
University of West Bohemia in Pilsen

Faculty of Applied Sciences

Department of Computer Science and Engineering

DIPLOMA THESIS

Pilsen, 2006 Jǐŕı Skála

University of West Bohemia in Pilsen

Faculty of Applied Sciences

Department of Computer Science and Engineering

Diploma Thesis

Masking Images for DTP Needs

Implemented as Adobe Photoshop Plug-in

Pilsen, 2006 Jǐŕı Skála

Abstract

This thesis has two major aims. In the first part, creation of plug-in modules
for Adobe Photoshop is described. It is explained how plug-ins work, how their
interface looks like and how to write plug-ins for Adobe Photoshop. It is also
presented how to create dialog windows using Adobe Dialog Manager. The second
part of this thesis deals with image masking. Several existing algorithms are
introduced. Since no one is suitable for our needs a new masking technique is
proposed. It is then described in detail and implemented as Photoshop plug-in.
Finally the method is evaluated and suggestions for future work are given.

Keywords: Adobe Photoshop, plug-in creation, Adobe Dialog Manager, alpha
channel, image masking, image matting.

3

CONTENTS

Contents

Preface and thesis aims 7

1 How to write plug-ins for Adobe Photoshop 9
1.1 Plug-ins in general . 9
1.2 Plug-ins for Adobe Photoshop . 10
1.3 Plug-in interface . 12
1.4 Filter plug-ins . 13

1.4.1 Masking pixel modifications outside selection 15
1.4.2 How image data is organized 15

1.5 Filter plug-in execution . 16
1.5.1 The Parameters phase . 17
1.5.2 The Prepare phase . 17
1.5.3 The Start phase . 18
1.5.4 The Continue phase . 19
1.5.5 The Finish phase . 20

1.6 Plug-in host functions . 20
1.6.1 Directly accessible functions 20
1.6.2 Buffer suite functions . 22

1.7 The PiPL resource . 23
1.8 Writing plug-ins in Microsoft Visual Studio 26

1.8.1 Setting up the project . 26
1.8.2 Compiling PiPL resource 29
1.8.3 Debugging a plug-in module 30

1.9 Adobe Dialog Manager . 33
1.9.1 Creating a dialog window 34
1.9.2 Accessing dialog components 35
1.9.3 Event handling . 35

2 Theory of masking images 38
2.1 Image registration . 38

2.1.1 Scale Invariant Feature Transform 39
2.1.2 Direct image registration 40

2.2 Alpha channel . 40

4

CONTENTS

2.3 Constant color matting . 42
2.3.1 Blue screen matting . 42
2.3.2 Formal presentation . 42
2.3.3 No blue color . 43
2.3.4 Gray or flesh color . 43

2.4 Difference matting . 44
2.4.1 Triangulation matting . 44

2.5 Natural image matting algorithms 45
2.5.1 Mishima method . 45
2.5.2 Knockout system . 46
2.5.3 Ruzon-Tomasi method . 47
2.5.4 Bayesian approach . 47

2.6 Discrete Cosine Transform . 48

3 Masking algorithm implementation 50
3.1 Image registration . 52
3.2 First masking attempts . 52

3.2.1 Difference in RGB color space 52
3.2.2 Difference in HSV color space 54

3.3 The resulting technique . 56
3.3.1 Difference in L*a*b space 56
3.3.2 Difference in structure . 58

3.4 Implementation details . 58
3.5 Users manual . 60

Conclusion 62

A More masking examples 66

5

I hereby declare that this diploma thesis is completely my own work
and that I used only the cited sources.

Pilsen, May 17, 2006 Jǐŕı Skála

6

PREFACE AND THESIS AIMS

Preface and thesis aims

Adobe Photoshop is very popular application for editing raster images. It has
great possibilities but can also be further extended by so-called plug-ins. These
are program modules that add new functionality to current application. Photo-
shop was one of the first applications that have plug-in support and we can say
that it was the program which made plug-in modules really popular. Adobe also
profits from it very much. Thanks to skillful programmers from all over the world,
Photoshop has almost unlimited possibilities and therefore it became something
like a standard in raster image processing. Currently many other competitive
applications have some support for Photoshop plug-ins. Demands on writing
plug-in modules are growing since it has several advantages. Users can use all
their favourite functions in a single application. There is no need to transfer data
between various utility programs. Programmers can benefit from the environ-
ment provided by the plug-in host application. It takes care of user interface,
format conversions, exception handling, etc. Developers can thus concentrate on
the core of given assignment.

Image masking (also called matting) is a process of extracting image parts
that are somehow interesting. Most often we want to separate objects in the
foreground and suppress the background. This technique is frequently used espe-
cially in Desktop Publishing (DTP). Many masking algorithms exist, they usually
fall into one of three major categories. Constant color matting assumes that ob-
jects are shot against a background of constant color (mostly blue, sometimes
green). Therefore it is often referred to as blue screen matting. Of course the
foreground object must not contain the backing color. This technique is most
often used in film industry and usually employs special hardware devices. The
second approach is difference matting. In this case the background may be po-
tentially arbitrary but we need a picture of empty background (with no objects)
as a reference. Later when some objects are added they can be extracted with
respect to their difference from reference background. The last category is nat-
ural image matting. It’s partly a combination of both previous techniques. The
background may be arbitrary but we don’t have any reference picture. First,
approximate object boundaries must be specified. Alternatively, we can desig-
nate areas that are definitely foreground and definitely background. All these
tasks are most often done by the user. The algorithm then tries to refine given

7

PREFACE AND THESIS AIMS

boundaries so that they correspond precisely to the object. All these matting
techniques are discussed in more detail in sections 2.3, 2.4 and 2.5.

The main goal of this thesis is to explore how Photoshop plug-ins work and
how to create them. This is discussed in detail in chapter 1. First a short
summary regarding plug-in possibilities is made. Then a general interface is
described with further focus on Filter type modules. Essential data structures are
presented and data interchange between Photoshop and plug-in module is made
clear. After that a plug-in calling scheme is explained. The host application
provides modules with several utility functions, these are discussed with some
hints how to use them. There is also one section about the Plug-in Property List,
an essential set of information describing the plug-in module. Since building
a plug-in is not absolutely easy, one section discusses how to set up a Microsoft
Visual Studio project to compile plug-in successfully. The last section is dedicated
to Adobe Dialog Manager, an interface for managing dialog windows.

The secondary submission of this thesis is to find an algorithm for difference
masking. Because it is intended for use in DTP, we can expect some reasonable
input in high resolution and objects contrasting with background. Details are dis-
cussed in chapter 3 on page 50 or in the conclusion. Since it turned out that none
of currently known masking methods is well suitable for our needs a new method
is developed in chapter 3. Section 3.2 briefly describes several unsuccessful at-
tempts, while section 3.3 presents the technique that was finally implemented.
Results of all proposed approaches are illustrated by example pictures. More
of them may be found in the appendix or on the enclosed CD. Interesting de-
tails regarding the implementation are discussed in section 3.4. In section 3.5
there is a short users manual. Section 3.5 contains method evaluation and thesis
conclusion.

8

Chapter 1

How to write plug-ins
for Adobe Photoshop

1.1 Plug-ins in general

Adobe Photoshop is widely known as a very powerful and perhaps the most
widespread program for creating and editing raster graphics. But it brought
another great contribution to desktop computing. Thanks to Photoshop, plug-ins
started to be popular among users. Such type of extension was first introduced
in 1987 in a program called HyperCard1. In that time, new functions had to be
pasted directly into the application.

Later, Silicon Beach in its products Digital Darkroom and SuperPaint in-
troduced an improved architecture. Plug-ins were in separate files and version
numbering ensured backwards compatibility. With some modifications, such ap-
proach remained actual up to the present day. Nevertheless plug-ins started to
be really popular as lately as Photoshop introduction. It was also a great ad-
vantage for Photoshop itself, because skillful programmers made its possibilities
almost unlimited. Competitive applications got into an unpleasant situation.
Many of them were later forced to add Photoshop plug-in support in order to
achieve some market profit. Nowadays almost every major application has some
extension possibilities based on plug-in architecture.

First of all we should make clear what we are going to talk about. A plug-in
is a program that extends functionality of already existing application. Such ap-
plication is called a plug-in host. It takes care of loading the plug-in into memory
and calling it. Plug-in host is usually a standalone application like Photoshop.
However it may be also another plug-in. For example in Adobe Illustrator, there
is a Photoshop Adapter plug-in, that serves as a plug-in host for Photoshop plug-
ins. Plug-in modules may be created by the author of the application they are
intended for. However the major advantage of plug-in modules is right that they

1A database application by Bill Atkinson with its own simple programming language.

9

1.2. PLUG-INS FOR ADOBE PHOTOSHOP

may also be written by independent programmers. Plug-ins may be added and
modified according to actual needs, independently of the application they are
designed for.

We can divide plug-in advantages to user’s and programmer’s ones. The user
certainly appreciates, when he has all the necessary functions available in a sin-
gle application. He doesn’t have to save the work and open it again in different
programs and solve compatibility problems. The programmer can take advan-
tage of plug-in host environment. There is no need for creating graphical user
interface, memory management, format conversion, etc. Thus the developer can
concentrate on solving the core of the task. Result presentation, undo commands
and other utility functions are provided by the plug-in host.

1.2 Plug-ins for Adobe Photoshop

In this paper, we are going to concern with plug-in development for Adobe Pho-
toshop on a Microsoft Windows platform. Originally Photoshop was developed
for Apple Macintosh only. This makes itself felt also on today’s Windows ver-
sion. Fortunately the differences2 between platforms do not cause any serious
problems. We can encounter data structures that are not typical for Windows.
Also some function calls and other constructions might look unfamiliar at first.
The resulting source code will be easily portable to Macintosh. It is however
unpleasant that if we are developing for Windows only, we still won’t avoid some
specialities. Certain reward may be that Photoshop plug-ins can be used also
with other Adobe products like Premiere or PhotoDeluxe. Even some programs
by other companies provide support for Photoshop plug-ins.

There are nine types of plug-in modules in Photoshop. A summary with brief
description follows. Perhaps some of you will be surprised when you find out
what all can be implemented as a plug-in.

Automation Plug-ins of this type can control Photoshop scripting. It is a pow-
erful mechanism whereby we can invoke in fact any menu command or
execute a tool such as plug-in. Most of user actions can be done by script-
ing. Automation plug-ins are often used in cooperation with other plug-in
modules for tasks, that exceed capabilities of other plug-ins. A typical ex-
ample is adding an alpha channel to the image. Automation modules can
be found in the File | Automate or Help menu.

Color Picker These modules give the possibility to create alternative color se-
lection palettes. By default Photoshop uses its own or the system palette.
Color Picker plug-ins can implement color selection in arbitrary fashion,

2For example Intel processors store numbers in little endian format, while Motorola and
PowerPC use big endian byte ordering.

10

1.2. PLUG-INS FOR ADOBE PHOTOSHOP

for example a color catalogue. The desired color palette may be selected in
Photoshop preferences.

Import Loads an image and opens it in a new window. Import plug-ins are
mainly intended as an interface to scanners and other peripheral devices.
They may also generate synthetic images. They are usually not used for
reading files, since this is a task for Format modules. Import plug-ins can
be found in the File | Import menu.

Export Deals with image output to a printer or other non-disc device. Writing
images to files is done by Format modules. You will find Export plug-ins
in the File | Export menu.

Extension Plug-in modules of this type are called once at Photoshop startup
and once at Photoshop shutdown. They are used for various device initial-
ization or custom cursor drawing. The interface of these modules is not
public, it is for Adobe’s internal use only.

Filter This is what most people imagine as Photoshop plug-in. It’s also the most
frequently used type of module. It is used to modify image data in selected
areas. The modification may be anything from slight color correction to
dramatic effects. As you can expect, filter plug-ins are located in the Filter
menu.

Format Sometimes called also File Format or Image Format. Adobe Photoshop
supports many image formats. This set can be even expanded by Format
modules. It is possible to implement loading and saving various exotic
or compressed image formats. Another interesting exercise would be e.g.
TIFF metadata processing. Format plug-ins will show up as new options
in drop-down menus of Open. . . or Save As. . . dialogs. A nice example of
perfect plug-in to Photoshop interconnection.

