Zapado €eska univerzita v Plzni
Fakulta aplikovanych v éd

MORFOVANI GEOMETRICKYCH
OBJEKT U V HRANIENI REPREZENTACI

Ing. Jind Fich Parus

diserta €ni prace
k ziskani akademického titulu doktor
v oboru Informatika a vypo €etni technika

Skolitel: Doc. Dr. Ing. Ivana Kolingerovéa

Katedra: Katedra informatiky a vypo €etni techniky

Plzei 2009

University of West Bohemia
Faculty of Applied Sciences

MORPHING OF GEOMETRICAL
OBJECTS IN BOUNDARY
REPRESENTATION

Ing. Jind Fich Parus

doctoral thesis
submitted in partial fulfillment of the requirement s for
a degree of Doctor of Philosophy in Computer Scienc e
and Engineering

Supervisor: Doc. Dr. Ing. Ilvana Kolingerova

Department: Department of Computer Science and Engi neering

Pilsen 2009

Prohlaseni

Predklddam timto k posouzeni a obhdjothisert&ni praci zpracovanou na z#v

doktorskeho studia na Faktlaplikovanych ¥d Zapadoeské univerzity v Plzni.

ProhlaSuji, Ze tuto préci jsem vypracoval samostatrpouZzitim odborné literatury a
dostupnych praménuvedenych v seznamu, jenz je &sti této prace.

V Plzni dne 24. Gnora 2009 Jirah Parus

Abstract

Morphing is a technique which transforms one obijict another object. It can be used
to simulate natural phenomena which involve sonmel kif shape transformation, or it
can be used to produce completely artificial shmpesformations used in computer
games and movie industry. Alternatively, it can\wwewed as a modeling technique
which combines some existing shapes to obtain mapes.

This thesis is focused on morphing of objects giveboundary representation, namely
triangular meshes. Triangular mesh is a “nativ@tresentation of graphical hardware, it
is widely used and due to its piecewise linear mattiis easy to store, modify and
render.

The morphing technique is partially covered in pssional animation tools.
Particularly, the morphing of images has been ssfaly used in the movie industry
to produce special effects. Also the 3d morphing bolundary representation is
supported in some 3d animation tools. However, tdohlinique is limited because it
allows to morph between objects with the same ocinnty. Therefore, it is mainly
used with objects which are specially preparedriorphing, e.g., objects deformed by
skeletal deformation or free-form deformation. Thausechnique which handles meshes
with arbitrary connectivities is needed.

We approached morphing at several different levElsst, we focus on morphing
between meshes with different connectivities. Heve, improved some aspects of a
well established technique called topology merghext, we focus on a generalization
of classical morphing — the multimorphing. We inlnge an abstract space of shapes
which is motivated by the affine space. We proppsew method for synthesis of new
shapes and animations and analysis of existingeshagext, we focus on a post-
processing stage of deforming meshes animations.thit stage we show our
achievements in normal vector computation and siohi detection. Last but not least,
we introduce core-increment morphing — a new 2¢gmt morphing technique which
is motivated by the process of growing.

This work has been supported by the following ptge
» Microsoft Research project 2003-187,
+ the project FRVS 1349/2004/G1, 2004,
+ the project FRVS 1509/2005/G1, 2005,
* Ministry of Education project LC06008,
e Ministry of Education project MSM 235200005.

Copies of this thesis are available on http://hiesakcu.cz/publications or by surface
mail on request sent to the following address:

University of West Bohemia

Department of Computer Science and Engineering
Univerzitni 8

306 14 Pilsen, Czech Republic

Copyright © 2009 University of West Bohemia, Cz&xpublic

Abstrakt

Morfing je technika pouzivana pro transformaci tvggdnoho objektu v druhy. Lze ji
pouzit pro simulacitiznych irodnich jew, jejichz sodasti je tvarova z#ma, nebo pro
vytvoieni zcela urlych animaci pro p&tacové hry a filmovy piimysl. Morfing Ize
také chpat jako modelovaci techniku, ktera uimg@ kombinovat existujici tvary pro
tvorbu novych tvat.

Tato prace je zad#éiena na morfing objektdanych v hragni reprezentaci, konkré&in
na trojuhelnikové sit Trojuhelnikovd si je casto pouzivana pd@éstech linearni
aproximace povrchu, paimé snadno se uklada, upravuje a zobrazuje. Jedrakéeot
~hativni“ reprezentaci grafickych karet.

Morfing je podporovan i v profesionalnich anin&h nastrojich. Zejména morfing
obrazki je usgsre pouzivan ve filmovém gmyslu pro tvorbu specialnich efékt3d
morfing objekfi v hrantni reprezentaci j&asté&n¢ podporovan i v 3d anindaich
nastrojich, avSak omezuje se pouze na objektyegeost konektivitou. Je tedy zejména
pouzivan na speciampredgipravené objekty, napobjekty deformované skeletalnimi
nebo free-form deformacemi. Je tedy zaépot metoda, ktera by dokazala morfovat
objekty s libovolnou konektivitou.

K problematice morfingu fiistupujeme na &kolika riznych drovni. Nejtlve se
zaneiime na morfing trojuhelnikovych siti &nou konektivitou. Zde jsme se snazili o
zlepSeni wdkterych aspekt zavedené techniky topologického &uani. Dale se
zaneiime na zobeami klasického morfingu, tzv. multimorfing. Zde ulkduie prostor
tvari jakoZto analogii afinniho prostoru. Také ukaZerak yytv&et nové tvary a
analyzovat existujici tvary. Dale se z#&ime na fazi post-procesingu animace
deformujicich se trojuhelnikovych siti. V této f&e zabyvame vygtem normalovych
vektori a detekci kolizi. V neposlediad se zamifime na core-increment morfing —
novou metodu 2d polygonalniho morfingu, kterd gpirované procesenistu.

Contents

PROHLASENI ...ttt ettt 2
AB S T R A T e e e e aaaa 4
AB S T R AK T e e et e raans 5
CONT ENT S Lo e e e e e et e e e et e e e e e e eennns 1
ACKNOWLEDGEMENT ...t e e eans 5
1. INTRODUCTION ..o e e e et e e e e ens 6
1.1. Contribution Of the thESIS. e e e e e 7
1.2. Organization Of the thESIS ... e e e e e e e e e e e e e e as 8
2. NOTATION, TERMS AND DEFINITIONSccuiiiiiii e 9
2.1. MathemMatiCal EXPIESSIONSuuiiiiiiieiieee e sttt e e et e e eaeaeeaese et s s s ssnaararereerrraeaaaaaaeeeeesans 9
2.2. OIS ettt erre e e oo oo oo e ettt et e et e e e e e e e bbb et r et et e et e e e e e eeaaeaaaas 9
2.3. D=3 {1 1 1o £ PP PPRPRTPPPPPRRT 10
3. RELATED WORK et e 12
3.1. Data rePreSENTALIONcciiiiii ittt e e e e e e e e e e e e eeeeees 12
3.2. T ir= (o [0 PSP 13
3.3. INtErPOlAtioN CONSIIAINSuiiiiiiiiiiieie et e e e e e e e e e e e e e s s e s rrr e arerrrerraaaaeaaaaeaaes 14
3.4. L aT= o [0 00T '] 1 oo TSP EEEPUURR 14
3.5. RV 8L a 1= 4o T4 o] 11T PSPPSR 15
3.6. (0])Y/o o 18 100 1 +] 11 o RSO 15
3.7. MESH MOIPRING ...t e e e e e e e e e e e e e e e s e e e e aanas 17
3.7.1. Correspondence COMPULATIONeieieiii ettt e et e e e e e e e e e e e e e s annenbbeebeeeeees 17
37,2, REIMESINING ittt e ettt et e e e e e e e e e e s e s e e e anaba e et et e e e e eaaaaaaaaaeaaeaaaaana 21
T S T [01 (=11 oJo] F=Uio] o P PP TP PP P TUP PR 21
4, TOPOLOGY MERGING.......citiiiiiii it et e e 24
4.1. (CTeT o= T = | o - TP PRPPP 24
4.2. o [TSN EST=T 0 1T o 26

S N @ 1YY 4V =Y AT 26

4.2.2. INtErseCtion COMPUEALION.uuieieieiiiei e eee e ettt e et e e e e e e e e e e e e e e neneeeeeeeeees 26
e T = (= U To U] = L1 T o P UEEEURURR 27
4.2.4. Additional use of €dge INSEITIONccciicceee e e e e e e e e rs e e eeees 28
4.3. SUMACE AMDULES ...t 29
4.3.1. Attributes ClasSIfICAtIONooiiiiiiieei e 29
I B = Vo7 =3 o 0 = o] o] 1 o SRR 30
0 T T o = 1 o [T Yo = U0] o 10 (= PSP 32
A.3. 4. EXAMPIES ...ttt e e e e e e e e e e e e e e e 33
4.4. MESH IMPIOVEMENTSuiiiiiiiiiiiiiiii e e e e ettt ettt e e e e e e e e e e et e e e e e b e bbe bt e e e eaaaaaaaaaaesaaaaannnnnnnne 35
o I o1 A 0 £51= 1o o TP TR UTRT 35
o =T [0 = [T o] o] o [P PP PRRRRT 36
O J o F- T o111/ VU UURPURU TN 37
4.5. Generalization for multiple MEShES ... 38
5. MULTIMORPHING ...t e e s 40
5.1. ISOMOIPRIC MESNES ... ettt et e e e e e e s e e e e e et eeeeeeeeeas 40
L0t Ot O B = i1 T1 1T o F S UURPURP R 40
5.1.2. Use of iISOMOIPhIC MESNEScoiiiiiiiieiei et eee e 41
5.1.3. Computation of isomorphic meshes — general aSpectS..........ccooveiiiiiiiiiiiiiiiiiiiiiieeeeee e 41
5.1.4. Computation of isomorphic meshes — a related WOrk. ... 42
5.2. Multimorphing — a related WOIKoooi oo 44
5.3. Y71 g o] 1T T o 7= o7 J P UEEEPUURR 45
5.3.1. Affine morphing space — space Of ShapPES.......cuueviiiiiiiiiiii e 45
5.3.2. MOrphing VECIOr SPACE........cciiiiieiiieitieeeeees s ettt e e e e e e e eeaaaaeeeeesesasatasbeesnearreeeeaeaaaaaens 46
5.3.3. Aninner product iNthe AMS ... e e e e e e 48
LTG0 S @ T v (o T o] o = LI o] £ T=T1 o o 49
5.4. An exploration of the Space Of SHAPEScumuuruiiiiiiiii e 50
5.4.1. BaryCentriC COONTINALESuuuuiiiiiiiiiiaeeiaee ittt ettt e et e e e e e e e e e e e s e aabe bt eebaeeeeeeeeaaaaaaaans 51
5.4.2. Curves in the MOrPhiNg SPACE......cccoi ittt e e e e e e e e e e e e 52
5.5. Examples of uUSe Of OUr @PPAratusSooo i oo e e e 55
5.5.1. Shape synthesis — convex COMDBINAtION........cooiiiiiiiiiii e 55
5.5.2. Shape synthesis — linear combination of MOrphirgors...............ccovveeieiiiiiiiieiei e 56
5.5.3. ShAP@ @NAIYSIS.....uuuuuiiiiiiiiiiiiiiie e e s ccmmme e et e e e e e e e e e e e s ———————————aaaaaaaaaeaaaaaeaaaaan 57
5.5.4. Exploration of space of SHAPESccoo i 59
5.6. Summary and PoSSible EXIENSIONSuuuiiiiieeeee e e e e e 60
6. NORMAL COMPUTATION FOR DEFORMABLE MESHES........... 61
6.1.] E= 10To Vo] 4 U PUPPTPU TR 61
6.1.1. Vertex normal COMPULALIONooiiiiii ettt e e e e e e e e e e e nanaeees 61
6.1.2. Deformable MESNESuuiiiiie e 63
6.2. t-Variant CroSS PrOQUCT......eveiiiiiieiie e e e e e e e e e e e e s s e e e e e e e e e aeaaeaeeeeas 63
6.3. Face NOrmal COMPULALIONeeviiiiiiiie e e e eeee et e e e e e e e e e s e e s s e rrr e e e e e e e e e e e e e e e s e s annnnnnns 65
(SRS RN A V7= ¢ - T | o o YT TN o] o o 11T S 66
SIS - Yo [7= U To [01 (=11 0T - 1o o S 66
6.3.3. VECION SLERP ...ooiiiiiiiiiiiie ettt e et 67

6.3.4. Spherical de CasStelJAaU..........u it e e e e e e e eas 67

6.3.5. QUALEINION SLERP ... eaaees 68
6.3.6. ComparisoNSs and AISCUSSIONo e eeeeeeesaasssssssssssansessessaseeaaaaeaessessansnnnnnnnnnes 69
6.4. VerteX Normal COMPULALION.........ccoiiiiitiicee e e e e e s e e s e e e e e e e e e e e e e e eeessnnneranreraneeeeees 71
I O I Ao (=T =T = 1 o= T PSP 71
6.4.2. Simplification of the CirCUlar CaSE..........ccccciiiiiiiiiiiiiierr e ee s 75
B.4.3. EXAMPIES cooiiiiiiiiii e e e e e e e e e e e e et e ———————————rrrtaataaaaaaaaaanaaaaaa 76
6.5. (ONE= 1 = gl To] g oo] 4 =Tt 1[0 o FA USRIt 79
T I = - 1 ol o [- T U URPURP R 80
B.5.2. APPIICALIONS ...ttt e e e e e e e e e e e et e te e e e e e aaaaaaaeaaaeaaaaans 81
6.6. SUIMIMIBITY ettt ettt £ 4444424222444ttt £tk btk e 442 2o 22 e aeeeaeeeess bbb b aaaeeaaaaaaeeennn 85
7. CONTINUOUS COLLISION DETECTION....ccuiiiiiiiiiiis e 86
7.1. 11170 To 18 T1 1o o IR PP PRPPO 86
7.2. REIALEA WOTK ...ttt ettt ettt e e st e e e s s sttt e e e e s snsbeeeeae e s annneeeaaens 88
7.3. MOVING POINT/PIANE TEST.. . uuiiiiiiiiiiiiiie e s e e e e e e e e e e e e e e s s e s rrr e e e rreeaaaaaaaaaaeaaes 89
7.4. MOVING TINES TEST ...ttt et e e e e e e e e e e e e et s e e eeeaeeeas 91
7.5. Moving triangle/triangle tEST e e e e e e e 92
7.6. o d o T=] 1101 €U PURPUPU R 93
7.7. SUIMIMIBITY ettt ettt £ £ 2444422222444ttt e et btk e 4422222 e e eeeaeeeesebs b b aaaeeeaaaaaaeennns 95
8. CORE-INCREMENT MORPHING ...t 97
8.1. [0 o 18 T1 1o o [E TP PRPPO 97
8.2. The PropoSed SOIULIONcoiiiiiii ettt e e e e e e e e e e e e e e e e e e e annnneees 98
T R 1T o 1o | To [USROS 98
8.2.2. PEeriMEter grOWINGcceeieiiiiiii ittt ceeeee ettt e et e e e e e e e e e e e e e e s e e s e s e nbaebbsbeeeaeeaaaaaaaaeaesaaaaannnnnrnne 99
8.2.3. Half-liN@ grOWING......uuuiitiiiiiieie ettt e e e e e e e e eeeeeeeas 101
8.2.4. PrOJECHON GrOWING. . ..ot i ittt ieeeeaa bbb et ettt e et eeeaaaaeaaasasaaaaaasnneeeeeeeeaeaaaaaaaaaaaaaaaan 102
o T T |V 1= (o 1o o U 103
o B S T 0] o] oY= 41T o £ PR 104
8.3. e q =T 10T £ EEERURRRRRR 105
8.3.1. Parts Of @ SPIral tYPE ..o i ————————————————————— 105
8.3.2. CONVEX PartS.. oottt e et e ettt e et e e e e e e e e e e s s e e bbb e e e e e et e e e e e e aeeeaaeas 106
8.3.3. Long and more or 1ess Straight PartS........cccccceeiiiiiciiiiiiieee e 107
8.4. CoNCIUSION AN FULUIE WOTKeiiiiiiiiiiiie s eeee et e e st e e e e e eeeeeas 108
9. CONCLUSION ... ettt e e e e e e e eaans 109
9.1. Summarization of the fULUre WOTK............ooiiiii e 111
9.2. (0 o o o TR0 11 GRS 111
APPENDIX A SPHERICAL GEOMETRY ... e, 112

APPENDIX B QUATERNIONS ... 113
APPENDIX C HYBRID APPROACH FOR CUBIC EQUATION SOLUTION . 114
REFERENCES....... 115

ACTIVITIES .o e e e e e e 120

Acknowledgement

At this place | would like to thank to all peopléhav have helped me with my PhD
studies. At the first place, | would like to thattkk my supervisor Doc. Dr. Ing. lvana
Kolingerova who not only guided me through the P$tDdies but also gave me an
academic insight which | value the most. Thanke aklong to prof. Vaclav Skala who
provided great conditions under which we could yaut our research. Many thanks
also go to Anders Hast with whom we found commadarésts which resulted in a lot
of interesting work. Thanks also goes to Martinalkdéa, who helped a lot with an
experimental verification of proposed ideas and wbbinterested in morphing in such
a way that she carries out her own research irfigldsnow.

Thanks also go to my colleagues from the lab feirttvillingness to discuss anything
anytime. An important feedback, | am very gratdtul was given to me during stays
abroad by Borut Zalik, University of Maribor, Slavie. Last but not least, thanks
belong to my family and yet another Martina for ith@atience, support and
understanding.

1. Introduction

Almost every thing in the world changes its shd&esion, growth of plants or animals,
metal forging, sculpting — all these processes @mady others involve some kind of
shape transformation. One of the techniques whielpshto simulate the shape
transformation is morphing. Morphing is a shap@&dfarmation which transforms one
shape into another. It is essentially an interpafabetween two shapes. Generally, the
interpolation can be viewed as a tool which fillpg between some discrete samples.
Thus, morphing between an initial shape and a halpe is a continuous sequence of
shapes which starts in the initial shape and endbe final shape. Clearly, the gap
between the samples can be filled in many differeratys. Therefore, additional
interpolation constrains are usually defined. Triterpolation constrain usually depends
on the application domain.

There are two main areas where the shape intelpoleéan be used — an animation and
a modeling. In the animation, the morphing is useg@roduce a sequence of shapes.
Animations are used, e.g., in scientific visualmat education, entertainment industry,

etc. Especially large field, where the computenaation is used, is the movie industry.

In the modeling, the morphing is used to produce sbapes by combining some

existing shapes. The advantage is that the neweshdgp not have to be modeled from
scratch; instead the user specifies shares of isipapes, which express how much the
given shape contributes to the desired final shape.

The morphing technique has been extensively studiedorphing of 2d raster images
which has been successfully used in the movie ingluBhe problem of 2d morphing is
that it is not possible to change the camera mositenvironment properties (e.g.,
lighting, shadows) or material properties during thorphing. A 3d morphing goes one
step further — instead of interpolation of imagéslgects, it interpolates the objects and
the images are produced (if needed) by renderiagritermediate 3d objects. The 2d
techniques are unable to handle correctly visihiBhadows or highlights, because they
do not work with a 3d representation of objects. tha other hand, the 3d techniques
allow capturing changes of viewing and lightinggraeters during morphing.

The 3d morphing is partially covered in professicer@mation tools. It appears under
different names in different products (e.g., Bleamdpes in Maya, Morph targets in 3ds
max, Posemixer in Cinema4D, Morph Mixer in LighteavA common limitation of
these techniques is that the morphed objects grereel to have the same connectivity,
i.e., the same number of vertices and the same @uoflfaces. This limitation avoids

use of morphing on arbitrary objects. Clearly, nmg among arbitrary objects is a hot
topic in the research.

In this thesis we focused on objects given in bampdepresentation. The reason is that
the boundary representation is very widespread; é “native” representation of GPU
and it is easy to store, modify and render. Howewsme of our techniques
(multimorphing) are general enough so that they dan used with another
representation as well.

1.1. Contribution of the thesis

Morphing can be viewed as a part of an animatiardyetion system. Such system
generally consists of three main blocks:

» objects acquisition (e.g., by scanning or modeleangy) preprocessing
e animation generation
e animation rendering and post-processing

The contribution of this thesis touches all thréecks of the animation production
system. The preprocessing of the input data is diyna topology merging technique
(Chapter 4). It is a well established techniquedusg several authors [Ale00b, Ken92,
Kan97]. It is used to convert meshes with differeotnectivities into meshes with a
shared connectivity. It is also a key step to owere the limitation of commercial
applications which are not able to morph betweeshag with different connectivities.
We describe algorithmic aspects of this techniquel ave present our original
modification.

The result of the topology merging can be impoited a professional animation tool
and the rest of the animation production can besdbare. Or, our second contribution
— the multimorphing (Chapter 5) — can be used. irdtimorphing operates in the
animation generation stage. The inputs of multirhorg are meshes with the same
connectivity. It offers some new ways how to geterhapes and animations. It also
shows how to “invert” morphing so that it can bedisor shape analysis instead of the
usual shape synthesis. While in the morphing aarnmédiate shape is computed by
specifying weights of the input shapes, in the &értgd” morphing the weights of an
unknown shape are computed.

The last block of the animation system is toucme@hapter 6 and Chapter 7. Chapter 6
is focused on fast computation of normal vectordefiorming meshes. The normal
vectors are important, e.g., in rendering, poinhtamment test, collision tests, etc.
Therefore a fast method for normal vector compatais needed. Chapter 7 deals with
continuous collision detection of deforming meshé& focused on fast and robust
elementary collision detection tests which inclyg@nt/plane intersection test and
line/line intersection test.

Another contribution of this thesis is a new monghtechnique called core-increment
morphing. This new technique is focused on morploihgery complicated shapes. The
reason why we paid attention to a new morphingrtegle is that a lot of methods are
able to morph quite similar shapes. However, margphbetween highly dissimilar

shapes is required as well, especially in the &mtenent industry or in the art. The

core-increment technique is motivated by a prooéggowing; therefore it is suitable
for growing like morphing animations.

1.2. Organization of the thesis

In Chapter 2 we will introduce a notation which Ivae used throughout the thesis. It
also contains a description of common terms andesoefinitions. The definitions are
presented to fit the context of this thesis, forengeneral definitions the reader must
refer to a corresponding textbook (e.g., [Ebe04]).

