply using the body diagonal of the first frame. This decision
is justified by the fact that the final size of the quantum is user controlled anyway,
and therefore it is not necessary to use any sophisticated algorithm to influence
it.

2.2 Entropy coding

Entropy coding is a general technique used for context free compression of se-
quences of integer values. It is based on the entropy theorem, which determines
a bound on the compression of such sequences[25]. According to the theorem, a
sequence S = v1 . . . vn of length n cannot be expressed in less than ent(S).n bits,
where ent(S) stands for entropy of the sequence. The entropy can be generally
expressed as:

ent(S) = −
∑

x∈S

p(x)log2(x) (2.6)

where x are the symbols that appear in the sequence and p(x) is the prob-
ability of x appearing in the sequence. When we don’t know the probabilities
of symbols from the given source, we can estimate them by their relative occur-
rences.

Entropy coding attempts to reach this limit. The ultimate single code method
(i.e. method that assigns a unique binary codeword to each symbol) is the Huff-
man coding[28], which assigns short codewords to symbols with high probability.
The method has problems with sequences of very low entropy (typically under
one bit), because the shortest codeword has the length of one bit.

There are also other methods, such as arithmetic coding[45], that can achieve
compression rates closer to the theoretical bound. However, such methods are
much more complex and still no ultimate method has been found.



CHAPTER 2. GENERAL COMPRESSION TECHNIQUES 10

In our experiments, we have used Huffman coding as an example, and we will
be giving the value of entropy to give an idea about how the data can be possibly
further compressed.



Chapter 3

Dynamic mesh compression

Compression in our context means a way of encoding the input dynamic mesh,
which does not change the topology of the mesh. There are two main approaches
to the problem, each targeted on different redundancy present in the data. In
the first case, algorithms try to exploit redundancy in the geometry information.
The other approach is to exploit the redundancy in the connectivity encoding.

For the case of geometry compression, algorithms processing dynamic meshes
were already proposed. The usual scheme is to encode the first frame as full
information, and then to encode only the differences in the positions of the vertices
in the next frame. The algorithm usually contains a predictor that estimates the
position of the vertex from the positions of the already encoded/decoded vertices,
and then encodes the difference between the real position of the vertex and the
predicted one. Sophisticated prediction techniques were used, some of which will
be mentioned in the following text.

For the case of connectivity compression, only the static case has been in-
vestigated so far. This however does not cause any problem, as our task only
involves one constant connectivity. The algorithms proposed in the literature
usually involve some sophisticated way of encoding a progress of some open bor-
der, which traverses through the mesh. The key is usually in encoding the most
common cases with the shortest possible bit sequence. The proposed algorithms
work with both triangle and tetrahedral meshes, and we will later show how static
tetrahedral mesh can be used to represent a dynamic mesh.

There are also hybrid compression techniques, which combine topology and
geometry compression into one algorithm. Such techniques can be elegantly ex-
tended to cover the case of dynamic meshes.

11



CHAPTER 3. DYNAMIC MESH COMPRESSION 12

3.1 Geometry compression of dynamic meshes

3.1.1 Predictor approaches

There are several predictors used for dynamic mesh compression. The main
quality of a predictor is its accuracy, because the entropy coding block that
follows the estimator works best when the average residual vector is as short as
possible.

Some of the predictors take as input only the vertices from the frame that
is currently being encoded, which may lead to need of specific ordering of the
vertices, denoted as connectivity based encoding, which means that a vertex can
be encoded only when at least two of it’s neighbors are already encoded. For-
tunately, such ordering comes naturally with some of the connectivity encoding
schemes that will be described in more detail later. Such predictors only use
spatial coherence of the input data.

On the other hand, there are some very simple predictors that only use the
vertex positions from previous frame, thus exploiting only temporal coherence
of the input. However, the most sophisticated prediction schemes exploit both
temporal and spatial coherence of the input data.

3.1.2 Notation

We denote the most frequent values as follows:
p(v, f) - position of a vertex v in time frame f

pred(v, f) - prediction of the position of the vertex v in time frame f

V - total number of vertices in one mesh
T - total number of triangles in one mesh
F - total number of frames

3.1.3 Pure temporal predictors

The simplest way to predict a position of a vertex is to set the prediction into
the vertex position from the previous frame:

predstat(v, f) = p(v, f − 1) (3.1)

We can also approximate the vertex motion by linear motion (constant veloc-
ity), and set the prediction as follows:

predlin(v, f) = p(v, f − 1) + (p(v, f − 1)− p(v, f − 2)) (3.2)

Constant acceleration predictor is then a simple extension of the constant
velocity predictor, only this time requiring three previous time frames and using
quadratic extrapolation



CHAPTER 3. DYNAMIC MESH COMPRESSION 13

v’’’

v’’

v’

v

Figure 3.1: Parallelogram predictor

v’

v’’

v’’’

v’’’’

v

Figure 3.2: Averaging predictor

3.1.4 Pure spatial predictors

Parallelogram predictor ([61], [29]) has been used for compression of static meshes.
It assumes that a triangle has been already encoded/decoded, and that the ver-
tex that is currently being encoded is a neighbor of the encoded triangle, sharing
one of the edges. The predictor creates a parallelogram from the known triangle
by flipping it over the shared edge, and it sets the predicted position to the new
vertex of the parallelogram.

predparal(v, f) = p(v′, f) + p(v′′, f)− p(v′′′, f) (3.3)

Where v′, v′′ and v′′′ form the known triangle, and v′ and v′′ form the shared
edge. A slightly different technique is used by the averaging predictor, which uses
positions of all vertices encoded and adjacent to the currently encoded vertex.
All such positions are averaged in order to obtain the prediction:

predavg(v, f) = [p(v′, f) + p(v′′, f) + ... + p(vn, f)]/n (3.4)

Where v′, v′′ ... vn stand for adjacent vertex positions, n being their number.



CHAPTER 3. DYNAMIC MESH COMPRESSION 14

v’

v’’
v’’’

v

A

B

C
v’

v’’
v’’’

v

A’

B’

C’

Figure 3.3: Replica predictor

3.1.5 Space-time predictors

Yang et al. [31] have proposed a time-space predictor based on the averaging
spatial-only predictor, denoted as motion vector averaging predictor. The idea
is that a vertex is expected to move in a way similar to its neighbors. This
assumption leads to following predictor formula:

predmvavg(v, f) = predavg(v, f)− predavg(v, f − 1) + p(v, f − 1) (3.5)

In [29] Ibarria and Rossignac have proposed two space-time predictors, the
ELP (Extended Lorenzo Predictor) and the Replica predictor as a part of their
Dynapack algorithm.

The ELP predictor is a perfect predictor for meshes that undergo a transla-
tional only movement, i.e. for such meshes it estimates the new position of each
vertex exactly. The formulation of the predictor can be rewritten in a way similar
to the motion vector averaging predictor:

predELP (v,f) = predparal(v, f)− predparal(v, f − 1) + p(v, f − 1) (3.6)

All the predictors presented so far are denoted as linear predictors, i.e. their
formulae can be viewed as linear combinations of neighboring vertices (time or
space) with some weights of unit sum. The following predictors are non-linear,
i.e. they cannot be expressed as a weighted sum.

First of the non-linear predictors is the Ibarria’s Replica predictor. It is a
perfect predictor for rigid moving objects, i.e. objects that undergo some com-
bination of translation and rotation. Moreover, the predictor also predicts exact
positions of vertices for the case of uniform scaling.

The predictor again needs an adjacent triangle to be already encoded/decoded.
The idea is to express the position of the vertex from the previous frame as a lin-
ear combination of two of the edge directions of the neighboring triangle, and the
orthogonal direction. The combination coefficients are then used in the current
frame to predict the position of the vertex. The relation can be written as:



CHAPTER 3. DYNAMIC MESH COMPRESSION 15

v’

v’’
v’’’

v

X

Y

Z

v’

v’’
v’’’

v

X’

Y’

Z’

Figure 3.4: Angle preserving predictor

A = p(v′, f − 1)− p(v′′, f − 1) (3.7)

B = p(v′′, f − 1)− p(v′′′, f − 1) (3.8)

C = A×B√
|A×B|2 (3.9)

p(v, f − 1)− p(v′′′, f − 1) = aA + bB + cC (3.10)

A′ = p(v′, f)− p(v′′, f) (3.11)

B′ = p(v′′, f)− p(v′′′, f) (3.12)

C ′ = A′×B′√
|A′×B′|2 (3.13)

predReplica(v, f) = p(v′′′, f) + aA′ + bB′ + cC ′ (3.14)

Note that the normalization used in the computation of C and C’ ensures
that the predictor works perfectly for uniform scaling. A similar approach is
used in another non-linear predictor proposed by Stefanoski and Ostermann [58].
It is a predictor that perfectly preserves the angle between the current and the
new triangle. The main difference is in the coordinate system used to express
the encoded vertex. The Replica predictor has used two edges of the adjacent
triangle and an orthogonal direction, Stefanoski’s angle preserving predictor uses
the shared edge direction X, a direction Y orthogonal to X that is lying in the
plane of the adjacent triangle, and a direction Z which is orthogonal to X and Y.
The predictor algorithm is then very similar to the Replica predictor:

p(v, f − 1)− p(v′′′, f − 1) = xX + yY + zZ (3.15)

predangle(v, f) = p(v′′′, f) + xX ′ + yY ′ + zZ ′ (3.16)

3.1.6 Muller octree approach

A slightly modified prediction based algorithm for dynamic mesh compression is
presented in the works of Muller and his colleagues [47]. They use the standard



CHAPTER 3. DYNAMIC MESH COMPRESSION 16

procedure, where the first frame is encoded completely, and for the subsequent
frames only the difference from the last frame is being encoded.

The position differences, denoted as ”difference vectors” are then clustered
using an octree algorithm [75]. The depth of the octree is controlled by the
variance of the vectors contained in the cells. Areas of homogeneous motion are
contained within large cells, while areas where the difference vectors vary more
are further subdivided.

For each cell of the octree is finally selected a substitute vector, which is
encoded into the output stream using standard arithmetic coding algorithm
CABAC [39]. The final residual vectors are neglected.

The method is inevitably lossy, information is lost when the whole cells of an
octree are represented by a single substitute vector, which is moreover quantized.
The amount of data loss can be steered by the depth of the constructed octree.

In their latest works [48] the authors have enhanced the algorithm by intro-
ducing rate/distortion optimization. For each cell one of following predictors is
chosen:

• direct coding - each vector is fully encoded

• trilinear interpolation - eight corner vectors are encoded, the rest is inter-
polated

• mean replacement - uses the same idea of the original algorithm, i.e. re-
places the whole cell content by one substitute vector.

The decision about the predictor is made based upon the rate-distortion ratio for
each cell.

A very similar approach, also using octree subdivision, has been proposed
by Zhang and Owen[74]. They also use encoding of motion vectors, and utilize
trilinear interpolation to predict the actual positions of vertices. The algorithm
does not encode the residuals at all, it only transmits the refined octree, and uses
reinitialization by inserting a fully encoded an I-frame after several predicted
frames.

3.1.7 Stefanoski scalable linear predictive coding

In 2006, Stefanoski et al. [57] have proposed one of the first schemes which com-
bine compression with simplification. Their scheme decomposes the vertices into
disjunct sets (layers) by progressive decimation of the original connectivity. The
manner of the simplification ensures that during subsequent traversal of the ver-
tices a complete spatial neighborhood of each vertex is available at the decoder.
This allows using a spatio-temporal predictor which exploits the whole neighbor-
hood and the previous frame, thus achieving better accuracy of the prediction.



CHAPTER 3. DYNAMIC MESH COMPRESSION 17

The algorithm starts with the full resolution topology, which is transmitted
to the decoder. In the next step, the topology is decimated at both encoder
and decoder, yielding a shared hierarchy of levels. The mesh is first divided into
disjunct patches (patch = topological neighborhood of a single vertex), using a
deterministic, yet not geometry driven (the decoder has no information about
the geometry yet), greedy algorithm.

Subsequently, each patch center wk is removed from the topology and the
resulting hole is retriangulated. The retriangulation process is again topology
driven, and aims to preserve vertex degree of 6, which is known to be optimal for
triangular meshes. The algorithm simply tries all the possible retriangulations of
the patches, and chooses the one which minimizes the following expression:

Dev(wk, t) =
1

|N(wk)|
∑

v∈N(wk)

|δ(v, t)− 6| (3.17)

where N(v) denotes the topological neighborhood of a vertex v and δ(v, t)
denotes the degree of the vertex v in a candidate triangulation t. The process of
patching and decimating is repeated several times, and for the coarsest level the
geometry data is transmitted to the decoder using some standard spatio-temporal
predictor.

In the next refinement step, a new predictor is used, which employs the linear
temporal prediction along with neighborhood average prediction of the motion
vector at the given position. The predictor takes the following form:

predscalable(v, f) = p(v, f − 1) +
1

|N(v)|
∑

u∈N(v)

(
p (u, f)− p (u, f − 1)

)
(3.18)

Following steps are similar to other predictor based schemes - the residuals
are quantized and entropy coded. The scheme provides results which outperform
all the previously proposed schemes, usually by 10-20%.

Generally, all the predictor based compression schemes provide an easy to
implement and very fast method for dynamic mesh compression. However, the
spatio-temporal coherence that is present in the data is only exploited locally, by
the predictor inputs. Generally, the fact that even distant parts of the object can
behave in a similar way is not exploited by these algorithms. This issue has been
addressed by the PCA based compression schemes, which will be described later
in this chapter.

3.1.8 Wavelet based compression

A wavelet based approach to dynamic mesh compression has been proposed by
Payan in [49]. The method exploits temporal coherence of the data by iteratively



CHAPTER 3. DYNAMIC MESH COMPRESSION 18

Split -P U

+

-

Signal

Odd samples

Even samples

Coarse version

of the signal

Details

(wavelet coefficients)

Figure 3.5: Principle of wavelet decomposition

dividing the temporal sequence of vertex positions into high frequency and low
frequency parts. The key observation is that for each frequency level a different
quantizer can be used, i.e. each frequency can be encoded with different number
of bits per sample. The authors propose to search for an optimal set of quantizers
that produces the best rate/distortion ratio.

Because the method is aimed to exploit the temporal coherence of the in-
put mesh, the wavelet encoding is applied on the trajectory of each vertex. The
trajectory is represented by three sequences of values, each representing the evo-
lution of one component of the position of the vertex in time. Each such sequence
is encoded separately.

The wavelet encoding is generally based on two operators: the Prediction
operator P, and the Update operator U. The input sequence is first split into two
groups of samples: even ones, and odd ones. The Prediction operator is applied
to obtain a low frequency subband, and the Update operator is applied to obtain
the high frequency subband. The whole process can be subsequently iteratively
applied on the low-frequency subband in order to obtain a sequence of various
frequency data.

There are many P and U operators proposed in the literature, the authors
state that they have obtained best results using the [4,2] operator proposed in [12].

The final step of the algorithm, which actually represents the compression
of the data, is the quantization. Each subband is compressed using different
bitlength, and the optimal set of bitlengths is found using an iterative process
with the constraint that the selected bitrate is matched.

3.1.9 PCA based compression

A very interesting new approach to dynamic mesh compression has been intro-
duced by Alexa and Muller[2] in 2000. Their approach is completely different
from the prediction based schemes presented above, as it uses principal compo-
nent analysis (PCA) to determine a new basis for the animation. The compres-
sion is based on reducing the basis size by omitting the basis elements of low



CHAPTER 3. DYNAMIC MESH COMPRESSION 19

importance.
The first step of the algorithm is to extract rigid motion from the anima-

tion, because rigid motion causes difficulties to the following PCA encoder. Each
frame is moved so that its center of mass lies at the origin, and an affine trans-
formation of positive determinant is found which minimizes the squared distance
from each vertex position to the corresponding vertex position in the first frame,
thus removing any rotation and scaling motion that may be present in the ani-
mation. The coefficients of this transformation are then sent with each frame of
the animation.

The process then continues with the PCA itself. Each frame of the animation
is reordered to form a single column vector of length 3F (F being the number of
vertices in each frame), i.e. all the X coordinates are stored first, followed by all
the Y coordinates and all the Z coordinates. All the column vectors are ordered
into a matrix B, which fully describes the animation. This matrix is now viewed
as a set of samples in 3F -dimensional space. The task is to find such orthonormal
basis of this 3F -dimensional space, which is completely uncorrelated, i.e. where
information about one component does not provide any information about any
other component. The tool for finding such basis is PCA, i.e. finding eigenvectors
of the covariance matrix.

The authors propose to use the Singular Value Decomposition (SVD) to find
the new basis for the space of frames. The SVD decomposes the matrix to
following components:

B = B̂ · S · V T (3.19)

Where B is the matrix of orthonormal principal component basis vectors, S is a
diagonal matrix of importance factors (in fact eigenvalues of B ·BT ) and V is a
matrix of animation representation transforms.

The rest of compression scheme is now straightforward. From the new basis
we choose given number of vectors with highest importance factors and compute
the representation Ef of each frame in this new reduced basis using the inner
product:

Ef = BT
f · (B̂0, B̂1, . . . , B̂b) (3.20)

where b is the selected number of basis vectors. The resulting vector of b

components (feature vector) is then sent with each frame. The last part of the
encoded representation are the basis vectors themselves.

The decompression is then straightforward too. The feature vectors Ef are
multiplied by the basis vectors, and the result is transformed by the affine trans-
form to get the original mesh. If all the basis vectors are used, then the compres-
sion scheme is lossless, the reduction can be steered by the number of selected
basis vectors b.



CHAPTER 3. DYNAMIC MESH COMPRESSION 20

original

key-frames

principal

component 

bases

importance

 factors

animation

representation

transform

Figure 3.6: The Singular Value Decomposition of a sequence of meshes, taken
from [Ale00], modified.

The method provides good results and can be combined with other compres-
sion techniques for quantization of the basis vectors and feature vectors, but it
is one of the most computationally expensive algorithms, which is caused by the
SVD step. However, this step is only performed by the sender, while the receiver
only performs simple matrix multiplications, which can be done on desktop ma-
chines in real time.

3.1.10 PCA LPC coding

A slight modification of the PCA method has been presented by Karni and Gots-
man in [32]. Their method is based on the PCA augmented by Linear Prediction
Coding (LPC) of the feature vector components. The LPC method is generally
used to encode a sequence of T values by predicting the value as a linear com-
bination of its m predecessors, and then encoding the residuals using arithmetic
coding. A single set of weights for the linear combination is used for the whole
sequence. The weights are computed using the least squares method from the
whole original sequence so that the average squared residual is minimized, i.e. by
solving the following overdetermined set of equations:




1 xm . . . x1

1 xm+1 . . . x2
...

...
. . .

...
1 xT−1 . . . xT−m







a0

a1
...

am




=




xm+1

xm+2
...

xT






CHAPTER 3. DYNAMIC MESH COMPRESSION 21

The sequence of weights a0 . . . am is sent with the sequence of the residual values
that are computed as follows:

ri = xi − (a0 +
m∑

j=1

xi−jaj) (3.21)

The LPC coding can be used directly on dynamic meshes when each vertex
trajectory is treated as a sequence of values, yielding sort of optimized temporal-
only predictor encoding. However, such method would completely omit the strong
spatial coherence that is usually present in dynamic meshes. The idea is to
apply LPC to the animation at a point when the separate components of the
representation are completely uncorrelated, i.e. after PCA.

The algorithm starts with finding the affine transform performed in the same
manner as in [2]. Subsequently, PCA is performed on the remaining non-rigid
animation, a subset of the basis is selected and the feature vectors are computed.
However, the feature vector components are not encoded directly, but using the
LPC, each component of the vectors treated as a sequence of length equal to
the length of the animation. The decompression is then also performed in a way
similar to [2], only the first step being the LPC decoding of the feature vectors.

The authors report reduction of the rate distortion ratio when compared
to the PCA-only method and when compared to the DynaPack algorithm for
animations of soft body movement. LPC of second or third order has been used.

3.1.11 Clustering based PCA encoding

A further improvement of the PCA based encoding has been proposed in 2005 by
Sattler et al. [54]. Their approach is based on reorganizing the data into a set of
vertex paths instead of frames. PCA is subsequently applied on these paths, and
the results of PCA are used to find a set of clusters of similar temporal behavior.
These clusters are then encoded separately using the standard PCA method.

The data reorganization step is generally only a transposition of the B matrix
from the original PCA-based encoding scheme. Subsequently, the clusters of
locally linear behavior are found using following iterative process:

1. initialize k cluster centers randomly from the data set

2. associate each point to the closest cluster center according to a distance
which is evaluated as reconstruction error using center’s c most important
eigenpaths

3. compute the new centers as mean of the data in each cluster

4. perform PCA again in each cluster



CHAPTER 3. DYNAMIC MESH COMPRESSION 22

5. iterate the steps 2-4 until the average change in reconstruction error falls
bellow some given threshold.

This process creates clusters of vertices, which move almost independently.
These clusters are subsequently encoded using the standard PCA-based encoder,
i.e. by finding eigenshapes of each cluster and selecting a limited number of these
which can be combined to approximate any shape from the input data.

The main drawback we have identified with this method is the iterative refine-
ment initialization and the convergence speed. The random initialization causes
the iterative process to converge to radically different solutions each time, and
the convergence can take quite long time for moderately complex meshes.

3.1.12 PCA + local coordinate frame approach

An approach which stands between the original eigenshape-based algorithm by
Alexa [2] and the CPCA algorithm has been proposed in 2007 by Amjoun and
Straßer[5]. The algorithm first performs clustering, and assigns a local coordi-
nate frame (LCF) to each cluster. Subsequently, each vertex is assigned to such
cluster centre, where the vertex movement expressed in the LCF is smallest. Fi-
nally, within each cluster an eigenshape basis PCA is performed, reducing the
dimensionality of the data. Also a bit-allocation process is proposed, which allows
assigning different numbers of basis vectors to different clusters.

The algorithm starts with a clustering step. In contrast to [54] a different
clustering is used. The k-center approach, proposed in [71], is used to find a
given number of cluster centers. A triangle incident with each center is selected,
and a local coordinate frame is created at each center in each frame by assigning
the first axis to one of the edges of the triangle, second axis lying in the plane of
the triangle, orthogonal to the first one, and the last axis orthogonal to the first
two computed as a cross product.

In the next step, each vertex v is assigned to one of the centers. Each center
cc is considered as a candidate center, and the vertex position is expressed in the
local coordinate frame of the candidate center. The length of the trajectory in
the LCF is computed, and the vertex is assigned to the center where the length
is shortest.

T (v, cc) =
f∑

i=1

‖p(v, i)LCF (cc) − p(v, i− 1)LCF (cc)‖2 (3.22)

For each cluster is then selected an appropriate number of basis components,
according to a bit-allocation process, which analyzes the gain of adding a basis
vector for each cluster. For details see the original paper.



CHAPTER 3. DYNAMIC MESH COMPRESSION 23

Finally, each cluster is treated as a sequence of geometries and PCA is ap-
plied in the space of shapes. Each frame is expressed in the reduced basis, the
coefficients are quantized and encoded using an arithmetic coder.

An interesting feature of this work is that it is to our knowledge the only
algorithm which deals also with the encoding of PCA basis. however the solution
proposed is trivial. The authors suggest forming the basis into a matrix, which
is subsequently uniformly quantized and entropy coded.

3.1.13 Skinning approach to compression

Another clustering based approach has been proposed by Mamou et al.[38] in
2006, however their approach utilizes skinning-like steps instead of PCA. The
algorithm segments the mesh according to the properties of motion of the vertices,
associates a series of transform matrices to each segment, and finally assigns
weights to each vertex, which determine how to blend the transforms to get an
accurate prediction of the vertex position.

The algorithm involves a quite large number of least-square optimization
steps. First, for each vertex v in each frame f a matrix Mv,f is found, which
describes the motion of the vertex neighborhood between the first frame and
the frame f . The matrix is computed as a least squares-fashion optimization
expressed as:

Mv,f = argmin
( ∑

vn∈v∗
‖Ap(vn, 0)− p(vn, f)‖2

)
(3.23)

where v∗ denotes the third order geometric neighborhood of the vertex v. This
process yields a series of F−1 matrices for each vertex. The series is reformed into
a single column vector, and upon the set of such vectors the k-means clustering
is performed, producing a set of clusters.

In the following step, a single series of transformation matrices is found for
each cluster C in a similar manner:

MC,f = argmin
( ∑

vn∈C

‖Ap(vn, 0)− p(vn, f)‖2
)

(3.24)

The position of each vertex in the first frame, transformed by the cluster
matrix is however still a too coarse estimation of the actual position of the vertex.
Therefore a vector of weights is assigned to each vertex, specifying a blend of
cluster matrices needed to achieve better precision prediction. The vector of
weights is again searched for in a least-squares fashion, and only the cluster into
which the vertex belongs and the directly neighboring clusters are considered,
thus keeping the length of the vector short.

The vector of weights w is found by solving the following optimization prob-
lem:



CHAPTER 3. DYNAMIC MESH COMPRESSION 24

w = argminb∈Rk

F∑

f=0

‖
K∑

k=1

wkMk,fp(v, 0)− p(v, f)‖2 (3.25)

At this point, the encoder sends the clustering information and the series of
matrices assigned with each cluster, along with the vertex weights, allowing the
decoder to predict the positions as

predskinning(v, f) =
K∑

k=1

wkMkp(v, 0) (3.26)

The prediction residuals are finally encoded using a technique called temporal
DCT, which is basically DCT applied separately on temporal series of the x, y,
and z coordinate residuals. The quantized DCT coefficients are finally encoded
using arithmetic coding.

3.1.14 FAMC encoder

Frame-based Animated Mesh Compression (FAMC) is currently the most sophis-
ticated algorithm for dynamic mesh compression. It has been adopted by the
MPEG consortium as a standard algorithm for compression of animated meshes
in a form of the second amendment of the part 16 of the MPEG-4 standard[1]. It
combines some of the previously described approaches, it provides useful features
and it is to date the most efficient algorithm from the rate-distortion point of
view.

The algorithm consists of following steps:

1. skinning-based motion compensation, performed in a way similar to Skin-
ning based compression described in section 3.1.13,

2. transformation of residuals, performed in order to exploit temporal coher-
ence,

3. layered prediction (similar to the scalable approach described in section
3.1.7), which involves simplification, which is used to provide spatial scala-
bility and to remove spatial coherence,

4. entropy coding of the residuals.

We will now describe each step in more detail.
In the first step the animation is processed as described in section 3.1.13.

Each vertex is assigned a set of matrices which describe the movement of its
neighborhood, and the vectors of matrices are clustered. Finally, each vertex has
assigned a vector of weights, which tells how to combine the transforms of the
neighboring clusters in order to well predict the vertex position in each frame.



CHAPTER 3. DYNAMIC MESH COMPRESSION 25

The algorithm at this point encodes the matrix sequences associated with each
cluster, and the cluster-assignment weights for each vertex.

The transformation step is new in FAMC, and it is applied on the one-
dimensional sequences of prediction residuals assigned with each vertex. The
algorithm allows choosing between discrete cosine transform and wavelet trans-
form, and also allows skipping the transform completely. The purpose of the
transform step is to exploit the temporal coherence which is present in the resid-
uals.

The layered decomposition is performed by a sequence of edge-collapse op-
erations (see section 4.1.4 for more details), yielding a sequence of simplified
versions of the connectivity. Note that the simplification is only driven by topo-
logical criteria, because it has to be performed by both encoder and decoder,
and the decoder has no information about the geometry at this stage of the al-
gorithm. The residuals are then encoded in a reverse order, which allows using
the neighborhood average predictor in order to further exploit spatial coherence
of the data.

The layered decomposition allows prediction using spatial neighbors, which
works in three modes, I, P and B, which resemble the prediction modes for video
encoding: for I frames no neighboring frame is used, while for P frames one and
for B frames two neighboring (and already decoded) frames are used to predict
the skinning residuals.