Parser Similar to Import and Export modules. Parser plug-ins are used for data
interchange between Photoshop and other, mainly vector, applications like
Adobe Illustrator or Adobe PageMaker. Parser plug-in interface is not
public.

Selection These plug-in modules can alter which image pixels are selected. In
Selection modules it is possible to implement creation of various complex
selections. The plug-in may work both with selection shape and the color
of contained pixels. Modules can process selections, masks and even paths.
They can be found in the Selection menu.

When we talk about plug-ins, most of users think of Filter plug-ins. As you
can see from the summary above, there are much more possibilities. And it’s not

11

1.3. PLUG-IN INTERFACE

all. A plug-in module is a program like any other. So it can use functions for
playing sounds and video, rendering 3D graphics, etc. It would be possible to
implement for instance an OCR program, spreadsheet or even a game. Well, this
is probably not what anyone would try. I just wanted to show, that the plug-in
doesn’t have to limit itself just to the environment provided by the plug-in host.
We will only deal with Filter plug-ins further in this paper.

1.3 Plug-in interface

Adobe Photoshop plug-ins are implemented as DLL libraries. When Photoshop
starts, it scans the plug-in directory (”Plug-Ins” by default) for plug-in modules
and makes them ready to use.

In most cases plug-ins are called upon user request. They have a single entry
point with a function prototype of

DLLExport MACPASCAL void PluginMain(

const short selector, void* pluginParamBlock,

long* pluginData, short* result)

The selector parameter determines which operation should the module perform.
If selector is zero, it always and for all modules means that the plug-in should
display an about box. Details will be discussed later in section 1.5. Parameter
pluginParamBlock is a pointer to an extensive structure, that is used for two-way
information exchange between plug-in and host. In the pluginData pointer the
module can store a reference to its internal data. After returning from plug-in call,
this reference will be hold by the host. So when the module is executed next time,
it will have its data available. The plug-in should always set the output parameter
result, which has a meaning of an error code. It informs the plug-in host
about the result of performed operation. The function body is usually a switch
statement, that dispatches program control according to selector value. When
executing a plug-in, the entry point is called several times. Detailed description
is in section 1.5.

As mentioned before, errors are reported in the result parameter. Symbolic
constant noErr (value zero) means that everything went all right. Any nonzero
number indicates an error. When plug-in returns a positive value, it tells host
that the module has already informed the user about an error. This is useful
especially in case when only the module understands the error. On the other
hand a negative return value means that a standard error message should be
displayed by the host. This is the preferred way, since it spares programmer’s
work and the plug-in host will display the message in local language. When
reporting errors it is generally recommended to use symbolic constants defined
in the SDK or standard operating system error codes.

12

1.4. FILTER PLUG-INS

1.4 Filter plug-ins

This paper focuses on Filter plug-in modules. Let’s have a look at the Filter
Parameter Block that is passed as the pluginParamBlock parameter. It’s an
extensive structure, in current Photoshop version CS2 counts over one hundred
entries. However it is by far not necessary to know all of them. So the following
list summarizes only the important ones.

parameters If the plug-in has some parameters, it will store them in a block of
memory. We will probably want the setting to be retained even after the
plug-in ends. Therefore the module stores a reference to its parameters into
parameters entry. Plug-in host will then maintain this block of memory
until the plug-in is executed again.

imageSize The size of the whole image.

imageMode Image color space.

planes Number of image channels, it is the number of color components includ-
ing alpha channels and/or masks.

depth Image bit depth (1, 8 or 16).

maxSpace In this entry Photoshop specifies the maximum amount of mem-
ory that will be available to the plug-in. If the module can estimate its
memory requirements and those are lower, it should lower the maxSpace

value accordingly. Thereby more memory will be left to Photoshop and we
will avoid unnecessary swapping. How to estimate memory requirements is
further discussed in section 1.5.2.

bufferSpace If the plug-in module is going to allocate large memory blocks, it
should set bufferSpace to the number of bytes needed. Before the plug-in
starts working, plug-in host will try to free up that amount of memory. If
the module allocates memory using Buffer suite, bufferSpace can remain
zero. More about Buffer suite functions may be found in section 1.6.2.

filterRect This is a bounding rectangle of the area the plug-in will process. If
there is a non-rectangular selection in the image, filterRect is the smallest
rectangle that encloses all the selected pixels. Right and bottom bounds
are counted noninclusive.

inRect, outRect In these entries plug-in specifies input and output rectangles.
These are subsets of the image being filtered. They determine areas from
where the module will read data and where it will write. Right and bottom
bounds are counted noninclusive. These rectangles don’t need to be the
same (not even the same size) although they usually are.

13

1.4. FILTER PLUG-INS

inLoPlane, inHiPlane, outLoPlane, outHiPlane Plug-in sets these entries
according to image channels it wants to process. It’s clear that inLoPlane
and inHiPlane specify the range of input channels, while outLoPlane and
outHiPlane give the range of channels for output. If the module wants to
work with all the channels at once it sets inLoPlane = outLoPlane = 0

and inHiPlane = outHiPlane = planes - 1.

inData, outData Pointers to blocks of memory with input and output data
respectively. Both these blocks are allocated by the plug-in host, not by the
plug-in itself. Description of how image data is organized can be found in
section 1.4.2.

haveMask Determines whether the image has a mask. It is the case when there
is a non-rectangular selection defined. The mask then specifies which pixels
are selected. Mask manipulation is further discussed in section 1.4.1.

maskRect, maskData These entries are concerned with mask. They have sim-
ilar meaning as inRect and inData.

inRowBytes, outRowBytes, maskRowBytes This determines the offset be-
tween rows of data. There may be padding bytes at the end of rows. Nat-
urally these bytes should be skipped.

inputRate, maskRate While reading image data, Photoshop can resample it.
Sampling rate values are entered as 32bit fixed point numbers. The inte-
ger part is stored in higher 16 bits, the fraction is in lower 16 bits. So
if the plug-in module wants half-sized image (every second pixel), it sets
inputRate = (int32)(2 << 16).

inputPadding, outputPadding, maskPadding It may happen that plug-in
will try to access data that are out of bounds of the image3. Padding is
set to plugInWantsErrorOnBoundsException by default. It means that
accessing pixels out of image bounds will cause an error and plug-in exe-
cution will be stopped. When we set padding to an arbitrary value from
0 to 255, all pixels outside image bounds will have this value. Setting
plugInDoesNotWantPadding means that it is possible to access pixels out
of the image, but their values will be entirely random. The most interesting
option is plugInWantsEdgeReplication. This ensures that pixels at image
borders will be copied beyond the bounds to extend the image as necessary.
Padding may be very useful for example when applying a convolution mask.
The programmer doesn’t need to care about special cases at image borders
and thus saves much work.

3It may be a programmer’s mistake or also his intention.

14

1.4. FILTER PLUG-INS

wantsAbsolute The user may change the ordering of image channels in Photo-
shop. These must be then identified by the serial number. But the plug-in
may also set wantsAbsolute entry. Photoshop will then pass image data
in the standard order. Details about how image data is organised can be
found in section 1.4.2.

inTileWidth, inTileHeight In order to optimize memory access, the plug-in
should process the image in pieces. If possible it is best to work with block
sizes suggested by Photoshop.

pointers to plug-in host functions Plug-in host provides plug-in modules
with various utility functions. In Filter Parameter Block there are stored
pointers to them. Some of them are direct and some are grouped in suites.
For more about these functions please read section 1.6.

If you are going to write some considerably large plug-in, I certainly recommend
you to read through the complete list of Filter Parameter Block entries. You may
find it in the Adobe Photoshop API Guide. You will get a valuable knowledge
about what the plug-in host may solve for you. Many times you will spare much
programming.

1.4.1 Masking pixel modifications outside selection

In the input image there may be a non-rectangular selection. In such case plug-in
will get to process the smallest rectangle that can hold the whole selected area.
Also a mask will be available. From it the plug-in can determine which pixels are
selected and which are not. The module needn’t to care about the mask at all,
since Photoshop masks all changes outside selection automatically. Only selected
pixels will be modified, other changes are ignored. It is possible to disable this
function so that plug-in can perform masking all by itself. However this is not
very useful in practice.

Let’s have a look at some better example when mask may be helpful. In
some complicated image filters, processing each single pixel may be very time
consuming. In this case it is worth first examining whether a pixel lies within
a selection. We will then decide if the pixel needs processing or we can leave it
alone. The mask may also be useful when we compute for example a histogram.
In such case we should count only those pixels that are inside the selection.
Photoshop automatically masks only writing, plug-in can read outside selection
arbitrarily.

1.4.2 How image data is organized

Plug-in modules often process all image channels at once. In this case image data
is interleaved. This means that in memory there are first stored all channels of

15

1.5. FILTER PLUG-IN EXECUTION

the first pixel consecutively, then all channels of the second pixel and so forth.
If this kind of interleaving is for the plug-in unsuitable, it may be changed by
setting the wantLayout entry of Filter Parameter Block. If standard interleaving
is used channels are ordered is as follows: First all color components, then possible
masks, finally possible alpha channels. This ordering may be however changed
by the user. So it is useful to set wantsAbsolute. Photoshop will then ensure
that image channels will be presented to the plug-in in the standard order.

1.5 Filter plug-in execution

As we already mentioned in section 1.3, while executing a plug-in the host calls
module’s entry point several times. The calling scheme is shown in Figure 1.1.
The module performs operations according to the selector parameter. Following
pages discuss all phases of plug-in execution in detail. We will refer to Filter
Parameter Block as to FilterRecord for short. The same name has also the data
structure where Filter Parameter Block is implemented.

Figure 1.1: Filter plug-in calling scheme

16

1.5. FILTER PLUG-IN EXECUTION

We will start with a special case when the selector parameter is equal to
filterSelectorAbout (value zero). It’s a command for displaying an about
box. In this case plug-in gets an AboutRecord instead of FilterRecord parameter.
AboutRecord is a structure with basic information about the module. It can be
used to show a simple informative dialog. In most cases this is fairly enough.

1.5.1 The Parameters phase

When the plug-in module is run for the very first time it is always with the
filterSelectorParameters selector. Now the plug-in should allocate memory
for parameters and set them to the default values. If the module stores its
parameters in a configuration file or in Photoshop registry, it’s a good time to
load them now.

The plug-in will probably have some setup dialog. Therefore in the parameters
structure there should be a flag that tells whether the dialog should be displayed.
We will set the flag now because this is the first execution of the module so
parameters need to be set up. The Parameters phase needn’t to be called again
later. Photoshop has a Last Filter function (keyboard shortcut Ctrl+F) that
runs lastly used filter again with the same settings. Therefore plug-in parameters
should be independent of image size or color space. Next time these values may
be different. Moreover in the Parameters phase not all FilterRecord entries are
valid, so the module doesn’t know everything about the input image. Before the
plug-in starts working it should always validate its parameters.

1.5.2 The Prepare phase

In the next step the plug-in is called with the filterSelectorPrepare param-
eter. This phase may (and may not) be preceded by the Parameters phase. If
the module was run by the Last Filter command, the Parameters phase will
be skipped. Not all FilterRecord entries are yet valid. But we already have
imageSize, filterRect and planes available.

The plug-in should now estimate its memory requirements. Macintosh has
poor memory management when allocating large blocks so Photoshop deals with
it by itself. In FilterRecord there is a maxSpace entry where plug-in host indicates
how many bytes of memory could be available for the plug-in. Take care, this
memory need not to make up a single block. It is not efficient to always request
all the free memory. It doesn’t need to be free actually. Photoshop just says
that it will be able to free it up if necessary. So if we want to avoid unnecessary
swapping the plug-in should request only such amount of memory it will actually
need. It will then inform Photoshop by setting maxSpace to appropriate value.

Memory requirements are usually estimated as follows. The module is going
to process the image in pieces so we estimate the size of a single block. We can’t
use inTileWidth neither inTileHeight since these entries are not valid yet. The

17

1.5. FILTER PLUG-IN EXECUTION

number of pixels in a block is then multiplied by the number of image channels.
The result is further multiplied by two since we have input data and output data.
If there is a mask in the image we must count with additional space for it as well.
In case of complicated algorithms it is sometimes not easy to estimate the amount
of memory needed. If we don’t want to bother we can just divide maxSpace by
two. This way the plug-in will get half the memory available leaving the other
half to Photoshop. This simple solution is often fully sufficient. But we may
also experiment with maxSpace value. If program efficiency is critical it could be
necessary to perform several tests and chose the best setting.