Chapter 3 reviews a related work in the area ofpimiog in general. It presents
taxonomy of morphing techniques and it describesimoon techniques which are
shared among different morphing approaches. Itflpri@views the most important
approaches in morphing of various object represient It focuses on morphing of
boundary representation in more detail sincettiésmain topic of this thesis.

The following chapters (4-8) contain a descriptioh our contribution. Since the
contribution cover different areas of morphing tieapters are organized so that they
are self-contained. Each section contains an intribah, description of related work,
description of our contribution and directions amalysis for a future research.

Chapter 4 contains a description of algorithmichtegue called topology merging.
Chapter 5 describes multimorphing — a tool for ghsynthesis and analysis. Chapter 6
discusses fast computation of normal vectors an@p@n 7 shows elementary
predicates for continuous collision detection offodmable meshes. Chapter 8
introduces core-increment morphing — a new tecleidor morphing of highly
dissimilar shapes.

Appendixes A — C contain some additional descnptid a mathematical apparatus
used in the thesis. It is in a separate sectiothab a reader is not overloaded with
details when reading the main part of the thesmwvéver, the equations presented there
can be useful when implementing techniques destiibéhe thesis.

2. Notation, terms and definitions

In this section we will describe basic terms anfiniteons which will be repeatedly
used throughout the thesis. If a term appearslimited scope only it is defined in the
text to facilitate the reading.

2.1. Mathematical expressions
In the mathematical expressions we will use folloywotation:

Example Notation Use

Vv small boldfaced letters vectors

A capital boldfaced letters points, sets

R small italic letters scalar values

® capital Greek letters mappings

|A] cardinality of the seA

N small normal font letters integer values, nundder

elements, loop variables

2.2. Terms

A 3d entity will be denoted as ambject. The termshape will be understood as a
property of an object (i.e., an objelsds a shape). In some cases, especially when
speaking in general about any 2d or 3d entity, tten shape will be used
interchangeably with the term object.

A triangular mesh will be shortly denoted asnash The mesh consists of vertices,
edges andiaces where the faces are the triangles of the mesawidy how vertices are

connected by edges will be denotedcasnectivity, the set of vertices will be referred
to asgeometry.

We will say that an object isoundedif it has a boundary. On the other hand, the term
unbounded object will refer to an object which is closed ahdoes not have any holes
in its surface.

An animation of a shape transformation betweendmamultiple shapes will be referred
to as amorphing transition. In the context of morphing between two shapesnile

use terms aource shapeand aarget shapeto refer to the initial and the final shape of
the morphing transition, respectively. Generalhg shapes which we want to morph

will be denoted asput shapes The in-between shapes generated by morphingowill
denotedntermediate shapesIn the context of mesh representation, we wid tesms

as source mesh, target mesh, input meshes or idéata meshes to refer to shapes
represented as meshes. Similarly, the term sowrdex will refer to a vertex of the
source mesh; the term target face will refer toaeefof the target mesh, etc. In
symbolical expressions, the elements regardingsthece shape will be denoted with
the number zero in the upper index (e\g’, refers to an i-th vertex of the source mesh)
and the elements regarding the target shape willdo@ted with the number one in the

upper index (e.g.f,j1 refers to a j-th face of the target mesh).

A value which controls an amount of morphing betwéso shapes will be called a
transition parameter (TP) and it will be denoted. The values of the transition
parameter are usually restricted to the canonitehval <0; 1>, i.e., fot=0 the object
has the shape of the source object and=&rthe object has the shape of the target
object.

2.3. Definitions

Vector spaceconsists of a set of vectors with two operatioaddition and scalar
multiplication. The vector space is closed underséhtwo operations. There is one
important element called zero vectowith the properties that.o = o for all scalarsa
ando + v =v for all vectorsv. In the text we will denote vectors as lower chetl
letters.

Affine space consists of a set of points and an associated wveg@ace. It has two
operations: subtraction of two points yielding atee in the associated vector space and
a point and a vector addition yielding another painthe affine space. In the text we
will denote points as upper-case bold letter.

Linear combination is an expression in the form:

whereg; are the coefficients of the linear combinatignare element which are being
combined with weights;, n is the number of elements in the linear contimna

Affine combination is a special case of a linear combination wherectedfficientsa;
sum up to one (so called “sum-up-to-one conditiphé):

Convex combinationis a special case of an affine combination whérecefficientsa
are positive.

Barycentric coordinates express the position of a point with respect tmassimplex,

l.e., they express the position of a pdihas an affine combination of vertic¥s of a
simplex. For example, for a simplex in 2d (a trig@ygthe pointP can be expressed as

10

P=tV:+uV,+wV3 wheret, u, w are barycentric coordinates aM], V,, V3 are
vertices of the simplex. Morg, u, w are positive antt u+ w = 1 for a point inside the
triangle, i.e., the poinP can be expressed by a convex combination of esrtaf the
simplex with weights given by barycentric coordesat

Bijection is a function which maps values from a feto a setB so that for each
element oB there is exactly one elementAn Also, the bijection defines @ne-to-one
correspondencebetween setd andB.

Genusis a number of handles of an object. Equivaleritlg, genus is the maximum

number of cuts which does not disconnect an objeat.instance, a sphere has the
genus 0, a torus has the genus 1.

11

3. Related Work

In this chapter we will review a related work iretlarea of morphing between two
objects. In the sections 3.1 and 3.2 we presewintaxy of morphing approaches. The
sections 3.4 — 3.6 contain a brief overview of arefiere the morphing is extensively
researched. The Section 3.7 describes the reladekl invthe area of mesh morphing. It
is more detailed since the mesh morphing is theguic of this thesis.

3.1. Data representation

Approaches to morphing can be divided according tbmension (usually 2d and 3d)
or a representation of input data. One rough divisif data representations in computer
graphics is a volume representation and a boundgmesentation. Additionally, the
data representation can be further divided accgrttinthe raster/vector nature of the
data. The raster representation represents antdbjediscrete samples (e.g., pixels or
voxels) whereas the vector representation represanbbject by lines, curves, patches
or analytical surfaces.

The volume representation describes an object bynerating the volume it occupies.
It is usually represented by an analytic function3d grid of discrete samples. The
advantage of this representation is that it defalss an interior of objects. On the other
hand, the boundary representation describes jostindary of an object. Examples are
polygons (2d), triangular meshes (3d) or paramstifaces (3d). The advantage of the
boundary representation is that it is usually mearenomical (from the storage point of
view) than volume representation because it enuegjast the boundary of the object
and not the entire volume. On the other hand, stheeinterior is not defined, the
boundary representation may cause problems dunmadpjct deformation.

Advantages and disadvantages of the object repedsmn project to the morphing

approaches as well. The morphing is essentiallgfarohation; therefore, the morphing
of a volume representation must handle an interiarbjects, too. For instance, when
morphing between objects represented as a 3d fudxels, one has to interpolate all
voxels comprising the object volume. On the otherd) in the morphing of a boundary
representation it is enough to handle only a bopn@eg., a triangular mesh) of an
object. By a deformation of the boundary we musetgnd” a deformation of a volume

enclosed by the boundary. The problem is that araelin the boundary representation
is not properly defined. A typical consequencehi$ fproblem is a self-intersection of
deformed objects in the boundary representation.

12

Despite the problems with deformation of boundaepresentation, the boundary
representation is widespread. It is mainly becaiisis easier to capture just the
boundary than an entire volume (scanning, modelifiggrefore, in the morphing more
attention has been given to algorithms working veidindary representation.

A comprehensive description of different morphipgp@aches with respect to the input
data representation was given by Lazarus and Ve&trnou[Laz98]. Overview of the
most common approaches was also given [ParO5]hik gection we will briefly
describe the most important methods. Methods wiwehhave developed are described
in more detail in later sections.

3.2. Paradigms

Another possible classification of the morphing @aghes is a classification according
to an algorithmic technique used to compute thepimag. In computational geometry
and algorithmic, well known paradigms are dividelamonquer, sweep line or sweep
plane, incremental construction, brute force sohutetc. In the morphing, we identified
the following ideas which are common for varioupraaches:

» physical model,

» decomposition,

* space-time,

» alternative representation,
» dimension reduction.

The physical model paradigm models the shape wemsftion as some physical
process which constrains the deformation. For mt&ain [Sed93a] the input polygons
were modeled as a piece of wire and the shapefdramation is done so that the work
needed to bend and stretch the wires is minimifad. et al. [Din05] model the
morphing problem as heat propagation from the souecthe target contour. The
decomposition paradigm decouples a possibly cowmglit task of morphing into
several less complicated morphing problems. Fotanmt®, Shapira and Rappoport
[Sha95] decompose the input polygons into star-asthgelygons which are interpolated
independently. We also use the decomposition pgmadin our core increment
morphing approach (Chapter 8). We decouple a caatel task of morphing of two
polygons into several less complicated tasks ofpmaog of polylines. The space-time
paradigm transforms the dynamic morphing probleto anstatic problem in a higher
dimension. Turk and O’Brien [Tur99] placed 2d paipg in a 3d space and computed a
smooth 3d surface which interpolates the inputgahg. The 3d surface is then cut by a
plane to obtain intermediate shapes. An alternatpeesentation paradigm is used to
transform the morphing in some representation,(8dygrid) to another representation
(e.g., Fourier domain) where it might be easiesdtve the morphing problem. The
dimension reduction paradigm was used, e.g., imr9Bp where the input 3d meshes
were sliced to obtain 2d cross-sections. The csestions were interpolated using some
polygon morphing approach and the interpolated sesestions were then merged to
obtain intermediate 3d shape.

In the subsections 3.4-3.6 we will describe a eelatork in image morphing (2d raster
representation), volume morphing, polygon morphangd boundary representation

13

morphing. When describing the approaches, when icaighe, we will indicate
paradigms used to solve the morphing.

3.3. Interpolation constrains

Morphing is essentially an interpolation. In gehethe interpolation takes some
discrete samples and computes a function whichtlibse samples. In practice, it is
usually used to replace discrete samples by armamis function. There are many
different ways how to interpolate data, e.g., senplkearest-neighbor interpolation,
polynomial interpolation, radial basis functiongc.eClearly, the same holds for
morphing.

The transformation between two shapes is not unidieoretically there is a big
number of possible transformations, e.g., a degeioer of the source object into one
single point followed by an evolution of the targéfect or disintegration of the source
object to individual faces and transformation o thdividual faces into the shape of
the target object. The problem is that such a kihttansformation is usually not very
visually plausible and so we are looking for sonwerattractive shape transformations.
In [Gom99], there are given some principles fooadymorphing. These include:

» topology preservation,
» feature preservation,
* rigidity preservation,

* smoothness,

* monotonicity.

Topology preservation means to preserve topologyh@fsource and the target object,
e.g., no holes should suddenly appear during theplmmg transition when the source
and the target objects are topologically equival&eiature preservation refers to the
preservation of important features, which are prese the source as well as in the
target object during the morphing transition, eshen morphing between two animals,
legs, heads, tails, etc. should remain alignednduthe transition. Rigidity preservation
refers to the fact that sometimes a rigid transédrom (rotation, translation) is preferred
to a soft-body transformation (scaling, shearirig,)eSmoothness means that the shape
transformation should be smooth, avoiding discaiiti@s. Monotonicity refers to a
monotone change of some parameters, e.g., anglasdsithange monotonically
avoiding so a local self-intersection. It is im@mt that these principles are strongly
application dependent, e.g., in special-effectsistiy an artificial shape transformation
violating some of theses principles is simply morgressive that some completely
physically correct transformation, which on theestiside would be required in some
technical applications.

3.4. Image morphing

A morphing of 2d raster images is probably the siderm of morphing in computer
graphics. It has been successfully used in thetamteent industry to produce special
effects and it is supported by many professionalgenand video processing tools.

The original method was described by Beier and Wg#i92]. Their approach uses the

physical model paradigm — they model the rastegaras a field which is deformed by
corresponding line segments. The line segmentused to warp the source and the

14

target image to produce two intermediate image® iftermediate images are then
blended to produce an in-between image. The blgndinsually some interpolation of
pixel values of the warped images.

Since the 2d raster image is some projection @ah3d scene, the intermediate stages
of morphing of 2d image need not correspond to mmag of a real 3d scene. For
instance, when morphing between two shapes withiigpecular material. In the 2d
morphing, the specular highlights are somehow paated between the source image
and the final image. On the other hand in the 3dpimog we compute for each
intermediate stage of the morphing a complete pdesentation of a shape. Then, the
intermediate shape is rendered using some lightindel and the specular highlights
are represented exactly according to the 3d shigi®s and a camera position.
Additionally, using 3d representation of the intediate shape we can change a
position of camera during the morphing transitiso,that it is possible to observe the
morphing from different points of view, which is cburse not possible in the case of 2d
image morphing, where we have just a fixed viewahe 3d scene.

3.5. Volume morphing

The idea of Beier and Neely [Bei92] was generalit@d3d grids by Lerios et al.

[Ler95]. In their approach, a user delineates @pwading features using pairs of
feature elements (points, lines, rectangles ande$)oxDuring morphing, the

corresponding feature elements are interpolatedether with a feature element a
certain neighborhood (i.e., voxels) is warped. &ty to [Bei92] the warped grids are
blended to produce an in-between grid. Other ames incorporate the alternative
representation paradigm — they interpolate 3d gndBourier [Hug92] or in wavelet

[He94] domain, which allows scheduled interpolatadrdifferent frequency bands.

Another interesting approach is the so-callgghce-time morphing. It is usually
connected with the implicit representation [Pas04r99] but also with tetrahedral
meshes [Din05]. The basic idea is that the spasghich the input objects (e.g., a 2d
space for polygons or a 3d space for meshes) dieedas extended with one more
dimension. The added dimension can be considetiegea thus the new space is called
space-time. For example a 2d poinx,(y) is expressed in space-time as a tripgley(t).
The basic idea is to interpolate n-dimensional inpojects by an (n+1)-dimensional
smooth surface. The cross-sections of the intetipglasurface define an intermediate
shape. The advantage of this method is that isléartle topological transformation,
e.g., genus change or morphing between sets obrthected objects. The topological
transformation is “for free” given by the interpttan method. On the other hand, the
topological transformation is usually hard to cohtrecause it is automatically solved
by an underlying mathematical apparatus.

3.6. Polygon morphing

The morphing of polygons is usually divided intootwparts — a computation of
correspondence between vertices of input polygodsaacomputation of trajectories of
corresponding vertices (the so-called vertex pabibhlpm). Note that the source and the
target polygon need not have the same number t€e@grso some new vertices have to
be added.

The computation of the correspondence was addrégs&&deberg and Greenwood in
[Sed93a]. They incorporated the physical model gigma. The polygon edges are

15

modeled as wires with some material properties (rud of elasticity, stretching
stiffness constant). Then, the shape transformaimwolves some stretching and
bending work. The goal is to establish such a spwadence, that the work needed to
transform the source shape to the target shapenisnined. This algorithm performs
well if the input polygons are similar, it can alsandle cases when the first shape is a
rotated or translated copy of the other shapea# jproblems with highly dissimilar
shapes, where intersections usually occur.

The vertex path problem was addressed by Sedebatgie [Sed93b]. They used the
alternative representation paradigm; they repreagmtlygon in terms of edge lengths
and angles (so-calleddge-angle representation [Gom99]) instead of the absolute
vertex positions. The advantage of the edge-amgleesentation is that it is invariant to
rigid transformation. The absolute vertex coordesasre extracted from interpolated
intrinsic parameters. This interpolation scheme idsszoedge collapsing and non-
monotonic angle changes. This technique was usedeioerating in-betweens for the
animation based on keyframes. The concept of intatipn of intrinsic parameters was
also further used for morphing of planar triangolas in [Sur01, Sur04].

Another interesting approach to 2d morphing wasduced in [Sha95]. It combines
the divide and conquer paradigm with alternativpreeentation paradigm. It first
decomposes the source and the target polygonstateshaped polygons. Then the
skeletons of the decompositions are constructed. skieleton is a planar graph which
joins star-points of neighboring star-shaped pohgga.e., it is a dual graph to the star-
shaped decomposition. Important is that the sketetof the source and the target
polygon have to be isomorphic, which requires ammisrphic star-shaped
decomposition. Then, the interior and the bounddryhe polygon can be expressed
relatively to the skeleton. During the morphinge tkeletons are interpolated and the
intermediate shapes are reconstructed from thepwitded skeletons. The difference
between this approach and previous approaches 3ae@@d9o3b] is that this approach
takes into consideration also the interior of tb/gon and not only the boundary.

Alexa et al. [Ale00c] introduced an approach called-rigid-as-possible shape
interpolation. The basic idea is to compute a cdibfgatriangulation of input polygons.
The compatible triangulation is a dissection of sharce and the target polygon so that
the triangulations are isomorphic, i.e., we have-tmone correspondence between
triangles in the source triangulation and triangfeshe target triangulation. Then, for
each triangle an affine transformation which transis a source triangle to the target
triangle is computed. By interpolation of the affitransformation a source triangle is
transformed to the target triangle. The transfoiomabf one triangle influences the
transformation of adjacent triangles as well; thremethe transformations for the whole
triangulations are computed in a least square seBiseilar approaches were also
described by Surazhsky and Gotsman in [Sur0l, $umld4challenging issue of
approaches based on compatible triangulation exgemsion of this idea in 3d, where it
requires computing compatible tetrahedronizatiompiit 3d objects.

Another approach is called 2d merging [Gom99]. dtd “generalization” of an
algorithm which was originally developed for 3d ines, e.g., [Ken92, AleO0b]. Input
polygons are mapped to the unit disc. Then bothpings are merged, the vertices of
the first polygon are mapped on the second polygmh vice versa using an inverse
mapping. This results in polygons with the same Ioeimof vertices. A linear

16

interpolation is used to obtain the resulting mamghtransition. This technique is
suitable for convex, star-shaped or slightly nonvex polygons. For highly non-
convex polygons (spirals etc.) it produces sekisections during the morphing
transition.

Johnstone and Wu [Joh02] described an approaclotphmwo separate polygons into
one. The 2-to-1 morphing is a fundamental casedrphing between different numbers
of polygons. The basic idea is to merge the twggmis into one and then use some 1-
to-1 polygon morphing technique to morph between riterged polygon and a target
polygon. The key step is the merging. During thergimg the two polygons are
morphed towards each other until they meet in oomtp Then a curve evolution
technique is used to morph the two polygons comgeat some point into a more
natural shape which is later morphed towards tigetashape.

3.7. Mesh morphing

In this section we will review the core idea of meworphing. We will not present
method by method, instead, we identified subproblevhich are common for many
methods. These subproblems are — a correspondengautation, a remeshing and an
interpolation. We will describe each subproblenaiseparate section. This section will
be more detailed than the previous sections simeantesh morphing is the main topic
of this thesis.

A triangular mesh is probably the most widespreadndary representation. It is
supported by a graphical hardware and standararids (e.g., OpenGL, DirectX) and it
is easy to store and modify. Therefore, a lot tdérdton has been given to morphing of
triangular meshes. In the further text we will diena triangular mesh shortly as a mesh.

3.7.1. Correspondence computation

Correspondence computation is further divided itwo steps — afeature
correspondence and avertex correspondence. A feature correspondence is usually
established by a user. It involves a selection @tesponding features, e.g., when
morphing between human faces, a user usually seds@s, nose, mouth and ears on
both input objects. This step ensures that corredipg features remain aligned during
a morphing transition, i.e., the eyes of the folsfect transform to the eyes of the other
object, etc. The feature correspondence is usuwdtgblished by specifying several
corresponding vertices (Figure 3.1a). Sometimes, fdature correspondence is not
established by a user but it is derived from a @lupwsition and an orientation of the
input objects.

During the mesh morphing we only change the veptesitions, i.e., we do not modify
the connectivity. Therefore, it is necessary to pota a correspondence between
vertices, i.e., a vertex correspondence, whichuidegl by the feature correspondence.
Formally, we need a ma#: V°- V', whereV® andV* are sets of the vertices of the
source mesh and the target mesh respectively. HpdHnepresents a correspondence
between verticesv° andvjl, i=1, ..., m, j=1,..., n. It is required that the m#pis

bijective. The main problem here is that the sowaceé the target meshes generally do
not have the same connectivity, they may even hadiéferent number of vertices (#
n), and so it is not possible to establish a byedamnap. Instead, two independent maps
Wo:VOo P andW1:V! - Q are computed, which are later merged to competerthp\.

17

The mapW¥, represents a correspondence between venifes=1, ..., m of the source
mesh and generally some plaég®n the surface of the target mesh (i.e., a vartage
correspondence), analogously, the mid¥ represents a correspondence between
verticesvjl, j=1, ..., n of the target mesh and generally sotaegsQ; on the surface of
the source mesh (Figure 3.1b). Figure 3.1c) showsexample of vertex-vertex
correspondence which is computed by merdgiggandW¥; (see Section 4).

a) b)

Figure 3.1: a) feature correspondence, b) example of a velseorrespondence, c) example of a
vertex-vertex correspondence.

Technically, the vertex correspondence is estaddidby computing g@arametrization

of input meshes. The parametrization is a mapping—- D of a 3d surfacé& to a 2d
parametric domaiD. The parametric domaiD is chosen according to the topology of
the input shapes. For shapes topologically equivaléo the unit sphere (e.g.,
unbounded genus 0 meshes), the surface of thesphdre is used as a parametric
domain, for shapes topologically equivalent to ainé disc (e.g., bounded meshes) the
unit disc is used as a parametric domain. A mapong planar parametric domain is
called planar parametrization; a mapping to sphernmarametric domain is called
spherical parametrization. Parametric domains fiyjeais with genus higher than one
are constructed by adding an appropriate numbeanfélles to the unit sphere, e.g., by
adding one handle to the sphere a torus is obtameidh can be used as a parametric
domain for genus one objects. In this work we wigitus on meshes topologically
equivalent to the disc and to the sphere, i.e.,wileconsider planar and spherical
parametrizations. In the case of the planar parémagbn edges of the mesh map to 2d
line segments and faces map to 2d triangles. licdke of the spherical parametrization
the edges of the mesh map to 4rtise faces of the mesh map to spherical triandpes.
the further text, we will not distinguish betweehet planar and the spherical
parametrization unless necessary. Many operatioeascammon for both types of
parametrization) the difference is only in fundamental geometrimaputations — e.g.,
point-in-triangle test, edge-edge intersection, écdescription of the fundamental
spherical geometric operations is in the Appendix A

Y In simple terms, topological equivalence of twgeats means that one can be deformed to the other
only by twisting or stretching but without tearingcutting.