Finally, the layered prediction residuals are quantized and encoded in a lossless
fashion using the CABAC entropy coder[39].

The FAMC encoder has been shown to outperform all the other compression
algorithms in the offered rate/distortion ratio. It provides the possibility to de-
code only part of the stream, producing a complete (although distorted) version
of the geometry (spatial scalability). It also allows decoding of separate frames
without the need to decode the whole data stream.

Generally, all the current geometry compression schemes share one serious
omission. They all focus on minimizing the difference between the geometrical
positions of vertices, while they don’t take the topology of the mesh into account.
Currently there is no method which would differentiate between the orthogonal
and tangential vertex position error.

3.2 Triangular connectivity compression

The usual way to describe connectivity of a triangular mesh is to store a table
of index triplets, where each triplet represents one triangle. Although intuitive,
this approach has many drawbacks. On one hand, it does not explicitly store
adjacency information, i.e. whenever there’s a need to obtain neighbors of given



CHAPTER 3. DYNAMIC MESH COMPRESSION 26

vertex or triangle, it is necessary to search the whole table. Moreover, such
representation is very memory expensive, surprisingly even more expensive than
the stored geometry information. For simple mesh a so-called Euler equation
holds:

f + V = E + 2 (3.27)

where f represents the number of faces (triangles), V is the number of vertices,
and E is the number of edges. From this equation follows that in a mesh there
are about twice as many faces than vertices. We can express the space required
to store geometry as

G = 32 ∗ 3 ∗ V = 96V [bits] (3.28)

i.e. each vertex is represented by three 32 bit floating point numbers. The
space required to store the connectivity can be expressed as

C = 3fdlog2V e = 3v2dlog2V e = 6V dlog2V e[bits] (3.29)

From the two equations one can derive that for a mesh of more than 216 =
65536 vertices the connectivity information requires more space than the ge-
ometry. The following algorithms represent the state of the art in the lossless
connectivity compression.

In 1962 Tutte [62] has shown that there is a lower bound on the number of bits
required to describe a planar triangular mesh. By enumerating all the possible
triangulations with a given number of vertices, Tutte has concluded that at least
log2(256/24) = 3.245 bits are needed per vertex. Although some algorithms
provide lower bitrates for special cases, it is only the last algorithm presented
by Alliez and Desburn, which guarantees (under some assumptions) the upper
bound to reach this constant.

3.2.1 Topological Surgery

Topological surgery is a static mesh connectivity compression algorithm proposed
in 1998 by Taubin and Rossignac [60]. In order to encode a mesh topology, it
first cuts the original topology by a vertex spanning tree, which yields a set of
triangle stripes (the best way to imagine this procedure is to see it as ”peeling”
the stripes from the original surface).

The resulting triangle tree is also encoded, along with a ”march sequence”
which encodes the topology of each triangle strip. The decompression algorithm
first recovers the border of the cut mesh from the encoded vertex spanning tree,
then it recovers the triangle stripes from the triangle spanning tree and the march
sequences, and finally it sews the cuts and thus fully recovers the original topology.
We will now describe each of the steps in more detail.



CHAPTER 3. DYNAMIC MESH COMPRESSION 27

Figure 3.7: Two possible vertex spanning trees of an unwrapped icosahedron.
The tree on the left consists of a single branch, while the tree on the right has
five branching nodes (white). The cut edges are dashed, all other edges are the
march edges.

A vertex spanning tree is a subset of edges of the original mesh, which forms
an acyclic connected graph (a tree) which spans all the vertices of the original
mesh. We can represent the vertex spanning tree by a tree data structure, i.e. a
root node, with branches and leaf nodes.

For every mesh there are many vertex spanning trees, and it is crucial to
choose a tree which will have long branches and few branching nodes, because
such tree is easily encoded, and it also yields a triangle spanning tree with long
branches. By picking a particular vertex spanning tree the edges of the mesh are
divided into two groups: the cut edges (i.e. the edges of the vertex spanning tree)
and the march edges (all the remaining edges).

The vertex spanning tree is encoded by traversing through it in width first
order, where for each branch it is only necessary to encode its length, and two
bits, which indicate whether the branch has any siblings and whether the branch
ends in a leaf node or a branching node.

A triangle spanning tree is a connected acyclic graph where nodes represent
triangles of the original mesh, and edges represent marching edges, which connect
the triangles. The triangle spanning tree is fully described by the particular vertex
spanning tree, and it can be represented by a binary tree data structure, because
every branching node (triangle) can only split into two branches. Therefore, a
triangle spanning tree can be encoded by traversing it in breadth first order and
encoding each branch by its length and a single bit which tells whether the branch
ends in a leaf node or a branching node.

The only remaining piece of information which needs to be encoded in order
to fully describe the original connectivity is the internal topology of the triangle
branches. The triangle spanning tree contains information about the length of



CHAPTER 3. DYNAMIC MESH COMPRESSION 28

each branch, and we can imagine reconstructing it like moving an edge which
connects the opposite borders of the triangle strip. The border can move either
on the left side, or on the right side, and this information is encoded by one bit
per triangle in the march table. The branches are encoded in this table in the
same order as they appear in the triangle spanning tree.

The problem of choosing the optimal vertex spanning tree is considered to be
NP complete. The original paper suggests two possible approaches. First, we can
assign some cost to each edge, and construct the tree as a minimum spanning
tree using some graph theory algorithm. Good results are obtained when the
cost is for example the Euclidean distance from some root vertex. In such case
the edges are added to the spanning tree in an order according to their distance,
which leads to longer triangle runs.

Even better results are obtained with another sub optimal, but deterministic
approach, called layered decomposition. This approach can be best imagined as
literally peeling the triangles off the surface, starting at some given point. First,
the triangles are divided into layers, according to their topological distance to
some original triangle, i.e. all neighbors of the triangle are denoted as first layer,
all neighbors of the first layer triangles are denoted as second layer etc.

Subsequently, the layers are converted to stripes, starting at the innermost.
The stripes from each layer are constructed in a way that they ideally form a
single long stripe. Using this technique, an example mesh of 5138 vertices mesh
has been represented by 168 vertex runs.

Using the topological surgery approach, it is necessary to encode at least one
bit per triangle for the march table, while the number of bits needed to encode the
spanning trees vary according to how many branches are used. Using the layered
decomposition the authors claim to achieve 2.16 bits per triangle for the sample
mesh of 5138 vertices, while for very regular topology (for example obtained by
some subdivision technique) the ratio can drop to as low as 1.3 bits per triangle.

3.2.2 Edgebreaker/cut-border machine

A very elegant and simple way to efficiently encode connectivity of a triangular
mesh has been proposed in 1998 independently by Gumhold and Straßer ([27])
and Rossignac([51]). In this text we will describe the Rossignac’s Edgebreaker
algorithm, which provides some advantages over the slightly earlier Cut-border
machine proposed by Gumhold and Straßer.

The basic idea of the algorithm is to encode a traversal through all the tri-
angles of the mesh. For simplicity we describe only the basic version of the
algorithm, which works for a simple mesh.

The first triangle is encoded in full, and its edges form the first progressing
border. One of the edges of the initial triangle is selected as ”open”, and it will
be used to grow the progressing border. The open edge connects the current



CHAPTER 3. DYNAMIC MESH COMPRESSION 29

C L R

S E

Figure 3.8: Edgebreaker cases. Thick edge represents the gate, green edges belong
to the current border.

triangle with exactly one new triangle, which contains the open edge and one
more vertex. There are five possible cases for the vertex:

1. it is a new one, which has not been touched by the progressing border yet
(case C)

2. it is a vertex that lies on the progressing border immediately to the left of
the open edge (case L)

3. it is a vertex that lies on the progressing border immediately to the right
of the open edge (case R)

4. it is a vertex that lies on the progressing border both immediately to the
left and to the right, i.e. it closes a single triangle hole in the mesh (case
E)

5. it is a vertex which lies on the progressing border, but somewhere else than
immediately to the left or right (case S)

Each of the cases is encoded by some bit sequence into a so called CLERS
string. The new triangle added by the L and R cases has only one edge that
lies on the progressing border, and it is selected as the new open edge, and the



CHAPTER 3. DYNAMIC MESH COMPRESSION 30

algorithm continues. The case C yields two new edges, from which the right one is
selected as open edge, and the left one will be later used by some other operation.
The S case yields two border edges, and both are processed by a recursive call to
Edgebreaker procedure. The E case terminates the Edgebreaker procedure and
passes control to either higher recursive call, or terminates the whole algorithm
when the whole mesh has been encoded.

When decompressing, the L and R cases do not require any further infor-
mation, because the third index of the new triangle is the index of the vertex
immediately preceding or following the open edge. Neither do the C and E cases
require any information, because for the E case the index can be also derived
from the progressing border, and the C case implies that the triangle contains
new vertex with an unused index.

The main advantage of the Edgebreaker algorithm over the Cut-border ma-
chine is that not even the S case requires any identification of the opposite vertex.
The idea is that each S case divides the unprocessed portion of the mesh into
two parts, each of which will be later closed by an E case. Therefore, S and E
cases form a sort of bracket structure, from which one can derive the index of the
opposite vertex for each of the S cases.

As we can see, the way the Edgebreaker is processing the mesh is very useful
for some of the geometry compression techniques presented earlier, as it encodes
the vertices in such order that for each vertex being encoded there is a neighboring
triangle available.

Edgebreaker encodes the C case with one bit op-code, while the remaining
four cases are represented by a three bit code. For simple meshes there are about
twice as many triangles than vertices. The length of the CLERS string is equal
to the number of triangles of the mesh, and a new vertex is introduced by a C
symbol. From this follows that one half of the symbols in the CLERS string are
C symbols. The overall encoded length of the CLERS string can be expressed as
follows:

CL =
t

2
blC +

t

2
blLERS =

t

2
+ 3

t

2
= 2t (3.30)

where CL represents the encoded length of connectivity, blC stands for bit
length of C code and blLERS represents the bit length of codes L, E, R and
S. In other words, it is guaranteed that for a simple mesh the connectivity is
compressed to a maximum of 2 bits per triangle, i.e. 4 bits per vertex.

In practice using arithmetic coding on the CLERS sequence yields about 1.7
bits per triangle, or even less than that for extremely regular connectivity meshes.
This property will be later exploited by the SwingWrapper remeshing algorithm
described in section 4.1.2



CHAPTER 3. DYNAMIC MESH COMPRESSION 31

pivot pivot

Figure 3.9: The most probable case in valence driven encoding. The pivot vertex
is processing its free edges, encountering a free vertex, and adding it to the active
edge list. Edges of the active edge list are shown bold.

3.2.3 Delphi geometry based connectivity encoding

A very elegant improvement of the Edgebreaker algorithm has been recently
proposed by Coors and Rossignac [16]. The idea is to combine some of the
geometry estimators and the Edgebreaker algorithm. The geometry predictor is
used to predict the position of the next vertex, and a threshold algorithm is used
to deduce a guess about which of the CLERS cases occurs. As both the encoder
and decoder use the same estimator, it suffices to send a single confirmation bit
instead of one of the CLERS op-codes.

However, the performance of the algorithm depends on the accuracy of the
CLERS predictor, which depends on the used geometry prediction. The authors
of Delphi have used the parallelogram predictor, and they report that for usual
meshes they have achieved guess accuracy over 80%, which lead to compression
to about 1.3-1.5 bits per triangle.

3.2.4 Valence-drive connectivity encoding

A slightly different approach to connectivity encoding has been proposed in 1998
by Touma and Gotsman[61]. The key idea behind the algorithm is that ver-
tex valences are the only information needed to traverse through the mesh, and
moreover for most meshes the vertex valence shows only low variance around the
average of 6, thus have a low entropy.

The algorithm passes through the connectivity by ”conquering” vertices, edges
and triangles, and outputting the encountered vertex valences into the encoded
data stream. It works in following steps:

1. Select a triangle, mark it conquered. Also mark conquered all of its edges
and vertices. Output the valences of the vertices.



CHAPTER 3. DYNAMIC MESH COMPRESSION 32

Figure 3.10: The split accident: The processing of a pivot vertex has encountered
a vertex which is part of the active edge list. The list is split into two (inner and
outer), one of which will be processed later.

2. Add the three initial vertices into active edge list, AEL. Select one of the
vertices to be the active ”pivot”.

3. Process all the free (not conquered) edges of the pivot in counterclockwise
order. The most probable case is that the other vertex incident with the
edge is not in the AEL (see figure 3.9); in such case output it’s valence to
the target data stream and insert it into AEL before the pivot. Other cases
which can occur will be discussed later.

4. When all the free edges are processed remove pivot from AEL and mark
the following vertex in AEL as pivot. Go to step 3, unless the whole mesh
has been processed.

The decoder simply replicates the actions of the encoder and reads the va-
lences of the vertices from the stream, which allows it to determine the number
of free edges incident with each vertex.

There are two ”accidents” which may happen during the traversal. First, in
step 3 a vertex belonging to the AEL may be encountered, separating the closed
edge list into two parts (see figure 3.10). Such case is treaded by a special symbol
split, which tells the decoder to split the AEL into the two parts, followed by
an index determining the position of the split. One part of the AEL is then
processed while the other part of the AEL is pushed into a stack of lists, from
which it will be later popped and processed.

The other accident also appears in step 3, when a vertex belonging to one of
the lists currently in the stack is encountered. The case is identified by a merge
symbol, which tells the decoder to merge the current AEL with a list in the stack.
The merge symbol is followed by two indices, first identifying which of the lists
in the stack should be used for merge, and the second identifying the index of
the encountered vertex, thus specifying the merge operation.



CHAPTER 3. DYNAMIC MESH COMPRESSION 33

The algorithm also treats meshes with boundaries by inserting a dummy ver-
tex for each boundary loop. This vertex is connected to every vertex of its
boundary loop, thus topologically filling it. Such vertex (usually of high degree)
is identified by a symbol dummy in the output string, and the decoder removes
it after the whole connectivity has been decoded.

Since the most frequent symbol in the output string is the vertex valence,
which is expected to be 6, it is possible to efficiently apply entropy coding, reach-
ing to bitrates of 0.2 bpv for very regular meshes, and 2-3.5 bpv for irregular ones.
The main drawback of this method, which has been later addressed, is the lack
of worst case limit on the bitrate. The reason is that the algorithm transmits
indices for the accident operations, and it cannot be predicted how many bits
will be needed for encoding them.

The algorithm has been subsequently improved by Alliez and Desburn[3]. They
suggest reducing the number of the split accidents by replacing the deterministic
processing of vertices by an adaptive one. They suggest selecting pivots with low
number of free edges, and when such decision is ambiguous, then the neighbor-
hood of the candidate pivot is also taken into account. A weighted average free
edge count is computed, giving lower weight to distant vertices. This approach
leads to reduction of the number of split operations by 70% in comparison to
the original algorithm. It also leads to lower number of lists in a list stack, and
therefore reduction of the number of the merge operations.

The second improvement suggested by [3] attempts to reduce the range of
offsets in the split operation by renumbering the vertices according to their Eu-
clidean distance to pivot. Such renumbering causes the close vertices (which
are likely to be encountered) to posses a low index, thus reducing their entropy,
however it requires the decoder to decode the geometry simultaneously with the
connectivity.

The final improvement deals with the boundary vertices, which used to be
connected to a dummy vertex for each boundary loop. These vertices usually had
a large degree, which lead to problems with entropy coding. The improvement
proposes to join all the dummy vertices into a single ghost vertex. Such vertex
cannot be selected as a pivot, because it will probably be non-manifold, however
the traversal can be completed by skipping it.

Using these improvements, and assuming that the number of split operations
is negligible, the authors of [3] show that the worst case bitrate is equal to Tutte’s
constant, i.e. 3,245 bpv.



CHAPTER 3. DYNAMIC MESH COMPRESSION 34

3.3 Tetrahedral connectivity compression

We will now describe two methods for tetrahedral connectivity compression. The
relevance of tetrahedral meshes to dynamic mesh data rate reduction will be
justified in the following text.

From Euler equation for triangular meshes follows that the average vertex-
triangle order of a low Euler characteristic mesh is 6. Unfortunately, for the
case of tetrahedral meshes this does not hold, there are some pathological cases
with extreme vertex-tetrahedron order, and even for the meshes usually used
in computer graphics or data processing is the vertex-tetrahedron order more
variable than in the case of triangular meshes. For example a regular cubic
lattice subdivided by the 5 tetrahedra scheme leads to vertex-tetrahedron order
12, while using the 6 tetrahedra scheme produces vertices of average order 14.

The authors of [26] specify the expected relations in a usual tetrahedral mesh
as follows:

V : E : f : t = 1 : 6.5 : 11 : 5.5 (3.31)

where V is the number of vertices, E is the number of edges, f is the number
of faces and t is the number of tetrahedra.

3.3.1 Grow&Fold

One of the first efforts in the field of tetrahedral mesh connectivity compression is
the Grow&Fold algorithm published by Szymczak and Rossignac [59]. It is based
on a combination of ideas of the Edgebreaker and topological surgery algorithms
for triangle mesh compression. The algorithm is able to compress the connectivity
of a tetrahedral mesh from 128 bits per tetrahedron (four 32-bit indices per
tetrahedron) down to a little over 7 bits per tetrahedron.

The first step is similar to building of triangle spanning tree in the topological
surgery approach, only this time a tetrahedron spanning tree is constructed.
An arbitrary border triangle is selected as a ”root door”, which leads to the
first tetrahedron of the tree. Each tetrahedron adds three new doors, which
correspond to the tree new triangles that together with the current door form
the given tetrahedron. Each of the doors is then processed in a specific order.

The tetrahedron spanning tree is encoded by three bits per tetrahedron, where
the bits declare whether each of the triangles is a ”door” to a new branch of the
tree or not. The decoder is then able to ”grow” the tree by processing the string
of encoded tetrahedra. However, this step only reconstructs the connectivity
partially, it is necessary to connect the branches of the tree to reconstruct the
geometry of the original tetrahedral mesh.

The authors recognize two ways to connect tetrahedra in the tree. First, the
”fold” operation connects the tetrahedron to one of its current neighbors, similar



CHAPTER 3. DYNAMIC MESH COMPRESSION 35

to L or R states in the Edgebreaker algorithm. Each ”cut” face, i.e. every face of
the grown tetrahedral spanning tree, is assigned a two-bit code, which tells the
decoder which one of the edges is the ”fold edge”, or tells the decoder that no
fold operation should be performed upon the given face. There are 2t+1 external
faces of the tetrahedron spanning tree, and therefore there are 4t + 2 bits needed
to encode the ”folding string”, in which the faces are encoded in the same order in
which the tetrahedra are processed by the spanning tree construction algorithm.

After the folding of the tree it is still possible that some of the faces that
are supposed to be connected are not connected, this case occurs when a face is
adjacent to a tetrahedron which is not adjacent in the tetrahedron spanning tree.
Such case is solved by the ”glue” operation, which is the only one which needs
an explicit index, which tells what faces should be glued. It is shown that for
reasonable meshes the number of required glue operations is low, and therefore
it does not influence the overall performance of the algorithm, which remains at
7 bits per tetrahedron.

3.3.2 Cut-border

The cut-border machine for triangular connectivity compression is in contrast
with the Edgebreaker algorithm easily extendible to the case of tetrahedral con-
nectivity compression problem. The extension has been proposed in 1999 by
Gumhold and Straßer [26].

The cut-border is a triangle mesh, which divides the tetrahedral mesh into
two parts, inner and outer. This border is initialized to a single tetrahedron, and
it is grown until it is equal to the border of the whole tetrahedral mesh. The
growing of the cut border is performed by processing one triangle of the border
at a time, where order of processing of triangles is set by a strategy which will
be described later.

There are three basic situations, in which can a cut-border triangle be. It
can either be a border triangle, it can be a base of a tetrahedron formed by a
new vertex, or it can be a base of a tetrahedron formed by one of the cut-border
vertices. Each of these cases is encoded into an output stream, the authors of [26]
denote the states as 4 (close), * (new vertex) and ∞ (connect). Of these only the
∞ needs a parameter, which will tell the decoder which of the cutborder vertices
should be used to form a new tetrahedron. The 4 and * operations do not need
any extra information.

In order to improve the compression rate, it is useful to use local indices as
parameters of the ∞ operation. Such local indices are created in a way that the
nearest vertices have the lowest numbers. One of the edges of the cut-border
triangles is selected to be the ”zero edge”. All the vertices are then searched in
the breadth-first order from this edge, until the incident vertex is reached. The
order in which it has been found is then encoded as the index for the∞ operation.



CHAPTER 3. DYNAMIC MESH COMPRESSION 36

The created sequence of close, new vertex and connect operations is then used
by the decompressing algorithm to reconstruct the original connectivity. It is
possible that during the decompression the cut-border represents a non-manifold
mesh; however the final state of the cut border is guaranteed to be equal to the
border of the original tetrahedral mesh.

In order to reduce the number of connect operations with high index, the
authors propose to process vertices of the original mesh in a fifo order, while
all the cut-border triangles incident with current vertex are processed before the
algorithm continues to another vertex. This rule represents one possible strategy
for choosing a cut-border triangle.

The choice of zero-edge also influences the number of high index connect
operations, the proposed strategy is to set the zero edge for each triangle at the
time it is added to the cut border, and set it to the edge that this triangle shares
with the triangle which caused its insertion.

The cut-border machine is able to reduce the cost of connectivity compression
for tetrahedral mesh from theoretical value

C = 4tdlog2V e (3.32)

down to about 11 bits per vertex, i.e. about 2 bits per tetrahedron.



Chapter 4

Dynamic mesh simplification

Triangular mesh simplification is one of the most intensively studied problems
of computer graphics. In contrast to compression, simplification always changes
the topology of the data, and therefore it almost always changes the shape of the
data. From our point of view this represents no problem, as we aim to produce
shapes that are visually similar, but not necessarily equal to the input.

There are approaches to various special cases of the problem, however we will
only focus on main directions applicable to triangular and tetrahedral meshes.
For a deeper review of existing simplification methods see [19, 23, 4].

In the following text we will describe the basic approaches to simplification
methods based on vertex removal, edge collapsing, remeshing and geometry im-
ages, which is of particular interest for us, because it can be extended to t-variant
case in the form of geometry video. We will also give details about tetrahedral
mesh simplification methods, because we will show in the last section that a
dynamic 3D mesh can be represented by a static 4D tetrahedral mesh.

4.1 Static triangular mesh simplification

4.1.1 Schroeder decimation

The algorithm proposed by Schroeder in [55] works on triangular meshes and is
based on vertex removal and retriangulation of the hole. Such approach is known
as mesh decimation, and its results strongly depend on the decimation criterion
used.

The algorithm works in three steps, which are iteratively repeated until the
desired simplification ratio is reached. These steps are

1. characterize the local vertex geometry and topology

37



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 38

simple complex boundary interior edge corner

Figure 4.1: Local geometry and topology characteristic for decimation.

2. evaluate the decimation criteria

3. remove vertices and retriangulate the holes

The original algorithm takes into account so-called feature edges, i.e. edges of
angle higher than given threshold. Such edges are considered important, and the
algorithm tries to preserve them. The feature edges form a geometrical char-
acteristic, which must be evaluated along with the topological characteristic of
vertex surroundings. We can distinguish the cases depicted in figure 4.1.

• simple vertex (its neighborhood is topologically equivalent to a disc, it does
not incide with any feature edges)

• complex vertex (a non-manifold vertex, cannot occur with our inputs)

• boundary vertex (incides with two border edges)

• interior edge vertex (incides with exactly two feature edges)

• corner vertex (incides with three or more feature edges)

The complex vertices and corner vertices are not considered candidates for
decimation. For the simple vertices, a ”distance to average plane” criterion is
evaluated, while for the interior edge and boundary vertices the ”distance to the
edge” criterion is used.

The ”distance to average plane” criterion is evaluated as follows: an average
plane is first constructed from all neighbors of a simple vertex, and subsequently
the orthogonal distance of the vertex to this plane is computed. If the distance is
lower than some threshold, then the vertex is removed and the hole retriangulated.

The ”distance to edge” criterion is evaluated for boundary and interior edge
vertices. In the case that the given vertex is removed it is obvious that the edge
or border at given location will be replaced by a line segment. The criterion
value is the orthogonal distance of the original vertex position to the replacement
line segment. If this distance is lower than a given threshold, then the vertex is
removed and the hole retriangulated.

The retriangulation is performed using the recursive loop splitting procedure.
By removing a vertex a loop of vertices is created which bounds the hole to be



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 39

simple vertex boundary vertex interior edge vertex

Figure 4.2: Decimation criteria for vertex removal. Red distances represent the
criteria value, blue edges are the feature edges.

retriangulated. The algorithm chooses a pair of non-adjacent vertices from the
loop, which divides the loop into two parts. Each part is the again divided in
the same fashion, until only one triangle remains in each loop. Such triangles are
then added to the mesh.

In the case of interior edge vertices and boundary vertices the first splitting
edge is always the border edge or the interior edge replacement. However, in
all steps of triangulation of holes created by simple vertices, and in later steps
of triangulation of holes created by removal of boundary vertices and interior
edge vertices, there are usually more possible ways to create the dividing edges.
The edges are considered with respect to their ”split plane”, i.e. a plane that is
orthogonal to the average plane of the hole, and which contains the edge. The
current boundary loop vertices are evaluated against this plane, and if the plane
separates them into two groups consistently with the half loop into which each
vertex belongs, then the given edge is accepted as possible split edge. If no
acceptable split edge is found, then the vertex is not removed from the mesh.

Still, there may be multiple possible split edges. For each such edge an aspect
ratio criterion is evaluated. This criterion is constructed to prefer short edges
that well separate the edges of the hole. Let’s denote the minimum distance of
the loop edges to the split plane dmin, and the length of the edge l. The aspect
ratio is then simply expressed as

Caspect =
dmin

l
(4.1)

In order to get best results is the value of the criterion limited by some
threshold, and if no edge is found to provide sufficient criterion value, then the
vertex is again not removed.

This simplification scheme is very simple and has been extended to cover var-
ious special cases and provide better results by using different criteria. Various
speedup techniques have been also proposed in order to avoid sorting the candi-
date vertices in each step of the algorithm [20]. However, the method only uses
the vertex positions of the original mesh, even in cases when it could be beneficial
to move the vertices to new positions in order to better fit the original shape.



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 40

gate edge

actual vertex position

dihedral angle

predicted vertex position

Figure 4.3: Dihedral angle predictor

4.1.2 Attene SwingWrapper

The SwingWrapper algorithm has been proposed by Attene et al. in 2003 [8]. It is
basically a remeshing algorithm that works in a way similar to the spinning edge
algorithm [13] used for tessellation of implicit surfaces. It completely replaces the
original connectivity of the mesh by a new one, which is constructed to be very
regular, so that a connectivity compression algorithm such as Edgebreaker can
process it very efficiently. Moreover, a new vertex position prediction scheme is
suggested, which only uses one parameter to set the position of a new vertex.

The basic idea is to use equilateral triangles of predefined edge length L
wherever possible. The algorithm first randomly selects one vertex of the original
mesh. The second vertex is also randomly chosen on the intersection of a sphere
of radius L centered in the first vertex, and the original mesh. Note that this
second vertex and any following vertices are not vertices of the original mesh.

The first and second vertices form an initial edge. Third and fourth vertex,
which form an initial pair of triangles, are found as crosspoints of a circle of radius√

3
2 L centered in the midpoint of the initial edge, which lies on a plane orthogonal

to the initial edge, and the original mesh.
The open edges of the initial couple of triangles form four initial gates, from

which a combination of remeshing algorithm and Edgebreaker algorithm starts
an iterative processing of the mesh. During this process, a new triangular mesh
M’ is created from the original mesh M.

A midpoint of the gate is selected, a circle of radius
√

3
2 L centered at the

midpoint and lying on a plane orthogonal to the gate is constructed, and its
intersections with the original mesh are found.