If the plug-in is going to allocate some additional tables, buffers or other
large data structures it should set bufferSpace to the number of bytes needed.
However it is more efficient to allocate memory using special functions provided
by Photoshop for such situations. It’s a task for Buffer suite which is discussed in
detail later in section 1.6.2. When we use Buffer suite we leave bufferSpace set
to zero and take advantage of sophisticated memory management in Photoshop.

1.5.3 The Start phase

The real filtering starts when plug-in is called with the filterSelectorStart

parameter. First of all the module should validate it’s parameters and in case of
trouble return filterBadParameters error code. It should then verify that it can
process image of given format. If not, the module should return filterBadMode

error. According to PiPL, Photoshop enables plug-in execution only on suitable
image formats but it is always better to make sure. We will discuss PiPL later
in section 1.7. If the module is planning to use some plug-in host functions it
should first verify whether these are available. Pointers to them must not be
NULL. When needed functions are not provided by the host, the plug-in may try
to get along without them or return errPlugInHostInsufficient error code.

When all tests passed well it’s time to show the setup dialog. Of course only
if it is needed. If the module was run ”from the beginning” i.e., the Parameters
phase was called, the flag for displaying setup dialog was set. When the user sets
the parameters we will reset the flag. If the module would be later invoked with
the Last Filter command, no setup dialog will be necessary. The user may of
course change his mind about running the plug-in. He can hit the Cancel button.
In such case the module should end with a userCanceledErr return value.

Next it is necessary to set up how the image will be processed. It’s good
to set wantsAbsolute to ensure standard channel ordering. We will probably
want to sample the image 1:1 so we assign inputRate = (int32)(1 << 16). If
necessary we may also set inputPadding or other parameters.

The image will be processed in pieces. It’s good because of lower mem-
ory requirements. Photoshop advises suitable block size in inTileWidth and
inTileHeight entries. But we may chose other blocks that will be best suitable
for us. For example we will compute horizontal motion blur by raster lines, while

18

1.5. FILTER PLUG-IN EXECUTION

for instance DCT for JPEG compression preferably by 8×8 blocks. For efficient
computing on multiprocessor machines it is usually better to work with blocks
rather than lines. Accessing memory by lines is often slower. The last thing to do
is setting inRect, outRect, eventually maskRect rectangles to the first part of the
image. Later during computing we must not forget that there may be padding
bytes at the end of rows. We can find it out in FilterRecord from inRowBytes,
outRowBytes, eventually maskRowBytes entries.

Now there are two possibilities how to continue. The conventional way is
that we only make preparations in the Start phase. The image is then processed
in the Continue phase which is being called repeatedly until the whole image is
processed. Though this technique is not very efficient. In each turn the plug-in
process just a single part of image. Then it returns to Photoshop which calls
Continue phase again. So that program control still has to flip-flop back and
forth between plug-in and the host. This causes excessive computation overhead.

Fortunately there is an elegant solution to this. We will use advanceState

function. It updates the computing state (writes processed data and loads new
input data) without having to return from plug-in call back to Photoshop. We
shouldn’t forget to always check the function’s return value. If an error occurs,
the plug-in should end with appropriate error code. It is also good to update
the progress bar from time to time. The progressProc function does the job.
Even when progress bar is growing the impatient user may decide to break the
operation. This can be found out by the abortProc function. So it’s also good to
call it once in a while and test its return value. If user wants to halt, the module
should stop computing and return userCanceledErr code. Photoshop will then
automatically return the partially processed image into the state before plug-in
invocation.

When the entire image has been processed the plug-in module sets inRect,
outRect and maskRect rectangles (all of them) to zero. This way Photoshop will
know that filtering has been finished. Setting to zero means setting to empty
rectangles (0, 0, 0, 0), NULL value may be assigned as well.

1.5.4 The Continue phase

The module is called with filterSelectorContinue selector repeatedly until
the whole image is processed. Plug-in will inform about it by zeroing inRect,
outRect and maskRect rectangles. When we use advanceState technique, the
Continue phase is actually not needed. Nevertheless it’s good to respond to
filterSelectorContinue for sure and zero all the rectangles.

If we don’t use advanceState function we will process always a single image
block in the Continue phase. We will then set rectangles to the next piece of image
and return to Photoshop. If we have some unfinished work in the Continue phase
we must remember that in case of error the Continue phase will not be called
again. So we cannot rely that another Continue will always follow.

19

1.6. PLUG-IN HOST FUNCTIONS

1.5.5 The Finish phase

After finishing the main operation, plug-in is called with filterSelectorFinish

parameter. In this phase the module should do any clean-up needed. It should
release allocated memory4 and put everything else to the state where it’s possible
to end correctly. If there was no error in the Start phase, plug-in host guarantees
that Finish will be called in the end. This applies even if there was some error in
the Continue phase. But if an error occurs during the Start phase it is necessary
to do any clean-up right there, Finish will not be called.

1.6 Plug-in host functions

The Filter Parameter Block Structure contains among others also pointers to
function callbacks provided to plug-in module by the host. We will discuss these
functions in detail in this section. First it should be reminded that not all of
them must be always available. Those which are not supported by the plug-in
host will have a NULL pointer in the FilterRecord. Before the module starts using
a function it should first verify that plug-in host provides this function. If not,
the module will have to get along without it. If the function is a must, plug-in
should stop and return errPlugInHostInsufficient error code.

1.6.1 Directly accessible functions

Pointers to most often used functions are stored directly as FilterRecord entries.
We will describe the most important ones in following paragraphs.

OSErr advanceState(void)

Upon calling this function, plug-in host updates all data structures used to com-
municate with plug-in module. In practice it means that a new block of input
image will be loaded into inData according to inRect setting. Results in outData

will be stored and according to outRect a new memory will be prepared for future
results to come.

While using advanceState, communication between plug-in and the host is
far more efficient. Unlike calling the Continue phase repeatedly, program control
needn’t to switch back and forth. If everything goes well, advanceState returns
noErr. In case of error it returns appropriate error code. This applies even if
the user wants to break plug-in operation (he pressed the Escape key). If the
function ends up with an error, some FilterRecord entries may be invalid, so the
module should stop computing. A typical advanceState call looks like this.

4Of course except module’s parameters. These will be preserved until next plug-in execution.

20

1.6. PLUG-IN HOST FUNCTIONS

*gResult = gFilterRecord->advanceState();

if (*gResult != noErr)

return;

The gFilterRecord pointer holds a reference to the Filter Parameter Block. The
gResult points to a global variable where an error code may be stored. This code
will be passed to plug-in host when returning from plug-in entry point call.

Boolean abortProc(void)

This function should be called preferably several times per second. If it returns
true it means that the user wants to break plug-in execution. As a side effect
the function changes mouse cursor to hourglass.

void progressProc(long done, long total)

Plug-in should call this function once in a time to update progress bar during long
operations. The first parameter done tells how many work units have been done
so far. Second parameter total specifies how much work is there in total. The
progressProc function should be used only during the main plug-in operation,
not when e.g. computing a preview.

OSErr colorServices(ColorServicesInfo *info)

Provides services concerned with colors. There are four options to chose from.
The function can show a palette and let the user select a color. The most fre-
quently used service is color space conversion. Further it is possible to get current
sample point. And finally we can read current foreground or background color.

Before colorServices can be used we have to fill in the ColorServicesInfo
structure. A simple example follows showing how to convert color from image
space to RGB.

ColorServicesInfo info;

info.infoSize = sizeof(info);

info.selector = plugInColorServicesConvertColor;

info.sourceSpace

= CSModeToSpace(gFilterRecord->imageMode);

info.resultSpace = plugInColorServicesRGBSpace;

for (int a = 0; a < 4; a++)

info.colorComponents[a] = color[a];

if (gFilterRecord->colorServices(&info) == noErr)

for (int b = 0; b < 4; b++)

color[b] = (uint8)info.colorComponents[b];

21

1.6. PLUG-IN HOST FUNCTIONS

The info structure size is may be reasonless assigned to the infoSize entry. It’s
a trick how to easily ensure version numbering. The selector specifies which
service we want to use. In our example it is a color space conversion. We set the
sourceSpace parameter to the image color space. The imageMode value from
FilterRecord has to be converted to a colorSpace value. Therefor we use the
CSModeToSpace function. We will then set the resultSpace to RGB. Lastly we
just copy the color we want to convert into the colorComponents array.

The ColorServicesInfo structure is ready, we can call the colorServices

function. If everything went all right the converted color is now stored in the
colorComponents array. Take care while reading the color components. They
must be cast to uint8 since colorComponents array is of type int16! If plug-in
host supports it, from info.resultInGamut we may find out whether resulting
color is inside gamut for current printer setting. This is possible as well when
using the other services not just color space conversion.

OSErr displayPixels(const PSPixelMap *source,

const VRect *srcRect, int dstRow, int dstCol,

unsigned platformContext)

This function serves for drawing image data into a dialog window. Thus it is
useful for displaying a preview. Plug-in host automatically performs color space
conversions as necessary. The image is then drawn to given place in the dialog.
The use of displayPixels is a bit more complicated and needs some knowledge
of Win32API. So interested readers should consult the Adobe Photoshop SDK
documentation and sample programs.

1.6.2 Buffer suite functions

Additional functions are grouped together into suites according to common func-
tionality. The Buffer suite could be perhaps the most useful. It offers possibility
to use Photoshop’s efficient memory management. Photoshop was originally cre-
ated for Apple Macintosh, where allocation of large blocks is not very efficient.
So Photoshop has its own memory management. When plug-ins want to take
advantage of it they can use the Buffer suite. It’s functions can be accessed
through the bufferProcs entry in FilterRecord. Let’s have a look at individual
functions.

int spaceProc(void)

Returns the number of free bytes available. The free memory needn’t to be a
continuous block.

22

1.7. THE PIPL RESOURCE

OSErr allocateProc(int size, BufferID *buffer)

Allocates a memory block of given size. The block identifier is returned as the
buffer parameter.

void freeProc(BufferID buffer)

Releases given block of memory.

Ptr lockProc(BufferID buffer, Boolean moveHigh)

Locks specified block thus preventing it from moving in memory. The moveHigh

parameter is significant only on Macintosh. It determines whether the block being
locked should be moved to the high end of memory to reduce fragmentation. The
function returns a pointer to the beginning of locked block. Take care, numbers
are stored as int8. So when reading image data we must not forget to cast it to
uint8.

void unlockProc(BufferID buffer)

Unlocks given memory block. Buffer suite uses a cumulative lock so one block
may be locked several times. To unlock it, the same number of unlockProc calls
is necessary.

1.7 The PiPL resource

Originally Adobe Photoshop recognized plug-ins by their filename extension,
eventually by file type on Macintosh. In Photoshop version 3.0 the plug-in inter-
face was considerably revised. Many new functions and possibilities have come.
From Photoshop version 3.0 plug-in information are extracted from so-called PiPL
(Plug-in Property List). It is however recommended to keep standard filename
extensions. Plug-in Property List is a set of information added to a plug-in as a
(platform dependant) resource. Plug-in host can read module type, abilities and
static settings from PiPL. On the other hand the module can specify its relation
to various hosts.

A PiPL is usually written in a Rez format that originates from Macintosh. It’s
highly recommended to keep this format even when developing for Windows. As
mentioned many times before, Photoshop comes from Macintosh and many things
are affected by this. It is necessary to comply with byte ordering (Photoshop uses
big endian), padding bytes, etc. There is a simple utility to convert PiPL to a
Windows resource. Detailed description can be found in section 1.8.2.

23

1.7. THE PIPL RESOURCE

The PiPL structure is very complex and there’s not point in studying it in
detail. There is a comprehensive description in Adobe Photoshop SDK documen-
tation. But at the same place there is recommended to use a PiPL from some
sample project as a template and then just fine tune necessary settings. So now
a typical PiPL will be shown with detailed description of all used entries.

resource ’PiPL’ (ResourceID, "Invert PiPL", purgeable)

{ {

Kind {Filter},

Category {"Invert"},

Name {"Invert..."},

Version {(latestFilterVersion << 16)

| latestFilterSubVersion},

CodeWin32X86 {"PluginMain"},

SupportedModes

{

noBitmap, doesSupportGrayScale,

noIndexColor, doesSupportRGBColor,

doesSupportCMYKColor, ...