2 These arcs are always parts of great circlesthey are the shortest connection between twotpoin

a surface of a sphere.

% Note that a point position in 3d can be expressespherical coordinates which are essentiallyethre
dimensional but since the parametrized points letloe surface of the unit sphere, they can be
represented just by 2 parameters, which makes gherisal parametric domain similar to the planar
parametric domain.

18

A mesh parametrization is computed by mapping @gicesV; to the parametric
domain. A vertexV; mapped to the parametric domain will be dendi€dl;). Many
methods for parametrization computation exist. Keintl. [Ken92] used a spherical
parametrization. They considered ostgr-shaped meshes. Star-shaped mesh is such a
mesh where at least one interior point exists @@dstar-point) from which all mesh
vertices arevisible. The term visibility means here that the line segtrconnecting the
star-point and a vertex lies entirely inside théygon. A subset of star-shaped objects
are, e.g., convex objects. A spherical parameiozabf star-shaped meshes is
computed by projecting the vertices of the mesh umit sphere. The vertices of the
mesh are projected to the unit sphere using apsiat’:. Alexa [Ale00b] used the
spherical parametrization too but he was able twgss general genus 0 meshes. He
proposed aelaxation scheme which starts with spherical projection and further
optimized to obtain a valid parametrization. Aduially, he warped the
parametrization according to a feature corresporelém order to align corresponding
features. In the work of Zockler et al. [Zoc0O] thgput shapes are dissected into
patches which are parametrized independently. Tigsection is based on a feature
correspondence.

Whereas the mapping@: S- D is usually computed using some algorithm, the riswe
mappingM™: DS of points from a parametric domain to points oBdx surface is
computed using barycentric coordinates. Each @inD of the parametrization can be
expressed by barycentric coordinates, w with respect to some triangl®&(A), M(B),
M(C) in which the poinQ lies. Note tha#, B, C are vertices of the 3d surface. Then
the coordinates of the poi@ on the 3d surface are computed as:

MYQ) = u.n(A) +v.n(B) +w.M(C),u+v+w=1 (3.1)

As some steps of the mesh morphing are done ipadh@metric domain we need the
inverse mapping to “project” vertices and edges ated in the parametric domain
back to the 3d mesh. The inverse mapping is als@ohe idea behind remeshing using
a parametrization [Mic01].

The parametrization is not only useful in mesh rhorg but also in texture mapping,

interactive 3d painting, remeshing, geometry prsicgs etc. In the mesh morphing it is
important that the input meshes are mapped to ammmparametric domain. This

implies a restriction that both meshes have todpmlogically equivalent. The key

problem of morphing between shapes with differepbtogy (e.g., a sphere to a torus)
is a discontinuity during the change of topology.

To compute a vertex-place correspondence, the gnaations must be overlaid, i.e.,
the parametrizations are put each over other.pdrmmetric domain is a unit disc, the
discs are moved so that their centers coincidelogoasly, if a parametric domain is a
unit sphere, the spherical parametrizations areladeby moving spheres so that their
center coincide (Figure 3.2a). First, we will déserhow to compute the vertex-place

correspondence for the vertices of the source mEsich vertex (V) of the
parametrization of the source mesh lies in sonaagtell (fjl) of the parametrization of

“ If the mesh is translated so that the star-pairi ian origin of a coordinate system, then thgeption
is computed simply by normalization of vertex piosis.

19

the target mesh. In the case of a planar pararagtn, it can be checked by a standard
point-in-triangle test; in the case of sphericatgpaetrization, a specialized point-in-
spherical-triangle test must be used (see AppeAdixThe position of the vertex
M(V?°) is expressed by barycentric coordinatess, w with respect to the triangle

M (fjl) ®. The inverse mapping (Eg. 3.1) is used to comghaecorresponding place of
the vertexV” on the surface of the target, i.e.:

P'=uA +vB+wC, (3.2)

where the poinP' is a point on the surface of the target mesh wbarhesponds to the
vertex V? of the source mest, B, C are the vertices of the triangfe. The situation

is also depicted in Figure 3.2. There is a veflev,”) which lies inside the triangle
M (f;) formed by the vertices, B, C.

In a similar way, corresponding places for vertioéghe target mesh are computed.
Each vertexi1(V,) of the parametrization of the target mesh liesame triangle

M (f°) of the parametrization of the source mesh. Agaamydentric coordinates of the

vertex M (V;) are computed with the respect to the trianiglé), the barycentric
coordinates computed in the parametric domain aesl to compute a corresponding
place P of the vertew, on the surface of the source mesh.

Algorithmically, the vertex-place correspondencempatation is a point location
problem. For each vertdx(V) of one mesh we have to determine a triamtfl§ of the
other mesh in which the vert€kV) lies. Many algorithms for point location in a p&
subdivision exist. Note that even for a sphericaametrization the point location is
possible, because vertices mapped to the surface sphere always lie in some
spherical triangle. Also note that in the case mliesical parametrization almost the
same algorithms as in the planar case can be iisednly necessary to change some
elementary predicates - e.g.,, a point-in-planangie test replace by a
point-in-spherical-triangle test, an edge-edge ra®etion replace by an arc-arc
intersection, etc. A detailed description of thenpan-spherical-triangle test and the
arc-arc intersection test is in the Appendix A.

® The computation of barycentric coordinates of mipwith respect to a spherical triangle is degsdiin
the Appendix A.

20

- G R
(AT
NS

KR LA,
I

1
WG

AN A0k
g\\\w#ﬁ PR

S\,
<

Figure 3.2:a) an overlying of the source parametrization)t the target parametrization (bottom), b)
a detail of the overlaying planar parametrizatitwe, red triangulation is the parametrization ofsbarce
mesh and the green triangulation is the paramétizaf the target mesh.

3.7.2. Remeshing

After the vertex-place correspondence is compuiteds not possible to interpolate
between input meshes yet. To be able to interpdiateveen the input meshes, a
correspondence between vertices (i.e., a verteexecorrespondence) must be
computed. Since the input meshes have a diffenember of vertices, it is not possible
to compute one-to-one correspondence between thecege of the input meshes.
Therefore, the input meshes must be refined inrdalée able to compute one-to-one
correspondence.

Hence, a general idea of the remeshing step isotstuct a new mesh (called
supermesh) by refining one of the input meshes so that ipassible to transform the
new mesh to the shape of the source mesh as wellthe shape of the target mesh. Of
course, the remeshing takes into consideratiorptbeiously established vertex-place
correspondence. Several approaches to compute upernsesh exist. Michikawa
[Mic01] used a subdivision scheme to remesh bgbatimeshes. Since the subdivision
scheme is the same for both input meshes it regsultsvo meshes with the same
connectivity. Kraewoy and Scheffer [Kra04] remeshib@ target mesh with the
connectivity of the source mesh and later theynoged both the source and the target
mesh so that the new mesh represents sufficidmtl\slhape of the source mesh as well
as the shape of the target mesh. Kent et al. [Ker®@Reshed the target shape by
inserting edges of the source mesh. This approactescribed in more detail in the
Section 4 together with our original modifications.

3.7.3. Interpolation

In the previous step a new mesh which is possibleansform to the shape of the
source mesh as well as to the shape of the targsth nvas constructed. The morphing
transition is done by interpolating the vertex poss. The simplest way how to
interpolate between two vertex positions is a linagerpolation, i.e. the vertices travel
along a line connecting corresponding verticess T¥imple approach is used in the

21

majority of morphing approaches. As stated in PAlg], the linear interpolation works
well for morphing of objects which are rather semiand are oriented in a similar way.
For objects with different shapes the linear veitgerpolation may introduce a self-
intersection or some sort of collapsing, whichssally not a very plausible effect.

An interpolation of higher degree is also possililgields a smoother vertex path, but
on the other side it requires adding some inforomate.g., in the form of tangents for
Hermite interpolation, control vertices for Béziarterpolation, etc. For instance,
Michikawa et al. [Mic0O1l] suggest using vertex nolenas tangents for Hermite
interpolation. Gregory et al. [Gre99] suggest siyaay tangent vectors for some vertex
paths. The modified trajectory is then spread veittime falloff to the neighboring

vertices.

Besides the methods which interpolate between sporeding vertices, there are so-
called intrinsic interpolation methods which take into account also intrinsic shap
parameters. A basic idea of intrinsic interpolatimethods is to represent a mesh in
some alternative representation, then interpolate dlternative representation and
convert the interpolated form back to a mesh repragion to obtain an intermediate
shape. The alternative representation must unarbgly represent the original mesh.
The interpolation of an alternative representaisonsually easier or it has better results
than direct interpolation of original representatio Methods based on the intrinsic
interpolation require a forward transformation frdlme mesh representation to an
intrinsic representation and a backward transfaomathich transforms an interpolated
intrinsic representation back to the original me@presentation. The backward
transformation is usually harder to compute. In@&dmples of intrinsic representation
are the edge-angle representation [Sed93b] orsk&deton representation [Sha95]. In
3d we will briefly describe Laplacian representatiand an analogy of edge-angle
representation for 3d meshes.

In the Laplacian representation a veriéxis represented as follows. First a center of
massC; of one-ring neighborho8dof the vertexV; is computed. The Laplacian
representatiohl; of V; is the difference betwee®; andV;, i.e.,li = Ci — V,. Thus, the
forward transformation is simple; the backward sfarmation involves computation of
a linear system. Alexa [AleOl1b, Ale03] used thipresentation to morph between
isomorphic meshes. Instead of interpolating absolettex coordinates, he interpolated
linearly the Laplacian coordinates. The interpalateaplacian coordinates are
transformed backwards in order to obtain absoletéex coordinates. The advantage of
the Laplacian representation is that it is transheinvariant. Therefore they are suitable
for morphing of features which are not aligned pace. Laplacian coordinates were
also used in the mesh editing [Lip04] where a misstieformed by a handle which
influences some specified region of interest.

Sun et al. [Sun97] showed an intrinsic represayatsimilar to edge-angle
representation [Sed93b]. Their approach considamaorphic meshes. First,vartex
adjacency graph (a graph representing vertices of the mesh coadebl edges,
denoted as VAG) and its dual face adjacency graph (a graph representing adjacent
faces of the mesh, denoted as FAG) for the sourdelee target mesh are constructed.

® One-ring neighborhood of a vert¥xis a set of vertices which are connected withvia¢exV by an
edge.
" Some authors refer to this representation asfereliftial representation.

22

A FAG contains face normals in its nodes and ealge ef the graph contains a flag
indicating whether two incident faces form a conwexa concave dihedral angle or
whether they are coplanar. Note that face adjacdoeg not represent a mesh uniquely,
so an additional geometric representation is neddethake the FAG a complete
representation of a mesh. The interpolation theesgas follows. First the FAG is
interpolated, which means an interpolation of faoemals. It is started with two initial
faces; the remaining normals are computed by patpagalong edges of the FAG. The
result of the FAG interpolation is establishingaof intermediate orientation of faces.
Then the VAG is interpolated so that the verticgethe already oriented faces.

23

4. Topology merging

In this section we will describe the method of timgy merging. First, we will describe
the original method — we will show that the underdygeometrical operation is an edge
insertion and we will discuss its algorithmic agpe(Section 4.2). Then we will show
our contribution where we extended this methodhefollowing directions: merging of
meshes with attributes (Section 4.3), improvemaftgjuality of the resulting mesh
(Section 4.4) and a generalization for multiple hess(Section 4.5). The sections 4.4
and 4.5 do not describe a finished research;heratontains a problem description and
a suggestion how to solve it. In some cases weiatdoded some preliminary results
which indicate that this direction is worth resdmng in the future.

4.1. General idea

The basic idea behind the topology merging is selihedges of one mesh into the other
mesh. Without loss of generality, we will inserged of the target mesh to the source
mesH. The result is a mesh which shares connectivithaih input meshes. We will
refer to this mesh assapermesh®. Edges are inserted so that the shape of the mesh
not altered, but the connectivity allows transfargnfrom one shape to the other shape.
To be able to insert an edge of the target mesh tim¢ source, first we have to
determinewhere to insert it. An edge is defined by two endpoititerefore, we have to
determine where to insert its endpoints. The endpdare inserted at places defined by
the vertex-place correspondence computed in thesmondence computation step (i.e.,
the mapping¥; defined in Section 3.7.1).

After an edge of the target mesh is inserted inéostource mesh, it “disappears” in the
surface of the source mesh, i.e., it does not wdistiae original shape of the source

mesh. But it can be moved towards its original fp@siin the target mesh to represent
some feature of the target mesh. The basic idd@eabpology merging is demonstrated

in Figure 4.1. There is a source mesh (Figure 4fhd)a target mesh (Figure 4.1b). The
red edges of the target mesh are inserted intsdliece mesh. It is demonstrated in
Figure 4.1c) — it can be seen that the edges diatiget mesh are inserted in the source
mesh so that the shape of the source mesh is m@oigel, i.e., the red edges are
“wrapped” along the 3d surface of the source meégjure 4.1d) shows the supermesh
transformed to the shape of the target mesh. Emsfiirmation is done by moving the

® It can be done in the reversed order as well.
° In the literature the supermesh appears also thdeéerms metamesh [Lee99], combination mesh or an
interpolation mesh [Kan97, Kan99].

24

edges of the target mesh (picked out in red) tosvasdoriginal position while the edges
of the source mesh (picked out in blue) “disappéarthe surface of the target mesh.
The places where the edges of the source meshpfiiad’ are given by the vertex-
place correspondence between the vertices of theeesanesh and the surface of the
target mesh. Figure 4.1e) shows an example oftarpimlation of the supermesh.

Figure 4.1: a) source mesh, b) target mesh, c) supermeskdrares to the shape of the source mesh,
d) supermesh transformed to the shape of the tangsh, e) an example of an interpolation of the
supermesh.

In Figure 4.1c), d) it can be seen that an edge exagnd across several triangles;
therefore, it is necessary to subdivide the triamglhich are intersected by the edge and
subdivide the edge in the intersection points. Addally, in Figure 4.1c), d) it can be
seen that there are some non-triangular polygbesgtpolygons have to be triangulated
in order to have a valid triangular mesh. Also ntitat the supermesh contains the
vertices of the source mesh, the vertices of tigetanesh and the intersection vertices
(picked out in yellow in Figure 4.1).

The main problem with the edge insertion is thasinot possible to insert an edge
directly in another mesh in the 3d space. Even ghowe know where to insert
endpoints of edges, it is not clear how to “wrap”emige along a 3d surface, i.e., which
triangles to subdivide. The reason is that thertedeedge is generally nonparallel and
nonintersecting with edges and triangles of theelothesh. For this reason, we have to
insert edges in the parametric domain.

In the parametric domain, all edges are mappedplare (a planar parametrization) or

to a sphere. In both cases an edge is the shoaesection between its endpoints and it
is unambiguous which triangles will be affectedtbg edge insertion. During the edge

25

insertion intersections between the inserted edgetlze original triangulation must be
computed. The intersection vertices computed inpgaemetric domain are mapped
back to the original mesh using an inverse map(fagtion 3.7.1).

4.2. Edge insertion

In this section we will discuss algorithmic aspeatshe edge insertion. In the context
of the edge insertion we will use the temniginal triangulation to refer to the
triangulation in which the edge is being inserted.

4.2.1. Overview

The edge insertion consists of an endpoints imserdind a subdivision of triangles
intersected by the inserted edge. The subdivigqguires finding all triangles which are
intersected by the inserted edge and computingsetéons between them. After the
edge is inserted, the triangulation must be redamerder to have a valid triangulation.
It is schematically demonstrated in Figure 4.2.uFeg4.2a) shows the original
triangulation (green) and the inserted edge (réd)Figure 4.2b) the orange points
represent the intersection vertices and finallyuFeg4.2c) shows the final triangulation
after the edge insertion. It can be seen that safd@ional edges (dashed lines) had to
be inserted in order to have a valid triangulation.

Q. o Q.
g @ o 0y 60—0—0-0 Og@o6—0o—00>
o o) o
a) b) c)

Figure 4.2: A demonstration of an edge insertion — a) theioaigtriangulation (green) and the inserted
edge (red), b) the intersection vertices (orangjehe resulting triangulation.

In the following subsections we will describe tiersection computation and the re-
triangulation in more detalil.

4.2.2. Intersection computation

Intersections between the inserted edge and tlgeakitriangulation can be computed
by brute force checking of each edge of the originangulation against the inserted
edge. In the topology merging process we havederirall edges of the target mesh to
the source mesh, therefore the brute force approasia quadratic complexity, which is
not very suitable for complex meshes with a higmber of edges.

In [Ken92] and [Ale0O0b] better algorithms based walking were described. Both
algorithms work basically in the same way; theyfatifonly in the underlying data
structure. The former approach by Kent et al. [Kdn$es a variation of the winged-
edge data structure; the latter approach uses @®ELH data structure. In our
description we abstract away from a specific datactire, we only suppose that we are
able to extract adjacency of triangles and edges.

The algorithm is based on the idea that for theerbesl edge we can construct a
candidate list (CL) of edges of the original triangulation. Thandidate list contains
edges which may be possible intersected by thetetsedge. Additionally, we have to

Y DCEL - Doubly Connected Edge List.

26

know, in which triangles of the original trianguéat the endpoints of the inserted edge
lie. Generally, it can be computed by some poinaimn algorithm, but in the case of
morphing we already know it from the vertex-plaagarespondence st&p Let us
denoteV the starting vertex of the inserted edg& the face in which the vertéx lies

(see Figure 4.3). Edges of the fdgare added to CL because one of them is intersected
by the inserted edge originating fromV. When the intersectiohis encountered, the
algorithm “walks” to the facd;, which is neighboring tdé, so thatf; andf, share an
edgeep 1. Now, two edges df; are inserted into CL because one of them is iatéesl

by e. In this way, the algorithm walks until no intectien of e and edges in CL is
found. The algorithm is schematically depicted iguire 4.3.

Figure 4.3: A demonstration of the walking algorithm which ennters all intersections of the inserted
edgee (red) with the original triangulation (green).

4.2.3. Re-triangulation

After the intersections are computed, the inseetigk and the original triangulation are
merged in the intersections. Then, new trianglestrba created in order to have a valid
triangulation.

Let us remind that the topology merging consistsnahy edge insertions. Therefore,
there are basically two approaches how to re-tubkatg the modified area — an
incremental approach and a global approach. Theoappes differ in the aspewhen

is the re-triangulation done. In the case of thmamental approach, the incremental
construction concept is used, i.e., the originahtyulation is re-triangulated each time a
new edge is inserted. In the global approach tHeamegulation is done after all edges
are inserted.

The advantage of the local approach is that isisally easier to implement because a
mesh is modified only in a relatively small parheldisadvantage is that in some cases
the part which was re-triangulated in the previstep must be subdivided and re-
triangulated again because a new edge was inselded to the previously inserted
edge. So, in the topology merging the incremergal@ch may lead to a repeated re-
triangulation of the same area which is time coriegmAdditionally, it may lead to a
high number of edges of the resulting triangulation the other hand, the incremental
nature can be useful in some progressive or adaptiocessing. For instance, in time
critical applications we can insert edges edge bigeewhile the incremental
construction concept guarantees that after each iedgrtion we have a valid triangular
model.

11 See Section 3.7.1.

27

The global approach [Kan97] works in two stagesthim first stage, for each inserted
edge the intersection vertices are computed usiegtocedure from the Section 4.2.2
and the edges are merged with the original trisatgar. In the second stage, for each
vertexV an edge fan is computed. The edge fan is an angularly sortgdof edges
incident to the verte¥. Each edge fan is traversed and locally triangdldto create a
triangle fan around the vertdX by inserting some edges. The edge fan triangulas
done by checking if endpoints of two successiveesdg the edge fan are connected by
an edge. If they are not connected, a new edgeested together with a creation of a
new face. The fan triangulation is demonstrateBigure 4.4, where first a triangle fan
around the central vertex is built and then in @edy way all remaining vertices are
processed, which results in a completely triangalahodel.

Figure 4.4: Demonstration of the edge fan triangulation, tteek thick lines are added during the edge
fan triangulation (taken from [Kan97]).

The global approach avoids multiple processinghef $ame area as the incremental
approach. Thus, it is more efficient from the ticensumption point of view and it
generates fewer edges than the incremental appr@excthe other hand, it relies on the
angularly sorted edge fans which are more comglicab compute than the local
subdivision as in the case of the incremental aqgro

4.2.4. Additional use of edge insertion

The edge insertion is not only useful in the togglaerging. It can be used in the area
of terrain modification. The terrain modificatiorsually involves some raising or
lowering of a landscape. The terrain is usuallyreéepnted as 2.5D triangular mesh.
Sometimes, the mesh is not dense enough to reprasentended terrain modification.
Usually some edges must be added. Since the tag&rbD, the parametrization is
obtained by omitting heights of vertices. Thus, ¢kdge insertion can be done in 2d and
only the heights of newly added vertices must bepaed. An example of the terrain
modification is in Figure 4.5 where a terrain isdified by “digging” a ridge. Note that

it is not possible to dig a ridge in the originehhgulation (Figure 4.5a) since there is
no connectivity to represent the ridge.

28

c)

Figure 4.5: An example of terrain modification — a) the orginerrain with an intended modification
represented by red lines which delineate a bottbsome ridge, b) the terrain mesh is subdividethab
the bottom of the ridge can be lowered, c) the stiadrrain with the resulting ridge.

Another application is a computation of compatibi@ngulations of polygons [Ale00c].
Two triangulations are compatible if they have saene number of vertices connected
in the same way. In other words, if we take thanigulations as graptsthen the
graphs are isomorphic. If the two triangulation® aompatible it is possible to
interpolate them, e.g., to interpolate the corrasipgy vertices.

The computation of compatible triangulations waaksfollows. The input polygons are
triangulated independently using Delaunay triangota Then, the perimeter of the
triangulated polygons is mapped to a regular n-gdrich results in a triangulated n-
gon. Then, n-gons are overlaid and edges of tte firgon are inserted into the
triangulation of the other n-gon. The new interi@rtices are mapped back into the
original polygons, which yields a compatible triatagion of the input polygons.