The intersection point which is further from the base triangle of the gate is
selected. If it is closer to any existing vertex of M’ than one half of the L length,
then it is snapped to this vertex by encoding one of the LERS Edgebreaker codes.



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 41

Figure 4.4: Smoothing effect of the SwingWrapper remeshing. Taken form [8].

If the new vertex is not snapped to any existing vertex, then the C case is encoded,
along with geometry specification of the new vertex.

The encoding of a new vertex is performed in a way which exploits the reg-
ularity of the mesh. The so-called dihedral angle scheme is used to encode the
position of the new vertex. The decoder knows that the new vertex lies on a cir-
cle centered in the mid-point of the gate, and can guess its position to be on the
plane of the gate triangle. The only correcting information is the angle between
the guessed position of the new vertex, and its real position, i.e. a single number,
which is claimed to be sufficiently quantized to 8 bits, given that both decoder
and encoder use the quantized positions, so that the error does not propagate
and accumulate.

The overall size of the encoded mesh can be easily computed as

E = G + C = 8v + 2t = 6t (4.2)

where E stands for the encoded length of the mesh, G stands for encoded
length of geometry and C stands for the length of encoded connectivity. We can
also estimate the dependency of the number of triangles of M’ on the selected
length L:

t =
A

L2
√

3
4

(4.3)

where A stands for the area of the original mesh M. Given these relations, we
can easily steer the compression to produce compressed representation of desired
length. Using some advanced arithmetic coding technique can bring the encoding
cost even lower down to about 4 bits per triangle.

There are two main drawbacks of this approach. First, the created mesh is
very regular, and it does not use the local properties of the input mesh, i.e. even
very flat regions of the original mesh will be sampled with constant density.

The other drawback is that the method performs some smoothing of the
original mesh, which is also caused by the fact that it does not adapt to local



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 42

changes in the mesh curvature. This feature could be solved by some adaptive
technique known from implicit function tessellation, but this would make the
encoding more complex and in effect less efficient.

4.1.3 Geometry images

The Geometry images technique has been first proposed by Gu, Gortler and
Hoppe in [24]. The method also resamples the original mesh in order to fit a
given existing compression technique, only this time the target technique is im-
age compression. The idea is to cut the original mesh, parameterize the boundary
onto a square domain, sample the domain and encode the sampled XYZ coor-
dinates using some off the shelf method like JPEG. The steps of the algorithm
are quite complex, and therefore we will only mention the general techniques,
omitting the implementation details.

The first step of the algorithm is the cutting of the original mesh. The method
is supposed to be able to process general genus meshes, and it can be shown that
a closed manifold mesh of any genus can be unfolded to a topological equivalent
of a disc by a number of cuts. The algorithm proposed by the authors finds such
cut by first growing the cut to cover the whole mesh, and then by pruning the
unnecessary parts of the cut.

The next step is forming the parameterization of the disc-equivalent onto a
square domain. The cut further expanded during this iterative process in order to
reduce the geometrical stretch, which is computed using the algorithm described
in [53]. First, the disc is parameterized onto square domain using the Floater
algorithm [18], and a point of maximum stretch is identified. Subsequently a
path from the extreme stretch point to the current border of the disc is found,
cut and added to the disc boundary, forming the new cut, which is used as input
for the next iteration of the algorithm. The iterative process ends after reaching
given number of steps, or when the overall stretch is not reduced by further steps.

Finally, the square domain is regularly sampled, reprojecting the locations
from the square image domain back to the geometry and computing the vertex
positions. The computed XYZ positions are then encoded in a way similar to the
RGB triplet encoding used in JPEG.

The decompression reconstructs the point locations encoded in the geometry
image and spans a regular triangular mesh on them. Some problems may arise
at the borders of the domain, which require some topological sideband to be also
encoded with the mesh.

The compression rate can be steered by choosing different sampling rate of
the parametric domain, and by choosing different encoding strategies for the XYZ
triplets. The method works very well for simple meshes of regular shape, but it
has problems with meshes that are hard to parameterize onto a square domain.
The authors suggest to also encode point normals at sampled positions to improve



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 43

Figure 4.5: Examples of geometry images. The top row shows the cut, the bottom
row shows the resulting geometry images. The image has been taken from [24].

the visual effect of the encoding.

4.1.4 Edge collapse

In their work published in 1996 ([50]), Ronfard and Rossignac have presented a
new scheme for simplification based on the edge contraction as a basic operation.
Along with it, they have presented a cost function based on distance to planes.

The edge collapse is an elementary operation that has been widely accepted
for simplification algorithms with many other simplification criteria. The basic
idea is that a cost is assigned with each edge, which tells how much distortion
would the contraction of the edge cause to the mesh. These costs are used as
keys to an optimized priority queue data structure. Subsequently, the top edges
with least contraction cost are removed from the queue, and contracted, i.e. the
first vertex v1 of the edge is removed, and in all incident triangles it is replaced
by the opposite vertex v2. The contraction costs of altered edges are updated,
and the algorithm continues contracting the next least cost edge, until it reaches
the desired simplification ratio.

The main advantage of edge contraction in contrast with vertex decimation
is that there is no need for retriangulation. In each edge contraction step exactly
two triangles are removed.

After the pioneering work of Ronfard and Rossignac, many methods were
proposed to compute the edge contraction costs, and to compute the new position
of the vertex. The original algorithm proposes to use a tessellation (topological)
criterion, a geometrical criterion and a relaxation process to determine these
properties.



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 44

collapsed edge

v2

v1

v2

Figure 4.6: Edge collapse operation.

original tessellation valid collapse invalid collapse

Figure 4.7: Triangle flip.

The tessellation criterion is used to evaluate the edges, preventing triangle
flips. A triangle flip occurs when a normal of a triangle flips its direction by 180
degrees. The criterion computes the angle between original and updated normal
At for all triangles t affected by an edge contraction, and selects the maximum
value as the cost:

LTE(V1, V2) = K max
t∈triangles(V1,V2)

At (4.4)

The geometrical criterion is used to evaluate the distortion caused by the edge
contraction. For each vertex, a ”star” of incident edges is kept. From this star,
one can determine a set of planes, which meet at the vertex. Squared distance
to any of these planes (represented by implicit function p.x = 0) from a point x

can be determined as:
d2(x, p) = x.p (4.5)

The geometrical criterion value is determined as a maximum of these distances
from the new vertex position to all of the planes incident with the original vertices:

LGE(V1, V2) = max
p∈planes(V1,V2)

d(V2, p) (4.6)

From the equation follows that the new position of the vertex is one of the
positions of the original vertices. Note that the set of planes associated with the



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 45

new vertex is the union of the sets of planes of the original vertices, i.e. it is
not recomputed from the new tessellation of the neighborhood of the new vertex.
The overall cost is then determined as a maximum of LGE and LTE. The authors
have also suggested a relaxation process, which will move the replacement vertex
to a position which better fits the original local shape. The proposed algorithm
is to find a minimum of the sum of distances to the set of incident planes and set
the position of the vertex to this minimum:

V ∗
2 = min

x

∑

p∈planes(V2)

d(x, p) (4.7)

Note that the set planes(V2) now already contains the union of the two original
sets of planes. The authors discuss the possibility to use this optimized position
in the cost computation of edges, but state that it would be inefficient.

4.1.5 Quadric based

The quadric based simplification method proposed by Heckbert and Garland in
1997 ([44]) is based on the pair contraction technique, which is similar to edge
contraction, and its main contribution is a novel method of evaluating the pairs
for contraction.

The concept of pair contraction is a simple augmentation of the edge con-
traction described above. The difference is that a pair can be either an edge, or
a couple of vertices which is not connected by an edge, but which is very close
together. Using the pair contraction instead of edge contraction allows simplifica-
tion of topology of the mesh, i.e. connecting previously unconnected components
of the mesh.

The algorithm works in four steps:

1. select valid pairs for contraction

2. evaluate the pairs (see below)

3. sort the pairs according to their evaluation

4. iteratively contract the pairs and update the mesh

The key step is the evaluation of pairs. First, we will describe the situation
at one vertex. A vertex is an intersection of planes, in which lie the incident
triangles. If we want express the squared distance of a point x from a plane p,
we use a simple dot product:

d2
p(x) = xT p (4.8)

where x is the position represented in homogeneous coordinates and p is the
vector of coefficients of the implicit plane equation. If we now want to express



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 46

the squared distance from a set of planes incident with some vertex v, we simply
add the distances together:

d2
v(x) =

∑

p∈planes(v)

xT p (4.9)

The sum can be rewritten as follows:

dv(x) =
∑

p∈planes(v)(x
T p)(pT x) (4.10)

=
∑

p∈planes(v) x(T )(ppT )x (4.11)

= xT (
∑

p∈planes(v) ppT )x (4.12)

= xT Qx (4.13)

From the last expression follows, that computing the sum of squared distances
from a set of planes incident with a given vertex can be expressed by a quadratic
form. This form can be pre-computed for each vertex of the original mesh. When
a pair is considered for contraction, then the quadratic forms of its endpoints
are simply added together. The final position after the contraction is found by
minimizing the error measure. The minimum is found by finding the zero point
of the first derivative of the quadric form, i.e. by solving the following set of
equations: 



q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34

0 0 0 1


x∗ =




0
0
0
1




where qxy are elements of the summed quadric Q12 = Qv1+Qv2. Note that the last
line of the matrix expresses that we are looking for a solution with homogeneous
coordinate equal to 1.

The overall error measure for given pair is expressed as

p = x∗T Q12x
∗ (4.14)

This measure is then used to sort the pairs, and the pairs of lowest error
measure are contracted first.

4.1.6 Locally volume preserving edge collapse

All the edge collapse criteria presented so far were based on the idea that the new
cost should be computed with respect to the original mesh. Lindstrom and Turk
in their works [36, 37] have dropped this assumption, and their algorithm only
uses the current simplified version of the mesh to compute the costs of contraction
of each edge. Their criterion is based on local volume preservation, which leads to
global volume preservation, which is a problem for some simple vertex placement



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 47

schemes, including the original one presented in [50]. We will first describe the
algorithm that sets the position of the new vertex after edge collapse, and then
we will show a cost function which is closely related to it.

The new vertex position is set by searching for an intersection of three planes,
each of which represents some constraint about the position of the vertex. The
authors provide equations for several possible constraints, and propose an order-
ing in which these constraints are evaluated, and their planes constructed. It is
possible that some of the constraints produce planes that are almost coplanar, i.e.
an underdetermined system which is easily disturbed by rounding errors. Such
case is detected by checking the angle between the planes. Cases when the angle
is lower than 1 degree are called α incompatible and the next constraint from the
priority ordering is selected. The possible constraints are (in order in which they
are evaluated):

1. volume preservation

2. boundary preservation

3. volume optimization

4. boundary optimization

5. triangle shape optimization

The volume preservation constraint enforces that the volume is not changed
after the edge is collapsed. The space between the original and new tessellation of
the neighborhood of the collapsed edge is divided to tetrahedra, each having base
in one of the original triangles, and a top in the new vertex. A signed volume of
a tetrahedron can be expressed as:

V (t) =
1
6
det




vx v0x v1x v2x

vy v0y v1y v2y

vz v0z v1z v2z

1 1 1 1




Where v is the location of the top of the tetrahedron, and v0, v1 and v2 are
vertices of its base. Note that this volume is negative when the top is located
below the base with respect to the normal of the base(i.e. when the volume is
reduced) and positive when the top is above the base (i.e. when the volume is
added). Therefore, it suffices to sum the volumes up and solve for zero:

∑

t∈tetrahedra(v1,v2)

V (t) = 0 (4.15)

Solving this equality constrains the solution v to a plane.



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 48

Figure 4.8: Tetrahedra created in the neighborhood of a contracted edge, from left
to right two tetrahedra incident with the removed triangles, tetrahedra incident
with vertex v1 and tetrahedra incident with vertex v2.

The boundary preservation works in a similar manner to the volume preser-
vation, and it is evaluated only for contractions that affect at least one boundary
edge. It starts with signed area A defined for each original boundary edge e as

A(v, e) =
1
2
(v × e0 + e0 × e1 + e1 × v) (4.16)

Searching for zero sum of signed areas is however only possible for the case
of planar triangles, so the algorithm only minimizes the following expression:


 ∑

e∈boundary

1
2

(v × e0 + e0 × e1 + e1 × v)




2

(4.17)

The minimization of this term yields two additional planes. Volume optimization
is similar to volume preservation, only this time the unsigned version of tetrahe-
dron volumes are minimized, bringing the new surface as close as possible to the
original one (the volume ”between” the surfaces is minimized). The minimized
expression takes following form:

∑

t∈tetrahedra(v1,v2)

(V (t))2 (4.18)

This constraint yields up to three additional planes. The boundary optimiza-
tion constraint is evaluated in equivalent manner - the minimization expression
which produces up to three additional planes has the following form:

∑

e∈boundary

(A(v, e))2 (4.19)

The triangle shape optimization constraint is only used in the case when the
previous constraints have not produced three α -compatible planes. This case
usually occurs when the triangles of the original mesh are almost coplanar. In
such case, the last constraint simply prefers equilateral triangles to long ones.
The minimized expression is:



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 49

∑

i

(L(v, vi))
2 (4.20)

where L is the distance between two vertices, and vi are the vertices adjacent
to the new vertex v.

The contraction cost that needs to be computed for each edge is finally com-
puted as a weighted sum of volume optimization expression and boundary op-
timization expression. Equal weight used in the paper for comparative test-
ing against other simplification techniques produced results comparable with the
most efficient algorithms.

4.2 Dynamic mesh simplification

4.2.1 Decimation of dynamic meshes

The decimation scheme proposed by Schroeder[55] can be used for the dynamic
mesh decimation, given that the decimation order criteria are extended to cover
the temporal behavior of the vertices.

One suggestion of such extension has been given by Mathur et al.[41] in 2004.
They have proposed two importance measures for vertices, the CURV measure,
based on vertex curvature, and the SKEL measure, based on the properties of the
skeleton. Using these importance measures, they report improvement of quality
of simplified meshes in terms of quadric error as described by Garland [44].

First, the authors define local curvature of vertex i as

κi =
∑n

l=1 afl
κfl∑n

l=1 afl

(4.21)

where n is the number of faces in the one ring neighborhood of vertex i, afl

is the area of the lth face, and κfl
is defined as

κfl
=

1− (ninfl
)

2
(4.22)

where ni is the unit normal at vertex i and nfl
is the unit normal of the lth

face.
The local curvature is defined for each frame f . The average curvature of a

vertex over the duration of the animation is defined as

κi =

∑F
f=1 κif

F
(4.23)

Similarly, we define deviation from the average at frame f as

δκif = |κi − κif | (4.24)



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 50

and the average deviation over the duration of the animation is then defined
as

δκi =

∑F
f=1 δκif

F
(4.25)

Finally, the CURV criterion is defined as

CURV (i, α) = α· δκi + (1− α)·κi (4.26)

This value can now be used as a decimation criterion. The authors also
propose to use this measure to determine the accuracy of quantization in the
dynapack algorithm[29]. We will not describe the other importance measure,
SKEL, because it is based on the knowledge of the mesh skeleton, which we
assume not to be known.

We note several drawbacks of this measure. First, the local curvature defini-
tion (4.21) uses direct area weighting, which contradicts the ideas presented by
Max[42], who suggests using inverse area weighting for computing vertex prop-
erties from properties of adjacent faces.

Second, the paper does not give any value for the α constant of (4.26), the
authors state that this constant can be used to tweak the measure to obtain
desired results.

Finally, the dynapack application is questionable for two reasons. First, there
is an overhead associated with using different quantizations, because the decoder
cannot evaluate the curvatures and therefore the information about the desired
quantization must be transmitted with each vertex. Second, the CURV impor-
tance measure behaves basically like a feature detector, however the decision to
quantize coarsely the non-feature areas is not supported by any reasoning. We
can actually state an opposite assumption, that the eventual artifact introduced
in a non-feature area will be more disturbing, because it will be well visible, while
in areas of high curvature deviation it will be harder to spot by a human observer.

4.2.2 Geometry video

Geometry videos, proposed by Briceno in 2003 [9], are a straightforward augmen-
tation of the geometry images technique described in [24] to the dynamic case.
The authors use a sequence of geometry images to represent a sequence of meshes
of constant connectivity, and they suggest encoding such sequence using a video
encoding algorithm such as MPEG-4.

The result of the method is again a constant connectivity mesh. The density
of the mesh depends on the density of sampling of the parametric domain. The
main issue that needs to be solved is how to compute the parameterization so that
it releases the stress in all the frames. The authors propose following possibilities:



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 51

1. use the ”worst frame” to compute the cut

2. use global stress measure to compute the cut

However, the first possibility is only applicable for meshes where a worst frame
contains all the high tension areas, which is not always the case (for example
morphing objects have high strain at different positions in different frames).

The second approach is capable of producing acceptable results for most cases
where geometry images technique works. The authors propose to use average
stretch measure normalized to overall stretch in each frame, so that a single
frame of high distortion cannot drive the algorithm astray.

The shortest path to current boundary algorithm must also be modified to
reflect the changing length of the edges, which is done in a similar manner -
average length of edges is used. The iterative cutting algorithm is stopped by
the ”average average” condition, i.e. when the average distortion computed at
vertices from all time steps is in average not decreasing anymore.

4.2.3 Quadric based simplification in higher dimension

The authors of [44] have extended their quadric metric to any dimension in 2005
([22]). Their approach allows simplification of meshes embedded in any dimension
and containing simplices of any dimension. The simplification algorithm remains
virtually intact, as it is again based on iterative pair contraction.

The algorithm works as follows:

1. compute fundamental quadrics for all simplices

2. compute aggregate quadrics for vertices

3. evaluate the pairs according to quadrics

4. sort the pairs

5. contract pairs with the lowest evaluation value

In order to derive the generalized quadric based error metric, we will start
with generalized Pythagorean theorem. Given a point p in d-dimensional space
and some orthonormal basis of the space B = {ei}d

i=1 , we can express the squared
distance to this point as:

‖x− p‖2 =
d∑

i=1

(
(x− p)T ei

)2 (4.27)

=
d∑

i=1
(x− p)T (eie

T
i )(x− p) (4.28)

= (x− p)T (
d∑

i=1
eie

T
i )(x− p) (4.29)



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 52

In order to generalize the notion of distance to a plane which contains a
triangle, we must now consider distance to a sub-space which contains a simplex.
Each such sub-space is defined by a basis, which can be easily obtained, and can
be transformed to an orthonormal basis using the Schmidt orthonormalisation
process. This way, we get a set of directions, in which the distance does not
contribute to the error metric, and a set of distances which contribute. We can
now express such metric as a reduced sum:

e(x, p) = (x− p)T

(
d∑

i=n+1

eie
T
i

)
(x− p) (4.30)

where e0 . . . en is the basis of the sub-space spanned by a given simplex (note
that these do not contribute to the error metric) and en+1 . . . ed represent the
additional basis vectors.

As we can see, this expression is not very practical, as it does not use the basis
of the subspace, which can be computed easily. However, it can be rewritten in
equivalent, but much more convenient form:

e(x, p) = (x− p)T

(
I −

n∑

i=1

eie
T
i

)
(x− p) (4.31)

This formula is equal to computing the ”full” distance, and then subtracting
the distances in those directions which should not affect the error metric. The
formula can be rewritten in a form of quadratic expression:

Q(x, p) = xT Ax + 2bT x + c (4.32)

where

A = I −
n∑

i=1

eie
T
i , b = −Ap, c = pT Ap (4.33)

The triplet Q = (A, b, c) will be called fundamental quadric of a point of given
tangent hyperplane. Now, we can derive an error metric for a single simplex. For
a given simplex σ we can write:

Q(x, σ) =
∫

p∈σ

Q(x, p) (4.34)

where the integration is performed over all the points of the simplex. Since
all the points p of the simplex have the same tangent plane, we can simplify the
expression to

Q(x, σ) = ωσQ(x, p) (4.35)



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 53

Where p is any point of the simplex, and ωσ is the hypervolume of the simplex.
Again, the expression can be rewritten as a quadratic form, which is described
by the (A, b, c) triplet. When considering the error metric for a given vertex, we
can simply add the error metrics of incident simplices:

Q(x, v) =
∑

σ∈simplices(v)

Q(x, σ) (4.36)

This measure is called the aggregate quadric, and it is again described by a
quadric triplet. Such triplet is associated with each vertex of the original mesh,
and it is used for evaluating the candidate pairs. The optimum point location
x∗ can be computed by solving a linear system of equations, similar to the one
used in 4.1.5. The pairs are evaluated by the error metric value in this optimum
location, and the contraction starts with pairs of lowest value.

This generalized method is equal to the method described in [44] when applied
to the case of triangular meshes in E3, which is now treated as a special case of
this general approach. This approach can be readily used for simplification of
tetrahedral meshes in 4D, which is of particular interest for us.

4.2.4 TetFusion

TetFusion algorithm proposed by Chopra and Meyer in [14] is a simplification
scheme based on a new elementary operation called TetFusion. The algorithm
uses geometrical and attribute error measures to steer the iterative process of
simplification.

The TetFusion operation replaces a single tetrahedron with a vertex located at
the barycentre of the original tetrahedron. The main advantage of this operation
over edge collapse is that it removes at least 11 tetrahedra, because by collapsing
the tetrahedron into a vertex at least 10 other tetrahedra become degenerated
(all face and edge neighbors) and can be removed. The tetrahedra that share one
vertex with the prey tetrahedron are stretched by the operation, however, the
stretch usually does not flip the tetrahedra.

The algorithm works in following steps:

1. mark all tetrahedra as ”unaffected”

2. for each tetrahedron check whether suitable for TetFusion, if yes, then Tet-
Fuse and mark affected tetrahedra

3. repeat from 1 until desired reduction ratio is reached

The step 2 of the algorithm involves four tests:

1. scalar attribute error test



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 54

Figure 4.9: The TetFusion operation. The prey tetrahedron is depicted bold, the
affected tetrahedra are depicted thin.

2. geometric error test

3. boundary preservation test

4. flipping prevention test

The first test ensures that error of a scalar attribute associated with vertices
is not larger than some given threshold. The new scalar value associated with the
new vertex is computed using some interpolation technique, and the test passes
if the difference from the original values is not bigger than the given threshold
for any of the original vertices.

The geometric error test ensures that the geometry of the mesh is not changed
more than some given threshold. For each affected tetrahedron (i.e. a tetrahedron
sharing exactly one vertex with the prey tetrahedron) a geometric stretch ratio
is computed. The geometric stretch ratio is defined as a ratio of original and
changed base vector, where base vector is the distance from the base triangle
of the affected tetrahedron to its barycentre. If the geometric stretch ratio is
larger than a preset threshold, then the tetrahedron is refused, otherwise the test
passes.

The boundary preservation test ensures that the boundary of the mesh re-
mains unchanged. The test passes if the prey tetrahedron is not a boundary
tetrahedron, and if none of the affected tetrahedra is a boundary tetrahedron.

Finally, the flipping prevention test refuses the rare case when some of the
affected tetrahedra flips, i.e. violates the consistency of the mesh. This case only



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 55

Figure 4.10: Flipping of a tetrahedron.

occurs when the affected vertex moves from one side of the base triangle of the
affected tetrahedron to the other side. The test passes if this case does not occur
for any of the affected tetrahedra.

The method has been tested for 3D tetrahedral meshes, where it provided
good results. However, its application on a 4D tetrahedral mesh has never been
tested, and it may require adding some geometry conditions that will penalize
simplification of areas of high detail.

4.2.5 Average quadric based simplification

One of the few works targeted specifically at dynamic mesh simplification is the
paper by Mohr and Gleicher [46]. Their method simplifies the dynamic mesh and
produces again a constant connectivity mesh, i.e. the simplification is performed
on the single connectivity, which is used for all the frames.

Their suggestion is to use the equivalent of Garland simplification of a static
mesh, with the only difference that the vertex quadric value is evaluated for each
frame, and summed to form the collapse cost, i.e. the cost of collapsing an edge
(v1, v2) into a final position v is expressed as

F∑

i=1

v(Qv1,iQv2,i)vT (4.37)

where Qv,i stands for the aggregate vertex quadric of vertex v in frame i, and
F being the number of frames.

The method generally provides better results than applying quadric based
simplification on a single frame, but other possibilities of the global criterion, like
using the maximum quadric value, are not discussed.



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 56

4.2.6 Quadric based multiresolution mesh

In 2005, Kircher and Garland [34] have proposed an interesting algorithm for
creating multiresolution dynamic meshes. They suggest using the quadric error
metric (QEM) to produce a hierarchy of simplified versions of the mesh. They
first create such hierarchy for the first frame, and subsequently search for so called
swaps, which update the structure of the hierarchy to better suit the geometry
of subsequent frames.

In the first step, a hierarchy of coarser representations of the first frame is
created using the QEM based method described in section 4.1.5. The method is
applied iteratively and its results are stored in a tree-like data structure. This
structure consists of several levels, each representing a version of the mesh. Each
node corresponds to a vertex. Contraction operation used in the QEM based
simplification contracts a given number (branching order of the tree) of vertices
at given level to form a vertex at a higher level.

The original vertices and their coarser representation are connected by the
so-called contraction edges. These edges form a tree structure. Additionally,
at each level there are edges which represent the actual topology at the given
level. These are actually necessary only for the finest level, but they are useful
for updating the mesh during the reclustering of subsequent frames.

The multilevel mesh obtained by simplification of the first frame can be used
for any other frame, however it may not be optimal, because the geometry of
subsequent frames is different, and therefore the quadrics may also produce a
higher error.

The key idea is to use the hierarchy from previous frame to the next frame,
and to update it by moving vertices from one cluster to another. It is likely that
only small changes are present in the mesh, and therefore only a small number
of changes will take place. Therefore, instead of creating the whole structure for
each frame from scratch, only a few so-called swaps are performed and encoded
with the mesh.

A swap is a primitive operation of reclustering. As a swap we denote moving
a vertex v from its current cluster a to a neighboring cluster b. A swap is fully
described by the (v, a, b) triplet, and in order to be performed at a given time,
it has to be valid and beneficial. A set of such swaps is performed and encoded
with each frame of the mesh, which ensures that the hierarchy well follows the
geometry throughout the animation.

A swap is valid when following conditions are met:

1. there is a vertex in the cluster b, which shares a topology edge with v (i.e.
v lies on the border of a towards b)

2. v is not the only vertex in a



CHAPTER 4. DYNAMIC MESH SIMPLIFICATION 57

3. v is not a pinch vertex of a, i.e. when v is removed from a, a remains
topologically compact.

A swap is beneficial, if the QEM is reduced. The benefit of the swap can be
roughly guessed as

bf = Qv(b)−Qv(a) (4.38)

where Qv stands for the aggregate quadric of vertex v, and a and b are the
positions of vertices that correspond to the given two clusters at a coarser level
of the mesh. This is a conservative guess, as the positions of a and b may change
by the swap and therefore the benefit may be even higher.

However, it is necessary to ensure that not only the level immediately above
the current level is positively influenced. Therefore, a generalized multilevel
quadric metric is proposed, which sums the quadrics from all the levels with
weights ensuring that the contributions from each level are uniform:

E =
n∑

i=k+1


wi

∑

e∈MiEu


 (4.39)

where Eu is the quadric error at vertex u of mesh level Mi. The weights wi

are obtained as follows:

w0 = 1 (4.40)

wi+1 = wi

( |Mi+1|
|Mi|

)β
(4.41)

where |Mi| stands for the number of vertices at level i, and β is an empirically
determined constant that compensates for the quadric value growth. The value
of the constant has been determined to be 1.9127.

When the multilevel structure is created, it can be cut on any level, and only
the original topology of that level, and its updates are then transmitted as the
simplified version of the animation. This approach avoids the need of sending
the complete topology with each frame, while it still allows altering the topology
according to the changes in geometry.