},

EnableInfo

{

"in (PSHOP_ImageMode, GrayScaleMode,"

"RGBMode, CMYKMode, ...)"

},

FilterCaseInfo

{ {

inStraightData, outStraightData,

doNotWriteOutsideSelection,

doesNotFilterLayerMask,

doesNotWorkWithBlankData,

doNotCopySourceToDestination,

...

} }

} };

There is a resource keyword at the first line. Follows a 4byte code ’PiPL’

determining type. In parentheses there are three parameters. The symbolic
constant ResourceID is resource identifier. The "Invert PiPL" string is a name,
it can be arbitrary. The last parameter is a purgeable keyword. That means

24

1.7. THE PIPL RESOURCE

if Photoshop would run out of memory it can remove this resource if it’s not
actually needed.

Now we will describe all used PiPL entries. Their ordering in the source
code doesn’t matter. The Kind attribute designates module type. When we
are developing a Filter plug-in we will use the Filter keyword. The Category

determines into which category the module belongs to. This is the name of
submenu in Photoshop Filter menu where the plug-in will show up. Obviously
the Name attribute is a name of the module. The same name will also have
appropriate submenu entry in the Filter menu. The Version attribute is not
module version. It’s a version of SDK which was used to build the plug-in.
The value is a 32bit number with higher 16 bits for major version and lower 16
bits for minor version. Plug-in host gets module’s entry point name from the
CodeWin32X86 attribute.

The plug-in might not be able to work with all possible image modes. This
is determined by SupportedModes and EnableInfo. Photoshop will enable or
disable plug-in invocation accordingly. Though we shouldn’t blindly rely on this.
A correct plug-in always checks color space of the image it’s going to process. The
SupportedModes attribute contains just a list of color modes. The doesSupport

prefix means that the plug-in is capable of processing such color space, prefix no

means the opposite.
The EnableInfo entry contains an expression. If it’s evaluated as true, plug-in

will be enabled. The expression can be quite complicated so that we can check
many image parameters, e.g. bit depth. But mostly we get along just with the
in function. It determines whether it’s first parameter is equal to at least one
of those following. The PSHOP_ImageMode parameter represents color space of
current image. Complete description of EnableInfo expression possibilities may
be found in SDK documentation. Attributes SupportedModes and EnableInfo

should always match, they should produce the same results for given image mode.
Specially for Filter plug-ins there is the FilterCaseInfo attribute. It contains

a list of settings which specify how image data will be presented to the plug-in.
Seven cases may occur depending on whether the image contains transparency,
selection and/or layer mask. Settings for all those cases are stored in one list
consecutively so here the ordering is significant. In the above PiPL example
there are settings just for the first case i.e., image with no transparency and no
selection. Remaining variants may be found in the documentation and in sample
projects.

In each case the setting has six parameters. First two of them control pre-
processing and postprocessing of image data. Keywords inStraightData and
outStraightData means that plug-in will get the data as is. Neither after pro-
cessing, the host will do any extra adjustments. Alternatively Photoshop may
for example fill transparent areas by defined color. When processing is done, the
color can be removed so as to restore the transparency. Please consult documen-
tation for details.

25

1.8. WRITING PLUG-INS IN MICROSOFT VISUAL STUDIO

The next attribute doNotWriteOutsideSelection specifies that Photoshop
will automatically mask modification of pixels that lie outside selection. Choosing
writeOutsideSelection disables this feature.

The doesNotFilterLayerMask means that plug-in module will not process
layer mask. The opposite option is filtersLayerMask which ensures that the
mask will be added to other image channels.

Setting doesNotWorkWithBlankData indicates that the module is not capable
of working with completely transparent pixels. They actually don’t have any color
defined. If such pixels would appear in the image, an error will be signaled. If
plug-in can handle transparent pixels, we will set worksWithBlankData.

The doNotCopySourceToDestination attribute specifies that plug-in host
will not copy input pixels to the output image automatically. Thereby we spare
some computational time. However if the plug-in module is going to modify just a
few pixels, it’s better to set copySourceToDestination. This way plug-in won’t
have to copy all the unaltered pixels.

1.8 Writing plug-ins in Microsoft Visual Studio

Compiling a plug-in module might be a bit tricky so here is a step by step guide.
Microsoft Visual Studio (also referred to as MSVS further in text) is probably
the most widespread development environment on Windows. Therefore following
instructions are right for MSVS.

1.8.1 Setting up the project

Project settings may be found in the Project | Properties. . . menu. First of all
the module should compile as DLL (Dynamic Link Library). This is preferably
set already when creating the project. It can also be done later in the General
tab as shown in Figure 1.2. When we are developing a Filter plug-in the resulting
file should have a .8BF extension. This can be set in the Linker | General tab
as shown in Figure 1.3. It’s also necessary to specify directories where Adobe
Photoshop SDK header files are located. We can set it in C/C++ | General tab,
see Figure 1.4.

If we use any utility functions from SDK samples, we have to include source
files, where these functions are programmed, to the project. Figure 1.5 shows an
example. Mentioned source files are located in the Utilities folder but this is not
decisive. They may also be in the standard Source Files folder as well.

To compile all utility functions successfully it may be necessary to set the
project to link with version.lib library. We can set it up in the Linker | Input
tab. There’s an example shown in Figure 1.6.

26

1.8. WRITING PLUG-INS IN MICROSOFT VISUAL STUDIO

Figure 1.2: Setting compilation preferences

Figure 1.3: Setting output filename extension

27

1.8. WRITING PLUG-INS IN MICROSOFT VISUAL STUDIO

Figure 1.4: Designation of directories with header files

Figure 1.5: An example of arranging files into the project

28

1.8. WRITING PLUG-INS IN MICROSOFT VISUAL STUDIO

Figure 1.6: Setting the linker

1.8.2 Compiling PiPL resource

We will also add the PiPL source file (it usually has a .r extension) into the
project. Situation is illustrated in Figure 1.5. We have to use a Custom Build
Step to compile a PiPL since it’s in the Rez format that MSVS doesn’t recognize.
Therefore we must exactly specify how to handle such file. We can open the Cus-
tom Build Step options by selecting the .r file and choosing Project | Properties
from the menu. A dialog similar to Figure 1.7 will appear.

First we have to prepare the PiPL source file by passing it through a standard
C preprocessor.

cl.exe /I<file1.h> /I<file2.h> /EP /DWIN32=1 /Tc

"$(InputPath)" > "$(IntDir)\$(InputName).rr"

The cl.exe program is a standard C compiler. All necessary header files are
specified as parameters with /I prefix. The /EP switch runs the preprocessor.
The result will be written to the standard output. Further it’s necessary to
define the WIN32 symbolic constant, this is done by /DWIN32=1. The /Tc switch
indicates that the input file is in the C language. The $(InputPath) macro
stands for input filename. Preprocessor’s standard output is redirected to a file
with .rr extension.

We will now compile the preprocessed file by a utility program from Adobe
Photoshop SDK.

Cnvtpipl.exe "$(IntDir)\$(InputName).rr" "$(InputName).pipl"

29

1.8. WRITING PLUG-INS IN MICROSOFT VISUAL STUDIO

Figure 1.7: Setting a Custom Build Step for PiPL resource

The first parameter is input filename, the second one is output filename. As
a result we will get PiPL as Windows resource. Unfortunately programs can’t be
placed in a pipe since Cnvtpipl.exe doesn’t read data from standard input.

Lastly we add some resource to the project. The resource may be empty but
we will probably have a setup dialog definition. In the Resource View window we
then invoke (by the right mouse button) a context menu for the resource and we
select Resource Includes. . . There’s an example in Figure 1.8. A dialog window
will show up. In the Compile-time directives field we include the PiPL into the
resource by #include command. Figure 1.9 shows an example.

1.8.3 Debugging a plug-in module

For comfortable debugging it’s good to automatically copy the compiled module
into a Photoshop directory. A Post-Build Even is useful for this. We can set it up
in the Build Events | Post-Build Event. There’s an example in Figure 1.10. May
be the $(TargetPath) macro is worth explaining. It represents the resulting file-
name. When updating an existing plug-in there is no need to restart Photoshop.
Before any module starts it’s always reloaded in a current form.

Of course we can debug plug-ins using the standard Visual Studio debugger.
When running the project for the first time, MSVS will ask in which application
the library should be debugged. So we chose Photoshop.exe. The setting may be
later revised in the Debugging tab as shown in Figure 1.11.

30

1.8. WRITING PLUG-INS IN MICROSOFT VISUAL STUDIO

Figure 1.8: Context menu for a resource

Figure 1.9: Including a PiPL into a resource

31

1.8. WRITING PLUG-INS IN MICROSOFT VISUAL STUDIO

Figure 1.10: Copying compiled module to Photoshop

Figure 1.11: Choosing application where to debug the module

32

1.9. ADOBE DIALOG MANAGER

Let’s have a brief look at some of the common problems you may encounter
while writing a plug-in. If Photoshop does not recognize a module at all, the
problem is most probably with PiPL. If the project was compiled successfully,
PiPL was probably not included correctly to the resulting program. When pro-
cessing images we use arrays very often. Hence if we are looking for an error in
the program, it’s probable that some index exceeded out of array bounds. When
writing plug-ins we must remember that not all images are in RGB color space.
The module should be tested with various image formats, with and without se-
lection, including a non-rectangular selection.

1.9 Adobe Dialog Manager

Adobe Dialog Manager (further referred to as ADM) is a platform independent
interface for managing dialog windows in Adobe applications. Dialogs created
by ADM have consistent Adobe look and feel. May be you are now wandering
whether ADM is worth using or it’s better to use Win32API. I would recommend
you the next. If you have a good knowledge of Win32API, use it. You will have
full control over all components. Program portability to Macintosh can be the
last thing to trouble you. If Win32API is unfamiliar to you, I would recommend
you to consider learning at least the basics. It’s by far not an anachronism5

and you will make use of it certainly more often than ADM. However if you like
discovering new things, let’s start revealing the ADM. It isn’t difficult and in
contrast to Win32API it’s quite comfortable.

For those not discouraged by the previous paragraph a light description of
ADM follows. The entire interface is very extensive so we will discuss just the
most important functions. Those should be fully sufficient for creating basic di-
alogs. Further details may be found in the documentation and sample projects.
First we will need a dialog design. This is the only platform dependent part. To-
day there are many graphic applications where a dialog can be easily designed.
Microsoft Visual Studio is probably the most frequently used on Windows. Ar-
ranging components onto a form isn’t anything complicated so we won’t deal
with it here. Adobe Dialog Manager loads dialog design from a resource. All
common components work well. However we should be careful when using some
specialities that ADM might not recognize.

Adobe Dialog Manager offers a range of functions that are grouped to suites
according to application field. Every such suite has to be acquired before use and
released at the end. The whole ADM is implemented according to PICA (Plug-In
Component Architecture). In Filter Parameter Block there is a sSPBasic entry
where we can find basic functions for using PICA. The following example shows
how to acquire ADM suite for working with dialogs.

5Originally I thought, as many others did, Win32API is a prehistoric thing. Later I was
surprised how many times it was useful to me.

33

1.9. ADOBE DIALOG MANAGER

gFilterRecord->sSPBasic->AcquireSuite(

kADMDialogSuite, kADMDialogSuiteVersion, (void**)&sADMDialog);

The gFilterRecord variable contains a pointer to the Filter Parameter Block.
The kADMDialogSuite constant determines which ADM suite we want to acquire,
kADMDialogSuiteVersion is its version. A pointer to the acquired suite will be
assigned to sADMDialog. Releasing a suite is even more easy.

gFilterRecord->sSPBasic->ReleaseSuite(

kADMDialogSuite, kADMDialogSuiteVersion);

sADMDialog = NULL;

It isn’t necessary to explain anything more here. No thorough programmer would
forget the command at the last line.