4.3. Surface attributes

In the previous sections we described how to madifpnnectivity of meshes so that it
is possible to transform them to some other shadpethis section we will show our
contribution which deals with surface attributes.

Until now we dealt with a shape transformation omdpwever, objects are represented
not only by the shape but also by surface attroutee.g., color, texture coordinates,
surface normals, opacity, BRBF etc. Since the topology merging modifies a mesh s
that new vertices and faces appear, it is necessaysign attributes to the newly added
vertices and faces. Then, during the morphing,sindace attributes are interpolated
along with a shape transformation. In the followsertions we will describe how to

handle surface attributes after the topology merginocess. First we will describe

attributes classification and then we will introduan approach called face mapping
which computes attributes of the supermesh.

4.3.1. Attributes classification

To be able to generalize the attributes handlimgditierent kinds of attributes we will
classify the surface attributes into two groupsBi®] —discrete attributes andscalar
attributes. Discrete attributes are usually associated witbe$. A typical discrete
attribute is, e.g., a material identifier, i.e.8® property which is constant over the

2 The triangulation can be viewed as a planar gtaphsing the triangulation vertices as verticeshef
graph and the triangulation edges as edges ofréphg
13 BRDF - Bidirectional Reflectance Distribution Fitina

29

whole face. From a certain point of view a face nmalr can be considered an
independent discrete attribute as Well

On the other hand, the scalar attributes repres@me local property of a surface. In
simple cases the scalar attributes are associatedhe vertices of the mesh — e.g., a
per vertex color or per vertex texture coordinatesa simple case a value of a scalar
attribute in the verteX¥ is common for all faces adjacent to the veNexHence, it is
not possible to represent a discontinuity of thglatte field along an edge. Therefore,
the scalar attributes are associated rather aithers than with vertices. The corner is a
tuple (face, vertex) which allows us to assign s@ttebute to a particular vertex with
respect to same face. For example a vertex nosraltypical scalar attribute, for one
vertex we can have multiple normals depending orlwface we are considering, e.g.,
a vertex representing a corner of a cube has tyypittaee different normals (one for
each face adjacent to the vertex).

4.3.2. Face mapping

The topology merging process builds a supermesthatoit “inherits” a shape of the
source mesh and it is possible to transform iheoghape of the target mesh. Naturally,
it is expected that the supermesh also “inherite”durface attributes of the source mesh
and it is possible to interpolate these attribtibggther with the shape. The problem is
that during the topology merging a new mesh (ilee supermesh) is constructed,
therefore, it is necessary to compute values abates (i.e., scalar and discrete) for the
supermesh in the shape of the source mesh and alwesvof attributes for the
supermesh in the shape of the target mesh. We ggopanethod called face mapping
which computes the values of attributes so thiat ossible to interpolate the attributes
during the morphing transition.

The basic idea is that the faces and the vertit&seosupermesh inherit attributes from
faces and vertices of the input meshes. Thereforegach face and for each vertex of
the supermesh we have to establish how the atdsbwill be inherited. This is done by
computing two mappings. A mapping between the fat¢se supermesh and the faces
of the source mesh and a mapping between the faces of the sepkrand the faces of
thetarget mesh. The map represents from which face of theceamesh and the target
mesh a face of the supermesh originate. A facédetupermesh inherits attributes of
the face of the source mesh or the target mespecasely, to which it maps. From the
topology merging process it is clear that each fatéhe supermesh maps to (i.e.,
originates from) exactly one face of the target ilmaad to exactly one face of the
source mesh (i.e. no face of the supermesh catapviaices of the source and the target

mesh}>. Let us denoted, :f, - 1‘1.O the mapping of the fadg of the supermesh to the
1‘ace1‘jO of the source mesh and analogously:f, — f].l for the mapping of the fade

of the supermesh to the fatjéof the target mesh. Since the topology mergingisedn

a parametric domain, the mapping is establishethénparametric domain as well.
Figure 4.6 depicts a principle of the face mapm@pgroach, on the right side there is a
supermesh transformed to the shape of the soursé (@) and to the shape of the

14 Usually the face normal is computed as a norma tfangle, thus the face normal is essentially a
function of geometry of the mesh. However, in sapelications (e.g., shading) the face normal can be
modulated; therefore it can be considered as apetlent discrete attribute.

1% 50 this mapping is “onto”.

30

target mesh (bottom), the arrows demonstrate thgpmg of faces of the supermesh to
the faces of the source and the target mesh. Ibeaseen that the highlighted face (the
four-sided polygon) of the supermesh in the shdpgbeosource mesh inherited the blue
color from the source mesh while the same faceritguethe red color from the target

mesh when the supermesh is deformed to the shafiee afource mesh. During the

morphing transition the highlighted face will chants color from blue to red.

CI

Figure 4.6: Mapping of a face of the supermesh to faces o$thuece mesh (top) and the target mesh
(bottom).

Now we will describe how to compute the face mapgéneral, it is a location problem
of a trianglef in some coarse triangulation, whéns the triangle of the supermesh and
the coarse triangulation is the source or the tamgesh. Note that a brute force
approach would require checking each face of tipersnesh against each face of the
source and the target mesh. The complexity of théebforce approach is then
O(|F|.|IF% + |F|.|IFY), where|F| is the number of faces of the supermesh |&idand
|F!| is the number of faces of the source mesh, tangsh, respectively. We propose a
simple O(N) algorithm which reuses an already establishegpimg of vertices of one
mesh to the surface of the other mesh. The supbrimésaversed vertex by vertex and
triangle fans of each vertex are processed. A triangle fansstaf triangles incident to
a particular vertex. Each triangle fan is processepending on the type of the central
vertex. Let us remind that there are three typesgedices in the supermesh — source
vertices, target vertices and intersection vertiédso note that each triangle belongs to
more than one triangle fan, so once the triangpgasessed, it must be marked by some
flag to avoid multiple processing in the contexbiier triangle fans.

Let us first consider the case of the source velMex From the correspondence

computation step we know the mapping of the souertex Vs to the target facg. So
each face of the supermesh adjacent to the vegeaps to the fack, i.e.:

@, (f) =f,, 4.1)

31

wheref; are faces incident to the verte, f; is the face of the target mesh to which the
vertexVs maps. Now the mappin@; is solved. It remains to compute the mapping
l.e., the mapping of the faces to the source m#sis easy, because faces of the
supermesh adjacent to the source vertex map tiatles of the source mesh adjacent to
the same vertex. So the faces adjacent to thexéttm the source mesh are candidates
for mapping of faces of the supermesh adjacertdwertexVs in the supermesh.

For the case of the target vertices the mappirmmpmsputed analogously. For the target
vertexV; the mapping to the fadg of the source mesh is known. So each face of the
supermesh adjacent to the vertgxmaps to the fack, i.e.:

@, (f;) =f,, (3.2)

wherefj are incident faces to the vert®, fsis the face of the source mesh to which
vertex Vi maps. The establishing of mappidyg is again easy, because faces of the
supermesh adjacent to the target vertex map téattess of the target mesh adjacent to
the same vertex.

For the intersection vertex we know from which taages of the source and the target
mesh it arises. For each edge we also know theesdif adjacent faces. Adjacent faces
are candidates for mapping of faces of the supdrnfs it remains to check to which
of candidates a particular face of the supermegisma

4.3.3. Handling attributes

Once we establish the mapping of the faces ofupersnesh, it is necessary to establish
the extreme values of attributes, i.e., the valbesveen which we are going to
interpolate during the morphing animation.

For discrete attributes it is simple, because #uvef of the supermesh gets the value of
the discrete attribute of the face to which it maps for the transition parameterQ
the face of the supermesh gets the value of the discrete attribute of thee faf the

source mesrij0 to which the facd; maps; and for the transition parametet the face

of the supermesh gets the values of the discrete attribute of #ue fof the target mesh
f. to which the facd; maps. Let us denof(f;)(t) a value of a discrete attribute of the
facef; for the transition parameterthen fort=0 we can write:

D(f;)(0) = D(®,(f,)) , (3.3)

where @(f;) is the mapping of the fade of the supermesh to the face of the source
mesh. Fot=1 we can analogously write:

D(f;)(D = D(®,(f})) (3.4)

where ®4(f;) is the mapping of the fadg of the supermesh to the face of the target
mesh. A linear interpolation of a discrete attréoigt then:

D(f;)(t) = Q- D(P,(f;)) +D(P,(f;)) (3.5)

32

The values of scalar attributes are computed veiipect to the relative position of the
vertex inside the face to which the vertex mapd.usedenoteS(f;, v;)(t) a value of a
scalar attribute of the cornef, ;) for the transition parameterSo fort=0 we can say
that the value of scalar attribu;, v;)(0) is given by some linear combination of the

values of the attributes in corners of the fdﬁe WherefiO is the face of the source
mesh to which the fac& of the supermesh maps. The coefficients of thealin
combination are barycentric coordinates of theesert with respect to the facﬁé. This
situation is depicted in the Figure 4.7, where lihge trianglef; is the face of the
supermesh and the green triangj?eis the face of the source mesh to which the face
maps. The values of the scalar attrib8{ig, vk) are given by the relative position of the
vertexvy with respect to vertices of the trianglj%.

fj, Vo)

S, Vo) Sfi, Vin) Sfj, V1)

Figure 4.7: Mapping of the fac§ of the supermesh (blue) to the feiﬁe)f the source mesh (green).

It is similar for the timet=1, with the difference that the mapping of theefof the
supermesh to the faces of the target mesh is aanesidDuring the morphing transition
the values of scalar attributes are linearly imtéafed.

4.3.4. Examples

In this section we will show some results of theefanapping approach. The first
example (Figure 4.8) is focused on computationafmal vectors which are used for
shading. Figure 4.8a) shows a morphing animatidwdsn a cube and a sphere. The
objects are rendered so that sharp edges wer@nsidered. It is especially apparent in
the first frame of the animation where the objextn the shape of cube. Since the
existence of sharp edges is not considered theseddech should be sharp are
smoothed out. Figure 4.8b) shows a sequence ohanahimation. In this case we
recomputed normal vectors in each frame of the atiam. It can be seen (the detailed
view at the bottom) that it is not correct as vgtice the sharp edge appears abruptly.
Finally, Figure 4.8c) shows an animation whereftto® mapping approach was used to
compute normal vectors for the supermesh in th@eslod the source and the target
mesh. The normals for the intermediate shape weeepolated linearly. It can be seen
that the sharp edges of the box smoothly disappb#ée the sharp edges of the cylinder
smoothly appear.

33

Q0Qunun
fee

VDA

Figure 4.8: A morphing animation rendered so that: a) sharggdgere not considered, b) normals
recomputed in each animation frame, ¢) normals edegpusing the face mapping approach.

The next example (Figure 4.9) demonstrates howfabe mapping works for colored

meshes. Figure 4.9a) shows a morphing animationdaet objects which were painted

per face, i.e., a color was assigned to a whole face (eiscattribute). On the other

hand, Figure 4.9b) shows a morphing animation betwabjects which were painted

per vertex, i.e., a color was assigned to vertices. Per xgy&enting allows us to make

smooth painting of the surface. In fact, the undeg data structure which contains

information about color is “per corner” orientece.icolor is assigned to corners of
triangles (Section 4.3.1). It is a little bit rediamt, especially in the case of per face
painting, but it allows to combine per face paigt@nd the per vertex painting. It is

demonstrated in Figure 4.9c), where a morphing ation between per face painted
flower and per vertex painted pig is shown.

34

LY

Figure 4.9: A morphing animation between a) per face paintedhme, b) per vertex painted meshes,
¢) a combination of per face and per vertex painteghes.

4.4. Mesh improvements

In this section we will deal with an improvement afquality of a mesh which was
constructed by the topological merging procedutas Bection contains description of
methods which has not been fully tested, yet thayehsome promising results
providing directions for a future research. Addigdly, in the subsections 4.4.1 and
4.4.3 we present some preliminary results whichcatd that these methods could be
used to improve the quality of the mesh and to cedine complexity of the mesh.
However, we are aware that the following methodgiire additional research and tests.

4.4.1. Pointinsertion

The topology merging is based on the edge inserfitie edge insertion consists of
some vertex insertions (i.e., insertion of endmoiof the edge and insertion of
intersection vertices). In the original version tbke algorithm [Ken92, Ale00b] the
vertices were inserted in the plane of the triasmglleon the edges (intersection vertices).
However, the meshes are usually a piecewise lingaresentation of some smooth
surface, therefore in some cases it would be bettarsert vertices so that the resulting
subdivided region is more curved. To accomplisk,thie use a Bézier triangular patch
[VIa01]*®. It is supposed that the input meshes have veremals which reflect the
true shape of the original object. Therefore, befovertex is inserted into a triangle we
build a cubic triangular Bézier patch. The patchaestructed using vertex normals and
the vertices of the triangle. Since we know theybantric coordinates of the inserted
vertex with respect to a triangle in which the egris inserted, we can compute a

8 1n [VIa01] referred to as PN triangle.

35

position of the vertex on the Bézier patch. It dlyueesults in a position which is
slightly above the original triangle. The advantagethe Bézier patches is that the
“bulging” of a patch is controlled by normals assted with the vertices of the triangle.
For instance, if the normals are parallel, the Ipa&dlat, after inserting some vertices in
the flat patch the patch still remains flat. Therefthe concept of Bézier patches can be
used for non-smooth shapes (e.g., a cube) as well.

The influence of the type of vertex insertion ismdmstrated in Figure 4.10. Figure
4.10a) shows the original mesh, it can be seentligatontour is not smooth because
the mesh is not dense enough. During the topologrgimg some vertices are inserted,
these new vertices can be used to improve the goofdhe shape. Figure 4.10b) shows
the result of topology merging when the vertices iaserted in planes of the triangles
(i.e., the standard approach). The detailed picf{eigure 4.10b), bottom) shows that
even if many new vertices were added, the cont®dhe same as the contour of the
original mesh. Figure 4.10c) shows the result @iotogy merging when vertices are
inserted in patches, it can be seen that the corgeuuch smoother.

Figure 4.10: a) the original mesh, b) the result of the topgloterging process with vertex insertion in a
plane of a triangle, c¢) the result of the topologgrging process with vertex insertion in a Béziich.

4.4.2. Edge flipping

The advantage of the topology merging is that thepe of the supermesh can capture
exactly the shape of the source mesh as well ashidyee of the target mesh. This fact is
paid by a poor quality of the triangular mesh,, itae mesh contains badly shaped
triangles. Generally, the quality of a mesh is imgat for computational analysis, it can
influence a quality of a solution and a time neettedbtain it. For instance, vertex
normals of triangular meshes are usually compusathuisome weighting scheme which
takes into account the triangles adjacent to tmeexelf the triangles have a bad shape
(i.e., long skinny triangles) and we use the computertex normals for shading, the
shading is bad.

One possibility how to improve the quality of thesh is a flipping of edges. Each non
boundary edge has two adjacent triangles; the twmacant triangles form a
guadrilateral where the edge is its diagonal. Imesaases it is possible to flip the
diagonal in order to improve the quality of the mes

36

During the topology merging some edges are addedetedges must not be flipped
since they might represent some important featdrerwtransforming the supermesh to
the shape of the target mesh. However, duringdpeldgy merging some regions must
be re-triangulated (Section 4.2.3), i.e., some gdgest be inserted to have a valid
triangular mesh. These edges can be arbitrarippdd to improve the quality of the
mesh.

It must be said that during morphing the qualitytbé mesh varies as the shape
transforms. Using edge flipping it is possible taprove only one frame of the
animation. For instance, edge flips done for thgesmesh in the shape of the source
mesh may be different than edge flips needed toawgpthe quality of the supermesh in
the shape of the target mesh.

4.4.3. Adaptivity

In the original version of the topology merging gess, all edges of the target mesh
were inserted in the source mesh. We found outithatnot necessary to insert all
edges; moreover, the amount of edges can be adpptontrolled in order to reduce
the complexity of the supermesh.

In the mesh morphing, the edges of the target raeslinserted in the source mesh so
that they “respect” the shape of the source mesh, they are not visible when the
supermesh is in the shape of the source mesh. Howte inserted edges can be
interpolated to represent some feature of the targesh, i.e., during the interpolation
edges “emerge” from the source shape to form tlgetahape.

Generally, we distinguish between two types of edgefeature edges and auxiliary

edges. The feature edges represent the shape afiddle the auxiliary edges do not

contribute to the shape of the mesh but they kbeprtesh triangular. For instance, a
simple triangular mesh representing a cube conté2nfeature edges (i.e., edges of the
cube) and 6 auxiliary edges which subdivide eadddlateral face of the cube so that
the mesh consists solely of triangles. When udiegapology merging in the context of

the mesh morphing, it is enough to insert featuges only. Since the auxiliary edges
do not contribute to the shape of the object, tth@yot have to be inserted. Clearly, if

we do not insert some edges, we save some conpuiatid the resulting supermesh
will contain less triangles.

To distinguish between feature edges and auxikaiges, we use a geometric criterion
based on a dihedral angle between faces adjacanteédge. We set a threshold value of
the dihedral angle so that an edge is auxiliatiiefdihedral angle of the faces adjacent
to the edge is less than the threshold value, ge e&la feature edge if the dihedral
angle of the faces adjacent to the edge is gréaderthe threshold value. For instance,
setting the threshold value to zero makes auxiliedges only those edges whose
adjacent faces lie in the same plane.

Let us demonstrate an adaptive edge insertion parsiesh which was computed to
morph between a sphere and a cube, i.e., the nuddéle cube was inserted to the
model of sphere. In Figure 4.11a) all edges (inagdhe auxiliary edges) of the cube
were inserted into the sphere mesh. It can be Beanthe diagonal subdivides the
sphere mesh. On the other hand, Figure 4.11b) shasupermesh where the auxiliary
edges were not inserted. It is clear that the snpsih without auxiliary edges contains

37

fewer triangles. Let us recall that the shape faansation of both supermeshes will be
the same even though the supermesh without ayxiédges contains less elements
than the supermesh with auxiliary edges. Note ith#éthe figures, for simplicity, we do
not display the edges which need to be insertehgltine re-triangulation process.

vertices: 269, # faces: 534, # edges: 801 #oeextil91, # faces: 378, # edges: 567
a) b)

Figure 4.11:a) the supermesh with all edges inserted, b)upersnesh with only feature edges inserted
(the '# sign indicates the number of elements).

The concept of adaptive edge insertion can be feggorogressive refinement of large
meshes. For instance, let us have very dense mdskesve can insert only the most
important edges of the target shape to the sodrapes Immediately we are able to
morph between an original shape and the rough appabtion (given by the most

important edges) of the target shape. Then we cagrgssively insert the remaining
edges to obtain more detailed morphing betweesdhece and the target mesh.

4.5. Generalization for multiple meshes

The original version of the topology merging wasigeed for two input meshes only.
However, in many applications (e.g., animationjgigsit is required to morph multiple
meshes at the same time. Therefore, we will show tw generalize the topology
merging for multiple meshes. The goal is to commuteh a supermesh which can be
transformed to the shapes of all input meshes.

The basic idea is that we use the original topologyging technique and we apply it
on pairs of meshes (see an example for 8 meshieigume 4.12). Let us have n input
mesheMqo M1, ..., Mn.10 FOr simplicity, suppose that n is a power ofr2tHe first
stage we will always merge pairs of meshes, i.e.,mergeMgo andM 1o M2 and
M3, etc. The result is a set of mesig;, M1 4, ..., Mn.11 Where the pairt i, M. 1,
1=0, 2,..., n-2 can be interpolated because they liawesame number of vertices and
the same connectivity. Then we merge medfigs andM, 1, M1, andM3s;, etc. The
result is a set of mesh&y o, M1 5, ..., M1 2 Where the quadruples can be interpolated.
We continue in this way until all meshes share game connectivity. lag merging
stages is required, in each stage the mergingmpuated n/2 times. If the number of the
input meshes is not a power of 2 we always mergs,gpuadruples, octets, etc., as long
as possible and the remaining meshes are trarsferthe next stage. Main advantage
of this approach is that it is not necessary to ifgathe original algorithm; we just

38

repeatedly apply the merging technique so thatiripat of j-th merging stage is the
result of the (j-1)-th merging stage.

Recall that the merging procedure operates in #@w@rpetric domain; the vertices
inserted during merging are projected back to tmgut meshes using an inverse
mapping (Section 3.7.1). The key assumption ofdiéscribed method is that we use a
common parametrization for the merged meshes,tagmeshed 1 andM; ; have a
common parametrization.

Moo Mi0 M2o Mzg Mso Msg Meo Moo
L 4 L 4 L 4 L 4
- [Cmerge | [Cmerge | -

¥ a JIA Y
M01 M11 Mo Mep (i M g M@i M?l

e

X N AN

Moz Mi2 Mos M3zo Mgz Mso: Mg2 Moo

NS

T

Mos M. M52 Wss M. Mes Meas Na

Figure 4.12: An example of topology merging for 8 input meshhbs,red box represents the merging
operation which always takes two meshes as an anmlift produces two isomorphic meshes as an

output.

39

5. Multimorphing

In this chapter we will show a generalization of tlassical morphing. The classical
morphing operates between two input shapes (as@und a target). We will show how
to extend it to multiple input shapes. A morphingtvibkeen multiple input shapes
generates a space of shapes which we approachasabgy of the affine space. The
general idea has been already described in [Ald9%],we concretize their ideas for
boundary representation, additionally we introdanenner product which allows us to
compute distances in the space of shapes and tputeran orthogonal projection. The
orthogonal projection is used to express a shape weighted combination of basis
shapes. We also show how to explore a space oéslsgganned by the basis shapes and
we discuss some user interaction aspects of thpesiganeration. We propose a
geometrical representation of a morphing spacevemghow how to easily generate
new shapes using the geometrical representatiom similar way as a geometrical
representation of a color space (i.e., a coloresy¥is used to choose colors.

In this chapter we will consider so-called isomacpimeshes, i.e., meshes which have
the same connectivity but different vertex posiioRirst, we will describe isomorphic
meshes and how to compute them, then we will des@ome related work in the area
of spaces of shapes and finally we will presentamuntribution.