We have identified two main drawbacks of this method. First, the method
only uses temporally local information to determine the simplification. This may
lead to a situation, when two subsequent frames are simplified in a radically
different manner, and although both were originally similar and both were sim-
plified locally optimally, they become very different. This behavior may occur
repeatedly, resulting in some visible ”flickering” artifacts.

The other drawback is that the number of vertices in each level of the repre-
sentation remains constant throughout the span of the animation. The validity
checks don’t allow disappearing of clusters, and there is no mechanism that would
add new clusters when necessary.



Chapter 5

Evaluation tools

There are two main approaches to evaluating the quality of data reduction. The
first, based on the concept of Peak Signal To Noise Ratio (PSNR) is used mainly in
the field of compressions, where each vertex has its counterpart in the compressed
representation of the mesh. This approach cannot be used in the case when the
connectivity of the mesh is altered. In such case it is usual to evaluate some
approximation of the Hausdorff distance between the meshes.

5.1 PSNR

PSNR is a very simple measure of error mainly used to evaluate the accuracy of
geometry predictors. Its definition varies slightly with the used approaches, but
usually takes following form:

PSNR = 20log

(
1
V

V∑

i=1

(
xi − xencoded

i

∆x

)2
)

(5.1)

Where V is the number of vertices predicted, x the actual position of each
vertex, xencoded is the encoded position of the vertex, and ∆x is the span of values
of the position, or the length of the body diagonal of the model.

The measure is easy to implement and fast to evaluate, but it has many
drawbacks. First, it cannot be used when the connectivity of a mesh is changed.
Second, it does not take into account that some movement causes larger distur-
bance in the mesh (movement orthogonal to the surface normal) while other may
cause almost no disturbance at all (tangential movement).

58



CHAPTER 5. EVALUATION TOOLS 59

Figure 5.1: Problem of rotation invariance in the DA-Error measure. The original
triangle (gray) is distorted in two different but visually equal ways. The distortion
vectors (bold) are of equal length, however the error measure will evaluate the
horizontal shift as more acceptable (error ∼= 1) and the diagonal as less acceptable
(error ∼=

√
2). Rotating the whole scene by 45 degrees will however swap the

preference.

5.2 KG-Error

A slightly different approach to measuring error has been taken by Karni and
Gotsman[32]. Their approach processes the axes separately, and takes a different
approach to normalization. However, the basic properties of MSE measure are
preserved, and we are mentioning this approach only because it is being used by
some recent papers ([58, 57]) as an error measure. The measure is expressed in
percent as follows:

KGerror = 100 ∗ ‖A−A′‖
‖A−E(A)‖ (5.2)

In the expression the matrix A is a F×3V matrix, which represents the origi-
nal animation sequence. In the matrix, each row represents temporal development
of one coordinate of one vertex. Similarly, the matrix A′ represents the distorted
(encoded/decoded) version of the animation. The matrix E(A) in the denomina-
tor of the expression is an F×3V matrix, which is computed from the A matrix
by replacing values at each column by the mean value of the given coordinate in
the given column.

This metric shares the main disadvantages of the PSNR error, it is not sensi-
tive to the type of error introduced (noisy vs. smooth) nor does it detect temporal
artifacts, such as shaking.



CHAPTER 5. EVALUATION TOOLS 60

a

b

h

a

b
h

Figure 5.2: Ribbon area computation - straight and twisted trapezoid.

5.3 DA error (Ribbon measure)

Another error measure[48, 30] based on local vertex to vertex movement is being
used by the MPEG consortium. In this measure the coordinate axes are again
treated separately, however this time a temporal development is also taken into
account. The movement of the original vertex and the distorted version of the
vertex between two frames is taken into account in a form of a ribbon, whose
area is computed. As only one coordinate is taken into account every time, this
becomes a quite easy computation in 2D, we only have to distinguish between
the twisted and non-twisted case.

For the non twisted case, the area of the ribbon can be computed as an area
of a trapezoid (see figure 5.2):

D =
1
2
(a + b) ∗ h (5.3)

A slightly more complex version is required in the case of twisted ribbon:

D =
a2 + b2

2(a + b)
∗ h (5.4)

The algorithm is also scale invariant by incorporating a constant W equal to
the largest span of coordinate values over the length of the animation:

MX = max
v=1..V

( max
f=1..F

(xv,f )),mX = min
v=1..V

( min
f=1..F

(xv,f )) (5.5)

MY = max
v=1..V

( max
f=1..F

(yv,f )),mY = min
v=1..V

( min
f=1..F

(yv,f )) (5.6)

MZ = max
v=1..V

( max
f=1..F

(zv,f )),mZ = min
v=1..V

( min
f=1..F

(zv,f )) (5.7)

W = max(|MX −mX |, |MY −mY |, |MZ −mZ |) (5.8)

We can express the error in a given coordinate axis X over all frames as:

DA(X) =
∑

f=1..F

∑

v=1..V

D(X) (5.9)



CHAPTER 5. EVALUATION TOOLS 61

a)

b)

Figure 5.3: Temporal behavior of static and oscillating error, expressed by ribbon
measure.

The errors for the Y and Z axes are computed in equivalent way. The final
error is then expressed as a sum of the axis errors, normalized by the W constant
and the overall duration of the sequence:

DA =
DA(X) + DA(Y ) + DA(Z)

3W (tF − t0)
(5.10)

One advantage of the DA error is that it can deal with sequences of irreg-
ular framerate, i.e. sequences where the temporal distance between subsequent
frames is not known. Therefore it can be applied on animations as well as sets of
keyframes, which are not equidistant.

The MPEG group also suggests using the ”peak measure” EP , which is com-
puted as a maximum coordinate difference over the whole sequence:

PX = max
f=1..F,v=1..V

|xf,v − x′f,v| (5.11)

PY = max
f=1..F,v=1..V

|yf,v − y′f,v| (5.12)

PZ = max
f=1..F,v=1..V

|zf,v − z′f,v| (5.13)

EP =
1
W

max(PX , PY , PZ) (5.14)

However, we believe that the match of both these measures with subjective
difference perception is highly questionable. The DA measure quite counterin-
tuitively favors oscillating around the original value to constant distance (see
figure 5.3). Neither of the methods is rotation invariant, as can be seen from
figure 5.1 and the peak measure also depends on the scale of the data.

5.4 Mesh, METRO

One of the alternatives to PSNR is the Hausdorff distance. It is defined as a
symmetric maximum minimum distance between points of meshes M and M ′.
It is usually not evaluated exactly, only some approximate value is found using
some sampling algorithm ([15, 7]).



CHAPTER 5. EVALUATION TOOLS 62

The Hausdorff distance definition starts with the one-way minimum distance
from a point p to a mesh M :

d(p, M) = min(‖x− p‖x∈M ) (5.15)

where ‖.‖ represents the L2 norm. Note that not only vertices of M are used
as x in the previous equation, but also all the internal points of edges and faces
of M . Now, we can define the one-way (forward) distance from mesh M to a
mesh M ′ as

df (M, M ′) = max
p∈M

(
d

(
p, M ′)) (5.16)

Again, all internal points of M are used as p in the previous equation. Finally,
the symmetric distance is defined as follows:

ds(M,M ′) = max(df (M, M ′), df (M ′,M)) = ds(M ′,M) (5.17)

This measure is usually not evaluated exactly, but some sampling technique
is used. The algorithms described in [15] and [7] sample both meshes uniformly,
and then compute the maximum minimum distance between a set of points and
a set of triangles using some spatial subdivision technique.

The Metro tool additionally provides the possibility to evaluate the RMS
(Root Mean Square) value. This value takes into account the minimum distance
to the other surface from each sample point used in the Hausdorff distance com-
putation. Each distance is squared, the squares are averaged, and the square root
of the average is given.

Both Hausdorff distance and RMS measure can be applied ”frame by frame”
to a dynamic mesh, but such approach cannot take into account the temporal
properties of the dynamic mesh, i.e. the fact that some directions of the shift
cause more disturbance because the mesh is evolving in orthogonal direction. In
section 7.4 we will test these measures, using the average Hausdorff distance over
the length of the animation, and the average RMS distance over the length of the
animation.

5.5 Triangle difference

The Triangle Difference (TD error) has been proposed by Zadražil in [73]. The
idea is to work with triangles instead of points, and evaluate the difference of
a local, relative property of the triangle (it’s area) rather than working with
absolute properties such as 3D coordinates of points.

The TD error measure is only applicable when measuring difference between
surfaces of known point to point correspondence, i.e. on compressed meshes. The



CHAPTER 5. EVALUATION TOOLS 63

algorithm exploits the knowledge of this correspondence, which also implies the
correspondence of triangles. The overall error is expressed as

TDerror =

∑
i=1..T

(
A(toriginal

i )−A(tdistorted
i )

)2

TFd
(5.18)

where A(t) stands for area of triangle t, T stands for the total number of
triangles and d is the length of the main diagonal of the first frame of the original
animation.

Zadražil not only gives this new measure, but also shows its usability by
evaluating a correlation of this measure to the results of a set of subjective tests.
The correlation is compared with the results of other error measures (ribbon, KG
error, PSNR) and it is concluded that the TD error shows highest correlation.

The author explains the better correlation by the fact that TD error is the
first measure that takes more than one vertex into account, and thus a smooth
distortion is preferred when compared with a random distortion of the same
amount. In other words, the algorithm will find no error when the three vertices
of a triangle are shifted in the same direction by the same amount, however if
the directions will be different, then the error will be large.

There are still some drawbacks of this method. First, it is unable to de-
tect global transformations such as translation and rotation of the whole object.
Second, the method can be lead astray by some special shape changes of the
triangles, which result in a zero change in triangle area, however this can be con-
sidered a singular case unlikely to appear in reality. Finally, the method does not
incorporate a temporal error in any way.

5.6 Error measures summary

We have shown that there is a quite large amount of error measures used to
evaluate the performance of dynamic mesh compression algorithms. Still, we can
easily identify serious problems with all the measures, which raises a question
about the value of results of all performance tests performed to date.

We have identified following objectives for ideal error measure construction:

1. Shift invariance, i.e. when both the original and the distorted anima-
tions are translated by the same amount, then the distortion should be
evaluated as identical as in the non translated case. This invariance is re-
quired because we have no knowledge about the position of the viewer, i.e.
the probability of viewing the sequence from a shifted position is equal to
viewing from any other possible position.



CHAPTER 5. EVALUATION TOOLS 64

Figure 5.4: Difference between the length of main diagonal of a bounding box.
The object (gray) is rotated, which results in different normalization constant
(length of the bounding box diagonal).

2. Rotation invariance, i.e. when both the original and the distorted ani-
mations are rotated by the same constant angle, then the distortion should
be evaluated as identical as in the non rotated case.

3. Scale invariance, i.e. when both the original and the distorted animations
are scaled by the same amount, then the distortion should be evaluated as
identical as in the non scaled case.

4. Animation duration invariance, i.e. when the distortion has constant
character, then the error value should not increase with increasing number
of frames.

5. Detection of spatial artifacts

6. Detection of temporal artifacts

7. Overall correlation with subjective quality evaluation

Most of the methods described satisfy the shift invariance and the scale invari-
ance condition, however the rotation invariance is not satisfied by the methods
that process the coordinates separately (Ribbon measure) and also by the meth-
ods that use first frame bounding box main diagonal for normalization (triangle
difference), because the length of the diagonal may change with rotation of the
object (see figure 5.4).

None of the methods attempts to address even the most obvious spatial ar-
tifacts (random shift of vertices versus smooth shift of the same amount). The
temporal artifacts, such as frame to frame shaking of the shapes, are not only
undetected (most of the papers about dynamic mesh compression evaluate error
in a frame-by-frame fashion, and present the dependency of the error on frame
number), but even favored by some measurement methods (Ribbon measure).

The overall correlation with subjective quality evaluation seems to be a cru-
cial property of any error measure, and still the only work which actually involves



CHAPTER 5. EVALUATION TOOLS 65

subjective testing has been performed only recently by Zadražil under our guid-
ance.

In chapter 7 we will describe new tools for evaluating the difference between
two dynamic meshes, which overcome some of the drawbacks of the methods
presented here.



Chapter 6

Testing data

In the following chapters we will propose several methods for dynamic mesh com-
pression and simplification. We have tested these methods on multiple datasets
of different nature, length and complexity. In this chapter, we will give some
details about the datasets used for the testing. We will give a brief description
of each dataset, a table of basic parameters and a wireframe rendered image for
each dataset.

6.1 Chicken sequence

This dataset has became a de-facto standard in dynamic mesh compression test-
ing algorithms. It is an artificial sequence with low polygon count and very
irregular tessellation. The chicken character was created by Andrew Glassner,
Tom McClure, Scott Benza and Mark Van Langeveld. This short sequence of
connectivity and vertex position data is distributed solely for the purpose of
comparison of geometry compression techniques.

Ver�ces Triangles Frames Length [s] Original size [MB]

Chicken 3030 5664 400 16 9,25

Dance 7061 14118 201 8,04 10,83

Dolphin 6179 12278 101 4,04 4,76

Cowheavy 2904 5804 204 8,16 4,52

Human jump 15830 31660 222 8,88 26,81

Cloth 9987 19494 200 8 15,24

Walk 35626 67571 187 7,48 50,83

Snake 9179 18354 134 5,36 9,38

Table 6.1: Basic parameters of testing sequences.

66



CHAPTER 6. TESTING DATA 67

Figure 6.1: Chicken sequence example.

Figure 6.2: Dolphin sequence example.

6.2 Dolphin

This dataset has been created from a static mesh, and its movement is very regu-
larly sinusoidal. Most of the triangles are very sharp, but overall the tessellation
is uniform.

6.3 Cow

This dataset has also been created from a static mesh, this time using a sim-
ulation of physical behavior of a flexible material. Therefore the movement is
not regular, however it is very realistic. The mesh has low polygon count and
irregular tessellation.

6.4 Dance

The dance dataset has been created using a bone system. The movement is quite
smooth, and the tessellation is quite regular, however its density is much higher



CHAPTER 6. TESTING DATA 68

Figure 6.3: Cow sequence example.

Figure 6.4: Dance sequence example.

in the head area than in the rest of the body.

6.5 Human jump (human)

The human jump sequence has been obtained by reconstruction from real wold
data[52, 6]. The character of the movement is very natural, however the mesh,
although quite dense, is of very little detail. The tessellation is almost perfectly
regular.

6.6 Falling cloth

The Falling cloth sequence has been created using 3D Studio Max (www.autodesk.com)
to simulate a collision between a falling ball, a piece of cloth, a rigid torus and



CHAPTER 6. TESTING DATA 69

Figure 6.5: Human jump sequence example.

a rigid desk. There are two interesting features of this animation: first, there
are parts that are completely rigid, i.e. the torus and the bottom. Second, this
animation is not created using a bone system, and therefore representing it tra-
ditionally with skinning techniques is not straightforward (although with some
difficulty possible, for details see [33]).

6.7 Walk

The Walk sequence is an artificial sequence created using the software Poser
(http://graphics.smithmicro.com/go/poser). It is a highly detailed sequence of a
walking person. With its vertex count of 35626, it is the highest detail sequence
used in our experiments. Some compression methods, such as eigenshape based
PCA, are having difficulties processing this sequence, due to the fact that a matrix
of size V × V is required during the processing.



CHAPTER 6. TESTING DATA 70

Figure 6.6: Falling cloth example.

Figure 6.7: Walk sequence example.

6.8 Snake

The Snake sequence is a very common dataset used to test dynamic mesh com-
pression algorithms. It is a relatively low resolution sequence, and the subsequent
frames usually show quite significant difference, i.e. the movement captured by
the sequence is very fast.



CHAPTER 6. TESTING DATA 71

Figure 6.8: Snake sequence example.



Chapter 7

Proposed error measures

Inspired by the obvious insufficiency of the current error measures described in
chapter 5 we have constructed two error measures targeted specifically on the
case of dynamic meshes. The first method generalizes the concept of Hausdorff
distance and allows comparison of dynamic meshes of different connectivity (i.e.
applicable for the simplification algorithms). The second algorithm has been
constructed to identify some of the spatial and temporal artifacts which are dis-
turbing for human vision.

7.1 4D tetrahedral mesh representation

In our work [69] we have proposed to use a different representation of a dynamic
triangular mesh of constant connectivity. We have suggested representing the
entire animation by a single static tetrahedral mesh in a four-dimensional space,
where the fourth dimension represents time.

The conversion to such representation is performed by converting each triangle
in two subsequent time steps into three tetrahedra that partially cover a space-
time prism formed by the triangle. Note that the sides of this prism are non-
planar, and therefore cannot be represented exactly. However, if we insert a
diagonal into each side of such prism, and preserve the diagonal direction when
processing the neighboring prisms, then we obtain a consistent mesh without
holes. In order to keep the diagonal direction, we have proposed using following
scheme for each triangle prism:

1. create a tetrahedron from the three vertices of the base of the prism, and
a vertex from the top with the largest index

72



CHAPTER 7. PROPOSED ERROR MEASURES 73

1 2

3 4

1 2

3
4

1 2

1 2

3
4

1 2

3 4

3
4

a) b) c)

d) e)

Figure 7.1: a: Two moving triangles as two 4D prisms, bottom of each prism is
the triangle in time t, top of each prism is the triangle in time t + 1. b: Two
possible diagonals of a common side. c: vertex indices. d: bottom tetrahedra. e:
top tetrahedra. Note that the selected diagonal is consistent.

2. create a tetrahedron from the three vertices of the top of the prism, and a
vertex from the bottom with the smallest index

3. create a tetrahedron from the two vertices of the bottom of the prism with
the two larger indices, and two vertices from the top with the two smaller
indices

Using this procedure we get one consistent 4D mesh. The last question that
needs to be addressed is what units should be used for the spatial and temporal
dimensions of the 4D space. In our approach, we have followed the idea that an
equal shift in each direction should cause an equal disturbance in the mesh. In
order to set the units, we have first decided to use the universal relative spatial
units, and then to find a constant α, which will relate the absolute time unit
of one second to the relative spatial unit. We are aware that this constant may
depend on the dynamic properties of the data, on the size of the viewing screen,
but no apriori information about the viewing angle is usually given, and so we
must use a general solution.



CHAPTER 7. PROPOSED ERROR MEASURES 74

The relative spatial unit is defined as a distance in a model divided by the
body diagonal of the model. By representing all the models in such units, we can
expect similar spatial behavior and distribution in all cases. In order to relate this
unit to the absolute temporal units by relating constant α we will have to perform
subjective testing, but for the time of being we can do following considerations:

1. time span of 1/100s is almost unrecognizable for a human observer, while
spatial shifts of 10% is on the limit of acceptability, therefore we expect α

to be smaller than 0.1/0.01 = 10

2. time spans of units of seconds are on the limit of acceptability, while spatial
shift of 0.1% is almost unrecognizable, therefore we expect α to be larger
than 0.001/1 = 0.001

Saying that, we can guess the value of the relating coefficient to be about 0.1,
i.e. time span of 100ms is equal to spatial shift of 1%.

We can also see the problem of relating time and space as a problem of finding
the expected speed of the movement in the animation. We have measured the
relative speed of vertices in a number of dynamic meshes which contained human-
observable animations, and we have found out that the local speed is usually
about 0.3, i.e. 30% per second, which supports our original guess and gives a
better estimate of the relating constant (for this constant a 100ms difference is
equal to 3% shift in space).

We can now process the mesh using the tetrahedral mesh processing tech-
niques described above, because we can compute distances in the 4D space. We
can also create the separate frames by slicing this tetrahedral mesh by a t = const.

plane.
Note that this representation actually raises the size of the mesh. The con-

nectivity can no longer be represented by a single frame triangular connectivity,
which can be encoded with 2t bits using Edgebreaker. The connectivity of the
resulting tetrahedral mesh can be compressed using the cut-border algorithm to
2 bits per tetrahedron, but the number of tetrahedra is equal to 3T (F −1), where
T is the number of triangles and F is the number of frames used. One of our pro-
posed future research topics is to determine whether this overhead can or cannot
be justified by the benefits of this representation of the mesh.

7.1.1 4D metric

We have generalized the idea of computing Hausdorff distance as a measure of
difference of two static triangular meshes to the case of dynamic meshes in [69].
The generalization is quite straightforward using the dynamic mesh representa-
tion described in previous section.



CHAPTER 7. PROPOSED ERROR MEASURES 75

First, both compared meshes (i.e. the original and the compressed or sim-
plified version) are converted to the representation by a static tetrahedral mesh
in 4D. Subsequently, both meshes can be uniformly sampled, from each point
a closest point on the other mesh is found using a series of optimized point to
tetrahedron distance test. The process is repeated for the backward distance,
yielding a guess of distance between the dynamic meshes.

The main drawback of this approach is its computational cost. A naive im-
plementation of the algorithm would find a distance from every test point of the
first mesh to every tetrahedron of the other mesh, which would lead to a compu-
tational complexity class of O((V F )2), where V stands for the number of vertices
and F stands for the number of frames. Such computation becomes unmanage-
able even for common complexity animations. Therefore, a number of speedup
techniques must be employed. Our implementation uses the following:

• spatial subdivision scheme, which allows that only a limited number of
tetrahedra need to be processed when searching for the closest one. We are
using uniform four-dimensional grid of cells which covers the original data
set in space and time

• in preprocessing stage accurate tests are used to determine which cells in-
cide with tetrahedra. The usual assumption that all the cells which incide
with axis aligned bounding box of the tetrahedron also incide with the
tetrahedron becomes too inefficient in the 4D case. We are using normal
driven approach, which decides about the incidence according to the posi-
tions of each cell’s vertices with respect to the tangent hyperplane of the
tetrahedron. Only those cells, which have vertices above and below the
hyperplane, can be incident with the tetrahedron. This approach leads to
significant reduction of the number of tetrahedra in each cell, yielding an
overall speedup of about 30%

• a highly optimized point-to-tetrahedron distance evaluation routine is used
to further speed the process up. We’re first evaluating distance to the edges
of the tetrahedron. These distances are only relevant when the tested point
orthogonally projects itself onto the given edge, which is in practice a rare
case. It can be also shown that a point can be orthogonally projected onto
a face (of the tetrahedron) only if it projects at least onto two of its edges.
We save the information about the result of projection onto edges, and in
most cases we can skip the distance to a face computation completely.

Our implementation of the Hausdorff distance can also be used to map the
found minimal distance to vertex colors, thus showing the distribution of the
error, which may be useful when considering various simplification criteria.



CHAPTER 7. PROPOSED ERROR MEASURES 76

Figure 7.2: Grid point evaluation. The actual algorithm works in 4D. The grid
cells that have all corners of equal evaluation cannot be intersected by the simplex.

We have tested the method on the available data, comparing our results to
applying Hausdorff distance in a frame-by-frame fashion. When the distances to
the other mesh are shown as vertex colors, then our distance algorithm produces
results that are visibly different from the case when only two corresponding frames
are compared using the standard Hausdorff distance metric.

In our work [21] we have also suggested using this metric to compare and
classify animations for artificial intelligence applications. The idea is that a robot
can acquire a surface representation of a process that takes place in its vicinity.
Subsequently, it can be compared to a set of known ”actions”, classified as one of
them, and the robot can decide based on the classification. The advantage of such
approach is that the tessellation of the sample acquired by the robot and the one
of the database item can be very different, and still a correct classification can
be obtained. Also, the robot is given better information, because the animation
in the database may contain also some future development of the process.

We have tested this idea on a dataset of a human jump, which contains two
non-identical sequences of a human figure jumping. The mesh contains about
15000 triangles, and we have evaluated the distances from one jump sequence
to the other (50 frames) and a sequence of human jump to a different part of
the dataset, where the figure has been walking. The distribution of the sampled
distances is shown in the figure 7.3. When summed up, it can be used to conclude
that the distance from one jump sequence to the other is significantly lower than
the distance from jump sequence to a walk sequence.

Despite the optimizations, it is currently only possible to compare the meshes
offline, due to computational expenses.



CHAPTER 7. PROPOSED ERROR MEASURES 77

Distance distribution for animation comparison

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

4 0 0 0 0

0 ,0 0 E+0 0 2 ,0 0 E-0 2 4 ,0 0 E-0 2 6 ,0 0 E-0 2 8 ,0 0 E-0 2 1 ,0 0 E-0 1 1 ,2 0 E-0 1 1 ,4 0 E-0 1 1 ,6 0 E-0 1 1 ,8 0 E-0 1 2 ,0 0 E-0 1

distance value

o
c

c
u

rr
e

n
c

e

ju mp /ju mp ju mp /wa lk

Figure 7.3: Animation comparison results.

7.2 Error vectors measure

The key idea behind the Error Vectors (EV error) measure is that the difference
we want to evaluate is not the absolute difference between vertex positions, but
rather local variance of these differences. If the local variance of differences is low,
then the perceived error should be lower than in a case when the local variance
of differences is high.

The method makes use of vertex to vertex correspondence, and therefore is
only applicable in cases when connectivity is unchanged from original to com-
pressed version. The method works in two steps:

1. evaluate the difference at each vertex. The difference is evaluated in every
frame, and is preserved as a 3D error vector, i.e. both its direction and
amount will be known in the next step

2. traverse the mesh and evaluate the local variance of the error vectors.

During the second step a local average of the error vectors is found for each
vertex location. The average is computed within a topological neighborhood of
a vertex, and in order to incorporate the temporal error also error vectors from
given number of previous and following frames are incorporated into the average.
The contribution of a vertex to the average error is then computed as an absolute
value of the difference between the error vector associated with the vertex, and



CHAPTER 7. PROPOSED ERROR MEASURES 78

the average error vector computed across its neighborhood. More formally, we
can define an error vector associated with vertex v in frame f as:

ev(v, f) = xoriginal
v,f − xdistorted

v,f (7.1)

Subsequently, a local average around vertex v in frame f is computed as:

la(v, f) =

min(F,f+w)∑
lf=max(1,f−w)

(
∑

i∈neighbors(v)

ev(i, lf)

)

‖neighbors(v)‖ ∗ (min(F, f + w)−max(1, f − w))
(7.2)

where w is the size of a temporal window. Finally, the error is computed as:

EVerror =
1

V F

V∑

v=1

F∑

f=1

‖ev(v, f)− la(v, f)‖ (7.3)

This method has been tested in the work of Zadražil[73], who has performed
subjective testing and evaluated correlation between the subjective results and
various error measures. The overall result of his experiments is that both EV
error measure and TD error measure show in many cases higher correlation with
the subjective evaluation than the previously used methods such as KG error or
Ribbon error. The correlation coefficients found by [73] are summarized in table
7.1.

model prism dance chicken
MSE 0.61 0.46 0.72
Hausdorff distance 0.70 0.35 0.72
KG 0.73 0.36 0.71
EV -0.02 0.53 0.09
WEV -0.02 0.54 0.82
TD -0.01 0.60 0.59
Ribbon 0.75 0.37 0.72

Table 7.1: Correlation of objective evaluation methods and the mean opinion
score in experiments by Zadražil[73].

7.3 Spatio-temporal edge difference

Our ultimate measure is the spatio-temporal edge difference[68] (STED). This
method achieves to our knowledge the best correlation with subjective difference
evaluation. It is based on ideas of TD error and EV error, however it has been
tweaked in order to maximize the correlation with real comparison results. The
key ideas are the following:



CHAPTER 7. PROPOSED ERROR MEASURES 79

• It is possible to eliminate some of the singular cases present in the TD
measure by using edge as the elementary item upon which the measure is
performed. This choice allows us to measure a property independent of
absolute position (edge length), while there does not exist a possibility that
the endpoints of the edge are moved relative to each other, and the property
remains unchanged (this can easily happen in the case of triangle area)

• Areas of the mesh that are more densely sampled are likely to contain fine
geometric detail, and thus are more sensitive to distortion. This fact can be
exploited by using relative edge difference rather than its absolute length.

• Temporal artifacts and distortions can be included in the same framework
by considering virtual edges connecting temporally subsequent positions of
a vertex.