1.9.1 Creating a dialog window

Now we will finally learn how to put ADM functions to practice. First of all we
have to create a dialog. This can be done using a function from ADM Dialog
Suite.

int dismissButton = sADMDialog->Modal(

(SPPluginRef)gFilterRecord->plugInRef, "SetupDialog",

SETUP_DIALOG, kADMModalDialogStyle, DialogInit, NULL);

The Modal function creates and shows a modal dialog window. Modal means
that the user can’t return to the main window of application until he closes the
dialog. Modal windows is exactly what we need in plug-ins. Photoshop not even
supports other ADM dialog types. The first parameter of the function is a plug-in
module reference. We get it from the Filter Parameter Block. Second parameter
is dialog name for ADM internal use. The window caption is determined by
design loaded from a resource. When designing a dialog, every component and
even the window itself gets a unique identifier. Appropriate dialog definition
will be found in the resource according to the SETUP_DIALOG constant. Another
constant kADMModalDialogStyle means that a modal dialog will be created. The
DialogInit is a name of initialization function. It will be called immediately
upon dialog creation. This function is described later. The last parameter of the
Modal function is a pointer to data that should be bundled with the dialog. This
data can be later accessed using the sADMDialog->GetUserData function. The
Modal function returns identifier of the component that was used to dismiss the
dialog. It’s usually either the OK button or the Cancel button. This way we can
easily find out whether the user affirmed settings or he wants to cancel.

The initialization function serves for initial setting of the dialog and its com-
ponents. Adobe Dialog Manager creates all components and positions them at
the correct place. So we usually just set them to the state corresponding to actual

34

1.9. ADOBE DIALOG MANAGER

plug-in parameters. In documentation you can find for each component an exact
description of what all should be initialized. The initialization function has the
following prototype.

ASErr ASAPI DialogInit(ADMDialogRef dlgRef)

The ASAPI macro is just another name for Pascal (stdcall) calling convention.
The parameter is a reference to the dialog just created. The function returns an
error code. If everything was all right the code should be kNoErr.

1.9.2 Accessing dialog components

It’s time to learn how to manipulate individual dialog components. First we have
to get the component reference.

item = sADMDialog->GetItem(dlgRef, ID_CHECKBOX);

The dlgRef parameter is a reference to the dialog window where the desired item
is located. The ID_CHECKBOX identifier designates the component we want. We
can then manipulate it using ADM Item Suite functions. The example below
shows how to set a check box.

sADMItem->SetBooleanValue(item, true);

Adobe Dialog Manager may look a bit confusing for the first time since ADM
Item Suite functions are designed very generally. For example in this case the
SetBooleanValue function sets a check box. But when applied to other compo-
nent type it may have different meaning. In documentation you can find for each
function explained what effect is has on which component. The ADM Item Suite
has about 140 functions. So it’s up to the reader to find those he will need.

1.9.3 Event handling

The dialog window should of course respond to user input. This is, as everywhere
else, ensured by a system of events. For accessing events at a higher level there
is so-called notifier. It is called when user finishes interaction with a component.
Let’s have a look at a simple example. Consider a track bar. User can grab the
slider by mouse and drag it. As he scrolls to desired position he releases the
slider. At this time a notifier will be called.

In the previous section it was explained how dialog component properties can
be set up. We assign a notifier in the same manner.

item = sADMDialog->GetItem(dlgRef, ID_OK);

sADMItem->SetNotifyProc(item, ButtonOkNotify);

35

1.9. ADOBE DIALOG MANAGER

The meaning of all functions and parameters should be clear now. The OK
button events will be handled by the ButtonOkNotify function. The following
example shows its general scheme.

void ASAPI ButtonOkNotify(

ADMItemRef itemRef, ADMNotifierRef notifier)

{

sADMItem->DefaultNotify(itemRef, notifier);

if (sADMNotifier->IsNotifierType(

notifier, kADMUserChangedNotifier))

{ ... }

}

The function prototype must comply. The itemRef parameter is a reference to
the component that caused this event. This way one function can handle events of
several components. The notifier parameter is a pointer to information about
current event.

In the function body we should first call the default event handler. This
can be done by the sADMItem->DefaultNotify function. Usually a conditional
statement follows where we determine what type of event occurred. Thereby we
can chose to which events we will respond. The sADMNotifier->IsNotifierType
function has two parameters. The first one is a pointer to the event, the second
one is a symbolic constant determining what kind of event we want to handle. If
such event occurred, the IsNotifierFunction returns true.

For accessing events at a lower level we can use so-called tracker. Consider
again the example with a track bar. As explained, the notifier will be called when
the user releases the slider. On the other hand the tracker will be called as soon
as user grabs the slider. It will be then called every time the slider moves by a
single tick. And for the last time when the slider is released. All these events are
placed into a queue. So if their service would take a long time it’s guaranteed
they will be processed in the same order as they occurred.

Tracker usage is similar to notifier. A tracker is assigned to a component by
a sADMItem->SetTrackProc command. The event handling function may then
look like the example below.

ASBoolean SliderTrack(ADMItemRef itemRef, ADMTrackerRef tracker)

{

ASBoolean sendNotify

= sADMItem->DefaultTrack(itemRef, tracker);

if (sADMTracker->TestAction(

tracker, kADMMouseMovedDownAction))

{ ... }

return sendNotify;

}

36

1.9. ADOBE DIALOG MANAGER

At the beginning we will call the default event handler as well. It will return
information whether current event requires calling a notifier. So when dragging
the track bar slider it will return false while when the slider is released it will
return true.

After returning from the default handler we usually test what kind of event
occurred. This time we use the sADMTracker->TestAction function to it. A
kADMMouseMovedDownAction constant is used in the example above. It doesn’t
mean we respond just in case when mouse moved downwards. It stands for the
event when a mouse moved with a button pressed (this is sometimes called mouse
dragging). In Win32API we would have to check separately whether the mouse
moved and whether a button is pressed. The handler function should return
information whether a notifier should be called. We will generally use the return
value of the default event handler but we can also control when notifier will be
called.

37

Chapter 2

Theory of masking images

2.1 Image registration

When we want to work with two or more pictures of the same or similar scenes
we first have to find a correspondence between pixels of individual images. We
don’t concern about synthetically generated images in this work since there is
usually no need to perform any masking. Our main objective are pictures taken
from a digital camera. It is supposed that pictures will have good quality, that
means that they are well lit, focused and that the camera didn’t move between
individual shots. Especially the last requirement is not easy to assure. Of course
a tripod should be used when taking pictures, though this is often not enough
since even in this case the camera can move slightly.

To achieve reasonable results from further processing we first have to find
a match between images. That is to determine which pixels of the first image
correspond to which pixels in the second image. This step is often called image
registration. In the research literature methods for automatic image matching
fall broadly into two categories: direct and feature based. Feature based methods
begin by establishing correspondences between points, lines or other geometrical
entities. For example, a typical approach would be to extract Harris corners
and use a normalised cross-correlation of the local intensity values to match
them. Direct methods attempt to estimate the registration by minimising an
error function based on the image intensity difference.

Feature based methods are capable of successfully registering images even
with high differences in camera position including rotation and zoom. However
the algorithms are rather complicated and require considerable computational
time. Direct methods have the advantage that they use all of the available data
and hence can provide very accurate registration. They usually assume just small
changes between the images being registered. But then algorithms are quite fast
and simple to implement.

38

2.1. IMAGE REGISTRATION

2.1.1 Scale Invariant Feature Transform

Recently there has been great progress in the use of invariant features for object
recognition and matching. In this section we discuss Scale Invariant Feature
Transform (SIFT features) as presented by D. G. Lowe in [4]. These features are
geometrically invariant under similarity transforms and invariant under affine
changes in intensity. This method can extract distinctive invariant features from
images that can be used to perform reliable matching between different views of
an object or scene.

The features are invariant to image scale and rotation, and are shown to
provide robust matching across a substantial range of affine distortion, change
in 3D viewpoint, addition of noise, and change in illumination. The features are
highly distinctive, in the sense that a single feature can be correctly matched
with high probability against a large database of features from many images.
Following are the major stages of computation used to generate the set of image
features.

1. Scale-space extrema detection: The first stage of computation searches over
all scales and image locations. It can be implemented efficiently by using
a difference-of-Gaussian function to identify potential interest points that
are invariant to scale and orientation.

2. Key point localization: At each candidate location, a detailed model is fit
to determine location and scale. Key points are selected based on measures
of their stability.

3. Orientation assignment : One or more orientations are assigned to each
key point location based on local image gradient directions. All future
operations are performed on image data that has been transformed relative
to the assigned orientation, scale, and location for each feature, thereby
providing invariance to these transformations.

4. Key point descriptor : The local image gradients are measured at the se-
lected scale in the region around each key point. These are transformed into
a representation that allows for significant levels of local shape distortion
and change in illumination.

This approach has been named the Scale Invariant Feature Transform (SIFT), as
it transforms image data into scale-invariant coordinates relative to local features.

39

2.2. ALPHA CHANNEL

2.1.2 Direct image registration

Given two input images A and B we are able to compute a mean square error
(MSE) between them as

MSE =
1

xy

x−1∑
i=0

y−1∑
j=0

(A[i, j] − B[i, j])2, (2.1)

where x and y are image dimensions. If we have images with multiple channels
we usually interpret color components as coordinates in space. Pixel difference is
then computed as Euclidean distance.

When registering images directly we have to first specify which image trans-
formations we are going to take into account. In most cases it will be translation
(in x and y axes), we may add rotation, zoom, etc. We then search for such trans-
formation parameters that minimize the MSE. We have to specify some bounds
i.e., set some range and sampling rate for parameter values. This designates the
search space. The algorithm is then quite simple. A MSE is computed for each
possible combination of transform parameters. Those that yield least MSE value
are the best solution for registration.

2.2 Alpha channel

As described in [8] a separate component is needed to retain the matte informa-
tion, the extent of coverage of an element at a pixel. In a full color rendering of
an element, the RGB components retain only the color. In order to place the el-
ement over an arbitrary background, a mixing factor is required at every pixel to
control the linear interpolation of foreground and background colors. In general,
there is no way to encode this component as part of the color information. For
anti-aliasing purposes, this mixing factor needs to be of comparable resolution to
the color channels. Such mixing factor is called an alpha channel, while an alpha
of 0 indicates no coverage, 1 means full coverage, with fractions corresponding to
partial coverage.

In an environment where the compositing of elements is required, we see the
need for an alpha channel as an integral part of all pictures. Because mattes
are naturally computed along with the picture, a separate alpha component in
the frame buffer is appropriate. Off-line storage of alpha information along with
color works conveniently into run-length encoding schemes because the alpha
information tends to abide by the same runs.

Each pixel is then described by a quadruple (r, g, b, a). How do we express
that a pixel is half covered by a full red object? One obvious suggestion is to
assign (1, 0, 0, 0.5) to that pixel. The 0.5 indicates the coverage and the (1, 0, 0) is
the color. There are a few reasons to dismiss this proposal, the most severe being
that all compositing operations will involve multiplying the 1 in the red channel

40

2.2. ALPHA CHANNEL

by the 0.5 in the alpha channel to compute the red contribution of this object
at this pixel. The desire to avoid this multiplication points up a better solution,
storing the premultiplied value in the color component, so that (0.5, 0, 0, 0.5) will
indicate a full red object half covering a pixel.

The quadruple (r, g, b, a) indicates that the pixel is covered by the color
(r/a, g/a, b/a). A quadruple where the alpha component is less than a color
component indicates a color outside the [0, 1] interval, which is somewhat unusual.
Though luminescent objects can be usefully represented in this way. For the
representation of normal objects, an alpha of 0 at a pixel generally forces the
color components to be 0. Thus the RGB channels record the true colors where
alpha is 1, linearly darkened colors for fractional alphas along edges, and black
where alpha is 0. Silhouette edges of RGBA elements thus exhibit their anti-
aliased nature when viewed on an RGB monitor. It is important to distinguish
between two key pixel representations: black = (0, 0, 0, 1) and clear = (0, 0, 0, 0).
The former pixel is an opaque black, the latter pixel is transparent.