5.1. Isomorphic meshes

5.1.1. Definition

Isomorphic meshes are meshes with the same nunfbe&ertices and the same
connectivity. A formal definition is as follows. teas have a set of meshis, i=1, ...,

n. MeshedM; are said to be isomorphic if there is a bijectmapf: V;-V; between
vertices of the meshed;, M;, i# with the property that any two vertices frovi are
adjacent irM; if and only if they are adjacent M;. In other words, graphs of triangular
meshes are isomorphic. The connectivity which @reth among isomorphic meshes
will be denoted asommon connectivity. Although the isomorphic meshes share a
common connectivity, they can differ in vertex piosis so that each mesh can have a
different shape. Therefore, isomorphic meshes emaa@nical from data storage point
of view. For a set of meshes, it is enough to stolg one instance of connectivity (i.e.,
the common connectivity) and vertex positions faiclke element of the set. It is
significantly less than storing connectivity andteg positions for each mesh.

40

Additionally, in many applications, besides a hijge map between vertices feature
vertex correspondence is required. The bijective map between verticaguires that
vertices of isomorphic meshes are interconnectecedges in the same way in all
meshes. The feature vertex correspondence addijiorguires that the bijective map
relates vertices which represent the same featua# meshes. For instance, let us have
isomorphic meshes representing human faces; vertiteach mesh are stored in an
array. The feature vertex correspondence requiias éyes, noses or mouths are
represented by vertices with the same index inatinay. Clearly, the concept of the
feature vertex correspondence is applicable onlgases when the set of isomorphic
meshes is homogenous, i.e., the meshes represeet dass of shapes which have
some common features, e.g., human faces, modelrsifetc.

5.1.2. Use of isomorphic meshes

Besides the efficient storing, which does not regjtine feature vertex correspondence;
iIsomorphic meshes are useful in many areas. Sirece ts a one-to-one correspondence
between vertices, we can directly interpolate betweorresponding vertices to obtain
intermediate meshes. The intermediate meshes casdukto produce an animation or
it can be viewed as a way to generate a new mestoimpination of some existing
meshes.

Isomorphic meshes are well suited &iributes transplantation. Usually, a mesh does
not only contain information about a shape but aifmrmation about an appearance the
shape, e.g., color, texture coordinates, opacity,Agttribute transplantation is useful in
the cases when we have a reference mesh equiptiedome attributes and we want to
apply these attributes also on another shapesngi@nce, let us have a reference mesh
representing a human face. The mesh has a textdreeature coordinates. The texture
coordinates are assigned to the vertices of thehmHsen, let us have another face
without a texture. It is possible to paint the othgesh from the scratch, however it
might be very time consuming. Using the attributss$plantation it is possible to use
the texture of the reference mesh to paint theratiesh. It is done by copying the
attributes of the reference mesh vertices to tleesponding vertices of the other mesh.
Clearly, it requires a feature vertex correspondentherwise the painting of features
of the reference mesh might be transplanted oeréifit features of the other meshes.

Another important application of isomorphic meshgsthe area of mesh analysis.
Vertices of the mesh can be organized into a veétgset of isomorphic meshes forms a
matrix. The matrix can be analyzed by means ofcgral component analysis in order
to find a new uncorrelated basis. Then, each algimesh can be expressed in the terms
of the new basis. This concept was used by AlexiaMiiller [Ale00d] to compress the
animation. The basic idea was to choose from thve Inasis only a subset of basis
vectors with the highest importance and repredentémaining meshes with respect to
the new basis.

The main problem of isomorphic meshes is that nmesheely fulfill the conditions
described in the definition (Section 5.1.1). Theref meshes have to be preprocessed in
order to be isomorphic.

5.1.3. Computation of isomorphic meshes — generala spects

Usually, during the mesh generation, the main geab represent some shape, the
underlying connectivity is not important at thisge. Therefore, if we want to work

41

with isomorphic meshes, the meshes have tordmeeshed. The remeshing is an
operation which changes the connectivity (i.e., tmedel) while the shape is
maintained. First, let us discuss some generaktspé methods used for a computation
of isomorphic meshes. Then, we will describe paliicmethods which are used to turn
a set of meshes into isomorphic meshes.

The input of isomorphic meshes computation algorghis a set of meshes with
generally different connectivity. The goal is ton@sh the input meshes so that they are
isomorphic. The following aspects of the isomorphieshes computation algorithms
are usually evaluated:

* mesh complexity,

* mesh quality,

e number of input meshes,
* method complexity.

The mesh complexity aspect is important when thmutirmeshes have many small
detailed features. Then the common connectivitytrbesdense enough to be able to
represent all features of all input meshes. Thehnmesility aspect refers to the shape of
triangles; usually long skinny triangles (sliveesg not convenient, because they cause
problems for example in shading (Figure 6.8). Nib&g, even if the input shapes have
good quality of triangles, the remeshed models nmyain triangles with a bad shape
because of the remeshing procedure. Another impodaspect is the number of input
meshes which it is possible to process. In a magpbetween two objects it is enough
to remesh just the source and the target meshgifc@nsider a morphing between
multiple objects, all input objects must be remesheast but not least the method
complexity and robustness is also important froengtactical point of view.

The simplest way how to generate isomorphic meshde modify some reference
mesh. This approach is usually used in commerggli@ations to generate so called
mor ph targets. Morph targets are meshes obtained by modificationertex positions
of the reference mesh. Facial animations are ysdaihe in this way. A user usually
models a neutral face expression (which is thereefe2 mesh) and then adjusts
positions of some vertices to create a specifie pression, e.g., a happy expression
is made by adjusting of vertex positions in theneorof the lips. If the user manipulates
just vertex positions then all new meshes createdh fthe reference model are
isomorphic. Another possibility how to model isomlic meshes is a free-form
deformation (e.g., bending, twisting or tapering®4]). By a free-form deformation
we usually change the overall shape but not theedivity.

5.1.4. Computation of isomorphic meshes — a related work

Hutton et al. [HutO1] described an algorithm to gate isomorphic meshes for models
of human faces. They first established a featureespondence by placing nine
landmark points (eyes, mouth, nose and chin). Ttiery, computed mean landmarks by
averaging individual landmark positions. Then, eanksh is warped onto mean
landmarks using thin-plate spline (TPS) technigee of the input meshes is chosen as
a reference mesh and the rest of warped meshesraeshed using the connectivity of
the base mesh. Then, the warped meshes are traesfdrack using the inverse TPS.
The result is a set of isomorphic meshes. The tiaguineshes were used to compute a
principal component analysis.

42

Kraevoy and Sheffer [Kra04] described an algoritiwvhich produces isomorphic
meshes with adequate number of elements and iemess the original shape of the
input meshes. First, a feature correspondencetableshed by manual selection of
corresponding vertices. Based on the feature quorelence, @ommon base mesh is
computed. The common base mesh is a coarse ap@tixmof the input meshes and it
has the identical connectivity for all input mesh&€se common base mesh partitions
the input meshes into patches. Triangles of the ntom base mesh are used as
parametrical domains for the corresponding patchis. patches of the input meshes
are mapped to the corresponding triangle of thenscombase mesh which provides a
parametrization of input meshes. Using the paramagiton, the target mesh is remeshed
with the connectivity of the source mesh. It resulh meshes with identical
connectivity. However, since the target mesh waseshed with the connectivity of the
source mesh the resulting shape is a poor appreximaf the original shape, therefore,
an additional smoothing and refinement steps apéepwhich minimize the difference
between the original shape and the remeshed shhpeadvantage of this method is an
automatic coarse mesh generation (in contrast tiedd). Also, the method can be
generalized for multiple input objects.

Michikawa et al. [MicOl] proposed to compute isoptuc meshes using
multiresolution representation. They first consttlia common base mesh. Similarly to
Kraevoy and Sheffer [Kra04] they dissect input nessinto patches according to the
common base mesh. Then each patch is parametnardaoplanar face of the base
mesh using Floater's shape preserving parametizat[Flo05]. Using the
parametrization the input meshes are remeshed dsiogl split$®. The advantage of
this approach is a semiregular connectivity. i&lso very easy to extend this approach
to more than two meshes. The subdivision schemé&snaaniaptively which means that
some areas of input meshes can be subdivided mooeder to capture some small
features. On the other hand, if one mesh contairal sletailed features which require
denser subdivision, also the other input mesheds misubdivided in the same way
even though it is not really necessary.

The approach introduced by Kent et al. [Ken92] waginally designed for two input
meshes. Briefly, it works as follows. Edges of theget mesh are inserted into the
source mesh so that the shape of source mesh mgamad; only the connectivity is
modified. The topology merging method represents itiput shapes exactly but it
produces meshes with large number of faces and fagght have bad shape. The edge
insertion involves computation of intersections evthimight be a weak point due to
numerical stability and robustness. A detailed dp8on together with our original
improvements of the topology merging method is deed in the Section 4.

Let us summarize the aforementioned approacheshén following table. The
complexity of the method will be characterized e tmost difficult part in the
computation.

7 In contrast to [Kra04] the common base mesh istaoted manually, i.e., along with feature verijce
edges and faces of the common base mesh must sieumded.

18 4-to-1 split is a subdivision of one face into faub-faces. New vertices are inserted in the nifdpo
of the original face edges.

43

Approach Mesh Mesh quality | Number of The most

complexity input meshes | difficult part
Hutton et al. given by the given by the |any thin-plate spline
[HutO1] base mesh base mesh interpolation
Kraevoy and | Optimal good any decomposition),
Sheffer [Kra04] remeshing
Michikawa et |according to thegood any decomposition
al. [Mic01] subdivision subdivision
Kent et al. Complex poor 2 remeshing
[Ken92]

Table 5.1:A comparison of different approaches for a compatadf isomorphic meshes.

5.2. Multimorphing — a related work

Next we will describe a related work in the areapdce of shapes generated by means
of morphing. Approaches differ mainly in the objegpresentation. Each representation
requires specific techniques for interpolation besw multiple objects.

Cheng et al. [Che97] constructed a space of shiapesa collection of base shapes.
They considered an implicit shape representatiosedaon spheres and blending
patches. The space of shapes is modeled as anemglonal manifold, where n is the
number of basis shapes. A shape is representecrygdntric coordinates of a point
inside an n-dimensional manifold. They sketche@joroach for a metric based on the
Hausdorff distance and using the metric they eammsi a stochastic process for
identification of base shapes.

Similarly to [Che97], Lee et al. [Lee99] approachbd space of images as a simplex
where an image is represented by barycentric coatels with respect to the simplex
vertices. They extended the traditional formulatmihimage morphing to morphing
among multiple images (denoted as polymorphing)eyThepresent a morphing
animation as a path inside the simplex where eaatt pf the path corresponds to some
intermediate image.

Alexa and Muller [Ale99] formalized a morphing b&t@n two objects as a morphing
function. Using the morphing function they deriveanorphing space and investigated
conditions under which the morphing space is line@lhe general concept is
independent of shape representation. They apprdableemorphing space as an affine
space. Elements of the morphing space are agaiesesgted by barycentric coordinates
with respect to basis shapes. They proposed asieeuprocedure to synthesize new
shapes, i.e., to compute a shape given by its eanyc coordinates within the
morphing space. They also propose an algorithnaratysis of existing shapes, i.e., to
express some shape as a convex combination oatig $hapes.

Rossignac and Kaul [Ros94]] described an approacbdmputing polyhedral shapes in
the space of all possible polyhedra. For morphietgvben polyhedra andB to obtain
intermediate t-variant shaj@¥t) they used a linear interpolati@{t) = (14) * A +t* B
where A, B are input shapeg,is a transition parameter which controls a morghin
betweenA andB. This relation combines shapA&sB and scalat. The multiplication
operator “*” denotes scaling and the addition ofmerd+” denotes Minkowski sum.

44

They further extended the interpolation among rpldtimeshes by introducing
parametric curves (Bézier curves) and bi-parampttches in the space of polyhedra.

Alexa and Mdller [Ale00d] analyzed the space of pg@sa by means of principal
component analysis. They focused on static connctnesh animations, where each
frame of the animation represents one element efsgface of shapes. Each frame is
represented as a 3*n vector where n is the numbgentices. The vectors for each
frame are organized into an m x 3*n matrix, wherasnthe number of frames. The
matrix is analyzed by means of principal comporemilysis in order to find a new
uncorrelated basis. Then, each original frame @expressed in the terms of the new
basis. This concept is used in their paper to cesgpithe animation, because it is
possible to choose from the new basis only theetulifsbasis vectors with the highest
importance.

Sloan et al. [Slo01] described an abstract spachapes which is defined by a set of
examples and their adjectives. A set of exampleshemogenous user supplied set of
shapes. Examples are characterized by adjectieesngtance, when shapes are human
faces then adjectives can be gender or age. Addltip the user has to annotate the
examples with values of adjectives, e.g., speaifyage and a gender of a human face.
The adjectives form an axis of the abstract spdsbapes. Then a smooth interpolation
of examples is computed by using radial basis fanst Using a smooth interpolation
new shapes can be generated by specifying valusdjedtives.

Our approach differs from [Che97] in the data reprgation, additionally we are more
specific about an analysis of a set of shapes badta metric on the space of shapes.
In [Ale99] a very general concept was introduced, e focused on concrete
representation, we can concretize a general idegaeomorphing function. Rossignac
and Kaul [Ros94] focused mainly on a novel morphteghnique (based on the
Minkowski sum) which was further extended to coesichultiple input shapes. Sloan et
al. [Slo01] considers the same representation asdwehowever, they focus on
synthesis of new shapes based on the values dft@ég and they also do not consider
an analysis of examples.

5.3. Morphing space

In this section we will approach the space of shage an affine space and a vector
space. We will show how general concepts of thmef§pace generalize for meshes
and we will introduce an inner product on the spafameshes.

5.3.1. Affine morphing space — space of shapes

In this section we will describe the Affine Morpliispace (AMS) which is an analogy
of an affine space. Definitions and propertieshef affine space suited for the computer
graphics community are given in [Mil99]. Elementstbe classical affine space are
points; elements of AMS are isomorphic mesheshénaiffine space we can compute an
affine combination of points. In AMS we can compateaffine combination of meshes
so that each vertex of the mesh is computed asfiae aombination of corresponding
vertices, i.e.:

R;=> WV}, (5.1)
i=1

45

whereR; is the resulting j-th vertexy; are weights of the affine combination a\v@i IS
the j-th vertex of the i-th basis mesh. Symbolicale will write:

S=xwS,i=12, ..., n, (5.2)

whereS are the basis meshes &ds the resulting mesh. An affine combination of n
basis meshes requires to specify weightsi=1, ..., n, so thaEw; = 1. Since we can
choose independently only n-1 weights, all shapeaioed by the affine combinations
of n basis shapes form n-1 dimensional AMS. A senmgase of the affine combination
is a linear interpolation between two shapes, e, classical linear morphing. In this
case there are two basis shapes and their condnsdibrm a one dimensional AMS.
Vertices of intermediate shapes move along lindmel# by the initial and the final
positions of corresponding vertices.

Note that the classical morphing usually genersbepes “between” the initial and the
final shape. Clearly the affine combination allogt®pes which are not only between
the initial and final shapes, but also shapes wihieh extrapolations of the classical
morphing, thus the affine combination generatesd@mclass of shapes than the convex
combination (i.e., the classical morphing). Negativeights in the affine combination
might cause flipping of orientation which may resal distorted shapes. Therefore, in
some cases it is convenient to restrict a gendfaleacombination to a convex
combination. In this case the intermediate shapk$iev‘between” basis shapes. In the
case of classical morphing the vertices will molang line segments defined by the
initial and the final position, in the case of nmibrphing the vertices will move inside
the convex hull of corresponding vertices. The thet vertices of intermediate shapes
move within some fixed region can be used for eXxamp the area of collision
detection [Lar03].

5.3.2. Morphing vector space

In the previous section we showed that the baspeshcan be viewed as elements of
the affine space and that they can be combined) wsinaffine combination to produce

new shapes. In this section we will show an analwfgy vector space. Elements of the
vector space are vectors which can be viewed atfon between two elements of an

affine space (i.e., points). We will use the concefpvector space to produce new

shapes by a linear combination.

In the affine space the subtractiBr- Q of two pointsP, Q results in a vector frorQ to

P in an associated vector space. In AMS two shapeswbtracted by subtracting the
corresponding vertices. The result is an n-tuplevettors which we denote as a
morphing vector. Its components are vectors of trajectory which wilk refer to as
trajectory vectors (in fact, the morphing vector is an n x 3 matwhere each row is a
3d vector but we will use the term vector inste&dnatrix to be consistent with the
terminology of the vector space). Morphing vectars elements of the Morphing
Vector Space (MVS) which is an analogy of a vesfoace. So the MVS is a space of
trajectories. A morphing vector is computed as:

v, =Vi-VY, (5.3)

I

46

where Vjo, le are corresponding vertices of the initial andfthal shapey; is the j-th

component of the morphing vector. Symbolically wid write v = B — A, whereA, B
are shapes andis the morphing vector.

Addition of a pointP and a vectov results in another poift’ which is translated by an
amount given by the vector, i.€, = P + v. Addition of a shape and a morphing vector
results in another shape whose vertices are ttedslay the amount given by the
components of the morphing vector. Symbolically wik write B =A + v, whereB is
the resulting shape obtained by adding a morphewgorv and a shapA.

Scalar multiplication of a morphing vector is reggpted in the MVS as a scalar
multiplication of individual components of the mbarpg vector. Similarly, the vector
addition is represented by vector addition of indil components of morphing
vectors. Note that MVS is closed under scalar miligttion and vector addition.

In Figure 5.1a) there are two shapes — a squareaatrthngle. Arrows represent
components of a morphing vector, i.e., trajectoaksertices when morphing from the
shape of triangle to the shape of the square. &igutb) shows symbolically basic
operations between shapes and morphing vectors. fifbie symbolical relation
represents a computation of a morphing vector. Sdwnd relation shows an addition
of a shape and a morphing vector which resultsniotreer shape. The third relation
demonstrates an addition of a shape and a 0.5pteuldf a morphing vector which
results in a halfway shape between the triangleta@dquare.

Figure 5.1:a) an example of morphing between a square andrayke, arrows represent individual
components of the morphing vector, b) a symbokegiression of morphing vector computation (1), an
addition of a shape and a morphing vector (2) anddalition of a shape and a scalar multiple of a
morphing vector (3).

Note that the MVS is a space of morphing vectarst does not contain any shapes, but
the elements of MVS are used to construct new shiapadding a shape from the AMS
and morphing vector from the associated MVS. Elémeha vector space are usually
represented as a linear combination of basis v&ctdhe number of linearly
independent basis vectors gives us the dimensitimeofector space. For examp, is

a two-dimensional vector space spanned by basterged, 0) and (0, 1).

In the MVS the basis morphing vectors are constaiets follows. Let us have n basis
shapedM;, i=0,...,n-1, without a loss of generality let uskithe shapéy as azero

47

element shape and compute the basis morphing vecigrs M; — My, j=1,..., n-1. Note
that the elemen is an analogy of the zero element veaan the classical vector
space.

It is clear that by addiniylo andv; we obtainM;. The classical linear morphirig;(t)
between two shapéd, andM; is computed adl;(t) = Mg + v;(t) wherev;(t) = t.v;, t O
<0; 1>, i.e., a scalar multiplication of the vectpbyt. It is also demonstrated in Figure
5.1b) in the third symbolical relation. Basis mdnghvectorsv are combined by means
of a linear combination to compute new shapes, i.e.

M (W1, ...,Wn1) = Mo + Zwv;, i=1,..., n-1, (5.4)

wherew; are coefficients of a linear combination. It isan that ifw; = 0, i=1, ..., n-1,
thenM(ws, ..., Wh.1) = Mo. Note that n shapes generate n-1 dimensional AM&
note that ifxw; = 1 then the terrVl cancels out - it has no meaning - and Eq. 5.4sturn
to the affine combination of shapes as defineddatiBn 5.3.1. IEw; # 1 then the task
of My is to “stabilize” the morphing. The linear comiina of basis morphing vectors
can be rewritten as an affine combination of bakapes so that the weight of the zero
element shape is Dw;, i=1, ..., n-1.

So, why do we bother with the zero element shapkeifsame result can be achieved
with the affine combination? It is mainly becaudeaauser interaction. First, the zero
element shape is usually some “neutral” shape dbefuser does not specify any
weights in the Eq. 5.4, the resulting shape is tlustneutral shape. Second, the concept
of the zero element shape allows us to work iradohtive way as for example in the
RGB color system, where by adding color componamsobtain brighter colors. For
instance, let us have face expressions. A neuteglesis some neutral face expression
and the basis shapes contain some simple face ssxpme— e.g., “left eye closed”,
“right eye closed” or a “smile” expression. The plmface expressions aadded to the
neutral face expression to create a new complexdapression.

Additionally, the morphing vectors express the atiéhce between the zero element
shape and some specific shape. If the differenoalisin some local area (e.g., one eye
closed) then the morphing vector is a sparse veatoich might be useful for instance
for some efficient encoding. For example, to repnéshe morphing vector as a list of
tuples (i,v), wherev is a non-zero component of the sparse morphintprvea the i-th
position.

With an analogy of vectors we can now define areinproduct which is used to
introduce a norm on the space of shapes.

5.3.3. Aninner product in the AMS

In order to define a norm in the space of shapeshave to introduce an inner product.
We define the inner product as a sum of dot predattcomponents of the morphing
vector. We will denote such an inner product ascaph dot product. The morph dot
product is computed as Frobenius inner productarpimvectorsy, v, i.e.:

W= Uy, (55)

i=1 j=1

48

whereu, v are n-component morphing vectors and each compahan m-dimensional
vector. Note that the inner subu;V; is the classical dot product of i-th components of
the morphing vectors, v. The components of a morphing vector are 3d (pv2dtors
from the Euclidean space. In the Euclidean spacarar product is defined (denoted
as dot product). Then our definition of the innesquct is correct as well because it is a
sum of properly defined dot products and it fusfiflll properties of the inner product
(i.e., it is distributive, commutative and posifivBy defining the morph dot product we
can introduce a normxj on the space of shapes:

I(X) = (x,X) , (5.6)

wherex is a morphing vector. Using the norm we can comgaiapes of the AMS. The
distance between the poitsandB is the size of the vecterobtained ag =B —A. In
the same way we can compute the distance betweeshtpe$1;, M, which is a sum
of distances between corresponding vertices. Ifdisance is zero then the shapés
andM are identical.