• We can use the idea of significance of local changes in error rather than ab-
solute value of the error. In order to do so, we express a standard deviation
of the edge difference around each vertex, and add these values to obtain
the overall error.

7.3.1 Spatial error

Formally the error can be derived as follows: first, we denote length of an edge
connecting vertices vi and vj (i.e. of the edge eij) in frame f as follows:

el(i, j, f) = el(eij , f) = ‖vi,f − vj,f‖ (7.4)

Note that the el property applies separately on original and distorted meshes.
Now, we can define relative edge difference as a property of a spatial edge con-
necting vertices vi and vj (i.e. of the edge eij) in frame f as follows:

ed(i, j, f) = ed(eij , f) = ‖el(eij , f)original − el(eij , f)distorted

el(eij , f)original
‖ (7.5)

Subsequently we assign to each vertex the local standard deviation across
the edges of given topological distance from the vertex. The user specifies a
topological distance d. For each vertex v a set of vertices of topological distance
lower or equal to d is found and denoted NV (v, d). Finally, a set NE(v) of edges
incident with any of the vertices of each NV (v, d) is found (for illustration see
figure 7.4).

Now, we will compute the average relative edge difference around the vertex.
Due to the fact that the surroundings of a vertex may contain edges of very
varying length, we compute a weighted average, where the weight of an edge is
determined by its original length:



CHAPTER 7. PROPOSED ERROR MEASURES 80

A B

vv

Figure 7.4: Neighborhoods of vertex v. The black circles denote items of NV (v),
the thick blue edges denote items of NE(v). The A case shows the situation
when allowed spatial distance is 0, the B case shows the situation when allowed
spatial distance is 1.

avged(v, f) =

∑
e∈NE(v)

ed(e, f)el(e, f)original

∑
e∈NE(v)

el(e, f)original
(7.6)

Now, we can express the local deviation around a vertex v in frame f . Note
that we are again using weighting by edge length:

dev(v, f) = σ(ed(NE(v), f)) =

√√√√√√√

∑
e∈NE(v)

(
(ed(e, f)− avged(v, f))2 el(e, f)original

)

∑
e∈NE(v)

el(e, f)original

(7.7)
Finally, we have to average the value over all the vertices and all the frames.

Note that the value of (7.5) has a character of ratio, i.e. it is scale independent,
and therefore also the values of (7.7) and (7.8) are scale independent.

STEDspatial =

∑
v

∑
f

dev(v, f)

V F
(7.8)

7.3.2 Temporal error

The reasoning behind the derivation of temporal error is coherent with the deriva-
tion of the spatial error, only this time we will consider virtual edges connecting
vertices in subsequent frames. The idea of computing relative edge length, which
has been used in the spatial error case to increase sensitivity in high precision



CHAPTER 7. PROPOSED ERROR MEASURES 81

areas, will be used again, this time to increase sensitivity in areas of very slow
motion.

This feature has been introduced based on the behavior of the falling cloth
sequence, where some compression methods introduce errors to the static parts
of the scene, i.e. the static torus starts to move slightly. This is very noticeable,
and therefore such artifact should be detected by an error measure.

However, we cannot use the exact equivalent of (7.5). The reason is that
in some animations, such as the dance, it is possible that some vertices become
almost static for short periods of time (usually the legs of the dancer), however
the time period over which the movement becomes static is too short for human
observers to start detecting disturbing artifacts.

In order to evaluate the steadiness of the movement of a vertex v in time step
f , we compute its average speed within a temporal window of radius w around
the frame f . First, we define temporal edge length as follows:

ld = max
u∈V,v∈V

‖u− v‖ (7.9)

tel(v, f) =

√
(
vf
x − vf−1

x

ld
)2 + (

vf
y − vf−1

y

ld
)2 + (

vf
z − vf−1

z

ld
)2 + fd2 (7.10)

Note that this value is not defined in frame 0. The fd (frame distance) term
is used to determine the temporal distance between subsequent frames of the
animation. It’s main purpose in the computation is to avoid infinity or near to
infinity result for the case of completely static vertices.

Also note that the character of (7.10), i.e. the presence of square root and a
constant fd, introduces a need for an early spatial normalization. However, we
want to avoid rotation dependence, and thus we cannot use the main diagonal
of the first frame bounding box. Instead, we use the distance ld of the two most
distant points in the first frame of the original sequence. This way, we achieve
a more robust relative distance, which is rotation invariant. The computation of
ld in (7.9) is not necessarily quadratic and can be sped up to almost linear (for
details see [56]).

The average spatio-temporal speed of a vertex v around frame f is defined
as.

s(v, f) =

min(f+w,F )∑
lf=max(f−w,1)

tel(v, lf)orig

min(f + w,F )−max(f − w, 1)
(7.11)

Note that due to using the term fd in (7.10) this value never becomes zero.
Now we can define the relative temporal edge difference as follows:



CHAPTER 7. PROPOSED ERROR MEASURES 82

rted(v, f) =
‖tel(v, f)original − tel(v, f)distorted‖

s(v, f)
(7.12)

Finally, the overall temporal error is defined as average over all the vertices
and all the frames:

STEDtemporal =

∑
f

∑
v

rted(v, f)

V (F − 1)
(7.13)

7.3.3 Overall error and its parameters

We define the overall error as a hypotenuse of weighted spatial and temporal
error:

STEDerror =
√

STED2
spatial + (c.STEDtemporal)2 (7.14)

There are several constants that we have used so far in the definition without
discussion of their value. These are:

• topological distance d used to compute the vertex neighborhood NV (v, d),

• temporal distance value between subsequent frames fd used in (7.10),

• temporal window size w used in (7.11),

• the relating constant c used in (7.14).

The actual values of these constants have been determined using results of
subjective testing, achieving the best possible correlation of (7.14) with the sub-
jective testing results.

7.4 Performed subjective testing

We have performed series of subjective tests in order to approve/disapprove the
relation of various measures with subjective evaluation of distortion amount. Our
testing is based on the MUSHRA[40] technique, which allows quickly obtaining
a large corpus of data by allowing the users to freely compare multiple stimuli.

We have prepared multiple distorted versions of some of the available datasets,
using various distortions. The distortions were introduced by:

• gaussian noise added to vertex positions (noises with various deviations
have been used), random values for each vertex and each frame,

• gaussian noise added to vertex positions, random values for each vertex,



CHAPTER 7. PROPOSED ERROR MEASURES 83

• gaussian noise added to vertex positions, random values for each frame (i.e.
each frame has been shifted by a random amount),

• value A sin(ωx) added to each coordinate of each vertex, i.e. a smooth
distortion of amplitude A and frequency ω,

• value A sin(ωf) added to each coordinate of each vertex, i.e. a smooth
temporal shifting of the whole mesh,

• result of compression scheme which will be presented in section 8.1 using a
coarse quantization,

• result of compression scheme which will be presented in section 8.1 using a
low number of basis trajectories.

This way we have achieved distortions of varying nature. We have prepared a
set of 9 distorted versions of the datasets chicken, dance and cloth, giving together
30 datasets (including the originals).

In each test, a group of subjective evaluators has been shown a set of 10
versions of a dataset, including the original, which has been labeled as such.
The evaluation took place in a computer laboratory with a projection screen and
nine computers. The projection screen has been playing the original version of
the animation, while each computer has played back one of the nine distorted
versions. The evaluators have been briefly introduced to the problem of dynamic
mesh compression, and then they have been asked to perform an evaluation with
following instructions (see the original instruction sheet in appendix A, in Czech
language only):

1. Have a look at all the animations, ideally in their full length. Focus on
possible artifacts and differences with respect to the original.

2. Find an animation with worst degradation and assign it a mark 10.

3. Have a look again at all the animations, and assign marks 0-10 according
to how acceptable is the distortion. Try to keep the marks proportional,
i.e. double the mark value means two times less acceptable distortion.

4. Give a mark 0 only to such dataset where you cannot find any difference
with respect to the original

5. Do not consult the marks with each other, nor show each other the nature
or location of problematic parts. Try to work on your own.

We have had overall cca 100 voluntary subjective evaluators, students of third
and fourth year of computer science. No subject has been through more than
two tests. There were four females, the rest of subjects were males.



CHAPTER 7. PROPOSED ERROR MEASURES 84

dataset

number of 

tests value #1 #2 #3 #4 #5 #6 #7 #8 #9

mean 7,77 9,84 1,63 7,70 2,16 6,30 6,64 0,95 1,79

devia on 1,73 0,43 1,63 1,88 2,09 2,19 1,97 1,17 1,67

mean 8,93 1,95 3,58 6,74 9,56 1,88 2,02 7,95 6,35

devia on 0,96 1,76 1,80 1,57 0,80 1,88 1,65 1,60 1,89

mean 9,24 7,86 2,22 1,32 2,73 8,78 6,00 2,46 2,32

devia on 1,19 1,34 1,77 1,23 1,59 1,47 1,49 1,94 1,63cloth 37

43dance

43chicken

Table 7.2: Results of subjective testing.

The results of the testing are shown in table 7.2, we are only giving the mean
marks (from now on will be denoted MOS, Mean Opinion Score) and the standard
deviation of the marks. The actual datasets used as #1 - #9 can be found on
the accompanying DVD along with details of the introduced distortion, however
such details are irrelevant for following considerations, because we are trying to
reach a measure that does not rely on the knowledge of the character of the error.

Error measures evaluation

For every distorted animation we can evaluate any of the error metrics presented
so far. Subsequently, we can observe the match of the computed error values, and
the results of subjective testing. Note that we don’t want to achieve matching
values, as we don’t know anything about the magnitude of the error. What we do
want to achieve is the correlation between the computed values and the subjective
testing results.

As a measure of correlation we use the Pearson correlation coefficient, which
is defined for two variables X and Y as:

ρX,Y =
E[(X − E(X))(Y − E(Y ))]

σXσY
(7.15)

The coefficient takes values from the interval < −1, 1 >. If ρX,Y = 1, then
there is a linear dependence between the variables, coefficient value of −1 shows
an inverse linear relation, and zero value shows that there is no relation between
the values of X and Y.

The correlation coefficient can be estimated from a limited sample of the
values by following equation:

ρX,Y =
∑

(x− x)(y − y)√∑
(x− x)2

∑
(y − y)2

(7.16)

where x denotes average value. This way, we have evaluated the correlation
of existing metrics with the subjective testing. The results are summarized in
table 7.3, the figure 7.5 shows an example of correlation of the KG error with the
results of subjective testing.



CHAPTER 7. PROPOSED ERROR MEASURES 85

The results have confirmed the conclusions drawn by Zadražil. All the ex-
isting error measures provide only limited, or even negative correlation with the
results of a subjective testing which involves multiple kinds of distortion. The
error vectors approach provides some improvement, but the correlation coefficient
values are still relatively small. The best results so far are given by the TD error
measure, which consistently correlates with the MOS with coefficient higher than
0.6, in the dance sequence case it reaches up to 0.89. Note that we have used
different datasets and different kinds of distortion than in the original experiment
by Zadražil.

STED parameters

In this section we will estimate the parameter values for the STED measure. The
main objective is to achieve as high correlation with MOS as possible.

First, we will only consider the spatial part of the STED value, i.e. result
of (7.8). The equation requires setting only a single parameter, the width of a
topological neighborhood over which the deviation (7.7) is computed. For the
experiment, we have considered only the spatial error, and we have achieved best
results with topological width 1 for the neighboring vertices, i.e. edge neighbor-
hood of shape equivalent to the one depicted in figure 7.4B. Figure 7.6 shows the
measured dependence of the correlation coefficient with the topological neighbor-
hood width, table 7.4 gives the measured correlation values for neighborhood of
width 1.

Now, we will focus on setting the parameter values for the temporal error. We
have to set three parameters - the window size for computation of vertex speed,
the temporal distance parameter used in (7.10) and the overall weights relating
spatial and temporal error in (7.14).

Through a series of experiments we have found values for these constants so
that the overall error expressed by (7.14) correlates to the subjective testing re-
sults as closely as possible. We are showing graphs that describe the development
of the correlations around the values that we are using.

The best results have been obtained for speed window of width w = 5 and
temporal distance coefficient dt = 0.0003. The weighting coefficient is easiest to
optimize, and the highest correlation has been obtained for value c = 9, 144×10−5.
Using these constants, we can evaluate the error values shown in table 7.5 along
with the correlations with MOS.

STED conclusions

Using the proposed STED measure, we are able to robustly determine an error
introduced by a compression. We can detect certain kinds of spatial and temporal
artifacts, namely the difference between regular and random vertex shifts.



CHAPTER 7. PROPOSED ERROR MEASURES 86

#1 #2 #3 #4 #5 #6 #7 #8 #9 correla�on

MOS 7,767 9,837 1,628 7,698 2,163 6,302 6,640 0,953 1,791

KG error 2,188 1,863 1,856 1,850 2,946 1,795 0,931 3,950 1,832 -0,531

Ribbon mean x10
4

3,384 2,563 2,188 3,127 3,540 1,666 1,281 7,559 3,447 -0,491

Ribbon peak x10
2

0,449 0,208 0,909 0,157 1,113 0,498 0,100 0,119 0,056 -0,326

Hausdorff x10
2

1,036 0,939 1,354 0,957 2,246 0,673 0,482 0,879 0,606 -0,324

RMS x10
3

1,697 1,571 1,893 1,561 3,105 0,909 0,848 4,150 2,132 -0,688

TD error x10
6

1,116 0,840 0,114 0,831 0,266 0,927 0,202 0,000 0,280 0,814

WEV 1 x10
3

0,490 3,441 0,110 0,000 0,141 2,231 1,719 0,000 0,103 0,685

WEV 3 x10
3

1,558 4,396 0,325 0,006 0,436 2,851 2,195 0,000 0,299 0,730

WEV 5 x10
3

2,145 4,521 0,424 0,012 0,585 2,927 2,258 0,000 0,405 0,746

#1 #2 #3 #4 #5 #6 #7 #8 #9 correla�on

MOS 8,930 1,953 3,581 6,744 9,558 1,884 2,023 7,953 6,349

KG error 0,481 6,529 0,225 0,482 0,614 0,495 2,726 0,457 0,282 -0,539

Ribbon mean x10
3

0,528 5,861 0,201 0,430 0,644 0,444 2,544 0,460 0,285 -0,529

Ribbon peak x10
2

0,277 3,117 0,159 0,334 0,611 0,671 5,234 0,378 0,201 -0,599

Hausdorff x10
2

0,280 1,561 0,134 0,282 0,402 0,417 2,900 0,378 0,224 -0,565

RMS x10
3

0,505 8,556 0,243 0,509 0,707 0,713 4,119 0,570 0,353 -0,570

TD error x10
12

1,382 0,000 0,300 1,381 1,783 0,063 0,733 1,899 0,734 0,894

WEV 1 x10
4

0,000 0,000 4,185 8,965 2,124 0,197 0,499 0,000 0,000 0,134

WEV 3 x10
3

0,003 0,000 0,529 1,134 0,726 0,057 0,176 0,003 0,002 0,262

WEV 5 x10
3

0,006 0,000 0,539 1,154 0,920 0,066 0,218 0,006 0,003 0,302

#1 #2 #3 #4 #5 #6 #7 #8 #9 correla�on

MOS 9,243 7,865 2,216 1,324 2,730 8,784 6,000 2,459 2,324

KG error 0,339 0,258 0,215 0,226 2,022 0,209 0,214 0,652 0,221 -0,271

Ribbon mean x10
4

1,886 1,337 1,056 0,884 8,188 1,017 0,612 2,505 1,493 -0,242

Ribbon peak x10
2

0,155 0,287 0,061 0,164 3,309 0,087 0,414 1,167 0,024 -0,288

Hausdorff x10
2

0,235 0,215 0,045 0,154 2,026 0,110 0,197 0,744 0,045 -0,259

RMS x10
3

0,379 0,285 0,255 0,191 2,195 0,197 0,131 0,753 0,271 -0,280

TD error x10
3

2,876 0,292 0,000 0,090 0,333 0,691 0,458 0,110 0,000 0,687

WEV 1 x10
4

0,000 0,136 0,000 0,012 0,049 1,861 1,127 0,044 0,000 0,528

WEV 3 x10
4

0,010 0,444 0,000 0,032 0,161 2,354 1,436 0,125 0,000 0,562

WEV 5 x10
4

0,020 0,609 0,000 0,040 0,218 2,396 1,470 0,156 0,000 0,581

Falling cloth sequence correla"on

Dance sequence measure correla"on

Chicken sequence measure correla"on

Table 7.3: Correlations between objective and subjective error measures.



CHAPTER 7. PROPOSED ERROR MEASURES 87

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

0 2 4 6 8 10

K
G

 e
rr

o
r

mean opinion score

Figure 7.5: Correlation of the KG error with the results of subjective testing.

0,89

0,9

0,91

0,92

0,93

0,94

0,95

0,96

0,97

0 1 2 3 4 5

C
o

rr
e

la
�

o
n

 c
o

e
ffi

ci
e

n
t

Topological neighborhood width

Chicken Dance Falling cloth

Figure 7.6: Dependence of the correlation coefficient and the topological neigh-
borhood width.

Quite surprisingly, our experiments showed that the influence of temporal
error is relatively small, the contribution of the temporal error term in (7.14) is
about 12% for the chicken sequence, and less than 2% for the dance and cloth
sequences. Nevertheless, the inclusion of the temporal term improves the corre-
lation and may be important in cases when very little spatial error is introduced
into the animation.

The method has some drawbacks as well. In some cases, such as rigid trans-
lation, rotation and scale of the animation, it is possible that the measure does
not report any difference. We consider such eventuality highly unlikely and easy
to detect and compensate. It is possible that in some cases of extremely smooth



CHAPTER 7. PROPOSED ERROR MEASURES 88

#1 #2 #3 #4 #5 #6 #7 #8 #9 correla�on

chicken (x10
3
) 4,475 5,065 0,638 5,020 0,905 3,003 2,515 0,000 1,242 0,960

dance (x10
3
) 1,065 0,000 0,501 1,063 1,158 0,128 0,409 0,925 0,575 0,931

falling cloth (x10
3
) 0,576 0,253 0,000 0,033 0,170 0,383 0,218 0,083 0,000 0,915

Table 7.4: Correlation of the spatial STED measure and subjective error mea-
sures.

0,90

0,91

0,92

0,93

0,94

0,95

0,96

0,97

0,98

0 0,0002 0,0004 0,0006 0,0008 0,001 0,0012

C
o

rr
e

la
�

o
n

 c
o

e
ffi

ci
e

n
t

dt value

Chicken Dance Cloth

Figure 7.7: Dependence of the correlation coefficient and the temporal distance
constant.

deformation, such as global taper or shear of the animation, the error measure
might be smaller than expected.

Also, we have identified a class of artifacts, which will not be detected by the
measure at all. One can easily imagine that a deformation depicted by figure
7.10 is well visible, while all the edge lengths remain unchanged. This is not
only a problem of meshes with border and one edge around which the mesh is
rotated. Situation depicted by figure 7.11 is also not detected by the measure.
Such a thing may occur in practice, however a larger deformation that leaves
edge lengths unchanged is again unlikely.

Despite the drawbacks, during the testing we have received measures that
correlate with the subjective testing with coefficient constantly higher than 0.9,
and in the case of chicken sequence we have reached to a value of 0.97. Such
high correlations are not achievable with any existing error measure technique.
Moreover, the STED measure is fast to evaluate, especially compared to Hausdorff
distance based measures such as the one used by the Metro tool.

Currently the measure only works for compression evaluation, i.e. for cases



CHAPTER 7. PROPOSED ERROR MEASURES 89

0,88

0,89

0,90

0,91

0,92

0,93

0,94

0,95

0,96

0,97

0,98

0 1 2 3 4 5 6 7 8

C
o

rr
e

la
�

o
n

 c
o

e
ffi

ci
e

n
t

Speed window width

Chicken Dance Cloth

Figure 7.8: Dependence of the correlation coefficient and the speed window width.

0,90

0,91

0,92

0,93

0,94

0,95

0,96

0,97

0,98

0 0,00002 0,00004 0,00006 0,00008 0,0001 0,00012 0,00014 0,00016

C
o

rr
e

la
�

o
n

 c
o

e
ffi

ci
e

n
t

Weigh�ng constant

Chicken Dance Cloth

Figure 7.9: Dependence of the correlation coefficient and the weighting coefficient.

when original and distorted sequences share the topology. There is a possibility
to extend the measure also to the case of mesh sequences of unequal topology.
This could be done by fine resampling of both the meshes, which will convert
them into a shared topology, using some strain minimization criterion. There are
some techniques used for this purpose, such as the Face2Face([10, 11]), wavelet
decomposition([72]) or remeshing([35]), however we have not performed any ex-
periments with such approach so far.



CHAPTER 7. PROPOSED ERROR MEASURES 90

#1 #2 #3 #4 #5 #6 #7 #8 #9 correla�on

chicken (x10
3
) 4,475 5,568 0,638 5,020 0,905 3,731 2,578 0,129 1,242 0,970

dance (x10
3
) 1,065 0,241 0,501 1,063 1,158 0,128 0,409 0,925 0,575 0,941

falling cloth (x10
3
) 0,576 0,253 0,060 0,033 0,170 0,387 0,218 0,083 0,003 0,915

Table 7.5: Correlation of the overall STED measure and subjective error mea-
sures.

Figure 7.10: The ”newspaper” artifact, undetected by STED measure.

Figure 7.11: The ”hill/valley” artifact, undetected by STED measure.

For the experiments in following sections we will use two measures. First,
the existing KG error, which will be used to compare our methods with results
of competing algorithms, because current literature usually uses this measure to
evaluate error. We will also provide the STED values, which will be used to give
a better idea about the real life performance of our algorithms, and also to tweak
the algorithm parameters to obtain best rate/distortion ratio.



Chapter 8

Proposed compression methods

In this chapter we will describe several methods for dynamic mesh compression
that we have published recently. We will start with Connectivity Driven Dynamic
Mesh Compression algorithm (Coddyac) [65], which combines Edgebreaker value
prediction with PCA, then we will describe a combination of PCA with con-
nectivity driven simplification[67], and then we will present two new predictors
that can be used for more accurate estimation of PCA coefficients describing an
animation[64].

Finally, we will show a new basis compression scheme[66], which can be com-
bined with any of the PCA based compression algorithms, allowing an even better
rate/distortion ratio. The algorithm is based on a geometry-aware prediction and
non uniform quantization which regularly distributes the error, thus avoiding un-
necessary oversampling of the basis.

We will not give any experimental results in this chapter, all the measurements
will be summarized in chapter 9, using KG error measure, and the STED error
measure.

8.1 Connectivity driven dynamic mesh compression (Cod-

dyac)

The original idea behind Coddyac is to combine the most powerful tools for ex-
ploiting spatial and temporal coherence of the data. Table 8.1 classifies the cur-
rent methods according to the methods used for spatial and temporal coherence
exploitation.

The table shows, that although the existing approaches used efficient ap-
proaches for both temporal coherence exploitation (PCA) and spatial coherence
exploitation (local prediction), no algorithm has combined these into one method.

91



CHAPTER 8. PROPOSED COMPRESSION METHODS 92

Method Temporal coherence Spa�al coherence 

Dynapack Local predictor Local predictor 

Frame space PCA (Alexa) none PCA 

PCA+LPC (Karni) LPC PCA 

Clustering PCA (Sa!ler) PCA Clustering 

Octree based (Mueller) none octree 

Coddyac PCA Local predictor 

Table 8.1: Comparison of existing methods according to used method for exploit-
ing spatial and temporal coherence.

The core of Coddyac is the usage of principal component analysis to describe
the temporal behavior of the animation. Subsequently, a modified parallelogram
predictor is used to encode the PCA coefficients while exploiting the fact that
neighboring vertices are likely to have similar temporal development.

The Coddyac algorithm consists of following steps:

1. represent trajectory of each vertex by a vector of length 3F

2. perform PCA over the space of trajectories, obtain a basis

3. encode the basis (send it to the decoder)

4. express each trajectory as a linear combination of the new basis

5. assign a vector of PCA coefficients (feature vector) with each vertex

6. process the topology by the Edgebreaker machine, predict the assigned
vectors using parallelogram rule

7. encode the prediction residuals (send them to the decoder)

The decoding procedure is quite simple, the decoder first extracts the used
basis of the space of trajectories, and then for each vertex computes its trajectory
by computing a weighted sum of the basis vectors.

8.1.1 PCA in Coddyac

For Coddyac we have chosen a temporal PCA in the space of trajectories. This
decision has been motivated by following arguments:

• PCA in the space of shapes is not efficient and requires rigid motion com-
pensation.

• PCA in the space of trajectories is much faster, involving only O(V F 2)
operations, while PCA in the space of shapes is O(FV 2). We expect that
V >> F , because in the future the meshes are likely to became more



CHAPTER 8. PROPOSED COMPRESSION METHODS 93

order eigenvalue percent

1 722337,8 68,89%

2 167162,6 15,94%

3 87062,9 8,30%

4 30829,5 2,94%

5 16503,6 1,57%

6 6998,5 0,67%

7 3412,9 0,33%

8 3136,0 0,30%

9 2516,4 0,24%

10 1751,8 0,17%

11 1234,8 0,12%

12 884,5 0,08%

13 770,2 0,07%

14 574,2 0,05%

15 497,9 0,05%

16 407,5 0,04%

17 395,2 0,04%

18 331,2 0,03%

19 277,4 0,03%

20 242,6 0,02%

remaining 1180 1222,3(sum) 0,12%

1048549,7 100%

Table 8.2: Eigenvalues associated with 20 most important eigentrajectories of the
chicken sequence.

detailed, however the length of a scene is dictated by the rules of film
editing. Moreover, it is quite easy to cut a long sequence into shorter
paths, while cutting a too detailed mesh into parts is much more difficult.

• Using PCA in the space of trajectories is much more memory efficient.

• Trajectory space PCA representation is suitable for direct and memory effi-
cient displaying using modern GPUs with programmable vertex processing
pipeline.

In our experiments, it was usually possible to reduce the number of used
basis vectors to about one tenth without any significant loss of quality. Table 8.2
shows the eigenvalues of the 20 most significant eigentrajectories in the chicken
sequence. The table shows that 99,88% of the variance of the data is contained
in the first 20 eigenvectors out of total 1200.

8.1.2 PCA basis encoding

As we will see later, the PCA coefficients can be encoded very efficiently, and
therefore the basis encoding becomes a non negligible issue. For high fidelity



CHAPTER 8. PROPOSED COMPRESSION METHODS 94

compression, we’re usually having approximately 60 eigentrajectories, each of
length 3F . We also have the means of each coordinate in each frame, which can
be treated as a first eigentrajectory with default coefficient 1,0.

Direct encoding of such amount of data may take more bytes than the size of
encoded coefficients, and therefore we have proposed a non-trivial algorithm for
basis encoding, which will be described in section 8.4.

8.1.3 PCA coefficient prediction

At this point of algorithm, each vertex has a vector of PCA coefficients assigned,
representing the trajectory of the vertex. This representation well exploits the
temporal coherence of the data - the components of the vectors are uncorrelated.
However, they still contain a lot of spatial coherence - vectors that are assigned
to neighboring vertices are likely to be similar.

The current methods have used Clustering to exploit this fact, however, using
the cluster center as a prediction implies that the size of residual in such case
depends on the radius of the cluster. On the other hand, in Coddyac we’re using
the vertices in the immediate topological neighborhood, and therefore the size of
the residual depends on the length of mesh edge, which is much smaller.

For the prediction, we have used the parallelogram rule described in sec-
tion 3.1.4. The only difference is that we’re generalizing it from prediction of
XYZ coordinates (vectors of length 3) to a prediction of PCA coefficient vectors
cj
i of arbitrary length. The generalized rule is expressed as follows:

ci,pred = ci,left + ci,right − ci,opposite (8.1)

where ci is the i-th component of the coefficient vector c. This prediction
formula is applied on every component of the PCA coefficient vector separately,
giving a prediction of the coefficient vector at a vertex encountered by the C
operation during Edgebreaker (see section 3.2.2) processing of the mesh.