The color of the composite can be computed on a component basis by adding
the color of the picture A times its fraction to the color of picture B times its
fraction. To see this, let cA, cB, and cO be some color components of pictures A,
B and the composite. Let CA, CB, and CO be the true color components before
premultiplication by alpha. Then we have cO = αOCO. Now CO can be computed
by averaging contributions made by CA and CB, so

cO = αO
αAFACA + αBFBCB

αAFA + αBFB
. (2.2)

But the denominator is just αO, so

cO = αAFACA + αBFBCB = αAFA
cA

αA

+ αBFB
cB

αB

= cAFA + cBFB. (2.3)

Factors FA and FB are determined by the compositing operation. The most
common is the over operation when foreground A is placed over background B.
In this case FA = 1 and FB = 1 − αA resulting in

cO = cA + cB(1 − αA). (2.4)

Because each of the input colors is premultiplied by its alpha, and we are
adding contributions from non-overlapping areas, the sum will be effectively pre-
multiplied by the alpha value of the composite just computed. The pleasant result
that the color channels are handled with the same computation as alpha can be
traced back to the decision to store premultiplied RGBA quadruples. Thus the
problem is reduced to finding fractions FA and FB which indicate the extent of
contribution of A and B. When we want to blend overlapping images together
we have to introduce a dissolve factor α. The composite is then computed as

cO = cAα + cB(1 − α). (2.5)

41

2.3. CONSTANT COLOR MATTING

2.3 Constant color matting

The basic problem of constant color matting is: Given an image of a foreground
object shot in front of a constant backing color, obtain a matte (alpha channel)
so that the object can be blended onto a new background.

2.3.1 Blue screen matting

Originally matting was a domain of film industry and it was done on a blue
background only. In addition to blue, other colors can be used, green is the most
common. Red, green and blue channels have all been used, but blue has been
favored for several reasons. It is the complementary color to flesh tone. Since the
most common color in most scenes is flesh tone, the opposite color is the logical
choice to avoid conflicts. Sometimes (usually) the background color reflects onto
the foreground talent creating a slight blue tinge around the edges. This is known
as blue spill. It doesn’t look nearly as bad as green spill, which one would get
from green.

Green has it’s own advantages, beyond the obvious one of greater flexibility in
matting with blue foreground objects. Green paint has greater reflectance than
blue paint which can make matting easier. Also, video cameras are usually most
sensitive in the green channel, and often have the best resolution and detail in that
channel. A disadvantage is that green spill is almost always objectionable and
obvious even in small amounts, whereas blue can sometimes slip by unnoticed.

A sophisticated television process is Ultimatte; also the name of the company
that manufactures Ultimatte equipment. It has been the ultimate in video com-
positing for 30 years. With an Ultimatte unit it is possible to create composites
that include smoke, transparent objects, different shades of blue, and shadows.
It is useful to think of the Ultimatte process as a mixing process, not a keying
process. This makes it possible to matte with shadows, hair, water etc. An Ulti-
matte uses the intensity and purity of the blue signal as a function to determine
how much blending to perform between the foreground and background images.
Another useful feature of the Ultimatte is blue spill removal. Other circuits deal
with glare, uneven or dirty blue backings, etc.

2.3.2 Formal presentation

In [10] or [11] there is a nice formal presentation of the problem. The color
C = [R, G, B, α] at each point of a desired composite will be some function of
the color Cf of the foreground and color Cb of the new background at the corre-
sponding points in the two elements. Each of the first three primary color coor-
dinates is assumed to have been premultiplied by the alpha coordinate. We shall
sometimes refer to just these coordinates with the abbreviation c = [R, G, B],
for color C. For any subscript i, Ci = [Ri, Gi, Bi, αi] and ci = [Ri, Gi, Bi]. Each

42

2.3. CONSTANT COLOR MATTING

of the four coordinates is assumed to lie on [0, 1]. We shall always assume that
αf = αb = 1 for Cf and Cb i.e., the given foreground and new background are
opaque rectangular images.

The foreground element Cf can be thought of as a composite of a special
background, all points of which have the (almost) constant backing color Ck, and
a foreground Co that is the foreground object in isolation from any background
and which is transparent, or partially so, whenever the backing color would show
through. Thus Cf = f(Co, Ck) expresses the point-by-point foreground color as
a given composite f of Ck and Co. We shall always take αk = 1 for Ck.

This facilitates the matting problem. Given Cf and Cb at corresponding
points, and Ck a known backing color, and assuming Cf = Co + (1 − αo)Ck,
determine Co which then gives composite color C = Co + (1 − αo)Cb at the
corresponding point, for all points that Cf and Cb share in common.

We know that Rf is an interpolation from Rk to Ro with weight αo. In other
words Rf = Ro + (1 − αo)Rk, similar relations hold for Gf and Bf . That means
cf = co + (1 − αo)ck in our abbreviated notation. A complete solution requires
Ro, Go, Bo, and αo. Thus we have three equations and four unknowns, an incom-
pletely specified problem and hence an infinity of solutions, unsolvable without
more information. Fortunately, there are some special cases where a solution to
the matting problem does exist and is simple.

2.3.3 No blue color

If co is known to contain no blue, co = [Ro, Go, 0], and ck contains only blue,
ck = [0, 0, Bk], then

cf = co + (1 − αo)ck = [Ro, Bo, (1 − αo)Bk] (2.6)

Thus, solving the Bf = (1 − αo)Bk equation for αo gives solution

Co =

[
Rf , Gf , 0, 1 − Bf

Bk

]
, (2.7)

if Bk �= 0. This example is exceedingly ideal. The restriction to foreground
objects with no blue is quite serious, excluding all grays but black, about two-
thirds of all hues, and all pastels or tints of the remaining hues (because white
contains blue). Basically, it is only valid for one plane of the 3D RGB color space,
the RG plane.

2.3.4 Gray or flesh color

There is a solution to the matting problem if Ro or Go = aBo + bαo, and if ck

is pure blue with aBk + b �= 0. To show this, we derive the solution Co for the
green case, since the solution for red can be derived similarly: The conditions,

43

2.4. DIFFERENCE MATTING

rewritten in color primary coordinates, are cf = [Ro, aBo + bαo, Bo +(1−αo)Bk].
Eliminate Bo from the expressions for Gf and Bf to solve for αo:

Co =

[
Rf , Gf , B∆ + αoBk,

Gf − aB∆

aBk + b

]
, (2.8)

if aBk + b �= 0. Here we have introduced a very useful definition C∆ = Cf − Ck.
The special case Co gray clearly satisfies given conditions, with a = 1 and b = 0
for both Ro and Go. Thus it is not surprising that science fiction space movies
effectively use the blue screen process (the color-difference technique) since many
of the foreground objects are neutrally colored spacecraft. As we know from
practice, the technique often works adequately well for desaturated (towards
gray) foreground objects, typical of many real-world objects. A particularly im-
portant foreground element in film and video is flesh which typically has color
[d, 0.5d, 0.5d]. Flesh of all races tends to have the same ratio of primaries, so d is
the darkening or lightening factor. This is a non-gray example satisfying given
conditions, so it is not surprising that the blue screen process works for flesh.

2.4 Difference matting

Another class of methods extract foreground objects based on a difference be-
tween input image and a reference image of background. It is a more general
case of constant color matting. This time the background color is not constant,
it is rather defined pixel by pixel by the reference picture.

2.4.1 Triangulation matting

An interesting solution is presented in [11]. Suppose co is known against two
different shades of the backing color. Then a complete solution (so-called trian-
gulation matting) exists as stated formally below. It does not require any special
information about co.

Let Bk1 and Bk2 be two shades of the backing color i.e., Bk1 = cBk and
Bk2 = dBk for 0 ≤ d < c ≤ 1. Assume co is known against these two shades.
Then there is a solution Co to the matting problem. Note that ck2 could be
black i.e., d = 0. The assumption that co is known against two shades of Bk is
equivalent to the following:

cf1 = [Ro, Go, Bo + (1 − αo)Bk1] (2.9)

cf2 = [Ro, Go, Bo + (1 − αo)Bk2]. (2.10)

The expressions for Bf1 and Bf2 can be combined and Bo eliminated to show

αo = 1 − Bf1 − Bf2

Bk1 − Bk2
, (2.11)

44

2.5. NATURAL IMAGE MATTING ALGORITHMS

where the denominator is not 0 since the two backing shades are different. Then

Ro = Rf1 = Rf2 (2.12)

Go = Gf1 = Gf2 (2.13)

Bo =
Bf2Bk1 − Bf1Bk2

Bk1 − Bk2
(2.14)

completes the solution. In [11] it is further shown that the triangulation matting
can be used even in more general case when the foreground is known against two
arbitrary backgrounds that differ in every pixel.

2.5 Natural image matting algorithms

Other approaches attempt to pull mattes from natural (arbitrary) backgrounds,
using statistics of known regions of foreground or background in order to estimate
the foreground and background colors along the boundary. Once these colors are
known, the opacity value is uniquely determined. Many of these algorithms are
nicely described in [13]. In most cases, the process begins by segmenting the image
into three regions: definitely foreground, definitely background, and unknown.
This must be done by a human. The algorithms then estimates contributions of
object and background to the composite. Hence an alpha channel for all pixels
in the unknown region can be determined.

2.5.1 Mishima method

More recently, Mishima developed a matting technique based on representative
foreground and background samples, see Figure 2.1(e). In particular, the algo-
rithm starts with two identical polyhedral (triangular mesh) approximations of
a sphere in RGB space centered at the average value B of the background sam-
ples. The vertices of one of the polyhedra (the background polyhedron) are then
repositioned by moving them along lines radiating from the center until the poly-
hedron is as small as possible while still containing all the background samples.
The vertices of the other polyhedron (the foreground polyhedron) are similarly
adjusted to give the largest possible polyhedron that contains no foreground pix-
els from the sample provided. Given a new composite color C, then, Mishima
casts a ray from B through C and defines the intersections with the background
and foreground polyhedra to be B and F , respectively. The fractional position
of C along the line segment BF is α.

45

2.5. NATURAL IMAGE MATTING ALGORITHMS

Figure 2.1: Summary of matting algorithms. Each of them requires some spec-
ification of background and foreground pixels. Figures (e)–(h) show how matte
parameters are computed

2.5.2 Knockout system

For Knockout1, after user segmentation, the next step is to extrapolate the known
foreground and background colors into the unknown region. In particular, given
a point in the unknown region, the foreground F is calculated as a weighted sum
of the pixels on the perimeter of the known foreground region. The weight for
the nearest known pixel is set to 1, and this weight tapers linearly with distance,
reaching 0 for pixels that are twice as distant as the nearest pixel. The same
procedure is used for initially estimating the background B′ based on nearby
known background pixels. Figure 2.1(b) shows a set of pixels that contribute to
the calculation of F and B′ of an unknown pixel.

The estimated background color B′ is then refined to give B. using one of
several methods that are all similar in character. One such method establishes
a plane through the estimated background color with normal parallel to the line
B′F . The pixel color in the unknown region is then projected along the direction
of the normal onto the plane, and this projection becomes the refined guess for B.
Figure 2.1(f) illustrates this procedure. Finally, Knockout estimates α according
to the relation

α =
f(C) − f(B)

f(F) − f(B)
, (2.15)

where f projects a color onto one of several possible axes through RGB space
(e.g., onto one of the R, G, or B axes). Figure 2.1(f) illustrates alphas computed
with respect to the R and G axes. In general, α is computed by projection

1Developed by Ultimatte company.

46

2.5. NATURAL IMAGE MATTING ALGORITHMS

onto all of the chosen axes, and the final α is taken as a weighted sum over
all the projections, where the weights are proportional to the denominator in
equation 2.15 for each axis.

2.5.3 Ruzon-Tomasi method

Ruzon and Tomasi [12] take a probabilistic view that is. First, they partition
the unknown boundary region into sub-regions. For each sub-region, they con-
struct a box that encompasses the sub-region and includes some of the nearby
known foreground and background regions, see Figure 2.1(c). The encompassed
foreground and background pixels are then treated as samples from distributions
P (F) and P (B), respectively, in color space. The foreground pixels are split into
coherent clusters, and unoriented Gaussians (i.e., Gaussians that are axis-aligned
in color space) are fit to each cluster, each with mean F̄ and diagonal covariance
matrix ΣF . In the end, the foreground distribution is treated as a mixture (sum)
of Gaussians. The same procedure is performed on the background pixels yield-
ing Gaussians, each with mean B̄ and covariance ΣB, and then every foreground
cluster is paired with every background cluster. Many of these pairings are re-
jected based on various ”intersection” and ”angle” criteria. Figure 2.1(g) shows
a single pairing for a foreground and background distribution.