Note that the norm takes into account only relagigsitions of corresponding vertices,
So it is not possible to capture scaling or rotatibor instance, let us have two input
objects where the other object is the uniformlylextdirst object. Even if the overall
shape of both objects is the same, our norm widldyinon-zero value since
corresponding vertices are not coincident. In tlaise the input shapes must be properly
aligned first and the effects of an affine transfation must be eliminated [Ale00d].

5.3.4. Orthogonal projection

We use the concept of the orthogonal projectiorexpress a shap® as an affine
combination of basis shapes. First, let us brid#igcribe the concept of the orthogonal
projection in general. Denole a vector space spanned by linearly independens$ bas
vectorsby, by, ..., bn1. Denotel o a subspace df spanned by basis vectayg gy, ...,
Om-1, M < n. The vectov, is an orthogonal projection efl] L iff (i) vo O Loand (ii) (—
Vo)lgi, i=0, ..., m-1. The condition (i¢an be expressed 85=A0go + A101 + ... + Am-
19m-1. By substituting the condition (i) into the condit (i) and by expanding the dot
products a linear system is obtained:

(V,90) = 4,(90.90) + A,(91,90) +---+ A1 (9 102, 90)

(V,9;) =45(90,9;) +4,(9,,09,) +.-+ A,1(91n4,91) (5.7)

(Vs9m-1) =40(90,9m1) ¥ A(9:,90m) + oo+ A1 (900, 91na)

Note that the matrix of the linear system contalfispossible inner products — it is
called a Gram matrix. By solving the system we wbtaefficientsAg A1, Am.q0f a
linear combination which expresses the orthogomajeption ofv to Lo. The system
can be solved only if the Gram matrix is reguldre TGram matrix is regular if the basis
vectorsdo, g1, ..., Om-1 are linearly independent. The orthogonal projecgmarantees
the “closest” approximation of the vecterin the subspacé,. The closeness of the
projection is of course expressed with respechdefined inner product. Note that

49

v —Vvo| expresses the distance between the original ve@nd its projectiowg. If v —
Vol is zero thewng I L.

Since we introduced the morph dot product in thetiGe 5.3.3, we can compute
orthogonal projections of morphing vectors. We wslhow an algorithm which
computes a projection of a shep@to a subspace spanned by shdhes0, ..., n-1.

Input: a set of shape® = {B}, i=0, ..., n-1, a shap& to be projected
Output: S’ — the projection 0§

Without loss of generality, picBy as the zero element shape.

Compute the basis morphing vectgysB; — By, j=1,..., n-1.

Compute the morphing vecter= S — By.

Compute the Gram matrix (Eq. 5.7).

If the Gram matrix is singular eliminate an arbiyrahape fronB and continue
with the step 1.

Solve the linear system fdg, Ay, ..., Am-1.

7. Compute the projectio8’ =Bg + A0k, k=0, ..., m-1.

ogkrwbR

o

Additionally, a distance between the original sh§mnd the projected shafe can be
computed using the norm (Section 5.3.3). If theéatlise is zero, then the shapés an
element ofL, (i.e., it can be obtained as an affine combinatbrbasis shapeB;).
Otherwise, the distance represents an error cdippeoximation. Note, that in the step 5
the algorithm essentially checks for a linear irefegence of the basis shapes. In linear
algebra, a set of vectors is linearly independenbne of them can be expressed as a
linear combination of vectors from the set. In MMSmorphing vectors are linearly
dependent then it means that some of the basiseshaan be obtained by a linear
combination of the other basis shapes. Naturalbgtaf basis shapes with no redundant
shapes is required. Therefore, the steps 1-5 caisdxeto compute linearly independent
set of basis shapes.

Alexa and Muller [Ale99] introduced a concept ofreorphing function m&, B, t)
where the parametes, B are input shapes artdis a transition parameter, which
expresses the contribution of an input shape tdfitteé shape. Thus, the orthogonal
projection can be viewed as an inverse morphingtfan m*(A, B, C) which computes
the value of the transition parametaf the shap€ when morphing betweeh andB.
Of course, if the shap€ does not “lie betweenA and B, thent is the transition
parameter of the projection d@ to the morphing space spanned Ay and B.
Furthermore, the concept of the orthogonal propecis not limited just to two shapes
(1D morphing space), so we can project to any-dsieal morphing space.

5.4. An exploration of the space of shapes

In this section we will describe user interactiogpects of the multimorphing.
Theoretically, new shapes are generated by spegifyeights of a linear combination
of basis shapes. In an implementation, it is uguddine by a set of sliders where each
slider controls a contribution of one basis shapge number of sliders is given by the
dimension of the morphing space. It is clear thahipulation of large number of sliders
might be complicated. Moreover, it is even hardeewwe want to maintain sum-up-
to-one condition for computation of affine combioas. Therefore we propose two

50

alternative ways how to control the synthesis of shapes — barycentric coordinates
and curves in the morphing space.

5.4.1. Barycentric coordinates

Barycentric coordinates allow a coordinate-freereggion of a point with respect to a
triangle; they are infinitely differentiable, soeth provide a good technique to
interpolate data given in the vertices of a trianglThe concept of barycentric
coordinates can be directly generalized for n-disr@mal simplices. Other

generalizations were proposed for general n-siagezular polygons [Mey02], 3d

convex and star-shaped polyhedra [Flo05] or forveansets [War06]. An important

property is that they fulfill sum-up-to-one conditiso they can be directly used for the
affine combinations of shapes.

First, we will describe the use of barycentric cbhoates for a triangle and later we will
discuss possible generalizations and their lingtegiwith respect to the multimorphing
application. First, let us have three basis shapks.key idea is to associate the basis
shapesB,, B;, B, with the vertices of a triangMy, Vi, V2. By picking a pointP from
inside (or possibly outside) the triangle we campate the barycentric coordinaigsy,

w of P with respect to the triangle and use the baryeeotiordinates as coefficients
when computing an affine combination of the bakepgs. It is clearly easier to pick a
point from a triangle than to independently spethiye values.

By picking an arbitrary vertex of the triangle wbtain the shape associated with the
vertex of the triangle (Figure 5.2a). By pickingpaint on an edge of the triangles we
obtain a shape computed by morphing between thgeshassociated with the endpoints
of the edge, by picking a point from the interidrtloe triangle we obtain a mixture of
all three basis shapes. Clearly, a sequence ofgpgamerates a sequence of shapes, i.e.,

an animation.
B

b) c)

Figure 5.2: a) an association between a point (the red crasd)aashape, b) a sequence of points
generates a sequence of shapes, c) the sequesitapes.

Considering the triangle as a geometrical reprasient of the morphing space, the user
associates shapes with a point. It is considerabfier to reproduce a point position
than some complicated shape. Additionally, the Ursex a notion of distances in the
space, i.e., if a poirR is close to some triangle vert®k, the resulting shape will be
influenced most by the shaf associated with the triangle vert®% Analogously,
when specifying points close to the edge, the tiegushape will be mostly a mixture of
shapes associated with the endpoints of the edgeilaBy, in the geometrical
representation of the morphing, the morphing anona represented as a curve. So it
is possible to associate the whole morphing tremms(fpossibly very complicated) with

51

a simple curve. It is demonstrated in Figure 5\@bgre the red line segment represents
the glass animation depicted in Figure 5.2c).

Since the computation of barycentric coordinates lwa generalized for n-dimensional
simplices, we can use the same idea for four Isipes and a tetrahedral simplex. By
picking an inner point of the tetrahedron we campuote affine combinations of four
basis shapes.

The problem of higher dimensions (n > 3) is thas ihard to imagine and display an n-
dimensional simplex and it is not easy to pick p®iinom higher dimensional simplex
using conventional input devices.

A generalization of barycentric coordinates forigied polygons [Mey02] can be used
for higher dimensional morphing spaces. Again, lthsis shapes are associated with
vertices of the polygon and by picking points fraimre interior of the polygon
coefficients of a convex combination are obtain@enerally, all coefficients of the
convex combination are non-zero (except the cademnva point lies on a polygon
vertex or on a polygon edge). It means that, usingolygon as a geometrical
representation of a morphing space, it is not jpbsdb generate a shape which is a
mixture of a subset of basis shapes. For instagicen 5 basis shapes, it is not possible
to generate a mixture of only 3 basis shapes, Isecthe coefficients of the convex
combination of a point inside a polygon are norez&o it means that using barycentric
coordinates for polygons we cannot access the wdpdee of shapes. Note that in the
case of tetrahedra it was possible to compute aaatibns of 1, 2, 3 or 4 shapes, which
corresponds to points on a vertex, on an edge, faca or generally inside the
tetrahedra. In case of four sided polygon only mlmmation of 1, 2 and 4 shapes can be
computed. The same problem will appear in 3d gémateon of barycentric
coordinates [Flo05, War06].

5.4.2. Curves in the morphing space

Another interesting way how to easily generate ehajp the space of shapes was
outlined by Rossignac and Kaul [Ros94], but theypsidered a different morphing
technique (Section 5.2). We consider a boundaryesgmtation and we propose a
generalization of de Casteljau algorithm, which d¢sn used for fast generation of
shapes. De Casteljau algorithm for morphing camudexl for other representations as
well. We will briefly review the basic idea and theve will describe our extensions.
Rossignac and Kaul proposed the so called Bézigammphosis which is motivated
by a classical Bézier curve. As the points of ai®&éeurve are computed as convex
combinations of control points, the Bézier metarhogis consists of shapes which are
convex combinations of the control shapes. Rossigmal Kaul defined the convex
combination of objects using the Minkowski sum anéling.

Our basic idea is the same as Rossignac’'s and Kfrts94]. Control points of the

Bézier curve are replaced by the control shapesohapute a point on a Bézier curve,
Bernstein polynomials must be evaluated. The diffee between Rossignac’s and
Kaul's approach and our approach is that we use whlees of the Bernstein

polynomials in the convex combination of the cohsfmapes (Eq. 5.2) while Rossignac
and Kaul used them for scaling of control shapeghvare subsequently added using
the Minkowski sum. By replacing the control poifitg the control shapes, a Bézier
curve in the space of shapes is generated. Thie duas analogous properties as the

52

classical Beézier curve. It interpolates the firstdathe last control shape and it
approximates intermediate control shapes.

Bézier metamorphosis can be viewed as a new wagsining morphing animations.
In the classical morphing a user chooses two shbpéseen which some smooth
transition is computed. Then, the transition caratjeisted by introducing other shapes
which bend the animation so that the initial and the finahysés are preserved but the
intermediate shapes are influenced by the additsimgpes. The amount of influence is
given by Bernstein polynomials. Note that usings titiea is extremely easy; the user
just adds intermediate shapes to adjust the multihiog animation and it is still
controlled by one parameter.

Interesting and useful property of Bézier curvetha they can be generated using de
Casteljau algorithm. De Casteljau algorithm is aursive subdivision of a control
polygon. It is used to evaluate a point on a Béeziave using a sequence of linear
interpolations. In the multimorphing, instead ok thnear interpolation, a classical
morphing function is used to compute a shape oezaeB curve in the space of shapes.
It is depicted in Figure 5.3a), where the classmalphing between two glasskk; o
andMg is influenced by additional shapbk, o, M3 0. The first subdivision results in
shapedM 1, M, 1, M3, the second subdivision results in shadas, M, and the third
subdivision results in the final shapg0,5).

a) b) c)
Figure 5.3:a) a demonstration of the de Casteljau algoriththié multimorphing setting, b) a quadratic
Bézier curve in the morphing space, ¢) a cubic &éairrve in the morphing space.

We propose two approaches for Bézier morphing caation. In the first approach we
compute values of Bernstein polynomials for a gitzehhe values are used as weights
in Eg. 5.1. This approach considers isomorphic m&sbr polygons. The second
approach is based on the de Casteljau algorithrhit Akquires is just a classical
morphing function. So it can be used in any areare/la morphing between two objects
(shapes, volumes, images, etc.) is defined. Fomplag if we are able to morph
between two meshes with different connectivitieg, gan use the Bézier morphing
among multiple basis meshes with different connés as well, since we just apply
repeatedly a morphing function on two meshes. Butus remind that it might be
computationally expensive because in each stelpeodié Casteljau algorithm the whole
morphing function must be computed (including tloerespondence computation and
the remeshing), which is not a problem in the fiygproach for the Bézier morphing.

53

The de Casteljau algorithm is a subdivision scherieh converges towards a Bézier
curve. In a similar manner as we subdivide the eume can subdivide a morphing
animation. In each subdivision stage we can adalgticontrol the depth of the
subdivision. In the case of curves the curve isdsudbed until a small relatively flat
segment is generated or until a segment is sm#ien a pixel size (in case of
generating a curve on a raster device). In eagesththe subdivision process we have
two shapes. We can adaptively control the depthhef animation subdivision by
comparing these two shapes and possibly stop fughlkedivision. Of course, some
function which compares shapes is required. Gelgevadé can use some measure based
on the Hausdorff distance to compare two shapewxeSwe work with isomorphic
meshes, we can use the measure introduced in 8&c8ad3. Or, for example, we can
compare some scalar quantity of the two shapes, (@tume or area) and stop the
subdivision if the quantity difference is small. ik this approach we can generate a
morphing animation which is parameterized by an @amof the shape transformation
(and not by an artificial transition parameter).r fastance, it should be possible to
reparametrize the animation so that the voluméefthapes changes linearly.

Clearly, the Bézier curve in the morphing spacereskks just a small subspace of the
entire morphing space. It generates just convexbawetions of basis shapes. Simplicity
of the use is paid by less control over the whotephing transition. One possibility
how to control an influence of some specific basiape (except the initial and the final)
iIs an increase of multiplicity of the basis shaffewe want some basis shape to
influence more on the morphing animation we jugteet¢ the basis shape in the
sequence of control shapes. It is demonstratedguré5.3b), where a quadratic Bézier
curve in the morphing space is depicted. In FiguBz) we wanted to emphasize the
glass shape, so we increased the multiplicity efglass shape. It can be seen that the
intermediate shape is closer to the glass shape.

The idea of Bézier curves can be generalized foerotypes of curves as well. For
example, rational Bézier curves have similar pripgras Bézier curves, but each
control shape can be explicitly assigned a weifjhtan be useful when we want to
change the influence of some basis shapes. It ea@obe by increasing the multiplicity
of the basis shape but still the weights are gibgrBernstein polynomials, whereas
using the rational specialization of Bézier curvihe weights can be adjusted more
precisely. Another well known type of curves is [@ise curve. Besides, it has a local
support which means that by changing some of cbstrapes we do not change an
entire animation but just a local part of the artiora B-splines are defined by
specifying an order of basis function (which implign extent of the local support) and
by a knot vector. There is also an analogy of dsté€ljau algorithm for B-spline
generation which is called de Boor algorithm. Aigaal specialization of B-spline
curves are NURBS curves, which in addition to tlegrde of basis function and the
knot vector introduce weights for each control ghap

The idea of generating one-parametric curves in rttegphing space can be also
generalized for multi-parametric objects as wetir Example, a bilinear patch can be
used to control the morphing among four objectsat be useful, e.g., for controlling
LOD morphing animations where one parameter costiteé shape transition whereas
the second parameter controls the level of detail.

54

5.5. Examples of use of our apparatus

Using our apparatus we can construct new shapesvanways — by a convex
combination of shapes or by a linear combinatiormairphing vectors. In fact both
approaches can be expressed by an affine commn&id let us consider both cases
separately because we use each apparatus in tystiferent situation.

5.5.1. Shape synthesis — convex combination

The convex combination of shapes is used when rioetement shape is specified, i.e.,
all basis shapes are on the same level. As an dedetpus show a multimorphing
between an apple, a lemon, an orange and a pear¢Fs.4a). In this case no shape has
a special role, all shapes are equal. Shapes urd=i§.4b) and c) are examples of
convex combinations of basis shapes.

[0.20; 0,20; 0.20; 0.40] [0.05; 0,80; 0.10; 0.05]0.10; 1,60; 0.20; 0.10] [-0.90; -0.26; 0.10; 0.96]
b) c) d) e)
Figure 5.4: a) basis shapes, b), c) an example of a convekioation, d) an example of linear
combination, e) an example of linear combinatiothwiegative weights.

An affine combination of shapes is theoreticallyllvaefined too but it may produce
distorted shapes as shown in Figure 5.4e). Itcaulge it accesses an extrapolation area
of the classical morphing (in the same way ashaldffine combinations of two points
fill a line in contrast to the convex combinatiombich fill just a line segment). One
effect of accessing the extrapolation area of tlgpimng is a flipping inside out of an
orientation of triangles and their normals whichsules in distorted rendering
(wireframe triangles in Figure 5.4e).

The shape in Figure 5.4d) shows a result of adinembination of shapes, i.e., sum-up-
to-one condition was violated. Weights of the Imeambination can be normalized to
obtain convex combination, i.e.:

W

anWj ’ (5.8)

w'=

55

wherew; are original weightsy;” are normalized weights. By normalizing weights of
the third shape (Figure 5.4d) the second shapeir@ig.4c) is obtained. It can be also
seen that the third shape is just a scaled vexdidhe second shape where the scale
factor is 2, i.e., the sum of weiglsw;, j=1,...,n [KluO4]. So, the linear combination
does not bring a wider shape variety than the afiombination, it generates the same
class of shapes but it just introduces an additionéorm scaling.

Another problem with a non-affine combination apgewhen interpolating surface
attributes as for example color. Color is usuatiieipolated with the same weights as
geometry [Par04] and it can happen that the regultiolor jumps outside a color
system. Then the color must be clamped to valuésirwihe color system. A similar
problem appears for the normal vector computat&anlong as we compute an affine
combination of unit length normal vectors the resas still a unit length, but in the
case of non-affine combination, the normal vects to be renormalized.

5.5.2. Shape synthesis — linear combination of morp hing vectors

We discussed the motivation for the concept of @ smement shape in the Section
5.3.2. Next, let us remind that the linear comboratdoes not restrict the sum of
weights, but it is convenient that each individuwadight is in the interval <0; 1>,
otherwise we access an extrapolation area of #ssiclal morphing.

We will demonstrate the concept of a zero elembaps on an example of four hand
gestures which are depicted in Figure 5.5a). Weidamtify a zero element shape as an
“all fingers straight” gesture; simple gestures b, middle and right finger bent.
Simple gestures are added to the zero element $bag®ain more complex gestures,
e.g., two fingers bent. With respect to the zeremant shape we generated three
morphing vectory; = M1 — My, Vo= M, — My, v3 = M3 — M. It is clear that by adding
the shapeM, and a vector; we obtain the shapd;. By adding all three vectors we
obtain an “all fingers bent” gesture.
L Vi V2 V3
)

%WJLVZ(%;M)% -
IR RIS

b) c)

Figure 5.5: a) basis shapes, b) examples of a linear combmatifobasis shapes, c) a graphical
representation of morphing vectors.

On the other hand, when combining shapéds, M1, M,, M3 using a convex
combination we would never achieve a gesture wheme or three fingers are
completely bent. Thus, the linear combination ofrphing vectors allows us to
generate a wider class of shapes than a convex icatitm. Examples of linear
combinations of morphing vectors are shown in Feg&r5b). The first symbolical
expression combines shapds, M, andM 3, where the shapdd, andM3; bend one

56

finger (left one and right one), the result is amtwith two fingers bent. Similarly, the
second symbolical expression combines the shisfped1, andM,, whereM; andM
bend one finger (the middle one and the left otfe;result is a shape with two fingers
bent. Note that such shapes cannot be obtained csitvex combination apparatus.

Note that the morphing vectovs, v, andv; are really sparse because they contain just
trajectory vectors to bend one finger. Also, irstekample, we can work with shapes in
the additive way, because each time we add somphimgy vector to the neutral shape
we add some specific gesture. By adding all thre@phing vectors we obtain a
complex “all fingers bent” gesture. Morphing vestaare depicted in Figure 5.5c),
where the white regions represent zero componettstee gray regions represent the
non-zero component. It can be seen that the nan-@@nponents are disjoint among
morphing vectors which correspond to the fact #wth morphing vector represents a
movement of a local part of the mesh which is ddjamongM i, M, andM .

5.5.3. Shape analysis

Now let us have a reversed problem, given a sethapes of interest, we want to
analyze the set, to find the basis shapes ang to #xpress the elements of the set with
respect to the basis shapes. Usually we want tmerdiion of the morphing space as
low as possible so that the elements of the setbeaexpressed with respect to a
relatively small number of basis shapes. The esddnbl in the shape analysis is the
orthogonal projection (Section 5.3.4) which canused as an analogy of the inverse
morphing function [Ale99].

We will demonstrate the orthogonal projection ofobowing example. We have 5
basis shapeB;, i=1,..., 5 which represent fish contours (Figuré)5Let us denoté a
space of shapes generated by basis shBpeB,, ..., Bs. We computed 5 different
shapesM;, i=1, ..., 5 as a convex combination of basis skaff-igure 5.6b). Each
shape is represented by 5 weights which expreestalaution of the basis shapes. As a
subspacé. of L we choose 1 dimensional space of shapes spannttk lshape8;
and Bs. Using the algorithm described in Section 5.3.4 aeenputed projections of
shapes from Figure 5.6a) to the subsgdageThe projected shapes are shown in Figure
5.6c). The key benefit is that each shapkdns represented by one weight (in contrast
to 5 weights needed to express a shage) iwhile the difference between the original
shapes and their projections is small. The shiypgsMs are approximated exactly
because they form a basis morphing vectok ©fThe difference between the original
shapes and their projections can be seen in Fig&d), where the black shapes are
original shapedl,, M3, M4 (elements of.) and the blue shapés,’, M3, M4 [OLoare
projections oM., M3, M4 L.

57

< (O (=i

Bl BZ B3
a

P

M,=[1,0,0,0,00 M,=[0.004;0.047; M;=[0.063;0.250; M,=[0.316;0.422; Ms=][0,0,0,0,1]
0.211; 0.422; 0.316] 0.375; 0.250; 0.063] 0.211; 0.047; 0.004]

N S

M ,'=[0] M,'=[0.23] M y=[0.26] M ,'=[0.40] Me=[1]

Figure 5.6: a) basis shapes, b) combination of basis shapesthtjgonal projections, d) comparison of
original shapes (black) and their approximatiomép)

In the previous example we showed how the orthdgprgection can be used do

reduce the dimension of the morphing space by ¢hgospecific basis shapes and
projecting elements of the original morphing to tbwer dimensional morphing space.