Finally, the prediction residuals are quantized and encoded using entropy
coding. We’re using Huffamn[28] coding with different context (codetable) for
each component of the eigenvectors.

The decoding procedure is a straightforward inverse of the encoding.The de-
coder performs the same prediction as the encoder, receives a correction and by
adding the prediction and correction, it obtains a decompressed version of the
PCA coefficients. These coefficients are subsequently turned into trajectories by
multiplying the basis vectors (matrix B) by the coefficient vector and adding the
means (vector m):

t = B.c + m (8.2)



CHAPTER 8. PROPOSED COMPRESSION METHODS 95

The overall algorithm is controlled by two parameters: The size of the PCA
basis (number of used eigentrajectories) and the quantization constant used to
determine the quantization quantum. Both of these values influence the amount
of error, however the character of the introduced error is different.

8.2 Combined compression and simplification

The main idea behind the combined compression and simplification algorithm
is replacing the extrapolation of Coddyac by interpolation. Interpolation gener-
ally provides a more robust and accurate prediction, thus reducing the residual
entropy. However, in order to be able to perform this replacement, we have to
prepare the mesh into a state, where a complete geometry of each vertex neigh-
borhood is known to both encoder and decoder during each prediction.

This state is achieved by topology-guided decimation, which is simultane-
ously performed by both encoder and decoder. A series of decimation steps is
performed, producing a coarse version of the mesh connectivity. The geometry
of this coarse version is transmitted using an extrapolating predictor, i.e. using
Coddyac. Subsequently, vertices which have been removed during decimation are
returned into the mesh, using interpolating prediction.

The proposed scheme consists of following steps:

1. compute PCA of the vertex trajectories

2. transmit the connectivity of the mesh

3. decimate the mesh (at both encoder and decoder)

4. transmit the PCA coefficients for non-decimated vertices, using parallelo-
gram predictor

5. transmit the PCA coefficient for decimated vertices, using neighborhood
average predictor

Our suggestion is to use neighborhood average (NA) predictor, i.e. predicting
a value (PCA coefficient) as a mean of the value in the topological neighborhood.
This predictor usually provides a very robust estimation. After the step 2 the
encoder sorts all the vertices according to the accuracy of their prediction by
the NA predictor. This ordered set is then used as a priority queue for vertex
removal.

The removal of vertices is performed simultaneously at both encoder and de-
coder. Note that at this point the decoder has no information about the geometry
at all, and therefore the retriangulation of the hole must be performed solely ac-
cording to connectivity criteria. The only information the decoder receives is the



CHAPTER 8. PROPOSED COMPRESSION METHODS 96

index of the vertex to be removed, however this leaves some control to the en-
coder - it knows how the decoder will retriangulate, and based on this knowledge
it can avoid removing such vertices where the retriangulation would introduce
geometrical problems - details on this will be given later.

The strategy of the encoder is following:

1. set all vertices unlocked, evaluate the decimation costs

2. pick the best predicted vertex v from the head of the queue

3. if v is locked then remove v from queue and go to 2

4. simulate the retriangulation after removal of v, if it violates geometrical
criteria, then remove v from the queue and go to 2

5. lock the neighbors of v

6. mark the vertex v to be removed by the decoder at the current level of
decimation

7. go to 2 if there are some vertices left

8. go to 1 if further simplification is required

The simplification process is repeated several times in order to create multiple
simplification levels of the mesh. After each step all the vertices are unlocked (step
1), and the prediction accuracy (i.e. simplification cost) is reevaluated at each
vertex, again allowing all the vertices to be removed in the following simplification
step.

After this process, the encoder and decoder share a simplified connectivity,
and every removed vertex can be predicted from its neighbors (however, the
decoder has still no information about the geometry of any vertex).

Note that there is some overhead associated with the decimation. However,
we don’t need to send the exact order of vertices to be removed (which would
take V.log2V bits, V being the number of vertices), the only information the de-
coder needs is the level of decimation at which each vertex should be removed.
To transmit this information, we only need V.log2s bits, where s is the number
of simplification levels, or even less than that when entropy coding is used (sim-
plification levels are not distributed uniformly, most vertices will be removed at
first level, less at second etc.).

At this point, the encoder and decoder share a series of increasingly simplified
versions of the mesh, where each finer one can be obtained by inverse vertex
removal, i.e. we know where each vertex should be placed to reach a finer version
of the topology. In our experiments, we have usually driven the algorithm to
reduce the number of vertices to less than one fifth of their original number.



CHAPTER 8. PROPOSED COMPRESSION METHODS 97

Now we use the Coddyac algorithm to transmit the PCA coefficients of the
coarse mesh. The encoder traverses the triangles and predicts the coefficients
using the parallelogram rule, and sends the residuals to the decoder, until the
whole coarse mesh is transmitted.

At this point, the decoder can start playing the animation, while it is still
receiving refinement information. The parallelogram predictor is now replaced
by the NA predictor, and the decoder continuously refines the mesh by reversing
the previous decimation. It is guaranteed that for each vertex the decoder has all
the neighbors available, and therefore it can compute the NA prediction. Again,
the encoder only sends the quantized residuals.

8.2.1 Algorithm details

There are two gaps in the description that are to be filled - the conditions for se-
lecting the vertices for decimation, and the criteria for retriangulation performed
in the decoder. We are suggesting simple approaches for both tasks.

If we were creating only one decimation level, then we generally would not
care about the geometrical properties of the created holes, however when multiple
simplification levels are being created it is advisable to preserve a reasonable
quality mesh. On the other hand, the encoder cannot control the way in which
the hole is retriangulated by the decoder, because such controlling would require
additional information to be sent.

The retriangulation process must be driven by connectivity only, as this is
the only information available at the decoder. Although more advanced meth-
ods exist for this task, we have chosen a simple ”ear cutting” algorithm[43] for
triangulation of a simple hole. The decoder however has no information about
the convexity/concavity of the hole border, and therefore it simply considers any
vertex to be a candidate ear tip.

The only criterion the decoder uses for selecting an ear tip is the regularity
of degrees of the vertices. It is known that the expected degree of a vertex is
six, and good shaped meshes have very regular distribution of vertex degrees.
Cutting an ear does not increase the ear tip degree, while it increases the degree
of the two vertices next to the tip by one. Therefore, we select the candidate tip
where the following expression is maximal:

δ(tip)− δ(tipleft)− δ(tipright) (8.3)

where δ(x) stands for the degree of vertex x. The tip is cut, and the remaining
hole is again searched for the best candidate tip, until it is fully retriangulated.
Ambiguous situations are solved by selecting a candidate tip vertex with the
lowest index, so that both the encoder and the decoder have the same retriangu-
lation.



CHAPTER 8. PROPOSED COMPRESSION METHODS 98

There is however no guarantee that the retriangulation is geometrically cor-
rect. Therefore, we perform the retriangulation at the encoder as well and check
the geometrical correctness. If it is not preserved, then the vertex is not deci-
mated. We only evaluate the criteria for the first frame, as it is likely that if the
geometry is not compromised in the first frame, then it will not be changed in
the following frames either. Note here that the simplification is only a tool for
compression, and we do not aim for perfect simplified version of the model, nor
is geometry preservation of essential importance for us.

First, we check for normal flips. We compute an average normal of the hole by
averaging the normals of all removed triangles. If any of the normals of the new
triangles is oriented opposite to the original normal (we use scalar multiplication),
then the decimation is not performed.

Second, we check for ”sharp” triangles. We check all the corner angles of the
new triangles, and if any angle is lower than some threshold (0.05 rad in our
experiments) then the decimation of the vertex is also cancelled.

Finally, we do not consider decimation of all the vertices. We only use the
first 80% of the priority queue, the rest is considered to be too badly predicted
by the NA predictor.

8.3 Progressive predictors

In this section we will show how updating the predictor during the transmission
of the coordinates of a single vertex can improve the precision of the prediction.
The nature of PCA removes global correlation between the coordinates, and thus
we cannot directly determine anything about a subsequent coordinate based on
the value of the previous one. However, when the neighborhood is known, we can
make some assumptions about the relations between the neighborhood and the
decoded vertex, allowing a more efficient compression.

Now, we will make the crucial observation, upon which our predictors are
based. The situation depicted in Figure 8.1 is quite common in static mesh
decimation and coding. The vertex v has been removed in the decimation step,
and in the reconstruction its position is unknown. The task is to predict the
position as precisely as possible, so that the residual will be very small, and thus
the overall entropy of the residuals will be low.

If we consider only the X coordinate of v, we probably cannot do a much
better prediction than just averaging the X coordinates of the neighborhood,
which are known to the decoder. After having done so, the encoder sends the
residual, which corrects the initial guess. The following task is to predict the Y
coordinate.

If the model had not been preprocessed, we could have guessed something
about Y from X, however, this cannot be done for our case of data previously



CHAPTER 8. PROPOSED COMPRESSION METHODS 99

neigborhood average

X value estimation

v1v2

v3

v4

v5 v6

v7

v8

X value correction

actual position of vertex v

Figure 8.1: Inverse decimation step - a vertex is being added to a neighborhood.

decorrelated by PCA. On the other hand, if we consider the neighborhood as
well, we can extract some information from the correction of the X value. In the
situation in Figure 8.2, it clearly makes sense to derive the guess of the Y value
from the Y values of vertices v2, v3 and v4, rather than from the other vertices.

The generalization of this idea to a longer vector, which describes the tra-
jectory of a vertex, is the key to the prediction algorithms we will now present.
The most direct approach to forming such vector is to concatenate the XYZ co-
ordinates of subsequent positions of each vertex into a vector of length 3F , F

being the number of frames of the sequence. However, such vector shows a strong
correlation between the coordinates, which can be removed to improve the com-
pression performance. Therefore, it is better to first decorrelate the data by PCA
and apply the prediction directly onto the PCA coefficients.

After the decorrelation step, a decimation of the original mesh is performed
in the way described in section 8.2, and therefore the whole neighborhood of a
vertex is known to the decoder every time a prediction is performed.

8.3.1 Least squares prediction (LSP)

In our first predictor, we will use least squares minimization to obtain a vector
of weights of neighboring vertices, that fits the data well.

The task is to insert a vertex x. We denote the number of its neighbors N

and the number of components of the assigned vectors C. The coefficient vector



CHAPTER 8. PROPOSED COMPRESSION METHODS 100

v1v2

v3

v4

v5 v6

v7

v8

possible positions

of vertex v

Figure 8.2: Coordinate prediction after the correction of the X value has been
transmitted.

assigned to the i-th neighbor will be denoted vi, it’s j-th component will be
denoted vi

j . These vectors are known to both encoder and decoder. The vector
assigned to the added vertex will be denoted v, it’s j-th component vj . This
vector is only known to the encoder, the decoder needs to compute its prediction,
denoted pred(v).

We assume that C > N , because for regular meshes N is usually about 6,
while C needs to be about 30-60, depending on the length and character of the
animation.

For the first N components of the vector v we have to use neighborhood
average prediction in the following form:

pred(vj) =
1
N

N∑

i=1

vi
j (8.4)

The encoder simulates this prediction, and sends over the corrections, so that
after N steps, v1..N are known to both encoder and decoder. The prediction so
far can be seen as combining the neighboring vectors using weights equal to 1

N .
This would be a good predictor if the new vertex had been placed in the exact
center of the hole, however it is usually not the case (not even for regular meshes,
because the iterative decimation usually destroys the regularity). Therefore, the
decoder will now estimate a better set of weights wi, i = 1..N , using the following
set of linear equations:



CHAPTER 8. PROPOSED COMPRESSION METHODS 101

input data

Basis

encoding

Predictor

prediction

residuals

Decimation

connectivity

coarse versionre!nements

PCA

basis coe"cients

geometry

-

encoded basis

Figure 8.3: Block scheme of the encoder. The thick arrows denote data that are
transmitted to the decoder.

w1v
1
1 + w2v

2
1 + · · ·+ wNvN

1 = v1

w1v
1
2 + w2v

2
2 + · · ·+ wNvN

2 = v2

. . .

w1v
1
N + w2v

2
N + · · ·+ wNvN

N = vN

(8.5)

The matrix of this set of linear equations should be regular (unless two neigh-
bors are located at the same position - this situation may appear due to quan-
tization, and its treatment will be described later), and therefore a solution can
be found and used to predict the component N+1:

pred(vN+1) =
∑

i=1..N

wiv
i
N+1 (8.6)

Again, this prediction is computed at both encoder and decoder, and the
encoder sends a correction, which makes the actual value of vN+1 known to the
decoder. Thus, the set of equations (8.5) can be extended by one row. This makes
the set overdetermined, however it can be still solved using the least squares



CHAPTER 8. PROPOSED COMPRESSION METHODS 102

decoded data

Basis

decoding

Predictor

predictionresiduals

Re�ning

connectivity coarse version

re�nements

*

basis

all coe!cients

+

encoded basis

Figure 8.4: Block scheme of the decoder. The thick arrows denote data that are
received from the encoder.

minimization. Such solution will yield an even more precise estimate of the
weights wi, which will be then used to predict vN+2. In this manner, with each
correction sent to the decoder, a new set of weights is found and used to predict
the subsequent component, until the whole vector has been transmitted.

There are two additional circumstances that require treatment:

1. The coordinates are quantized, and therefore it might happen that two
or more neighbors have the same values assigned. This may lead to un-
derdetermination of the equation set (8.5). We solve such case by simply
removing the neighbors with equal values assigned from the computation.
Note that this state is likely to be corrected after more components are
transmitted, as it is unlikely that two vertices shared the same position.

2. The values transmitted are the PCA coefficients, and thus their magnitude
is approximately sorted from large to small. The quantized residuals of the
large values contribute a big part to the entropy, and thus we should focus
on precise prediction of these. Therefore, we transmit the coefficient vectors
in the reverse order, first transmitting the small coefficients, which allows



CHAPTER 8. PROPOSED COMPRESSION METHODS 103

us to have a very precise set of weights at the point when large coefficients
are transmitted.

8.3.2 RBF based predictor (RBFP)

The second predictor we are presenting is based on Radial Basis Function (RBF)
interpolation[17, 63]. This approach becomes natural when the prediction is
interpreted as a general interpolation.

RBF is a tool for interpolating scattered data in a n-dimensional space. The
interpolation is formed as a superposition of radial functions centered at the
points of known values. Each radial function is multiplied by a weight λi, which
is found so that the interpolation function passes through the known values.
Additionally, there should be a polynomial function that improves the fitting.

For our purposes we will only be able to use zero order polynomial, i.e. a
constant. Thus our interpolation function has the following form:

f(x) =
∑

i=1..N

λiφ(‖x− xi‖) + a (8.7)

where xi are the locations of N known points, ‖.‖ denotes euclidean norm,
φ(r) is some function (the function we have used will be discussed later). The
values λi are unknown, and are determined by the given values at the known
points. The equation (8.7) should have the correct value yi at the given points,
thus we get the following set of linear equations:

λ1φ(‖x1 − x1‖) + · · ·+ λNφ(‖x1 − xN‖) + a = y1

λ1φ(‖x2 − x1‖) + · · ·+ λNφ(‖x2 − xN‖) + a = y2

. . .

λ1φ(‖xN − x1‖) + · · ·+ λNφ(‖xN − xN‖) + a = yN

(8.8)

This gives us N equations for N + 1 unknowns (λ1..N and a), thus we need
to add one more equation to obtain a solution. This equation usually takes the
following form:

λ1 + λ2 + · · ·+ λN = 0 (8.9)

For exact derivation of this additional row see [17]. This gives us a determined
set of linear equations (8.10), which has a symmetric matrix.



CHAPTER 8. PROPOSED COMPRESSION METHODS 104




φ(‖x1 − x1‖) φ(‖x1 − x2‖) . . . φ(‖x1 − xN‖) 1
φ(‖x2 − x1‖) φ(‖x2 − x2‖) . . . φ(‖x2 − xN‖) 1

...
...

. . .
...

...
φ(‖xN − x1‖) φ(‖xN − x2‖) . . . φ(‖xN − xN‖) 1

1 1 . . . 1 0







λ1

λ2
...

λN

a




=




y1

y2
...

yN

0




(8.10)
Now that we have described how RBF interpolation works, we can apply it

in a quite straightforward way on our case. The first component of the vector
assigned to a vertex is estimated from its neighbors by simply averaging them,
i.e. using the formula (8.4). The encoder simulates this prediction and sends a
correction, and thus the first component is now known at the decoder as well.

For the second component prediction, we will now use RBF. We will treat the
first component of the vectors as spatial coordinates in a 1-dimensional space.
The second component is only known for the neighboring vertices, and RBF is
used to interpolate this value to the location of the added vertex. Again, the
encoder simulates this prediction and sends a correction, so that the first two
components of the vector are known at the decoder.

Subsequent steps are straightforward repetition of the last step. The known
components of the transmitted vector are treated as spatial coordinates, and the
first unknown component is treated as a value, which is being interpolated using
RBF. The dimension of the interpolation space increases, however the size of the
set of linear equations remains unchanged.

One question that remains to be answered is the choice of the function φ(r).
Literature about RBF does not offer any ultimate function that will provide the
best results in any situation, generally any function can be used, and the efficiency
of the functions is difficult to predict.

We have performed experiments with various functions suggested by the RBF
literature, such as the thin plate spline (TPS) of form φ(r) = r2log(r) or com-
pactly supported functions such as φ(r) = e−cr2

, however the most accurate
predictions have been obtained by using power function φ(r) = rβ, where the
value of β is little less than 2, usually about 1.7− 1.9.

We don’t have a derivation of this value, and it varies slightly depending
on the dataset used, however it can be seen that using φ(r) = r1 = r is not a
good choice, because this function has a non-zero derivative for zero argument,
i.e. the radial function is not smooth. A simple function with zero derivative at
zero is φ(r) = r2, unfortunately this function cannot be used, because it makes
the set of equations (8.10) degenerate. Therefore, a function φ(r) = r1.8 is a
compromise, which produces a solvable set of equations, while the function has
a zero derivative at zero, and is also reasonably smooth around zero (in contrast
with functions such as φ(r) = r1.1, which also have zero derivative at zero, but



CHAPTER 8. PROPOSED COMPRESSION METHODS 105

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2

Φ
(r
)

r

β=1

β=1.1

β=1.8

β=2

Figure 8.5: Examples of basis functions of form φ(r) = rβ. For β = 1 and β = 1.1
we get sharp development around zero, while β = 2 yields a degenerate set of
equations. β = 1.8 is a compromise.

in fact are almost sharp, see figure 8.5).
Also note that the prediction algorithm is used not only in the reconstruction

step, but also in the simplification step, where the prediction error is used as
decimation cost. This leads to a slightly different decimation strategy. In the
case of neighborhood average, the algorithm removed vertices that were close to
the center of their neighborhood, while the progressive predictors prefer vertices
that lie in the plane of their neighborhood, even when they are slightly off-center.
In other words, the simplification is now more precise in removing vertices that
carry little geometrical information.

8.4 Encoding of basis for PCA represented animations

Our basis compression algorithm is build on two blocks - prediction and non-
uniform quantization. Although both techniques are widely used in compression
tasks, and their employment may seem obvious, there remain some questions that
need to be answered in order to achieve efficient compression. Namely, we must
select a proper prediction scheme, which will provide as low entropy residuals
as possible, and then we must quantize the residuals accurately so that all the
values are transmitted neither too coarsely, nor too finely.



CHAPTER 8. PROPOSED COMPRESSION METHODS 106

8.5 Prediction

The key observation for following derivations is that the basis vectors, which
need to be encoded, still retain the character of trajectories. In other words, if
one interprets one basis vector as a trajectory of a moving point, then the point
moves smoothly. Figure 8.6 shows the first basis vector of the chicken sequence
interpreted as three trajectories, one for each coordinate.

-0,06

-0,04

-0,02

0

0,02

0,04

0,06

0,08

1 51 101 151 201 251 301 351

X Y Z

Figure 8.6: First basis vector of the chicken sequence. The sudden jump in frames
250-300 is the chicken popping eyes, the subsequent sinusoidal development of the
X axis is the flapping of wings.

This observation has been made previously by Karni and Gotsman in [32],
who noticed this behavior of PCA coefficients of subsequent frames (note that
they have used an eigenshape based PCA). Their suggestion was to apply linear
predictive coding, LPC, to predict and encode the values. The LPC concept is
based on predicting a given value in a series as a linear combination of a given
number of previous values. The same set of combination coefficients is used for
the whole sequence (or for multiple sequences of the same behavior) and their
values are found in a least squares optimization process applied by the encoder
on the whole sequence. For more details see the original source[32].

We have first followed this suggestion for the basis as well, however we have
found that for the purposes of efficient encoding it is sub-optimal. Imagine a
situation depicted in figure 8.7. In this simplified scenario, we are given a value
vf−1 (preceding value, one of the XYZ coordinates) and we want to predict the



CHAPTER 8. PROPOSED COMPRESSION METHODS 107

v(f-1)

v(f )

Figure 8.7: The two linear predictors for a given data set (each data point is
represented by a circle).

value vf by a linear formula

vf = kvf−1 + q (8.11)

The LPC algorithm suggests to apply least squares optimization to find the
values k and q, in our case we will get the dashed line. We can now perform
quantization, which will result only in three possible values: 0 for the exactly
predicted point, +α for the points above the prediction, and −α for points below
it. The vector of residuals is:

r = [−α, +α, 0,−α, +α] (8.12)

Thus the probabilities are

p(−α) =
2
5
, p(+α) =

2
5
, p(0) =

1
5

(8.13)

The entropy is computed as follows:

E = −
∑

p log2(p) (8.14)

= −(
2
5

log2(
2
5
) +

2
5

log2(
2
5
) +

1
5

log2(
1
5
))

= 1.522[b]

However, if we construct a different linear predictor, such as the one drawn in
the figure as a dotted line, we get following residuals, probabilities and entropy:



CHAPTER 8. PROPOSED COMPRESSION METHODS 108

r = [0,+α, 0,−α, 0] (8.15)

p(−α) =
1
5
, p(+α) =

1
5
, p(0) =

3
5

(8.16)

E = −
∑

p log2(p) (8.17)

= −(
3
5

log2(
3
5
) +

1
5

log2(
1
5
) +

1
5

log2(
1
5
))

= 1.379[b]

v(f-1)

v(f )

Figure 8.8: Least squares solution is lead away from a good predictor of most of
the data by an outlier.

This rather artificial example shows that there are cases, when least squares
solution leads to a sub-optimal prediction. Indeed, it is a generally known prob-
lem[70] of the least squares optimization that the solution can be lead astray
by outliers, because the squared difference of these has a large influence on the
overall solution. Figure 8.8 shows a more realistic case, when most of the data
points are linearly dependent and can be accurately predicted by the dotted line,
however the least squares solution will be twisted by the outlier point, which will
cause a significant increase of residual entropy.

Figure 8.9 shows a real world example. The dataset is the PCA basis of the
first 100 frames of the chicken sequence. The samples show the dependency of a
basis value (vf axis) on its predecessor (vf−1 value) where appropriate predecessor
is available. A least squares fitting of such data produced the depicted line, which
can be used to predict vf from vf−1. However, if we consider the real situation,
we can use simple delta coding expressed as:

pred1(vf ) = vf−1 (8.18)



CHAPTER 8. PROPOSED COMPRESSION METHODS 109

v(f) = 0,946v(f-1) - 4E-05

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

-0,4 -0,3 -0,2 -0,1 0 0,1 0,2 0,3 0,4

v
(f
)

v(f-1)

Figure 8.9: Real data prediction.

Such coding is least-squares sub-optimal, however it delivers residuals with
smaller entropy.

In a similar way, we can fit the triplets (vf−2, vf−1, vf ), where vf−2 is a value
from frame f − 2, vf−1 is the value from frame f − 1 and vf is a value in frame
f which we’re trying to predict. We can either use least squares fitting, or linear
movement prediction in a form

pred2(vf ) = vf−1 + (vf−1 − vf−2) = 2vf−1 − vf−2 (8.19)

The last two predictors that we have experimented with use three and four
preceding values to predict the current value vf , estimating the speed s, the
acceleration a, and the change in acceleration c to obtain prediction as follows:



CHAPTER 8. PROPOSED COMPRESSION METHODS 110

s = vf−1 − vf−2

a = (vf−1 − vf−2)− (vf−2 − vf−3)

= vf−3 − 2vf−2 + vf−1

c = ((vf−1 − vf−2)− (vf−2 − vf−3))− (8.20)

− ((vf−2 − vf−3)− (vf−3 − vf−4))

pred3(vf ) = vf−1 + s + a = 3vf−1 − 3vf−2 + vf−3 (8.21)

pred4(vf ) = vf−1 + s + a + c

= 4vf−1 − 6vf−2 + 4vf−3 − vf−4 (8.22)

The overall prediction algorithm must also prevent error accumulation by
using quantized values in the encoder. The overall scheme is summarized in
algorithm 1.

input: basis vector Bi

input: quantization constant Qi (its computation will be described in the
following section)

input: order of prediction o, i.e. the number of preceding values needed
by the predictor

for coord ← 0 to 2 do
for j ← (1 + coord ∗ F ) to (o + coord ∗ F ) do

q ← round(Bi,j/Qi) ;
send q to entropy coder;
Bi,j ← q ∗Qi;

end
for j ← (o + 1 + coord ∗ F ) to (F + coord ∗ F ) do

pred ← predictor(Bi,j−1, Bi,j−2, ..., Bi,j−o);
residual ← Bi,j − pred;
q ← round(residual/Qi);
send q to entropy coder;
Bi,j ← pred + q ∗Qi;

end
end

Algorithm 1: Basis compression.

8.5.1 Quantization

The final step in encoding the values is quantization. The predictor produces a
floating point value, which is divided by a quantization constant, the result is
truncated and passed to an entropy coder for encoding.



CHAPTER 8. PROPOSED COMPRESSION METHODS 111

However, we have found out that careful treatment of basis quantization may
lead to further improvement of compression ratio. Recall the decompression
equation 8.2. It can be expanded to following form:

t = B1.c1 + B2.c2 + · · ·+ BNB
.cNB

+ m (8.23)

where Bi represents the i-th row of the matrix B, i.e. a basis vector. The
error introduced by the quantization of the PCA coefficients ci is equal for each
term of equation 8.23, as all the coefficients are quantized with equal quantization
constant.

We can also see that the error is generally additive, and therefore we want
it to be equal for every term. However, the size of the coefficients ci varies
significantly. Fortunately this variance can be well predicted - the first coefficient
is usually much larger than the second, which is larger than the third etc., which
is a behavior caused by the nature of PCA.

Thus, if we had used an uniform quantization, we can expect the error of
half the quantization constant, which will be multiplied by a very large constant
in the first term. Such behavior is undesirable, and thus we must use finer
quantization for the more important basis vectors, while the less important ones
can be quantized more coarsely.

0,1

1

10

100

1000

10000

100000

Figure 8.10: Coefficient sums.

When given a quantization constant Q from user, we can split this constant
to the given number of terms of equation 8.23, however we should follow the



CHAPTER 8. PROPOSED COMPRESSION METHODS 112

magnitudes of corresponding coefficients ci. To do this, we can first compute the
average

ai =
1
V

∑

v=1..V

‖cv
i ‖ (8.24)

of absolute values of each coefficient over all vertices v1..V . This gives an ap-
proximation of how many times will an error be repeated in the final decompressed
sequence. Figure 8.10 shows the summed absolute values of the PCA coefficients
in the chicken sequence, note that the scale of the figure is logarithmic.

If we want to keep the error of the terms in equation 8.23 equal, then we must
use quantization constants inversely proportional to the averages of coefficients.
Thus, the quantization constant for i-th basis vector should be computed as:

Qi =
Q

NB + 1
a−1

i (8.25)

In this equation i is the order of the basis vector and Q is the quantization
constant, which must be divided into NB + 1 parts, since the equation 8.23 has
NB + 1 terms.