After building this network of paired Gaussians, Ruzon and Tomasi treat the
observed color C as coming from an intermediate distribution P (C), somewhere
between the foreground and background distributions. The intermediate distri-
bution is also defined to be a sum of Gaussians, where each Gaussian is centered
at a distinct mean value C̄ located fractionally (according to a given alpha) along
a line between the mean of each foreground and background cluster pair with frac-
tionally interpolated covariance ΣC . The optimal alpha is the one that yields an
intermediate distribution for which the observed color has maximum probability;
i.e., the optimal α is chosen independently of F and B. As a post-process, the F
and B are computed as weighted sums of the foreground and background cluster
means using the individual pairwise distribution probabilities as weights. The F
and B colors are then perturbed to force them to be endpoints of a line segment
passing through the observed color and satisfying the compositing equation.

2.5.4 Bayesian approach

The Bayesian approach described in [13] solves the problem in part by building
foreground and background probability distributions from a given neighborhood.
The method uses a continuously sliding window for neighborhood definitions,
marches inward from the foreground and background regions, and utilizes nearby
computed F , B, and α values (in addition to these values from ”known” regions)
in constructing oriented Gaussian distributions, as illustrated in Figure 2.1(d).
Bayesian approach formulates the problem of computing matte parameters in

47

2.6. DISCRETE COSINE TRANSFORM

a well-defined Bayesian framework and solves it using the maximum a posteriori
(MAP) technique.

In MAP estimation, the method tries to find the most likely estimates for F ,
B, and α, given the observation C. We can express this as a maximization over
a probability distribution P and then use Bayess rule to express the result as the
maximization over a sum of log likelihoods:

arg max
F,B,α

P (F, B, α|C) = arg max
F,B,α

P (C|F, B, α)P (F)P (B)P (α)/P (C)

= arg max
F,B,α

L(C|F, B, α) + L(F) + L(B) + L(α), (2.16)

where L is the log likelihood L = log P . The P (C) term may be dropped be-
cause it is a constant with respect to the optimization parameters. Figure 2.1(h)
illustrates the distributions over which we solve for the optimal F , B, and α
parameters.

The problem is now reduced to defining the log likelihoods L(C|F, B, α), L(F),
L(B), and L(α). We can model the first term by measuring the difference between
the observed color C and the color that would be predicted by the estimated F , B,
and α. The spatial coherence of the image is used to estimate the foreground term
L(F). That is, the color probability distribution is built using the known and
previously estimated foreground colors within each pixels neighborhood. Given
a set of foreground colors, we first partition colors into several clusters. For each
cluster, we calculate the weighted mean color F̄ and the weighted covariance
matrix ΣF . The log likelihoods for the foreground L(F) can then be modeled as
being derived from an oriented elliptical Gaussian distribution. The definition of
the log likelihood for the background L(B) depends on which matting problem
is being solved. For natural image matting, an analogous term to that of the
foreground is used. For constant color matting, the mean and covariance is
calculated for the set of all pixels that are labelled as background. For difference
matting, we have the background color at each pixel; we therefore use the known
background color as the mean and a user-defined variance to model the noise of
the background. The log likelihood for the opacity L(α) can be assumed constant
(and thus omitted from the maximization).

2.6 Discrete Cosine Transform

The discrete cosine transform (DCT) is a Fourier-related transform converting
input data from a spatial space into a frequency space. It’s similar to the discrete
Fourier transform (DFT), but using only real numbers. It is equivalent to a DFT
of roughly twice the length, operating on real data with even symmetry (since
the Fourier transform of a real and even function is real and even). In some DCT
variants the input and/or output data are shifted by half a sample. There are
eight standard variants, of which four are common. The most common variant

48

2.6. DISCRETE COSINE TRANSFORM

of discrete cosine transform is the type-II DCT, which is often called simply
”the DCT”. Its inverse, the type-III DCT, is correspondingly called ”the inverse
DCT” or ”the IDCT”.

The DCT, and in particular the DCT-II, is often used in signal and image
processing, especially for lossy data compression, because it has a strong energy
compaction property. Most of the signal information tends to be concentrated
in a few low-frequency components of the DCT. For example, a DCT is used in
JPEG image compression, MJPEG, MPEG, and DV video compression. There,
the two-dimensional DCT-II of N × N blocks is computed and the results are
quantized and entropy coded. In this case, N is typically 8 and the DCT-II
formula is applied to each row and column of the block. The result is an 8×8
transform coefficient array. The (0, 0) element is the DC (zero-frequency) compo-
nent corresponding to average pixel intensity in the block. Entries with increasing
vertical and horizontal index values represent higher vertical and horizontal spa-
tial frequencies. A related transform, the modified discrete cosine transform, or
MDCT, is used in AAC, Vorbis, and MP3 audio compression. DCTs are also
widely employed in solving partial differential equations by spectral methods,
where the different variants of the DCT correspond to slightly different even/odd
boundary conditions at the two ends of the array.

The discrete cosine transform is formally defined as a linear, invertible func-
tion F : RN → RN (where R denotes the set of real numbers), or equivalently
an N×N square matrix. There are several variants of the DCT with slightly
modified definitions. The N real numbers x0, . . . , xN−1 are transformed into the
N real numbers X0, . . . , XN−1 according to one of the formulas. The DCT-II is
probably the most commonly used form

Xk =

√
2

N
· ck

N−1∑
n=0

xn cos
k(2n + 1)π

2N
, (2.17)

where ck = 1√
2

for k = 0 and ck = 1 otherwise. In image processing we need a 2D
DCT which is defined as

Xu,v =

√
4

MN
· cu,v

N−1∑
i=0

M−1∑
j=0

xi,j cos
u(2i + 1)π

2N
· cos

v(2j + 1)π

2M
, (2.18)

where cu,v = 1√
2

for u = v = 0 and cu,v = 1 otherwise. Since DCT is separable,
the 2D transform is usually computed as a 1D transform of rows followed by 1D
transform of columns. One of the fastest implementations may be found in [7].

49

Chapter 3

Masking algorithm
implementation

In this chapter we will present a solution to our matting problem. Perhaps it
should be reminded now. We have two input images – one is a reference image
of background, second is an object positioned over the same background. Given
these two pictures we shall find a matte (alpha channel) so that the object in
the foreground can be extracted. It is important to realize that we don’t have
any information about the shape of that object. All we have is the difference
between background (reference image) and foreground (the image with object)
in each pixel. So our task falls into the difference masking category, for details
see section 2.4. The method should work rather automatically with minimal user
intervention i.e., the user is supposed just to set up some initial parameters.

In chapter 2 a majority of all known matting techniques is described. How-
ever none of those is applicable to solve our problem. Thus we will develop a new
method that would be suitable right for our task. Since the masking method is
intended primary for use in DTP (Desktop Publishing) we don’t have to create
any absolutely general system. Therefore we can accept some reasonable as-
sumptions. That is in particular that both input images will be taken under very
similar conditions in regard of camera position and scene lighting. Additionally
the object that is in the center of interest should make reasonable contrast with
the background. Of course the method will work even when some of these con-
ditions are broken however then perfect results cannot be expected. In following
pages we will consider a pair of input images as shown in Figures 3.1 and 3.2.
All computations will be performed with these two images and subsequent results
will be shown. Please note that all pictures will be presented as they were com-
puted by appropriate masking method. No further corrections were done so that
you can see actual results. But in practice mattes are supposed to be fine tuned.
We are developing a Photoshop plug-in so there is no problem in further editing
resulting images. You can see all the images in full resolution on the enclosed
CD. There are also some more samples.

50

Figure 3.1: Reference background

Figure 3.2: Object positioned over background

51

3.1. IMAGE REGISTRATION

3.1 Image registration

Before we start masking we have to register input images so that corresponding
background parts match well. With respect to assumptions made above we can
use direct image registration as described in section 2.1.2. Only a movement
in x and y axes was chosen as registration parameters. This should be enough
by far since zoom can be considered constant. Actually there may occur some
slight rotation between images nevertheless we can suppose it to be insignificant.
Taking rotations into account will cost more computational time. Moreover image
rotations may cause quality loss thus giving poor results.

We should put some approximate constraints to registration parameters. Ex-
periments showed that images taken from a tripod are shifted no more than
2 pixels in each axis. When taking pictures from a hand shift values approach
hundreds of pixels. Such images are unacceptable for some reasonable work.

Areas covered by the foreground object are of course different from back-
ground thus introducing some registration error. As there is no way how to
identify such areas now, we have to rely that all of the other pixels (where there
is background in both images) outweigh this error.

3.2 First masking attempts

This section describes several unsuccessful masking algorithms that were pro-
posed while working on this thesis. Although following methods do not perform
well they provide valuable experience regarding difference masking and problems
concerned with it.

3.2.1 Difference in RGB color space

The first idea is simple. We compute absolute difference between background
and foreground. Having three color components we can interpret them as a point
in 3D space. The difference can then be defined as Euclidean distance between
these points. By thresholding the difference we find out which pixels belong to
background and which to the object. Naturally there will be some small deviation
even between corresponding pixels that both belong to the background. But
pixels belonging to the object should make much bigger difference. However
this is not always true. In Figure 3.3 you can see a difference image with it’s
histogram. Applying a reasonable threshold to the difference we get the result
shown in Figure 3.4. There is noticeable noise from the background showing
through. The line on the left is caused by imperfect registration. The flower
pot is full of holes and at the bottom there are some bad protrusions caused by
flower pot reflection on the table. In this case the outcome is not absolutely bad
however we would like to achieve better results.

52

3.2. FIRST MASKING ATTEMPTS

Figure 3.3: Difference in RGB space; values stretched to [0; 255] interval, his-
togram shown below

Figure 3.4: Result of RGB difference matte

53

3.2. FIRST MASKING ATTEMPTS

We can try to threshold differences in all channels independently and then
combine results together by some AND/OR operation. Experiments showed that
the output is none the better. Another idea was to use some adaptive threshold-
ing. First a highly restrictive threshold was used to isolate only those parts of
image that definitely belong to the object. Then a low threshold was applied to
find parts with low contrast to background. Finally we accept all the parts that
are above the higher threshold and we add parts above the lower threshold only
if they are connected to areas above the high threshold.1 This way we can ignore
noise while still preserving parts of object that have low contrast. This method
requires more computing time but gives almost the same results as the ordinary
approach with just one threshold. Another idea was to employ edge detection
to determine object boundaries. Unfortunately it was proved to be ineffective
because in general, both object and background can contain many strong edges.
Detecting them does not bring much useful information and may rather lead to
confusion.

3.2.2 Difference in HSV color space

We can try to convert input images into the HSV color space. It stands for
Hue, Saturation, Volume (HSL – Hue, Saturation, Lightness is very similar).
So instead of color components we have separate information about pixel ”color
properties”. Differences in these properties may be seen in Figures 3.5 and 3.6.
The difference in hue contains strong noise. This is caused by presence of gray

shades – majority of background is a white wall. Since grays have nearly zero
saturation their hue is poorly defined thus very sensitive to noise. You may
also notice bad resolution in Hue and Saturation components. It is because of
image compression in digital cameras where only luminance is preserved at full
resolution, chrominance is downsampled.

Since the Hue component is practically unusable because of the excessive noise
we used just Saturation and Volume to compute the matte. Both components
were thresholded and results combined by OR function. You can see the output
in Figure 3.7. The flower pot is masked more correctly and the reflection at the
bottom was partially eliminated. However several leaves have broken peaks and
considerable noise appeared in the left part of image. Masking in HSV space
have some advantages but also brings some problems. The end-result is more or
less the same as in RGB masking.

1Similar technique is used in Canny edge detector.