We also showed the difference between the shaffeioriginal space and the shape in
the space with lower dimension. The concept ofdtirogonal projection can be also

used for an analysis of unknown shapes, i.e., shagere we have a geometrical
description but we do not know the representatioti® shape with respect to the basis
shapes. For instance, let us have a shape progesgtem which has some built-in

basis shapes. New shapes which enter the systeex@nessed in terms of built-in basis
shapes by projecting a new shape to the spaceapesigenerated by the built-in basis
shapes.

In the following example (Figure 5.7) we will denstrate a computation of linearly
independent set of basis shapes. Let us haved &eir basis shapesBy, B;, B, and
Bs. Intuitively, the shap8; can be obtained by combining shapgesandB, with By as
a zero element shape. This can be confirmed by gbngpthe Gram matrix (Section
5.3.4) of MVS spanned bRy, ..., Bz which is singular. Alternatively, we can try to

58

project the shap®; in a subspace spanned by the shahg®i, B,. Note that it is
possible because the shap&s B;, B, are linearly independent. As a result, of the
orthogonal projection, coefficienty = 1.0,4, = 1.0 are obtained. Thus, the projected
shape is

Bs = Bg + 1.(81—80) + 1.(82—80).

By computing the distance (Section 5.3.3) betwden grojected shapBs; and the
original shapeB; it can be seen that the shapes are the same, wieens that the
shapeB; can be expressed in terms of shapgdB1, B,. Hence, by removing the shape
B3 from the set a linearly independent set is obthilN®ote that, instead of removiiig,
e.g., the shapB; can be removed. Then, the sh&ean be still obtained as:

B, =Bg+ (-1)(82 —Bo) + 1(83 —Bo)

and the shapddy, B,, B; form a linearly independent set.

| o

Bo B, B> Bs

Figure 5.7: An example of linearly dependent shapes.

5.5.4. Exploration of space of shapes

In this example we used four hand gestures as lswmipes. We used the Bézier

morphing to produce an animation of a waving hdinchn be seen that the basis shapes
are too extreme for the waving hand animation, ites fingers are bent too much. The

Bézier morphing attenuates the influence of theerimediate shapes. We used a
sequence of basis shapds, M1, M,, M3, My, i.e., the animation starts and ends in the
shapeM,. The basis shapes are depicted in Figure 5.8a)santt frames of the

animation are depicted in Figure 5.8b).

a) b)

Figure 5.8: a) basis shapes, b) some frames of the resul@ving hand animation.

Mg M; M, Ms

Note that this animation can be produced by any tebich supports a linear
combination of basis shapes (e.g., 3ds max). Horwvegeng the linear combination, the
user must control all four weights to precisely midthe final shape. On the other hand,

59

using the Bézier morphing the user manipulates tlustcurve parameter, while the
weights are generated automatically by Bernstelgnpmials. Clearly, controlling the
animation by direct manipulation of the weights nwre general, but the Bézier
morphing is easier to control.

5.6. Summary and possible extensions

In this chapter we described a generalization afpmiog, called multimorphing, which
extends the idea of classical morphing between $ivapes to morphing between
multiple shapes. The classical morphing generdtapes between the initial and the
final shape and the morphing transition is congiblby one transition parameter (in
animation understood as a time). By gradually chrapghe transition parameter a 1-
dimensional space of shapes is generated. In thiinmmotphing setting it is not
straightforward how to systematically generate sbBapherefore we proposed an
approach where we handle the morphing space asaogy of an affine space and a
vector space.

In the examples we showed how to generate new shhgeaffine and linear
combinations. We can also use our apparatus tyzanabme existing set of shapes —
we showed how to find basis shapes and how to sg@lements of the set with respect
to the basis shapes. A general technique of ortielgarojection is used to compute a
representation of shapes with respect to the bsisgpes. Using the orthogonal
projection we can project shapes from generallhéigdimensional space to a lower
dimensional space, thereby reduce the data need®gtess the shape. By introducing
the norm on the space of shapes we also know tioe ef the projection. We also
discussed some user interaction aspects of gemeratinew shapes (i.e., barycentric
coordinates and curves in the morphing space),iwtoald help when implementing an
editor for shape generation.

We considered shapes represented as triangularemasid polygons; nonetheless, the
method works just with vertex positions, so it d@nused in any representation where
the shape is induced by the points (e.g., poinedaspresentation). Additionally, the

idea of Bézier morphing using de Casteljau algaritls very general, so we think it

could be used for morphing of any representatiofoag as a morphing between two

objects is defined.

By introducing an analogy of the morphing space anéctor space and by introducing
a norm on the morphing space we open a big area fisiure research, because we can
now generalize concepts well known from the Eudidespace as, e.g., the area.
Another interesting field is the analysis of setsloapes, where we used a concept of
orthogonal projection. In this chapter we showed ho choose linearly independent
basis shapes to represent some set of shapesg ifutiire research, it would be
interesting to compute basis shapes not from thefsmterest but to compute some
artificial basis shapes so that the number of bsisépes is as low as possible and all
shapes of the set can be represented with respdbeetartificial basis. This would
probably lead to some optimization problem, egast squares fitting.

We also think that our approach can be generaliaedther representations as well.
For example, raster images consist of pixels. $imalar manner we could define affine
combination of raster images, a vector represamtatescribing a difference between
zero element image and some basis image, inneugrod a space of images, etc.

60

6. Normal computation for
deformable meshes

In this chapter we will focus on one of the latirges of the morphing process — normal
computation. In the case of triangular meshes, niblenal vectors are essential for
rendering. At this stage, we consider that somepiing technique computed two

isomorphic meshes which will be interpolated limgarTogether with the shape

interpolation, the normal vectors must be interfemlaas well to be able to render the
intermediate shapes. We have already describedsolo¢ion in Section 4.3. In this

chapter we will describe a drawback of this methad we will suggest some

alternative solutions. The contribution of this ptea does not apply only for mesh
morphing — generally it can be used to compute abwectors of any deformable

meshes, e.g., garment simulation, collision detaabdf deformable meshes, etc.

In the further text we will briefly review a relatevork (Section 6.1). Then we will

introduce a t-variant cross product which is ada$ia new method for the computation
of normal vectors for deformable isomorphic mesf&esction 6.2). In the case of the
triangular meshes, we distinguish between face alsrntnormals of triangles) and
vertex normals. It will be described in the sectién3 and 6.4.

This research was done in cooperation with AndastHJnivesity of Gavle, Sweden,
who sketched many interesting ideas. Some of thene ¥urther investigated and they
also appear in this chapter.

6.1. Related work

A normal vector to a surface is a vector perperidido it. In the differential geometry

the normal vector of a smooth surface can be coedpby taking cross-product of

partial derivatives. However, the triangular mesla ipiecewise linear approximation of
a real surface, thus the normal is usually compatey for the vertices of the mesh and
for the rest of the surface the normals are infatpd. Basically, the normal vector
determines an orientation of the surface; therefbie extensively used in shading,
collision detection or mesh editing.

6.1.1. Vertex normal computation

Vertex normals can be computed from an arbitragngle mesh in many different
ways. One of the most often used approaches i®nguote the vertex normal as a

61

weighted average of normals of faces which aredardi to the vertex. An overview and
a comparison of different weighting schemes is give[Jin05]. The basic relation is:

ny=Ywn,, 6.1)

whereny is the vertex normal of the vert& n; is a normal of a face adjacent to the
vertexV andw; is a weight of the face normaj. The simplest form of the weighting
scheme is to set all weightg to 1.0, then each face normal contributes equalihe
resulting vertex normal. Other schemes considerféice that faces adjacent to the
processed vertex have different size and therettoeg contribute differently to the
resulting vertex normal. Some weighting schemesanmemarized in Table 6.1.

Weighting Description
scheme
equal weighting| all faces contribute equally to tkeulting face normal, regardless
the area or the angle
angle weighting| considers the angle under whichfdioe is incident to the vertex,
i.e., faces with larger angles contribute morehi tesulting vertex
normal
area weighting | considers areas of faces incidenthéo vertex, i.e., larger faces
contribute more to the resulting vertex normal

inverse area | considers areas of faces incident to the vertexallem faces
weighting contribute more to the resulting vertex normal

Table 6.1: Some weighting schemes for the vertex normal coatjmut.

The use of a specific weighting scheme dependshenapplication domain. Max
[Max99] tested the aforementioned weighting schemesrandom analytical cubic
surfaces. On his testing data the inverse areahivwegy scheme generated the most
accurate vertex normals. Jin et al. [Jin05] tested weighting schemes on
parameterized surfaces and marching tetrahedsditated surfaces. On these testing
data the area weighting scheme generated the rmoostade results. The area weighting
scheme was also suggested by Lengyel [Len04] asthooh giving more appealifiy
vertex normals for some models. The vertex norroaiuted using the area weighting
scheme is computed as follows:

n n n
n, =Y nife[le.[sing =3 nile xe..|=3 e xe.. (6.2)
i=1 i=1 i=1

where n; is the normal of the facg§ formed by the vertex¥ and edgess, e,
i=1,...,n, where n is the number of faces adjatenhe verteX/. Note, that facef
may or may not form a closed triangle fan. The nadwantage of the area weighting
scheme is that individual face normals which appedhe sum in Eq. 6.2 do not need
to be normalized. Normalization is computationakpensive unless hardware is used,
not the least depending on the square root involved

19 The vertex normals were used for smooth shading.

62

6.1.2. Deformable meshes

The area of computer animation could be divided mtigid-body motion and a soft-
body motion. In the rigid-body motion the relatigesition of each two vertices stays
fixed during the transformation and the object sfamrms as one entity [KarO4].
Examples of the rigid-body motion are a rotatioradranslation.

The rigid-body transformation can be expressed trarzssformation matripd, then the
normal field of the transformed object under adigody motion is transformed by the
inverse transpose of the Jacobian malriaf the transformation matriR, i.e., ¢)"
[Gom99]. Moreover, if the transformation is linedng normal field is transformed by
thel TrnatrixA directly, because in the case of a linear transédion A it holds that
(J7)'=J=A.

In the soft-body motion there are no restrictionschange of a relative position of two
vertices; each vertex can travel along its trajgciodependently on other vertices.
Hence, no global transformation can be appliedhembrmal field, as in the rigid-body
motion case. In this chapter we will deal with dwfidy motion, however, our
techniques are general enough so that they carsdx for linear transformations as
well.

A lot of methods for computing vertex normals feate meshes exist. In the case of
deformable meshes, there are basically two appesalcbw to compute normal vectors

— deform the mesh anm@compute the normal vectors using some standard approach or
interpolate the normal vectors during the mesh deformatione Tecomputation
approach takes usually more time but it computexterormals (with respect to the
current mesh shape). The interpolation approactesisually faster, but they may be
inaccurate because the interpolation need notciefie true mesh shape.

Besides the recomputation and the interpolatiomagmh, Alexa et al. [Ale00a] suggest
to compute normals only for the first frame of dremation and leave them unchanged
for the remaining frames. This may work in the sasden a mesh does not deform
very dramatically and when only several in-betw&ames are needed, however it is
not very useful for morphing because morphing mightolve a dramatic shape
transformation and a lot of in-between frames.

6.2. t-variant cross product

In this section we will describe an essential foolthe computation of a normal vector
of a moving plane.

Let us recall that the cross product is an openatoch takes two non-parallel vectors
V1, V2 and computes a vectorwhich is perpendicular to both andvs,. In the computer
graphics, it is often used to compute a normal tiamgle. We generalized the cross
product for a computation of a normal of a defomnimiangle. The triangle can
arbitrarily deform as long as the vertices of tti@nigle travel along straight lines with a
constant velocity (so-callddthear motion). The situation is depicted in Figure 6.1.

63

Figure 6.1: A linear motion of a triangle from an initial pten (verticesPy, P;, P,) to a final position
(verticesPy, Py, P,). Vertices travel along linear trajectori€g(t), P1(t) andPy(t), ng is the normal of
the triangle in the initial positiom; is the normal of the triangle in the final posgitiandn(t) is the t-
variant face normal depending on vertex trajecsd?igt), P,(t) andP,(t).

If the vertices move from the source positieg) P1, P, to the target positioRy’, Py,
P,’ along a straight line, the trajectory can be désd asPq(t)=Po+t(Py-Po) (and
analogouslyP;(t), Po(t)). The normal of the triangle in the source positican be
computed aso=(P1-Po) x (P>-Po). If we want a relation for the t-variant face ma,
we have to substitute the vertex trajectoRg$), Pi(t), Pa(t) into the cross product, i.e.:

n(t) = (Pw(t) — Po(t)) x (P2(t) —Po(t)) = [N(t), ny(t), nA(t)], where

n ()= [R,®O-R,OLIFR, - R, O]-[F, O -R,OLP, 1) - K, 0] (6.3)
n, () =P, (1) - R, OL[F. (1) - K, O +[F, () — R, (O1.[P, (1) - R, (V)]
n,(t)= [P, () - R, OLIR,) - R, O] [P, (1) - K, OL.[F, () - K, (O]

Each componeni(t), ny(t), n(t) of the normal vecton(t) is a degree two polynomfdl
After expanding Eqg. 6.3 and organizing the termsheypower of, Eq. 6.4 is obtained:

n(t) = (P1x P2 =Py x Pg—Po x Py) +
t(dlx P2+P1Xd2—(d1>< P0+P1Xd0)—(dox P2+P0Xd2)) + (64)
tz(d]_Xdz—ledo—doxdz),

whered; = P'-P;, i = 1, 2, 3 is the vector of the trajectory. B4 represents the
t-variant cross product (TCP). Note, that if two trajectory vectods d; are the same,
le., di=d;, iz}, i, j=1, 2, 3, then TCP is linear, i.e., the quadt term disappears. If all
trajectory vectors are the same, i.e., when theepjast translates, then TCP is constant.
It is clear that if two points of the face do nabvve then TCP is linear, if all three points

do not move then TCP is constant.

This fact can be used for an analysis of the madiod for simplification of TCP. We
can compare the trajectory vectors and use the appropriate fof TCP. For instance,
if two trajectory vectors are almost the same cibefficient of the quadratic term would
yield a very small absolute value, which may causenerical problems when
evaluating the polynomial. However, we can exgiaimnify similar trajectories, which
turns TCP to a linear polynomial. By unifying thajéctories we know exactly what

% The trajectory is expressed by a degree one poligip in the cross product, two degree one
polynomials are multiplied, therefore the resultpalynomial will have degree two.

<! Since we compare vectors, we have to compareeatitin (i.e., an angle between the vectors) and a

length.

64

kind of error we introduce, i.e., the angle differe or the trajectory length difference.
On the other hand, similar trajectories lead tolbat@solute values of the polynomial
coefficients. If the coefficient value is very smale could disregard it, but we would
have to set some artificial limit value, so thag ttoefficient values smaller than the
limit value are disregarded. Additionally, it istncompletely clear how big error we
introduced by disregarding some term. Also, vergléwalues of the coefficients may
cause numerical problems when evaluating the potyaié’.

Note that the coefficients are computed using dovemddition and the cross product,
thus it can be precomputed very efficiently on aak with a vector operation support.

After computing the coefficients of the degree tpalynomials of the t-variant cross
product the intermediate normals can be evaluatede\mluating the degree two
polynomials. Generally, a degree two polynonatfl + bt + ¢ can be evaluated by 3
multiplications and 3 additions. It can be furtbgtimized by using the Horner scheme.
It transforms the quadratic polynomial to the fd(at + b) + c. To evaluate this form, 2
multiplications and 2 additions are required. le ttase of t-variant cross product we
have to evaluate three degree two polynomials {oneach component of the normal
vector), thus we need 6 multiplications and 6 tolds. Horner scheme is the fastest
method for evaluating a polynomial at a single poHowever, an animation usually
requires evaluating a polynomial at several evespgced values. In this case, an
incremental scheme based on the forward differgncen be used. For degree two
polynomials, the forward differencing method regsi2 additions per one evaluation
(plus some setup needed to initialize the increalesgtheme). Thus, the t-variant cross
product can be evaluated by 6 additions usingdheérd differencing method.

Sometimes, the normal vectors are required to bié length. In this case the
intermediate normal vectors obtained by evaluatimggt-variant cross product must be
normalized. On the other hand the length of themabivector obtained by evaluating
the t-variant cross product is proportional to #rea of the triangle formed by the
moving verticey, P, P2 (Figure 6.1), i.e., the normal vectorimgplicitly weighted by
an area.

6.3. [Face normal computation

In this section we will deal with face normal vectomputation of deforming triangular
meshes. Face normals are essential vectors farxvedrmal computation using some
weighting schemes (see Section 6.1.1); they caldeeused for the shading.

As stated before, there are basically two appraabébrethe normal vector computation
— a recomputation approach and an interpolationroggh. In the case of the
recomputation approach a mesh is deformed andatieerformals are recomputed from
the scratch. In the case of the interpolation aggiowe set several key-frames for
which exact face normals are computed (i.e., imietppn constrains) and the
intermediate (i.e., between the key-frames) facenats are interpolated using some
interpolation technique. In the further text welvatopose several approaches how to
compute face normals.

22 Such problems are related to the floating poinnbers representation and they usually appear when
doing numerical operations between a very big anerg small number.

65

6.3.1. t-variant cross product

The t-variant cross product can be directly usedféme normal computation. The

advantage of this approach is that the coefficiehthe degree two polynomials can be
precomputed during a preprocessing stage. Durireg nlesh deformation we just

evaluate 3 degree two polynomials for each face. cOfirse, the precomputed
coefficients must be stored somehow. The spaceis®sfloating point values (i.e., 3

quadratic expressions, one for each componeneafidhmal vector) for each triangle.

The recomputation approach consists of a compuatatfotwo linearly independent
vectorsvy, v, and a cross product computation betweegrv,. The vectorss,, v, are
usually computed by taking the vertices of the $ace.,vi = P; — Po, Vo = P, — Po. It
requires 6 additions. Furthermore, the cross prodeguires 6 multiplications and 3
additions. Thus, the recomputation approach reguiradditions and 6 multiplications
per face. In the case of triangular meshes, an isdgfeared by two triangles (except the
boundary edges); therefore, the computation ofvéitorsvs, v, can be used for the
neighboring triangles as well. Using the Horneresoh, the face normal computation
based on the t-variant cross product requires @iptications and 6 additions per face
which is less than the number of arithmetical opena required by the recomputation
approach.

The length of the normal is proportional to the aamaf the facePy, Pi, Po. If
normalization is required, the normalized t-variardss product is defined as follows:

ﬁ(t) — (Pz (t) ~ Pl(t)) X (Pz (t) ~ Po (t)) (6.5)
|(P2 t) - Pl(t)) X (Pz - I:)o (t))|

The resulting relation is clearly more complicatint the t-variant cross product

because it requires computation of the square root.

6.3.2. Lagrange interpolation

Linear interpolation (degree one Lagrange interjpmiq of normal vectors is described
by the following expression:

n(t) =ng + t(n1 —ng), (6.6)

whereng is an initial normal anah, is a final normal. This approach is used, e.g., fo
spatial normal interpolation in Phong shading. &cttf the Lagrange interpolation
interpolates the vector as if it was a point. Itfast but not sufficient because the
intermediate normals are far from being perpendicto the triangle; furthermore the
intermediate normals are not of unit length (Figbuza).

Higher degree Lagrange interpolation fits better ttue normal behavior but there is
always a tradeoff between a better fit and an lasich due to the higher degree of an
interpolation function. Also, unit length is noteggerved. Figure 6.2b) shows degree two
Lagrange interpolation which needs an additionaérmediate normahy, to fit a
quadratic interpolation curve. Figure 6.2c) shows hmher degree Lagrange
interpolation where a number of intermediate nosmalrequired to precompute the
interpolation curve, it can be seen that due to tligdh degree of the interpolation
polynomial the normal is oscillating.

66

c)

Figure 6.2:a) a linear interpolation, b) a quadratic interpiola, c) a higher degree interpolation.

6.3.3. Vector SLERP

SLERP (Spherical Linear intERPolation) is a techmeidor interpolation of vectors,
which maintains unit length. It is defined as:

sin(@—t) f)n, +sin¢f)n,
sin f

SLERRN,,N, t) = , (6.7)

whereng, n; is the initial and target normal, respectivdlys the angle betweem, n;.
This approach preserves unit length normals bunaba direction of the normal is far
from being perpendicular to the intermediate triang

6.3.4. Spherical de Casteljau

Slightly better idea based on [Jezek, F., persooalmunication, 2005] is to compute
several intermediate normals exactly (as in théndniglegree Lagrange interpolation)
and interpolate these vectors on the surface afititesphere. In this case, a generalized
de Casteljau algorithm for spherical interpolatioan be used. The de Casteljau
algorithm is well known for a fast generation ofzBs curves. It is basically a recursive
subdivision of the control polygon which converges the Bézier curve. The
generalization of de Casteljau algorithm for fastter interpolation means to replace
line segments with the shortest great circle ares,the line segment subdivision step is
replaced by SLERP of consecutive intermediate nisniais demonstrated in Figure
6.3a), there is an initial normabg, a final normalng 3 and two intermediate normals
Np,1 andng 2 (e.g., in the timé=0.33 and=0.66). To compute the norm@l at the tim&
the normalsn, g Nni1, N1 are computed by applying SLERP on pairs of suceess
normals, i.e.n1,0=SLERP00,0, No,1, t), n1,1=SLERP(10,1, No,2, t), n1,2=SLERP00,2, No,3,

t). This process is repeated until one single normyals obtained.

67

No,0 No,1 No,2 No,3

\
44 40 1
nl,OR n1,1T nl,zf
4 1
nz,ox n2,1T
4
n3,1T
O
a) b)

Figure 6.3: a) a demonstration of de Casteljau algorithm fecters, the gray thick arrow represents
application of SLERP on two successive normals, gogternion interpolation of face normal,
transformatiorM transforms trianglé\o, By, Cy to the triangleA,, B;, C; andng to ny. FrameF,=(t,, b,,

n,) is computed by transformirfey=(to, bo, No) by the transformatioM.

6.3.5. Quaternion SLERP

In this section we will describe a new idea whidesi quaternions to interpolate face
normals. A brief introduction to quaternions isAppendix B. First, let us recall two
important identities which we will use in the folong description:

(i) Rotation in 3d around an axasby an angle is represented by a 3x3 rotation matrix
R or by a quaterniog [Sho85, Ebe04]. Both representations are equitialen

(i) Matrix R of rotation transformation is orthogonal and ittuoons (and rows) are of
unit length, thus the matrix of rotation forms athonormalframe. By the term frame
we understand here an orthogonal basi€bfThe orthonormal frame is formed by
three unit length vectors.