We could use an exact value for each coefficient, however that would require
transmitting the quantization constant with each basis vector. To avoid this, we
have decided to use a power function approximation to compute the quantization
constants for each basis vector at both encoder and decoder. We perform a least
squares minimization to obtain the constants k and q in the equation 8.26.

ki q = Qi (8.26)

Since the quantization of the first basis vector is of biggest importance, we
subsequently shift the approximation curve by a constant a so that the first
quantization constant perfectly fits the user specified intended error:

k.1q + a = k + a = Q1 (8.27)

a = Q1 − k (8.28)

This way, we only need to transmit the constants k, q and a, and we get
a series of increasing quantization constants, that well fits the distribution of
absolute values of PCA coefficients, and for the first coefficient gives exactly the
user specified error amount.

This derivation can be directly applied to compression of the means vector,
which is transmitted along with the basis. Its components can be predicted
using any of the equations 8.18-8.22 and the residuals should be quantized using
quantization constant Qm:



CHAPTER 8. PROPOSED COMPRESSION METHODS 113

Qm =
Q

NB + 1
(8.29)

The key issue arising with the presented prediction algorithms is the decom-
pression speed. The decompression consists of coefficient restoration, from which
then the original trajectories are restored. Our optimized version of the coefficient
restoration algorithm, which builds the RBF matrix incrementally is currently
capable of achieving about real-time decompression for moderately complex mesh
sequences. The chicken run sequence (cca 16 second animation) can be decom-
pressed in about 5 seconds on a 3,2GHz Pentium D PC, however more detailed
meshes take longer to decompress. On the other hand, the algorithm still leaves
quite large space for optimization, namely the solution of the least squares equa-
tion set is likely to change only slightly with added components, and therefore
the solution from previous step can be used in a following step to speed the
computation up.



Chapter 9

Experimental results

In this chapter we will show results of experiments with an implementation of
algorithms described in chapter 8. We are showing rate/distortion curves for each
algorithm and each dataset. The rate has been measured by the bit per frame
and vertex value, expressed from the overall encoded bitlength length as follows:

bpfv =
length

FV
(9.1)

As we have stated in chapter 7, we will provide two distortion measures for
each dataset, the KG error, which is used to compare the results with competing
algorithms, and the STED error, which more closely approximates the perceived
quality.

9.1 Coddyac results and STED considerations

The first series of figures 9.1-9.16 shows the results of the Coddyac algorithm de-
scribed in section 8.1. We’re showing results for all the test sequences mentioned
in chapter 6, and we are showing results for varying numbers of basis vectors
and varying quantization constants. Each curve in a graph represents a series of
experiments with constant number of basis vectors (given by the legend) and a
varying quantization constant, spanning from 7 (the leftmost point, i.e. the low-
est data rate, coarsest quantization) to 13 (the rightmost point, i.e. the highest
data rate, finest quantization).

The first observation that can be made based on the results is that the used
measures provide significantly different results. The basic development of the
curves remains unchanged, i.e. finer quantization leads to lower error in both
cases. However, the similarity fails when different numbers of basis trajectories
is used. In the KG error measure curves, the error decreases with the number

114



CHAPTER 9. EXPERIMENTAL RESULTS 115

configura�on <basis>-<quan�za�on> 20-13 25-8 40-8 20-9 10-8 30-13 15-13 35-9 10-12

MOS 1,524 9,238 9,619 6,000 7,000 1,619 1,952 6,571 1,238

standard devia�on 1,167 0,889 0,590 1,581 1,732 1,532 1,532 1,805 1,300

Table 9.1: Results of the subjective testing with the human jump sequence.

of basis trajectories, which seems to be intuitive. In contrast to that, in the
STED measures this relation is more complex. For fine quantization the relation
holds, however for coarse quantizations the relation is reversed, i.e. more basis
vectors introduce more error. This can be explained by the fact that STED
mainly focuses on local error, which exhibits an additive behavior, and therefore
increases when more basis vectors with error are added together.

Second conclusion that can be made is that the selection of compression pa-
rameters (number of basis vectors, quantization constant) is strongly dependent
on the measure used. Generally, the KG measure prefers higher number of ba-
sis vectors, while the quantization may remain coarse, while the STED measure
usually drops significantly with finer quantization, and the effect of adding basis
vectors is less significant.

For example in the snake sequence, according to the KG measure, the opti-
mal result at bitrate of 0.5 bpfv is obtained by using 15 or more basis vectors.
According to the KG experiment, it is optimal to increase the number of basis
vectors to 20 at the bitrate of approximately 0.7 bpfv, and then again to 25 when
allowed bitrate reaches 0.93 bpfv. In contrast to that, according to the STED
measure experiment, 10 basis vectors suffice up to a bitrate of 0.95 bpfv, and
the additional bits should be invested in finer quantization. This is a significant
difference that greatly influences the decision about the optimal configuration of
a compression scheme.

The behavior of the STED measure can be considered counterintuitive, and
therefore we have prepared a series of distorted versions of the human jump
sequence, for which the STED and KG measures are inconsistent in decision
about which animation is more distorted. We have performed a blind subjective
test to determine whether the actual observations match the results of STED or
KG error.

Table 9.1 summarizes the findings from 21 subjective evaluators. The column
headers give the compression parameters used in the format <number of basis
vectors>-<quantization constant>. We have intentionally selected such param-
eters so that we can test hypotheses following from figures 9.5 and 9.6. The
findings are:

1. According to figure 9.6 (STED), the settings 10-8 should provide result with
smaller error than settings 40-8. Table 9.1 confirms this with values 9,62
for 40-8 and 7,00 for 10-8.



CHAPTER 9. EXPERIMENTAL RESULTS 116

2. At data rate cca 0.75 bpfv, according to figure 9.5(KG), the optimal config-
uration of the coder is 35-9, while according to figure 9.6 (STED) it should
be 15-13. The test showed that result of configuration 15-13 achieved MOS
1,95, while the configuration 35-9 performed significantly worse, reaching
6,57.

3. Similarly, at bitrate cca 0.5 bpfv, according to figure 9.5 (KG), the optimal
configuration of the coder is 25-8, while according to figure 9.6 (STED)
it should be 10-12. The test showed that result of configuration 10-12
achieved MOS 1,23, while the configuration 25-8 performed significantly
worse, reaching 9,23.

4. According to figure 9.5 (KG), no significant improvement is achieved when
improving quantization from configuration 20-9 to 20-13, which contradicts
figure 9.6 (STED), which shows that such change leads to drop of error to
about one half. The subjective results confirm the second conclusion by
MOS 6,00 for configuration 20-9 versus 1,52 for configuration 20-13.

5. Similarly, according to figure 9.6 (STED), no significant improvement is
achieved when adding basis trajectories from configuration 15-13 to 30-
13, which contradicts figure 9.5 (KG), which shows that such change leads
to drop of error to about one half. The subjective results confirm the first
conclusion by MOS 1,95 for configuration 15-13 versus 1,62 for configuration
30-13.

Generally, all the tested assumptions following from STED measures have
been confirmed by the experiment. There is however one unsolved contradiction
following from the test. The configuration 15-13 has reached MOS 1,95, which is
worse than the result of configuration 10-12, which has scored 1,23. This relation
should be other way round, because 15-13 has both finer quantization and more
basis vectors. We believe that this is caused by the fact that even at such low
rates, the visual error is so small, that the observers could not distinguish between
the two versions, and the difference is caused by random factors. This explanation
is supported by the standard deviation values, which are of similar magnitude as
the MOS values themselves.



CHAPTER 9. EXPERIMENTAL RESULTS 117

0

1

2

3

4

5

6

7

8

9

0 0,5 1 1,5 2 2,5

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.1: Rate/distortion curves for the chicken sequence using the Coddyac
algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0 0,5 1 1,5 2 2,5

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.2: Rate/distortion curves for the chicken sequence using the Coddyac
algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 118

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 0,5 1 1,5 2 2,5

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.3: Rate/distortion curves for the dance sequence using the Coddyac
algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0 0,5 1 1,5 2 2,5

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.4: Rate/distortion curves for the dance sequence using the Coddyac
algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 119

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.5: Rate/distortion curves for the jump sequence using the Coddyac
algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.6: Rate/distortion curves for the jump sequence using the Coddyac
algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 120

0

1

2

3

4

5

6

7

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.7: Rate/distortion curves for the cloth sequence using the Coddyac
algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.8: Rate/distortion curves for the cloth sequence using the Coddyac
algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 121

0

1

2

3

4

5

6

0 0,5 1 1,5 2 2,5 3 3,5

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.9: Rate/distortion curves for the cow sequence using the Coddyac al-
gorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0 0,5 1 1,5 2 2,5 3 3,5

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 VB

Figure 9.10: Rate/distortion curves for the cow sequence using the Coddyac
algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 122

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0 0,5 1 1,5 2 2,5 3

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.11: Rate/distortion curves for the snake sequence using the Coddyac
algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0 0,5 1 1,5 2 2,5 3

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.12: Rate/distortion curves for the snake sequence using the Coddyac
algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 123

0

0,5

1

1,5

2

2,5

0 0,2 0,4 0,6 0,8 1 1,2 1,4

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.13: Rate/distortion curves for the walk sequence using the Coddyac
algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0 0,2 0,4 0,6 0,8 1 1,2 1,4

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.14: Rate/distortion curves for the walk sequence using the Coddyac
algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 124

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 0,5 1 1,5 2 2,5

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.15: Rate/distortion curves for the dolphin sequence using the Coddyac
algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0 0,5 1 1,5 2 2,5

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.16: Rate/distortion curves for the dolphin sequence using the Coddyac
algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 125

9.2 Combined compression and simplification results

The series of figures 9.17-9.32 shows the results of the combined compression
and simplification algorithm described in section 8.2. The figures show a reduc-
tion of data rate of about 15-25 percent, while the error values remain generally
unchanged.

0

1

2

3

4

5

6

7

8

9

0 0,5 1 1,5 2 2,5

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.17: Rate/distortion curves for the chicken sequence using the combined
compression and simplification algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0 0,5 1 1,5 2 2,5

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.18: Rate/distortion curves for the chicken sequence using the combined
compression and simplification algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 126

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.19: Rate/distortion curves for the dance sequence using the combined
compression and simplification algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.20: Rate/distortion curves for the dance sequence using the combined
compression and simplification algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 127

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,2 0,4 0,6 0,8 1 1,2

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.21: Rate/distortion curves for the jump sequence using the combined
compression and simplification algorithm.

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0,0014

0,0016

0,0018

0,002

0 0,2 0,4 0,6 0,8 1 1,2

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.22: Rate/distortion curves for the jump sequence using the combined
compression and simplification algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 128

0

1

2

3

4

5

6

0 0,2 0,4 0,6 0,8 1 1,2

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.23: Rate/distortion curves for the cloth sequence using the combined
compression and simplification algorithm.

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0 0,2 0,4 0,6 0,8 1 1,2

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.24: Rate/distortion curves for the cloth sequence using the combined
compression and simplification algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 129

0

1

2

3

4

5

6

0 0,5 1 1,5 2 2,5 3

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.25: Rate/distortion curves for the cow sequence using the combined
compression and simplification algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0 0,5 1 1,5 2 2,5 3

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.26: Rate/distortion curves for the cow sequence using the combined
compression and simplification algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 130

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0 0,5 1 1,5 2 2,5

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.27: Rate/distortion curves for the snake sequence using the combined
compression and simplification algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0 0,5 1 1,5 2 2,5

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.28: Rate/distortion curves for the snake sequence using the combined
compression and simplification algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 131

0

0,5

1

1,5

2

2,5

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.29: Rate/distortion curves for the walk sequence using the combined
compression and simplification algorithm.

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0,0014

0,0016

0,0018

0,002

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.30: Rate/distortion curves for the walk sequence using the combined
compression and simplification algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 132

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,5 1 1,5 2 2,5

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.31: Rate/distortion curves for the dolphin sequence using the combined
compression and simplification algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0 0,5 1 1,5 2 2,5

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.32: Rate/distortion curves for the dolphin sequence using the combined
compression and simplification algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 133

9.3 Progressive predictors results

The series of figures 9.33-9.48 shows the results of the RBF based prediction
algorithm described in section 8.3.2. The figures show a further reduction of
data rate of about 5-15 percent.

0

1

2

3

4

5

6

7

8

9

0 0,5 1 1,5 2 2,5

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.33: Rate/distortion curves for the chicken sequence using the RBF
predictor based algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0,005

0 0,5 1 1,5 2 2,5

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.34: Rate/distortion curves for the chicken sequence using the RBF
predictor based algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 134

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 0,2 0,4 0,6 0,8 1 1,2

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.35: Rate/distortion curves for the dance sequence using the RBF pre-
dictor based algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0,005

0 0,2 0,4 0,6 0,8 1 1,2

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.36: Rate/distortion curves for the dance sequence using the RBF pre-
dictor based algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 135

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.37: Rate/distortion curves for the jump sequence using the RBF pre-
dictor based algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.38: Rate/distortion curves for the jump sequence using the RBF pre-
dictor based algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 136

0

1

2

3

4

5

6

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.39: Rate/distortion curves for the cloth sequence using the RBF pre-
dictor based algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.40: Rate/distortion curves for the cloth sequence using the RBF pre-
dictor based algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 137

0

1

2

3

4

5

6

0 0,5 1 1,5 2 2,5

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.41: Rate/distortion curves for the cow sequence using the RBF predictor
based algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0,005

0 0,5 1 1,5 2 2,5

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.42: Rate/distortion curves for the cow sequence using the RBF predictor
based algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 138

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.43: Rate/distortion curves for the snake sequence using the RBF pre-
dictor based algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.44: Rate/distortion curves for the snake sequence using the RBF pre-
dictor based algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 139

0

0,5

1

1,5

2

2,5

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.45: Rate/distortion curves for the walk sequence using the RBF pre-
dictor based algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.46: Rate/distortion curves for the walk sequence using the RBF pre-
dictor based algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 140

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.47: Rate/distortion curves for the dolphin sequence using the RBF
predictor based algorithm.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.48: Rate/distortion curves for the dolphin sequence using the RBF
predictor based algorithm.



CHAPTER 9. EXPERIMENTAL RESULTS 141

9.4 Cobra results and considerations

We have tested the basis compression algorithm derived in section 8.4 with an
implementation of the Coddyac compression scheme. We have performed experi-
ments with direct encoding of the basis (64 bits per double precision value), LPC
predictors of order from 1 to 4 and the four physical predictors defined by (8.18),
(8.19), (8.21) and (8.22). We have also used both uniform and non-uniform
quantization to test the efficiency of our scheme.

0,37

0,375

0,38

0,385

0,39

0,395

0,4

0 5 10 15 20

K
G

 e
rr

o
r

Index of modified quan"za"on constant

all unchanged

i-th modified

Figure 9.49: Experiment with uniform quantization.

First, we will test the efficiency of the non-uniform quantization using the
chicken run sequence. We have configured the Coddyac algorithm so that the
quantization of coefficients is very fine, and thus the error is mainly introduced
by basis quantization. First, we have evaluated the error for the uniform and
non-uniform quantization. Subsequently, we have observed what happens, if the
quantization constant used for i-th basis vector is tripled.

Figure 9.49 shows the dependence of KG error on the index of artificially
increased quantization for the case of uniform quantization. The error value con-
stantly decreases with the index, showing that tripling the quantization constant
used for the first basis vector has a radical effect on the error, while tripling for
example the tenth quantization constant has virtually no effect at all. This means
that the basis vectors with higher indices are quantized too finely, their
quantization can be much coarser without significant influence on the error.

On the other hand, figure 9.50 shows the result of the experiment using the
determined non-uniform quantization constants. It shows that tripling any of



CHAPTER 9. EXPERIMENTAL RESULTS 142

0,374

0,3742

0,3744

0,3746

0,3748

0,375

0,3752

0,3754

0 5 10 15 20

K
G

 e
rr

o
r

Index of modified quan"za"on constant

all unchanged

i-th modified

Figure 9.50: Experiment with non-uniform quantization.

the constants introduces error of roughly the same magnitude, which proves that
the quantization constants are well balanced and no basis vector is quantized too
finely.

Now we will compare the efficiency of the predictors. We will compare the
entropies of residuals, using the non-uniform quantization, which has been shown
to work well. Table 9.2 shows the entropies for the LPC predictor of order from
1 to 4 (LPC1-LPC4) and the physical predictors (Cob1-Cob4). The table shows
that the physical predictors outperform the LPC predictors for all the available
datasets. Note that the sum of squared residuals has decreased with the order
of LPC predictor, and the physical predictor has always produced residuals with
higher sum of squares than the LPC of corresponding order, which is the expected
behavior.

Usually the best results are provided by linear motion or accelerated motion
predictors, with only two exceptions: for the dolphin dataset at 25 basis vectors,
the fourth order predictor works best, and for the snake sequence at 50 basis
vectors the first order predictor works best. The dolphin case is caused by the
character of the dataset, where there are basically only two important basis tra-
jectories of the sine and cosine shape. These trajectories are very smooth, and
thus well predicted by a higher order predictor. The snake case is the exact oppo-
site - the movement of the snake is very fast and shaky, the basis trajectories are
not smooth at all, and therefore they are best predicted by simple delta coding.
The most efficient overall approach is to test the performance of the physical
predictors in the encoder, and then spend two bits to determine the predictor to



CHAPTER 9. EXPERIMENTAL RESULTS 143

dataset basis KG LPC1 LPC2 LPC3 LPC4 Cob1 Cob2 Cob3 Cob4

jump 50 0,78 9,22 8,46 8,21 8,22 9,11 8,14 7,96 8,30

jump 25 1,42 9,12 8,18 7,69 7,66 9,01 7,82 7,41 7,59

chicken 50 0,48 9,87 9,90 9,87 9,87 9,10 8,11 8,21 8,70

chicken 25 2,36 9,38 9,30 9,29 9,30 8,86 7,77 7,83 8,32

cow 50 0,66 10,77 10,59 10,57 10,57 10,69 10,45 10,62 11,09

cow 25 1,42 11,06 10,75 10,66 10,66 11,00 10,55 10,56 10,90

dolphin 50 0,24 6,07 6,06 6,07 6,08 5,71 5,55 5,55 5,79

dolphin 25 0,24 7,12 6,97 6,76 6,73 6,68 6,01 5,61 5,54

dance 50 0,36 10,08 10,07 10,06 10,07 9,93 9,61 9,84 10,43

dance 25 0,76 10,22 9,60 9,47 9,48 10,14 9,43 9,41 9,89

cloth 50 0,38 9,61 9,53 9,49 9,50 8,93 7,78 7,78 8,33

cloth 25 1,03 9,63 9,26 9,07 9,11 9,26 7,72 7,50 7,95

snake 50 0,22 10,30 10,20 10,11 10,11 10,04 10,23 10,87 11,62

snake 25 0,31 10,38 10,42 10,21 10,15 10,18 9,99 10,46 11,14

walk 50 0,32 8,93 8,80 8,82 8,83 8,78 8,40 8,79 9,49

walk 25 0,37 9,06 8,53 8,55 8,57 9,00 8,29 8,57 9,22

Table 9.2: Residual entropies for various predictors. The green color coded values
denote low entropy, the red values denote high entropy within the given row.

be used.
We also give the relations of different parts of encoded data for all the datasets

in figure 9.51. All the datasets are compressed at KG error of cca 0.3, and we are
giving results for direct encoding (8 bytes per float number), encoding suggested
by Amjoun (uniform quantization) and our algorithm.

The final set of figures 9.52-9.63 shows the results of the basis compression
algorithm presented in section 8.4 combined with RBF based predictor from sec-
tion 8.3.2. The most interesting graph is the result of the final dolphin test in
9.62 and 9.63, where using cobra basis compression there is almost no increase
of bitrate with increasing number of basis vectors. This is caused by the fact
that there is practically only one sinusoidal trajectory, which drives most of the
vertices, and the remaining trajectories are unimportant, and therefore highly
compressed. This graph nicely demonstrates the efficiency of the cobra compres-
sion, and of the PCA in general.



CHAPTER 9. EXPERIMENTAL RESULTS 144

0

50

100

150

200

250

300

350

400

d
ir
e
c
t8

A
m
jo
u
n

c
o
b
ra

d
ir
e
c
t8

A
m
jo
u
n

c
o
b
ra

d
ir
e
c
t8

A
m
jo
u
n

c
o
b
ra

d
ir
e
c
t8

A
m
jo
u
n

c
o
b
ra

dance dolphin cloth snake

e
n

co
d

e
d

 s
iz

e
 [

k
B

]

0

100

200

300

400

500

600

700

800

900

1000

d
ir
e
c
t8

A
m
jo
u
n

c
o
b
ra

d
ir
e
c
t8

A
m
jo
u
n

c
o
b
ra

d
ir
e
c
t8

A
m
jo
u
n

c
o
b
ra

d
ir
e
c
t8

A
m
jo
u
n

c
o
b
ra

chicken cow walk jump

e
n

co
d

e
d

 s
iz

e
 [

k
B

]

basis

connec vity

coefficients

Figure 9.51: Relations of coefficients, basis and connectivity for various datasets.
Direct8 denotes direct encoding of 8-bytes per double value, Amjoun denotes the
result of quantization without prediction, and cobra denotes our result.



CHAPTER 9. EXPERIMENTAL RESULTS 145

0

1

2

3

4

5

6

7

8

9

0 0,2 0,4 0,6 0,8 1 1,2

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.52: Rate/distortion curves for the chicken sequence using the RBF
predictor based algorithm with cobra basis encoding.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0 0,2 0,4 0,6 0,8 1 1,2

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.53: Rate/distortion curves for the chicken sequence using the RBF
predictor based algorithm with cobra basis encoding.



CHAPTER 9. EXPERIMENTAL RESULTS 146

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.54: Rate/distortion curves for the dance sequence using the RBF pre-
dictor based algorithm with cobra basis encoding.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.55: Rate/distortion curves for the dance sequence using the RBF pre-
dictor based algorithm with cobra basis encoding.



CHAPTER 9. EXPERIMENTAL RESULTS 147

0

1

2

3

4

5

6

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.56: Rate/distortion curves for the cloth sequence using the RBF pre-
dictor based algorithm with cobra basis encoding.

0

0,0005

0,001

0,0015

0,002

0,0025

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.57: Rate/distortion curves for the cloth sequence using the RBF pre-
dictor based algorithm with cobra basis encoding.



CHAPTER 9. EXPERIMENTAL RESULTS 148

0

1

2

3

4

5

6

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.58: Rate/distortion curves for the cow sequence using the RBF predictor
based algorithm with cobra basis encoding.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.59: Rate/distortion curves for the cow sequence using the RBF predictor
based algorithm with cobra basis encoding.



CHAPTER 9. EXPERIMENTAL RESULTS 149

0

0,5

1

1,5

2

2,5

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.60: Rate/distortion curves for the walk sequence using the RBF pre-
dictor based algorithm with cobra basis encoding.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.61: Rate/distortion curves for the walk sequence using the RBF pre-
dictor based algorithm with cobra basis encoding.



CHAPTER 9. EXPERIMENTAL RESULTS 150

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6

K
G

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.62: Rate/distortion curves for the dolphin sequence using the RBF
predictor based algorithm with cobra basis encoding.

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6

S
T

E
D

 e
rr

o
r

rate [bpfv]

10 BV

15 BV

20 BV

25 BV

30 BV

35 BV

40 BV

Figure 9.63: Rate/distortion curves for the dolphin sequence using the RBF
predictor based algorithm with cobra basis encoding.



CHAPTER 9. EXPERIMENTAL RESULTS 151

NA RBF Cobra

chicken 4,7% 12,5% 60,4%

dance 22,2% 36,1% 53,0%

dolphin 10,7% 30,1% 36,2%

cow 13,4% 23,8% 57,4%

snake 19,3% 19,5% 39,0%

cloth 35,9% 40,1% 44,8%

walk 28,8% 30,3% 36,4%

average 19,3% 27,5% 46,8%

Table 9.3: Comparison of the proposed methods. The numbers represent the
relative decrease of the bitrate with respect to the Coddyac algorithm, while
assuming that the distortion has not changed significantly.

9.5 Comparison of the proposed compression methods

The table 9.3 shows the comparison of the improvement of the proposed methods
with respect to plain original Coddyac algorithm. The percentages shown were
obtained by averaging the relative reduction of the data rate in all the experiments
presented in the previous sections, i.e. with quantization constant spanning from
7 to 13 and with basis sizes of 10-40 basis vectors.

We assume that the distortion in the experiments has not changed, which
is roughly true, because the error most significantly depends on the compression
parameters such as the quantization constant and basis length. However, in some
of the NA and RBF experiments we have observed some error reduction, which is
due to the higher robustness of interpolation with respect to extrapolation. On
the other hand, Cobra experiments have produced a slight increase of the error,
which is due to the approximative representation of the PCA basis. However, all
the error offsets were lower than 2%.

9.6 Performance comparison against the state of the art

Finally, we give a comparison with existing methods. It is difficult to make such
comparison, due to two reasons:

1. There is no consensus in the literature about the error measure that should
be used. Quite often the exact measure used is not exactly defined. There-
fore we only compare our results to papers that have shown results using
the KG error measure. However, as shown in chapter 7, such measurement
says very little about the actual behavior of the decompressed animations.
Moreover, even with papers that do use KG error, we have found out that



CHAPTER 9. EXPERIMENTAL RESULTS 152

some authors misinterpret the definition of KG error, and thus their mea-
sures cannot be used for comparison.

2. There is no consensus about what is the area of interesting rates and distor-
tions that should be investigated. Therefore we have performed measure-
ments in such areas where we have results of competing methods, although
we believe that in some cases the reconstruction is far too fine. Most of the
papers focus on the bitrates of 1-5 bpfv, while our experiments have shown
that it is possible to achieve results that are hard to distinguish from the
original at bitrates between 0.5 - 0.75 bpfv.

Figures 9.64-9.68 show the comparison with the FAMC coder by Mamou and
Stefanoski[1], described in section 3.1.14. This state of the art coder is based on
techniques described in sections 3.1.7 and 3.1.13, and it has been adopted by the
MPEG consortium as a standard in 2007. The tables show that the combina-
tion of RBFP predictor and COBRA basis compression scheme outperforms the
FAMC coder in all the testing sequences. Because the FAMC coder has been
previously shown to outperform all the existing techniques in the rate/distortion
ratio, we assume that our final combination of RBFP and COBRA represents
the most efficient algorithm to date. The rest of the comparisons is summarized
by table 9.4.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 2 4 6 8 10 12 14 16

K
G

 e
rr

o
r

rate [bpfv]

RBF+COBRA

FAMC

Figure 9.64: Comparison with FAMC encoder for the cow model.



CHAPTER 9. EXPERIMENTAL RESULTS 153

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 1 2 3 4 5 6

K
G

 e
rr

o
r

rate [bpfv]

RBF+COBRA

FAMC

Figure 9.65: Comparison with FAMC encoder for the dance model.

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

K
G

 e
rr

o
r

rate [bpfv]

RBF+COBRA

FAMC

Figure 9.66: Comparison with FAMC encoder for the dolphin model.



CHAPTER 9. EXPERIMENTAL RESULTS 154

0

0,02

0,04

0,06

0,08

0,1

0,12

0 1 2 3 4 5 6 7 8 9

K
G

 e
rr

o
r

rate [bpfv]

RBF+COBRA

FAMC

Figure 9.67: Comparison with FAMC encoder for the snake model.

0

0,1

0,2

0,3

0,4

0,5

0,6

0 2 4 6 8 10 12 14

K
G

 e
rr

o
r

rate [bpfv]

RBF + Cobra

FAMC + DCT

FAMC + PCA

Figure 9.68: Comparison with FAMC encoder for the jump model.