The central idea is to set an orthogonal frame (no, to, bo) for the initial face, set an
orthogonal framd-; = (ny, t1, b;) for the final face and interpolate betwdenandF;
using QSLERP. To set a frarre= (n, t, b) means to associate one vector of the frame
with the normain of the face, to choose the tangent vettahich lies in the plane of
the face (e.g., an edge of the triangle) and coenthé binormal vectdn by taking the
cross product of andt, i.e.,b =n x t. By organizing the column vectotsb, n into a
3x3 matrixR = [t | b | n] a rotation matrixR is obtained (ii). The matriR can be
converted into a quaternion representatiojficbe04]. By converting the framésg, F;
into the quaternion representation, quaternigyg); are obtained. They represent the
initial and the final orientation of the face. Tdtain intermediate normals(t),
quaternions are interpolated using QSLERP. Thepotated quaterniomj(t) can be
converted back to the orthogonal matii) and the normal is extracted from the last
column ofR(t). It is demonstrated in Figure 6.3b) where thanigieA,, By, Co with the
frameF, is transformed into the trianghe;, B;, C; with the framéF;. The intermediate
quaternionq(t) is converted to the frame(), b(t), n(t)) and the intermediate normal
n(t) is extracted.

68

The question is how to set framEg and F;. One possibility is to use the following
method. First we compute a transformation matfixwhich transforms the vertices of
the initial triangle into the vertices of the finéliangle; moreover, we want the
transformatiorM to transform also the initial normal to the fimarmal. All conditions
can be expressed by a matrix equation, i.e.:

M [Ao | Bo | Co | no] = [A]_ | B: |C1 |n1], (68)

whereAy, Bg, Co, Np can be written as column vectors, eAg = [aox, oy, 0z, 1.0[. The
matrix M can be computed as:

M =[A1|B1|C1|ni].[Ao | Bo|Co o] ™ (6.9)

Then, we set an arbitrary frarke for the initial face. The vectols andt; of the frame
F, are computed as follows:

b]_ =M .bo
t,=nux by (6.10)
Since the initial frame is chosen arbitrarily, theblem is that there is an infinite
number of the initial and the final frame configiiwas. The choice of the initial and the
final frame influences the quality of the interpada. Therefore, the best configuration
of frames (from the interpolation quality point\vaéw) is needed. Unfortunately, we did
not succeed in deriving the rule for the best frarnafiguration. Clearly, the best
configuration of frames can be approximately coraguby brute force testing of
random configurations, however, it is very time aming. Therefore, an algebraic
solution of this problem belongs to our future work

6.3.6. Comparisons and discussion

We compared approaches described in the secti@s 6.6.3.5 from two points of

view. We observe an error of the interpolation #maltime consumption. The error of
the interpolation is measured as follows. The tinterval (usually <0, 1>) is sampled
and in each sample an angle between an exact n¢coraputed by the cross product)
and an interpolated normal (computed by some metlesdribed above) is computed.
The error of the interpolation scheme is expresseal sum of angles:

e=i20|q|, (6.11)

where n is the number of sampleg,is the angle between the exact normal and the
interpolated normal in the sample i.

We tested different interpolation approaches ormr foorphing animations, where a
mesh composed of triangles deforms from one shatpetie other shape so that the
trajectories of individual vertices are linear. Nogms in Table 6.2 represent an error of
the interpolation for the whole mesh. It is complu&s a sum of interpolation erragof
individual triangles, i.e.E = Zg, j=0, ..., m-1, where m is the number of triangléshe
mesh andg is the interpolation error of the j-th triangleq(E6.11). The numbers in
Table 6.2 must be always viewed with respect to theber of triangles and the

69

number of samples. Rather than the absolute valuesmore important to compare
ratios between different methods, e.g., it candenghat the quadratic interpolation is
almost 4-times better than a simple linear inteapoh. The second, third and fourth
row show results of the normal interpolation ddsedi in the Section 6.3.2. The “t-
variant cross product” row shows results of theragph from the Section 6.3.1. The
row “Vector SLERP” shows results of method desatilie Section 6.3.3. Results of
vector interpolation using generalized de Castedjigorithm (Section 6.3.4) are shown
in the “Spherical de Casteljau” row. The last rolwows the quality of normal
interpolation using quaternions (Section 6.3.5).

Normal :

interpolation @@ ﬁ% % % vv
approach # faces: 1530(# faces: 44700 # faces: 3518(# faces: 21040
Linear 18916 55756 44078 20061
Quadratic 4820 15792 9681 5425
Cubic 1906 6444 3640 1572
t-variant cross 0 0 0 0
product

Vector SLERP 19427 57999 44972 20861
Spherical de 7039 21772 16068 7647
Casteljau

Quaternion SLERP 17766 53492 42831 19202

Table 6.2: Comparison of error of different normal interpatetiapproaches. The images in the table
heading show the example mesh deformation. The awsnbf faces of the example deformations are
indicated below the images.

From Table 6.2 it is clear that the best approacimfthe interpolation quality point of
view is the t-variant cross product approach wipaiduces exact normals, i.e., it is not
really an interpolation approach. Other proposepr@gches (except the quaternion
approach) handle the normal vectors as usual \&ci@., it is not respected that
normals vector are perpendicular to some surfadeirafact, these approaches can be
used for an interpolation of any vectors. The wbigt one results are obtained by the
linear interpolation, better results can be actdely the quadratic or the cubic
interpolation (up to 90% improvement). The worgules were achieved by SLERP of
normal vectors. The quality of interpolation of tepherical de Casteljau approach
depends on how many intermediate normals we usthidncase we used initial, final
normal and two additional intermediate normals. ®®uaon SLERP approach has
slightly better results (on average about 5%) gieaple linear interpolation.

Next we will compare various approaches from theetconsumption point of view. We

will not present an exact timing since it is depamdon how various elementary
operations (SLERP, cross-product, polynomial euadnaetc.) are implemented. Some
of them can be implemented in hardware so that thecution can be very fast. We
will express the time consumption in terms of elatagy operations, so that the reader
must decide which approach is the most suitablerdony to the actual application

platform.

70

Elementary operations used in Table 6.3 are polyalomvaluation, SLERP and
quaternion to matrix conversion. Polynomial evahratis used in the Lagrange
interpolation approach and in the t-variant crosxlpct approach. Polynomials can be
evaluated by Horner scheme which saves some mgcdtins in comparison with
usual evaluation of polynomial in monomial formgs®&ection 6.2). SLERP is used in
the Vector SLERP approach and in the de Castelgproach. SLERP requires
evaluation trigonometric functions which are congpiginally expensive, but it can be
speeded up by an incremental approach describ&hivgra et al. [Bar04]. Quaternion
to matrix conversion is used in the Quaternion SBPEdpproach. Note that in our case
we need to extract only one column from the matrex, the normal.

It is also important to decide whether we needaadom access” to the deformation or
just a “sequential access”. If we consider thatrtiesh deformation is parametrized by
the time, the random access means that we can flumpone time instant to another
without any limitation. The sequential access metna the mesh deformation is
evaluated is evenly spaced time instants in areasing or a decreasing order. In this
case, incremental methods (using temporal coheyémceomputing SLERP [Bar04] or
polynomial evaluation [Has03] can be used.

Method Normalization | Computation
Linear interpolation| Yes 3 linear interpolationg)(B.6)
Quadratic, cubic | Yes 3 evaluation of degree two (quadratic
interpolation interpolation) or degree three (cubic
interpolation) polynomials
t-variant cross yes (Eq. 6.4) |3 evaluation of degree two polynomials
product no (Eq. 6.5) |(Eq. 6.4)
3 evaluation of rational polynomial (Eq. 6.5)
Vector SLERP No 1 SLERP (Eq. 6.7)
Spherical de No n(n-1)/2 SLERPSs, where n is the number in
Casteljau precomputed normals
Quaternion SLERP| No 1 SLERP, quaternion to mawmnversion

Table 6.3: Comparison of various normal interpolation appre@ascfiom time consumption point of view
in terms of elementary operations.

6.4. Vertex normal computation

The goal of this section is to show a new vertestmad computation approach based on
the t-variant cross product. The basic idea is Weuse a weighting scheme approach
for the vertex normal computation so that the imal face normals are computed
using the t-variant cross product. We consider dhea weighting scheme since the
normal vectors computed by the t-variant cross gpecbdre implicitly weighted by the
area. First we will show the computation for thengmal case, later we will show a
simplification for the case when a vertex is sunded by a fan of triangles.

6.4.1. A general case

First let us formalize the input setting. A numbém triangles share the same veffex
denotedP,. We want to compute the vertex normal at the welfge Every vertexPy,

%3 Note that the triangles need not to form a cldsiedgle fan.

71

k=0, ..., n+1, where n is the number of faces adjaterthe vertexPy, has a linear
trajectory:

Pu(t) = Py +tdx , (6.12)
where
dk =P’ —Px, (6.13)

whereP'i is the final position oPy anddy is a trajectory vector. Figure 6.4 shows how
a mesh is deformed and which variables are invoiweke process.

P4

Ps

.
.
"""
.
Py

.
.
.
Py
ot
.
P
.
..

.
“““
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
“““
.
.
.
.
.
.
.
.
.
.
.
.
o

P4

Figure 6.4: A part of a triangle mesh under linear deformatigach vertex travels from its initial
positionP, towards its final positioP’ along a linear trajectory.

Every edges, j=1, ..., n+1 can be described as a vector
§(t) = Pi(t) — Po(t) . (6.14)
And the face normai;, i=1, ..., n becomes

ni(t) = &a(t) x e.(t) . (6.15)

12

This implies that the edges must have a sorted amdeach fan for computing the face
normal. By substituting Eq. 6.14 into Eq. 6.15 viaéamn:

Ni(t) = Pi(t) % Pis1(t) — Pi(t) % Po(t) — Po(t) % Pix1(t) (6.16)

Expanding each cross product from Eq. 6.16 gives:

PO %P (t) =P, XP,, +t(d; XPy + P, xd,) +t7(d; xdl,,)
P.(t)xP,(t) =P, xP, +t(d, xP, + P, xd,) +t*(d, xd,) (6.17)
Po(t) Py (t) = Py X Py +t(dg x Py + Py xd,) +17(d xdy)

Now, the vertex normal can be computed as:
n) =>n(t) (6.18)
i=1

We can now put Eq. 6.17 into Eq. 6.18 and get:

n PixPi+1_PixP0_P0xPi+1
n(t) =Z +t(d; P, + B xd,, —(d; xP, + B xd,) = (do x P, + Py xd,,,)) (6.19)
= +t2(dixdi+1_diXdo_doxdi+1)

Eq. 6.19 is general enough so it can be used fopating a single face normal as well.
In this case we just set n=1, i.e., the sum disagpand Eq. 6.19 turns to the standard
t-variant cross product.

The constant and quadratic terms in Eq. 6.19 behaggite a similar way. We shall
see that they can be simplified. The sum of constams is

P,xP, ~P,xP, =P, xP,
+P,xP, —P,xP, =P, xP,

+P,xP, ~P,xP, - P, xP, (6.20)
ol

+P, xP,,, —P, xPy =Py xP,

Examining this sum further reveals that the sedenah in the second row cancels out
the last term on the first row. This behavior ie #ame in each row. Hence we can
rewrite the sum in Eq. 6.19 as:

n+l

z P X Pi1y mod(n+2) (6.21)
i=0

73

Thus the quadratic term becomes:

n+l

Zdi ><d(i+1) mod(n+2) (622)
i=0

The linear term is:

d1><P2+P1><d2 _(dleo+P1xdo)_(doXP2 +P0><d2)
+d2XP3 +P2Xd3—(d2><P0 +P2Xdo)_(doxP3+Poxd3)
+d3XP4 +P3><d4 _(dsxpo +P3Xd0)—(dOXP4 +P0Xd4) (6.23)
+...

+dn ><|:)n+l+F)n ><dn+1_(dn ><|:)O +Pn Xdo)_(dePn+l+POxdn+l)

Once again the second term in the second row cancglthe last term in the first row.
This behavior is repeated for each row.

leP2+P1Xd2—(lePO+P1><dO)

+d2><P3+P2><d3
+d,xP, +P, xd, (6.24)
+...

+dn X I:)n+1 + I:)n ><dn+1 _(dO X I:)n+1 + PO ><dn+1)
Rearranging the terms gives

do X(Pl - Pn+l) +d1 X(Pz - Po)
+d,x(P,~P)) +d,x(P,~P,)

(6.25)
+dn+1 ><(I:)O - Pn)
This can be written as:
n+l
Zdi X (P(i+1) mod(n+2) - I:)(i—l)mod(n+2)) (626)
i=0

The normal can finally be written as:

74

n+l

n(t) = z P % Pty mod(n+2)
i=0

n+l

+tzdi X (P(i+1)mod(n+2) - P(i—l) mod(n+2)) (6-27)
i=0

n+l

2
+t zdl X d(i+1) mod(n+2)
i=0

It should be noted that these sums can be pre-adeshmnce before the actual mesh
deformation, more specifically, each sum represenbefficient (i.e., absolute, linear

and quadratic) of a degree-two polynomial. Eq. 6s2% vector form, which means that
for each coordinate component (X, y and z) we lzageparate degree-two polynomial.
Then, as the mesh deforms, only the degree-twonpalals for each of x, y and z

coordinate components are evaluated to obtain ¢nex normal in the particular time

instant. It must be said that the resulting vertexmal is not of unit length; therefore it

must be additionally normalized if necessary (ewhen it is computed for shading

purposes).

6.4.2. Simplification of the Circular Case

The presented formulas can be used for any nunflatjacent triangles. This implies
that one or several adjacent faces can be omited the computation. This can be
useful if there is a sharp edge in the fan of fatksvever, if all faces are included in
the computation, then the last edge is the santbeafirst edge, i.e. the faces form a
closed fan. The computation can then be reducesl cohstant term is

P, xP,-P,xP, —P, xP,

+P,xP, =P, xP, =P, xP,

+P,xP, =P, xP, —P,xP,

+P,xP, —P,xP, - P, xP, (6.28)
+...

+P %P, P xP, —Fy XP,

+P, xP,-P,xP,—P,xP,

Once again there are terms that cancel out terrother rows. After simplification we
have:

P, xP, +P, %P,
+P.xP, +P, xP
371 4715 (6.29)
+...
+Pn—1xPn+anP1
This can be expressed as a sum:
Zn:PxP k= Li=n (6.30)
—~ T i+1i#n '

75

In a similar way we can compute a sum for the gataxiterm.

The linear term for the simplified case can beastifrom Eq. 6.24, when,.,.=P; and
dn+1=d; (because of the circular nature), which gives:

dlx(PZ —Pn)+d2><(P3 _Pl)
d3><(P4 —P2)+d4><(P5 _Ps)

(6.31)
dn X(Pl - Pn—l)
This can be expressed as a sum:
n li=n n,i=1
d x(P,-P)k=4 " =4 ,
Z_: PR {i+1,i¢n {i—l,i;tl (6:32)

6.4.3. Examples

In this section we will show that the usual lin@aerpolation of the normal vectors is
not correct. Then we will show that our normal canapion scheme (t-variant vertex
normals) is better than the linear interpolatiord ah has similar results to the
recomputation approach. We will also show that normal computation scheme is
faster than the recomputation approach.

In the first example we will show that the lineaterpolation of normal vectors is not
good for some animations. Note that in the morptangnations the source and the
target mesh could be highly dissimilar and thegfammation of individual faces could
be quite dramatic. If the shape transformationrésraitic we need a lot of in-between
frames to represent the shape transformation, isonibt possible to “fake” the normal
field by some approximation or even by leaving nailsnunchanged during the
transformation as suggested in [Ale00Oa]. Figureap.Shows a deforming mesh
sequence with linearly interpolated normals. Figbifh) and c) shows three frames of
this sequence plus a detail of the problematicoregthe region where the fish’s fin
disappears in the octopus body). Figure 6.5b) shba/sesult of the linear interpolation
of normals. In Figure 6.5b) right, vertex normale aepicted. It can be seen that
linearly interpolated vertex normals do not refldat true shape of the mesh (i.e., they
are not perpendicular to the mesh) and therefoeg tead to an incorrect shading.
Figure 6.5c) shows the normals computed using rpotation approadi. On the
detail view (Figure 6.5c) right) it can be seent tha&se normals reflect the true shape of
the mesh and therefore the shading is correct.

4 \We used the area weighting scheme.

76

9

N
N\

Figure 6.5: a) Deforming mesh from the shape of fish to thapghof octopus (circles mark the
incorrectly shaded region). b) Three frames ofstiape transformation with linearly interpolatedmals
plus detail of the problematic region with depicteertex normals. c¢) Three frames of the shape
transformation with recomputed normals plus detbihe same region as in b).

In the next example we will show that our normahpaitation scheme is better than the
linear interpolation and that it has the same tesas the recomputation approach.
Figure 6.6a) is an example of linear normal int&apon. The problems can be seen in
the third image, where the arising antennas aréylsfhded. The detail of this area is
depicted in Figure 6.6b), where the top row shdweslinear normal interpolation, the
middle row shows the result of our t-variant ventexmal approach and the bottom row
shows deforming mesh rendered with the recomputechas. It can be seen that the
mesh rendered with t-variant vertex normals is aknibe same as the mesh rendered
with recomputed normals. In the last coluntm0(40) of Figure 6.6b there are also the
vertex normals depicted. It can be seen that lipeaterpolated normals do not reflect
the mesh shape and our time vertex normals asasakcomputed normals do reflect
the mesh shape and thus result in better shading.

77

t=0.20 t=0.25 t025 t030 t=0.35 t=0.40

Vi

interpolated
normals

Y Y
I Y

Figure 6.6: a) An example of the morphing transition betweero tfaces using linear normal

interpolation. b) The detail of the problematic iceg— linear normal interpolation (top row sequénce
our t-variant vertex normal approach (middle rowdcomputed normals (bottom row). Last column
(t=0.40) shows also vertex normals in the problenmatgon.

t-variant vertex

normals

recomputed
normals

If we compare the preprocessing time required foralilinear normal interpolation and
the proposed approach, then we find that for limeamal interpolation we must first

compute interpolation constraints, i.e., all vertexmals for the starting mesh and all
the vertex normals for the final mesh. It meanst tva have to run the normal

computation twice and normalize the initial and theal normal. The proposed

approach requires that the coefficients for thereegwo polynomials are precomputed,
l.e. to compute 3 sums (Eq. 6.27). It should beschahat both approaches require
renormalization of the interpolated normals.

To evaluate the t-variant vertex normals we havesttwre the coefficients of the
polynomials computed in the preprocessing stage §2J). 9 floating point numbers
per normal must be stored. Usual linear interpotatiequires storing 6 floating point
numbers, i.e. interpolation constraints. The reaatapon approach requires a data
structure which contains the incident faces to diqdar vertex which is usually
represented by a list of integer indices to fates,the number of indices required is at
leastX.d;, i=1, ..., n, where n is the number of verticed dnis the degree of the i-th
vertex. Additionally, the closed form functional steiption of the normal behavior
allows us to analyze normal behavior by means ofction analysis, e.g., to
approximate degree-two polynomial by degree-ongmuwhial and reduce the amount
of data which is stored in the preprocessing stagw. example, the degree-two
polynomial can be approximated by the first twonterof Taylor expansion, which
yields a degree-one polynomial. Using Taylor expansve also know the exact error
caused by the approximation.

78

The recomputation approach is dependent on thelactunnectivity of the mesh, i.e.,
the time needed for computation of one vertex nérdegpends on how many face
normals contribute. It requires a fast data stmecthich contains, for each vertex, a set
of incident faces. Of course the number of facesdant to a particular vertex is
different for different vertices. During evaluatioh Eq. 6.1 the data structure must be
traversed to obtain the incident faces. Our t-vdrggproach requires traversing the data
structure containing incident faces just in theppoeessing stage (computation of
polynomial coefficients). During the vertex norm@Valuation a constant time is
required to evaluate three degree-two polynomiHtals the proposed approach is not
dependent on the actual mesh connectivity and Wyndgdata structures.

We measured computational time of our t-variantesenormal (TVVT) computation
and the recomputation approach (RA). We used faumations with different number
of vertices. For each animation we generated 200,ahd 1000 in-between frames. We
measured only the pure vertex normal computatia®, times needed for a data
structure update and the rendering were excluded the time measurement. For the
measurement we used P IV, 3 GHz, 1 GB RAM runnim\bndows 2003 Server. The
measurement is summarized in Table 6.4. First troes contain times for 200, 500,
1000 in-between frames, “per frame” row shows tirfarsvertex normals evaluation
per one frame of the animation and the “per vertex/ shows times needed to evaluate
one vertex normal. It is clear that the computatidime increases linearly with the
number of vertices and in-between frames. It carsden that average time needed to
compute one vertex normal is approximately the sdameboth approaches. Our
technique is approximately four times faster thhe tisual recomputation approach
which was verified also on different animations aifterent hardware configurations.

9902 vertices, 39802 vertices, 79600 89702 vertices, 159602 vertices,
19800 faces faces 179400 faces 319200 faces
RA TVVN RA TVVN RA TVVN RA TVVN

200
fr.
[ms] 2653.00 668.80 | 10481.00 2678.00 | 23806.20 6031.20 45997.00 | 10581.20
500
fr.
[ms] 6628.40 | 1662.20 | 25815.60 6609.60 | 59593.60 | 14868.60| 116472.20| 26684.40
1000
fr.

[ms] | 13400.20 | 3334.20 | 58484.40| 15366.00| 119186.80 | 29706.20| 229999.80| 52881.00
per
frame 13.31 3.33 54.17 13.99 119.14 29.87 230.98 53.05
[ms]
per
verte 1.34 0.34 1.36 0.35 1.33 0.33 1.45 0.33
x [ps]
spee
d-up 3.99 3.88 3.99 4.35
Table 6.4: Time comparison of the t-variant vertex normal rapgh (TVVN) and the recomputation
approach (RA).

6.5. Quaternion correction

In this section we will propose a new vector intdghion scheme which can be used for
a normal vectors interpolation of meshes origirgafnrom the topology merging process
(Section 4). For better understanding we will figsscribe the basic idea for an

79

interpolation of scalar qu