CHAPTER 9. EXPERIMENTAL RESULTS 155

Dataset Method Entropy Residuals Basis bpfv KG error

dance NA 2,235 881,3 358,8 0,639 0,090

dance LSP 1,293 715,7 358,8 0,519 0,089

dance RBFP 1,190 694,9 358,8 0,504 0,090

dance RLPCA N/A N/A N/A 3,300 0,350

chicken NA 4,677 985,3 724,8 1,470 0,371

chicken LSP 2,470 810,9 724,8 1,320 0,371

chicken RBFP 1,881 770,9 724,8 1,285 0,371

chicken STSLPC N/A N/A N/A 1,650 0,250

human NA 2,050 1874,8 488,9 2,031 0,698

human LSP 1,470 1587,8 488,9 1,785 0,698

human RBFP 1,163 1470,8 488,9 1,684 0,698

cow NA 4,044 665,7 341,1 1,700 0,598

cow LSP 2,365 490,1 341,1 1,403 0,598

cow RBFP 1,957 447,1 341,1 1,331 0,598

cow STSLPC N/A N/A N/A 2,950 0,600

cow RLPCA N/A N/A N/A 5,200 1,200

dolphin NA 1,28613 521,9 297,3 1,326 0,071

dolphin LSP 1,11149 484,6 297,3 1,265 0,070

dolphin RBFP 1,04235 475,8 297,3 1,251 0,070

dolphin RLPCA N/A N/A N/A 3,100 0,110

Table 9.4: Predictor tests. NA denotes the original neighborhood average, LSP
denotes the proposed algorithm based on weights and solving linear equations set,
RBFP denotes the proposed algorithm based on radial basis functions. STSLPC
denotes the algorithm by Stefanoski et al.[57], the values were taken from the
paper. RLPCA denotes the algorithm by Amjoun et al.[5], the values were taken
from the paper.



CHAPTER 9. EXPERIMENTAL RESULTS 156

A T I F ireG L V 5200
trajectories\faces 5664 14118 70590 141180

26 1729 1273 448 251

36 1607 1124 364 202

50 1457 964 287 153

N V ID IA  8800 G T S
trajectories\faces 5664 14118 70590 141180

26 5772 4705 1488 799

36 4706 4222 1176 621

50 4585 3825 1081 573

Table 9.5: GPU playback tests. The numbers show achieved framerates on a
common consumer graphics card, and on a high-end GPU. The used dataset is
the chicken run (first column) and dance (second column, replicated five times in
the third column, replicated ten times in the last column).

9.7 GPU implemetation of decompression

With a significant help of Vojtěch Hlad́ık we have implemented on GPU the final
step of decompression, i.e. the restoration of the original trajectories from the
PCA basis and coefficients. Since this step is based on vector multiplication, it
can be simply performed by any GPU with shader model 2.0 (or higher) in real-
time without the necessity to store the decompressed meshes in main memory.
The whole algorithm can be done by a vertex shader which has sixteen four-
dimensional input registers to store up to 64 trajectory weights for each vertex.
The basis trajectories have to be stored as constant arrays of floats (GPUs with
Shader Model 2.0 or 3.0 must have at least 256 four-dimensional registers for
vertex shader constants) for every frame.

Although with increasing number of trajectories also rises the memory con-
sumption for the compressed mesh, the influence of this on the frame rate is
minimal. Decompression slowdown is caused by the limited number of instruc-
tions in the vertex shader and mainly by the number of vertices.

Note that this approach can be used as a final step with any of the suggested
compression schemes.



Chapter 10

Conclusions and future work

In this thesis we have presented the state of the art methods for compression and
simplification of dynamic meshes. We have identified problems of the current
methods, and suggested improvements.

We have derived new compression scheme, Coddyac, based on PCA and Edge-
breaker. Subsequently, we have enhanced this scheme by combining it with con-
nectivity driven simplification, reaching lower bitrates and better scalability. We
have added new predictors, specifically developed for dynamic mesh compres-
sion and decompression, utilizing the properties of PCA represented animations,
namely the length of the coefficient vector.

Our methods provide excellent rate/distortion ratio, while the computational
cost is low for the basic approaches (coddyac and combined compression and
simplification). The drawback of higher computational cost of the progressive
decoders can be reduced in the future by further optimizing the computation.
Our PCA-based methods are suitable for GPU decompression, which implies
that our method reduces not only the transmission and storage costs, but also
the main memory consumption.

Finally, we have developed a scheme for compression of the PCA basis, which
also needs to be transmitted. Based on our observations we have used physical
predictors and non-uniform quantization which exploits the knowledge of the
distribution of the error introduced into the basis.

The results of the combined RBF and Cobra method significantly outperform
all the known schemes to date in the KG error measure, however we have shown
that such test tells only little about the perceived quality of the result.

We have also developed a novel error measure, the STED error, which has
been tuned to fit the results of subjective testing. This measure now provides
correlation with subjective results of more than 0.9 even for data sets that have
not been used during the development. Moreover, the measure has predicted

157



CHAPTER 10. CONCLUSIONS AND FUTURE WORK 158

some counterintuitive phenomena (such as error increase with increasing number
of basis vectors) which have been subsequently confirmed by further subjective
testing.

Still, there is a lot of space for future work. We can easily reach even lower
bitrates by using more advanced entropy coders, such as adaptive arithmetic
coders[45, 39]. However, such a decrease is beyond the scope of this work and
has more to do with compression techniques in general. Our focus in this work
has been to find a representation of low entropy.

Still it is necessary to note that such improvement cannot be applied to
the best performing state of the art methods, such as the octree encoding or
FAMC, because in these cases the high performance version of arithmetic coding
- CABAC - is already an internal part of the algorithms. The authors of FAMC
state that employing CABAC has lead to a reduction of data rate of cca 20-30%
with respect to arithmetic coding.

The newly developed error measure also offers a new field for optimizations -
we intend to develop new compression schemes which aim to reduce STED error
instead of KG error, which will naturally lead to radically different algorithm
design.

The STED error itself can be improved in the future, specifically to detect
some of the singular cases, and also to detect global transformation of the dynamic
mesh.



Appendix A

Subjective testing questionnaire

This is the original text of the questionnaire used in subjective testing mentioned
in section 7.4:

Vážené subjekty,
Předem Vám děkuji za vyplněńı následuj́ıćı tabulky. kolem dotazńıku je sub-

jektivńı hodnoceńı kvality (nekvality) dynamických śıt́ı. Na projekčńı stěně běž́ı
originálńı sekvence ”chicken run”, Vaš́ım kolem je posoudit mı́ru poškozeńı této
śıtě v jednotlivých variantách přehrávaných na poč́ıtač́ıch. Jinými slovy, Vaš́ım
kolem je určit která z degradovaných variant by pro vás jako uživatele kom-
presńıho algoritmu byla nejpřijatelněǰśı. Pro zachováńı stálých podmı́nek prośım
dodržte následuj́ıćı postup:

1. Prohlédněte si všechny animace, nejlépe v celé délce trváńı. Soustředte se
na možné artefakty a na rozd́ıly proti originálu

2. Určete animaci s nejhorš́ı degradaćı a udělte j́ı známku 10 (největš́ı problém)

3. Projděte znovu všechny sekvence a udělte jim známky 0-10 podle toho jak
přijatelná je jejich distorze. Snažte se dodržet proporce, tj. dvojnásobná
známka znač́ı dvojnásobně nepřijatelnou distorzi

4. Známku 0 udělte jen takové sekvenci, u které nedokážete rozpoznat žádný
rozd́ıl proti originálu

5. Udělené hodnoceńı vzájemně nekonzultujte, neupozorujte se navzájem na
druh nebo lokaci problematických mı́st, snažte se pracovat ”dle svého nej-
lepš́ıho vědomı́ a svědomı́”.

Děkuji za spolupráci
L. Váša

159



Appendix B

List of authors publications

• VÁŠA,L.; SKALA,V. Combined Compression and Simplification of Dy-
namic 3D Meshes. In Computer Animation And Virtual Worlds. New
York : John Wiley & Sons, Ltd., 2008. ISSN 1546-4261. To appear.

• SMOLIC,A.; SONDERSHAUS,R.; STEFANOSKI,N.; VÁŠA,L.; MUELLER,K.;
OSTERMANN,J.; WIEGAND,T. A Survey on Coding of Static and Dy-
namic 3D Meshes. Berlin : Springer, 2008. pp. 239-311. ISBN 978-3-540-
72531-2.

• VÁŠA,L.; SKALA,V. Coddyac: connectivity driven dynamic mesh com-
pression. In 3DTV-CON 2007. Piscataway : IEEE, 2007. pp. 1-4. ISBN
1-4244-0721-4.

Cited by:

– KHAN,M.; OHNO,Y.: Compression of Temporal Video Data by Catmull-
Rom Spline and Quadratic Bezier Curve Fitting. In WSCG’2008 Full
Papers Proceedings. Pilsen : UNION Agency, 2008. ISBN 978-80-
86943-15-2.

– SMOLIC,A.; MUELLER,K.; STEFANOSKI,N.; OSTERMANN,J.;

GOTCHEV,A.; AKAR,G.B.; TRIANTAFYLLIDIS,G.; KOZ,A. Cod-
ing Algorithms for 3DTV: A Survey. Circuits and Systems for Video
Technology, IEEE Transactions on, 2007.

• VÁŠA,L. Methods for dynamic mesh size reduction, Technical report no.
DCSE/TR-2006-07 at University of West Bohemia, October 2006.

160



APPENDIX B. LIST OF AUTHORS PUBLICATIONS 161

• FRANK,M.; VÁŠA,L.; SKALA,V. MVE-2 Applied in Education Process.
In .NET Technologies 2006. Pilsen : UNION Agency, 2006. pp. 39-45.
ISBN 80-86943-10-0.

• VÁŠA,L.; SKALA,V. A spatio-temporal metric for dynamic mesh compar-
ison. In Lecture Notes in Computer Science. Heidelberg : Springer Verlag,
2006, vol.4069, pp. 29-37. ISSN 0302-9743.

• FRANK,M.; VÁŠA,L.; SKALA,V. Pipeline approach used for recognition
of dynamic meshes. In Computer graphics and artificial intelligence. Limo-
ges : University of Limoges, 2006. pp. 219-224. ISBN 2-914256-08-6.

• VÁŠA,L.; HANÁK,I.; SKALA,V. Improved super-resolution method and
its acceleration. In EUSIPCO 2005. Intanbul : Bogazici University, 2005.
pp. 1-4. ISBN 975-00188-0-X.

Cited by:

– Hawkridge,S. Development of a Superresolution image enhancement
plugin for the GIMP. Bachelor’s Thesis. Rhodes University. 2006.

• VÁŠA,L.; SKALA,V. Resolution improvement of digitized images. In Algo-
ritmy 2005. Bratislava : Slovak University of Technology, 2005. pp. 270-279.
ISBN 80-227-2192-1.

Cited by:

– Shu-Fan Chang: High Frequency Compensated Super-Resolution Al-
gorithm. Master’s Thesis. National Central University. Taiwan. 2007.

• VÁŠA,L. Resolution Improvement of Digitized Images. Diploma thesis at
University of West Bohemia. 2004.



Bibliography

[1] MPEG4 part 16 AMD2: Frame-based animated mesh compression. ISO/IEC
JTC1/SC29/WG11, 2007. [cited at p. 24, 152]

[2] Marc Alexa and Wolfgang Müller. Representing animations by principal compo-
nents. Computer Graphics Forum, 19(3):411–418, 2000. [cited at p. 18, 21, 22]

[3] Pierre Alliez and Mathieu Desbrun. Valence-driven connectivity encoding of 3d
meshes. Computer Graphics Forum, 20:480–489, 2001. [cited at p. 33]

[4] Pierre Alliez, Giuliana Ucelli, Craig Gotsman, and Marco Attene. Recent advances
in remeshing of surfaces. Research Report, 2005. [cited at p. 37]

[5] Rachida Amjoun. Efficient compression of 3d dynamic mesh sequences. In Journal
of the WSCG, pages 99–106, February 2007. [cited at p. 22, 155]

[6] Nizam Anuar and Igor Guskov. Extracting animated meshes with adaptive motion
estimation. In Vision, Modeling, and Visualization, pages 63–71, 2004. [cited at p. 68]

[7] Nicolas Aspert, Diego Santa-Cruz, and Touradj Ebrahimi. Mesh: measuring errors
between surfaces using the hausdorff distance. Proceedings of the IEEE International
Conference on Multimedia and Expo, 1:705–708, 2002. [cited at p. 61, 62]

[8] Marco Attene, Bianca Falcidieno, Michela Spagnuolo, and Jarek Rossignac. Swing-
wrapper: Retiling triangle meshes for better edgebreaker compression. ACM Trans-
actions on Graphics, 22(4):982–996, 2003. [cited at p. 40, 41]

[9] Hector M. Briceno, Pedro V. Sander, Leonard McMillan, Steven Gortler, and Hugues
Hoppe. Geometry videos: a new representation for 3d animations. In SCA ’03: Pro-
ceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer an-
imation, pages 136–146, Aire-la-Ville, Switzerland, 2003. Eurographics Association.
[cited at p. 50]

[10] Michael M. Bronstein, Alexander M. Bronstein, Alfred M. Bruckstein, and Ron
Kimmel. Matching two-dimensional articulated shapes using generalized multidi-
mensional scaling. In AMDO Lecture Notes on Computer Graphics, 4096, pages
48–57, 2006. [cited at p. 89]

162



BIBLIOGRAPHY 163

[11] Michael M. Bronstein, Alexander M. Bronstein, and Ron Kimmel. Face2face: an iso-
metric model for facial animation. In AMDO Lecture Notes on Computer Graphics,
4096, pages 38–47, 2006. [cited at p. 89]

[12] Robert Calderbank, Ingrid Daubechies, Wim Sweldens, and Boon-Lock Yeo.
Wavelet transforms that map integers to integers. Applied and Computational Har-
monic Analysis (ACHA), 5(3):332–369, 1998. [cited at p. 18]

[13] Martin Čermák and Václav Skala. Polygonization by the edge spinning. In Algoritmy
2002, pages 245–252, Slovakia, 2002. Univ.of Technology. [cited at p. 40]

[14] Prashant Chopra and Joerg Meyer. Tetfusion: an algorithm for rapid tetrahedral
mesh simplification. In VIS ’02: Proceedings of the conference on Visualization ’02,
pages 133–140, Washington, DC, USA, 2002. IEEE Computer Society. [cited at p. 53]

[15] Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. Metro: measuring error
on simplified surfaces. Technical report, Paris, France, France, 1996. [cited at p. 61,

62]

[16] Volker Coors and Jarek Rossignac. Delphi: geometry-based connectivity predic-
tion in triangle mesh compression. The Visual Computer: International Journal of
Computer Graphics, 20(8-9):507–520, 2004. [cited at p. 31]

[17] Jean Duchon. Splines minimizing rotation-invariant semi-norms in sobolev spaces.
In Constructive Theory of Functions of Several Variables, pages 85–100. Springer-
Verlag, Berlin-Heidelberg, 1977. [cited at p. 103]

[18] Michael S. Floater. Parametrization and smooth approximation of surface triangu-
lations. Computer Aided Geometric Design, 14(3):231–250, 1997. [cited at p. 42]

[19] Martin Franc. Methods for polygonal mesh simplification. Technical Report
DCSE/TR-2002-01, University of West Bohemia, 2002. [cited at p. 37]

[20] Martin Franc and Václav Skala. Parallel triangular mesh decimation without sorting.
In SCCG ’01: Proceedings of the 17th Spring conference on Computer graphics,
page 22, Washington, DC, USA, 2001. IEEE Computer Society. [cited at p. 39]

[21] Milan Frank, Libor Váša, and Václav Skala. Pipeline approach used for recognition
of dynamic meshes. In Proceedings of 3IA 2006, pages 219–224, 2006. [cited at p. 76]

[22] Michael Garland and Yuan Zhou. Quadric-based simplification in any dimension.
ACM Transactions on Graphics, 24(2):209–239, 2005. [cited at p. 51]

[23] Craig Gotsman, Stefan Gumhold, and Leif Kobbelt. Simplification and Com-
pression of 3D Meshes, pages 319–362. Mathematics and Visualization. Springer.
[cited at p. 37]

[24] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry images. In SIG-
GRAPH ’02: Proceedings of the 29th annual conference on Computer graphics and
interactive techniques, pages 355–361, New York, NY, USA, 2002. ACM Press.
[cited at p. 42, 43, 50]



BIBLIOGRAPHY 164

[25] Stefan Gumhold. Entropy extremes for coding and visualization. Technical report,
Wilhelm-Schickard-Institut für Informatik, University of Tübingen, Germany, July
2003. [cited at p. 9]

[26] Stefan Gumhold, Stefan Guthe, and Wolfgang Straßer. Tetrahedral mesh compres-
sion with the cut-border machine. In VIS ’99: Proceedings of the conference on
Visualization ’99, pages 51–58, Los Alamitos, CA, USA, 1999. IEEE Computer
Society Press. [cited at p. 34, 35]

[27] Stefan Gumhold and Wolfgang Straßer. Real time compression of triangle mesh
connectivity. Computer Graphics, 32(Annual Conference Series):133–140, 1998.
[cited at p. 28]

[28] David A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, September 1952. [cited at p. 9, 94]

[29] Lawrence Ibarria and Jarek Rossignac. Dynapack: space-time compression of the 3d
animations of triangle meshes with fixed connectivity. In SCA ’03: Proceedings of the
2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages
126–135, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.
[cited at p. 13, 14, 50]

[30] Euee S. Jang, James D. K. Kim, Seok Yoon Jung, Mahnjin Han, and Sang Oak
Woo. Interpolator data compression for mpeg-4 animation. IEEE Transactions on
Circuits and Systems for Video Technology, 14(7):989–1008, 2004. [cited at p. 60]

[31] Chang-Su Kim Jeong-Hyu Yang and Sang-Uk Lee. Compression of 3d triangle
mesh sequences based on vertex-wise motion vector prediction. IEEE Transactions
on Circuits and Systems for Video Technology, 12(12):1178–1184, December 2002.
[cited at p. 14]

[32] Zachi Karni and Craig Gotsman. Compression of soft-body animation sequences.
In Computers & Graphics, volume 28, pages 25–34, 2004. [cited at p. 20, 59, 106]

[33] Ladislav Kavan, Steven Collins, Jiri Zara, and Carol O’Sullivan. Skinning with dual
quaternions. In 2007 ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, pages 39–46. ACM Press, April/May 2007. [cited at p. 69]

[34] Scott Kircher and Michael Garland. Progressive multiresolution meshes for deform-
ing surfaces. In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 191–200, New York, NY, USA, 2005.
ACM Press. [cited at p. 56]

[35] Patrick Klie, Eugen Okon, Nikolce Stefanoski, and Jörn Ostermann. A framework
for scene-flow driven creation of time consistent dynamic 3d objects using mesh
parametrizations. In 3DTV-CON, The True Vision - Capture, Transmission and
Display of 3D Video, volume 0. IEEE, May 2007. [cited at p. 89]

[36] Peter Lindstrom and Greg Turk. Fast and memory efficient polygonal simplification.
In IEEE Visualization, pages 279–286, 1998. [cited at p. 46]



BIBLIOGRAPHY 165

[37] Peter Lindstrom and Greg Turk. Evaluation of memoryless simplification.
IEEE Transactions on Visualization and Computer Graphics, 5(2):98–115, 1999.
[cited at p. 46]

[38] Khaled Mamou, Titus Zaharia, and Francoise Preteux. A skinning approach for
dynamic 3d mesh compression: Research articles. Computer Animation and Virtual
Worlds, 17(3–4):337–346, 2006. [cited at p. 23]

[39] Detlev Marpe, Thomas Wiegand, and Heiko Schwarz. Context-based adaptive
binary arithmetic coding in the h.264/avc video compression standard. IEEE
Transactions on Circuits and Systems for Video Technology, 13(7):620–636, 2003.
[cited at p. 16, 25, 158]

[40] Andrew Mason. Mushra (multi stimulus test with hidden reference and anchor).
ITU-R BS.1534, BBC R&D White Paper WHP 038. [cited at p. 82]

[41] Prasun Mathur, Chhavi Upadhyay, Parag Chaudhuri, and Prem Kalra. A mea-
sure for mesh compression of time-variant geometry: Research articles. Computer
Animation and Virtual Worlds, 15(3-4):289–296, 2004. [cited at p. 49]

[42] Nelson Max. Weights for computing vertex normals from facet normals. J. Graph.
Tools, 4(2):1–6, 1999. [cited at p. 50]

[43] Gary H. Meisters. Polygons have ears. American Mathematical Monthly, pages
548–551, June 1975. [cited at p. 97]

[44] Paul S. Heckbert Michael Garland. Surface simplification using quadric error met-
rics. In SIGGRAPH, pages 209–216, 1997. [cited at p. 45, 49, 51, 53]

[45] Alistair Moffat and Radford M. Neal. Arithmetic coding revisited. In DCC ’95:
Proceedings of the Conference on Data Compression, page 202, Washington, DC,
USA, 1995. IEEE Computer Society. [cited at p. 9, 158]

[46] Alex Mohr and Michael Gleicher. Deformation sensitive decimation. Technical
report, University of Wisconsin, 2003. [cited at p. 55]

[47] Karsten Müller, Aljoscha Smolic, Matthias Kautzner, Peter Eisert, and Thomas
Wiegand. Predictive compression of dynamic 3d meshes. In ICIP05, pages I: 621–
624, 2005. [cited at p. 15]

[48] Karsten Müller, Aljoscha Smolic, Matthias Kautzner, and Thomas Wiegand. Rate-
distortion-optimized predictive compression of dynamic 3d mesh sequences. SP:IC,
21(9):812–828, October 2006. [cited at p. 16, 60]

[49] Frederic Payan and Marc Antonini. Wavelet-based compression of 3d mesh se-
quences. In Proceedings of IEEE ACIDCA-ICMI’2005, Tozeur, Tunisia, November
2005. [cited at p. 17]

[50] Remi Ronfard and Jarek Rossignac. Full-range approximation of triangulated poly-
hedra. In Proceeding of Eurographics, Computer Graphics Forum, volume 15(3),
pages C67–C76. Eurographics, Blackwell, August 1996. [cited at p. 43, 47]



BIBLIOGRAPHY 166

[51] Jarek Rossignac. Edgebreaker: Connectivity compression for triangle meshes.
IEEE Transactions on Visualization and Computer Graphics, 5(1):47–61, 1999.
[cited at p. 28]

[52] Peter Sand, Leonard McMillan, and Jovan Popovič. Continuous capture of skin
deformation. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pages 578–586,
New York, NY, USA, 2003. ACM Press. [cited at p. 68]

[53] Pedro V. Sander, Steven J. Gortler, John Snyder, and Hugues Hoppe. Signal-
specialized parametrization. In EGRW ’02: Proceedings of the 13th Eurographics
workshop on Rendering, pages 87–98, Aire-la-Ville, Switzerland, Switzerland, 2002.
Eurographics Association. [cited at p. 42]

[54] Mirko Sattler, Ralf Sarlette, and Reinhard Klein. Simple and efficient compres-
sion of animation sequences. In SCA ’05: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 209–217. ACM
Press, 2005. [cited at p. 21, 22]

[55] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decimation of
triangle meshes. In SIGGRAPH ’92: Proceedings of the 19th annual conference on
Computer graphics and interactive techniques, pages 65–70, New York, NY, USA,
1992. ACM Press. [cited at p. 37, 49]

[56] Václav Skala and Vı́t Ondračka. Fast maximum distance of points in e2 & e3.
Technical report, University of West Bohemia, 2008. [cited at p. 81]

[57] Nikolče Stefanoski, Xiaoliang Liu, Patrick Klie, and Jörn Ostermann. Scalable linear
predictive coding of time-consistent 3d mesh sequences. In 3DTV-CON, The True
Vision - Capture, Transmission and Display of 3D Video, volume 0. IEEE, May
2007. [cited at p. 16, 59, 155]

[58] Nikolče Stefanoski and Jörn Ostermann. Connectivity-guided predictive compres-
sion of dynamic 3d meshes. In Proceedings of ICIP ’06 - IEEE International Con-
ference on Image Processing, October 2006. [cited at p. 15, 59]

[59] Andrzej Szymczak and Jarek Rossignac. Grow & fold: compression of tetrahedral
meshes. In SMA ’99: Proceedings of the fifth ACM symposium on Solid modeling
and applications, pages 54–64, New York, NY, USA, 1999. ACM Press. [cited at p. 34]

[60] Gabriel Taubin and Jarek Rossignac. Geometric compression through topological
surgery. ACM Transactions on Graphics, 17(2):84–115, 1998. [cited at p. 26]

[61] Costa Touma and Craig Gotsman. Triangle mesh compression. In Graphics Inter-
face, pages 26–34, June 1998. [cited at p. 13, 31]

[62] William T. Tutte. A census of planar triangulations. Canadian Journal of Mathe-
matics, 14:21–38, 1962. [cited at p. 26]

[63] Karel Uhĺı̌r and Václav Skala. Radial basis function use for the restoration of
damaged images. Computer vision and graphics, 32:839–844, 2006. [cited at p. 103]

[64] Libor Váša, Vojtěch Hlad́ık, and Václav Skala. Geometry driven local neighborhood
based predictors for dynamic mesh compression. Submitted for publication, 2008.
[cited at p. 91]



BIBLIOGRAPHY 167

[65] Libor Váša and Václav Skala. Coddyac: Connectivity driven dynamic mesh com-
pression. In 3DTV-CON, The True Vision - Capture, Transmission and Display of
3D Video. IEEE, May 2007. [cited at p. 91]

[66] Libor Váša and Václav Skala. Cobra: Compression of basis of pca represented
animations. Submitted to review in Computer Graphics Forum, 2008. [cited at p. 91]

[67] Libor Váša and Václav Skala. Combined compression and simplification of dynamic
3d meshes. Computer Animation and Virtual Worlds, 2008. to appear. [cited at p. 91]

[68] Libor Váša and Václav Skala. Perception based comparison method for dynamic
meshes. Submitted to review in Computer Animation and Virtual Worlds, 2008.
[cited at p. 78]

[69] Libor Váša and Václav Skala. A spatio-temporal metric for dynamic mesh compar-
ison. In AMDO Lecture Notes on Computer Graphics, 4096, pages 29–37. Springer-
Verlag Berlin Heidelberg, 2006. [cited at p. 72, 74]

[70] E. W. Weisstein. Least squares fitting, 2002. From Mathworld – a Wolfram Web
Resource. http://mathworld.wolfram.com/LeastSquaresFitting.html. [cited at p. 108]

[71] Zhidong Yan, Sunil Kumar, and C. C. Jay Kuo. Error-resilient coding of 3-d graphic
models via adaptive mesh segmentation. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 11(7):860–873, 2001. [cited at p. 22]

[72] Jeong-Hyu Yang, Chang-Su Kim, and Sang-Uk Lee. Semi-regular representation
and progressive compression of 3-d dynamic mesh sequences. IEEE Transactions
on Image Processing, 15(9):2531–2544, 2006. [cited at p. 89]

[73] Frantǐsek Zadražil. Methods of triangular dynamic meshes comparison. Diploma
thesis at University of West Bohemia, 2007. [cited at p. 62, 78]

[74] Jinghua Zhang and Charles B. Owen. Octree-based animated geometry compres-
sion. In DCC ’04: Proceedings of the Conference on Data Compression, page 508,
Washington, DC, USA, 2004. IEEE Computer Society. [cited at p. 16]

[75] Jinghua Zhang and Jinsheng Xu. Optimizing octree motion representation for 3d
animation. In ACM-SE 44: Proceedings of the 44th annual Southeast regional con-
ference, pages 50–55, New York, NY, USA, 2006. ACM Press. [cited at p. 16]