54

3.2. FIRST MASKING ATTEMPTS

Figure 3.5: Difference in Hue component; values stretched to [0; 255] interval,
histogram shown below

Figure 3.6: Differences in Saturation and Volume components respectively; values
stretched to [0; 255] interval, histograms shown below

55

3.3. THE RESULTING TECHNIQUE

Figure 3.7: Result of matte based on Saturation and Volume

3.3 The resulting technique

3.3.1 Difference in L*a*b space

The HSV color space didn’t bring much progress but it looks promising. So at
last we try a L*a*b color space. The L component determines luminance while
a and b describe chrominance. Component a is green/red ratio, b is blue/yellow
ratio. The L*a*b space have several advantages. First, as already mentioned, it
has separate lightness and chroma information. We say that L*a*b is perceptual
that means it is based on the same scheme as color perception in human eye.
Finally it’s a linear color space i.e., the distance between two points corresponds
to their color difference.

The masking algorithm is quite simple as those described before. We compute
differences in luminance and chrominance, results are shown in Figure 3.8. The
final output may be seen in Figure 3.9. As you can see there is very little noise.
The line on the left is much thinner, the flower pot is extracted quite well and
the bottom reflection was almost eliminated. Unfortunately there is still a hole
in the flower’s stalk.

Separate lightness and chroma in L*a*b space have great advantages. We
can successfully mask shadows. Although they have lover brightness they still
still the same hue. On the other hand we can mask objects of the same color

56

3.3. THE RESULTING TECHNIQUE

Figure 3.8: Differences in luminance and chrominance respectively; values
stretched to [0; 255] interval, histograms shown below

Figure 3.9: Result of matte using L*a*b color space

57

3.4. IMPLEMENTATION DETAILS

as background as long as they differ in brightness. Downsampled chrominance
doesn’t cause problems because a and b are always well defined.

3.3.2 Difference in structure

In addition to separate pixel differencing we can also consider variations in image
structure (texture). This way we will be able to discriminate between smooth and
grainy areas. That means we can distinguish even pixels with similar lightness
and chroma. Image structure is best analyzed by a Discreet Cosine Transform
(DCT), please see section 2.6 for details. Also a Discrete Fourier Transform
(DFT) could be used but DCT is more suitable since it produces real numbers
(unlike DFT which produces imaginary results). We chose 8×8 blocks of images
to compute frequency analysis. There are two reasons for it. First, all common
DCT implementations use such block size. Second, we need some good compro-
mise between sample size and it’s locality. That means we need the block to be
large enough to describe image structure. But we also need it small enough so
that it relates just to the examined pixel and his small surrounding. A block size
of 8×8 seems to be the best choice.

It is enough to compute frequency analysis of the L component. We might
add also a and b but it wouldn’t bring much improvement because chrominance
has poor resolution. After we compute the frequency analysis we discard the DC
term. It corresponds to zero frequencies in both axes so it has nothing to do
with image structure. It regards average image intensity. Experiments showed
that all other frequencies are approximately same significant. It’s natural because
the image can contain a gradient fill (low frequency) as well as something like a
chessboard (high frequencies). So we compute differences between corresponding
frequencies and then calculate an average of the block (excluding the DC term).
Finally a threshold is applied to get a mask. It can be later combined with masks
obtained from luminance and chrominance differencing.

For the flower picture we use here as an example, image structure analysis
does not give good results. The method has a strong response along flower’s
boundary. This causes that a background veil is added to flower’s contour. In
this case structure differencing should be omitted. On the enclosed CD you can
see better examples of using this technique.

3.4 Implementation details

The masking algorithm described in section 3.3 is implemented as a plug-in mod-
ule for Adobe Photoshop. The program is written in C++ language, Microsoft
Visual Studio 2003 was used as development environment. Creation of plug-ins is
discussed in large detail in chapter 1 so we won’t deal with it here again. Instead
we concentrate on how the masking algorithm is implemented.

58

3.4. IMPLEMENTATION DETAILS

First we need to convert input image into the L*a*b color space. This is
done very easily since Photoshop provides a utility function for it. Please see
section 1.6 for details. In the first stage we load the background (reference)
image and store it into a buffer for further use. In the next stage we store the
image with foreground object into memory too, because we are going to work
with it frequently.

Once we have both images ready it’s time to proceed with registration. As
described in section 3.1 we consider just axial movement. Shift values may be
entered by the user or computed automatically by the program. In such case
a maximal offset must be specified. The program then tries all possible shifts in
given range to find the best one.

As soon as registration is done the program can compute differences in lu-
minance, chrominance and image structure (texture). These values are stored
because they depend only on registration parameters. When the user starts ad-
justing masking parameters the program just thresholds the differences that are
already prepared. There is no need to compute them over and over again.

The program uses very fast Discreet Cosine Transform implemented by Pascal
Massimino, see [7]. As mentioned before 8×8 blocks are used. This introduces
a small issue – we would like to position currently examined point in the center of
the block. However it’s not possible since 8×8 grid has no exact center. We turn
this into our advantage. After computing DCT of a block we assign the result to
all four pixels in the middle. Figure 3.10 illustrates the situation. This way we

Figure 3.10: A block for DCT computing. The result will be assigned to all four
pixels in the middle (shown as gray)

eliminate the issue of no exact center. Moreover we reduce the number of DCT
computations to 1/4! Because a single transform gives solution for four points at
once.

The program can also do some mask antialiasing so that object boundaries
are smoother. This is done very easily by examining the resulting mask. In
Photoshop the mask can gain values as any other channel thus from 0 to 255.
Zero stands for transparency (image masked out), 255 means full opacity (image
fully retained). So the program assigns a half transparent value to all pixels lying

59

3.5. USERS MANUAL

at mask edges (in terms of four-connectivity). The four-connectivity was chosen
because it’s easy to compute and it does not soften diagonal edges excessively.

3.5 Users manual

To install the plug-in module you just have to copy the DiffMask.8bf file into
Photoshop’s plug-ins directory (”Plug-Ins” by default) or any of it’s subdirecto-
ries. The plug-in will then be available through the Filter | Masking | Difference
Mask. . . menu in Photoshop. Whenever the plug-in is launched it first converts
the input image internally into the L*a*b color space. This may take several
seconds so please be patient. You can break any operation by pressing Escape at
any time.

Once the input image is converted, a setup dialog shows up. You can see
a screenshot in Figure 3.11. When running the plug-in for the first time there

Figure 3.11: Plug-in setup dialog

is no reference image loaded. So you cannot do any masking. Just make sure
the Load image as reference check box is checked and hit the OK button. The
plug-in will load current image as reference background. You don’t have to care
about the Keep reference image for future use check box since when loading a new
image it will always be kept.

60

3.5. USERS MANUAL

The plug-in writes the mask into the last image channel. So before proceeding
with masking you should add a channel to store result there. There are several
ways how to do it, it depends on what do you prefer to use. You can just convert
the image into a layer, it has a transparency implicitly. This can be done by the
Layer | New | Layer From Background command. Another possibility is to add
an alpha channel to the image. You can do it in the Channels palette. Don’t
forget to select all the channels before running the plug-in. The last and perhaps
the most preferred way is to add a mask. First you must convert the image into
a layer. Then a mask can be added in the Layers palette. Don’t forget to select
the image layer, not the layer mask, before running the plug-in.

As you have everything ready you can run the plug-in to proceed with mask-
ing. Naturally, the image you want to mask must have the same size as the
reference background (it’s size is shown in the Reference image panel). There
is also a preview in the setup dialog. The image inside may be panned using
the right2 mouse button. Radio buttons to the right control what will be shown
as preview. It may be the real result, just a black&white mask or the reference
(background) image.

Before you start masking you should register input image with the reference
one. This may be done in the Registration panel. The mean square error value
shows average difference between images for current settings. You can control
shifting manually or hit the Register button and let the plug-in find the best
registration in given interval. The interval is specified in the Maximal shift field.
The value means how big shifts will be tried during registration. When you enter
2 for example, the plug-in will try all shifts within [-2; 2] interval in both x and
y axes (25 possible shifts in total). Checking the Auto register check box ensures
that registration will be performed automatically every time the plug-in starts.
This is useful for some batch processing.

At last we get to the masking itself. It can be mastered by controls in the
Masking panel. You can select which criteria to use by appropriate check boxes.
Thresholds may be set either by a slider or by entering a value directly into cor-
responding field. You can also use up/down arrow keys to increment/decrement
current value. This holds for all editable fields in the setup dialog. In addition
you can set how much criteria must be fulfilled. It’s something like putting AND
or OR operators between them. Finally there is an option for mask antialiasing.
If you set the Mask antialiasing check box, the resulting mask will have smoothed
edges i.e, boundary pixels will be half transparent. Everything ready, hit the OK
button and see the result.

2The Adobe Dialog Manager experience some problems catching events from the left button.

61

CONCLUSION

Conclusion

A detailed description of creation plug-in modules for Adobe Photoshop was
presented. It was explained how plug-ins work, how they are called and how
they communicate with the host. Plug-in types and possibilities were discussed
as well as what functions are provided by plug-in host. Data structures for
information interchange between module and host were described. Also a setup
of Microsoft Visual Studio project was shown since building a plug-in is not as
straightforward as compiling an ordinary program. Adobe Dialog Manager was
introduced including description of how to use it for creating and managing dialog
windows. To see actual realization, an image masking algorithm was implemented
as a plug-in for Adobe Photoshop.

Two different methods for image registration were presented. Alpha channel
was introduced as essential descriptor of image transparency. It was explained
how images can be blended together to form a composite scene. Then several
approaches to image masking were introduced. These should represent majority
of all known matting techniques. Constant color matting was described as being
the most common in film industry. Difference masking was presented and it
was found out that there are few algorithms that can deal with it. Finally a
natural image masking was introduced as a method of extracting objects from
arbitrary background. However this technique requires some human assistance in
detection of approximate object boundaries. Lastly a Discrete Cosine Transform
was described as a means to frequency analysis.

A new method was proposed that solves given problem of difference masking.
Having an image of background as reference and an image of object positioned
over the same background, the method is able to extract the matte. It can
also perform constant color matting since it’s just a special case with uniform
background. It is quite hard to evaluate the method in sense of correctness since
there is in fact no reference solution. We can say that correct masking result is
what most people would agree to be the real object separated from background.

Developed method gives good results providing that several conditions are
fulfilled. Both input images (background and object over background) must be
taken under similar conditions. The most important is that the background
may not alter. The camera must have constant zoom and should not move
excessively. Registration algorithm can handle axial image shifts in range of

62

CONCLUSION

several pixels. There should be no rotation between images. The scene must be
lit approximately equally when taking both shots. The object we want to mask
should make good contrast with background regarding luminance, chrominance
and/or texture. There should be no additional reflections introduced by the
object we want to mask, nor the object can be transparent. The method can
deal with shadows to certain extent. If one or more conditions are violated the
method is still capable of producing reasonable results. However the better input
is provided the better results may be expected.

The matting method is implemented as a plug-in for Adobe Photoshop. It is
therefore available as a part of complex image editing application. If the masking
algorithm fails in some areas, it’s quite easy to correct the result by one of many
Photoshop’s tools. Since it is hard to rate masking results, the time necessary to
create a nice matte was measured. Implemented method was compared against
Vertus Fluid Mask. It is a Photoshop plug-in too, intended for natural image
masking. Creating the mask completely by hand was tried as well. Magic Wand
and Magnetic Lasso tools were often used to simplify the task. In all cases the
matte was finally refined by hand as necessary to create a nice object mask.

Experiments with several images were performed and time was recorded. It
is perhaps useless to present some hard numbers here since they strongly depend
on complexity of the object being masked and, indeed, on user’s skills. The
time needed to create a mask varies from several minutes to tens of minutes.
Experiments showed that creating the mask only by hand is a frustrating work.
It takes from 8 to 30 minutes. The score of Vertus Fluid Mask was a bit surprise.
To make a good quality matte, from 10 to 30 minutes were needed. The time
is approximately equal to hand masking. Nevertheless, Fluid Mask is a powerful
plug-in that can handle even hair, fur and other problematic things. These would
be very hard to mask only by hand. Finally, using the algorithm introduced in
this thesis, matte can be extracted in time from 4 to 20 minutes. It means that
if a reference background image is available, the proposed method can shorten
masking time nearly by one half. Thus the new technique proved itself to be
useful.

Regarding suggestions for future work, masking algorithm may be extended
by some morphological operations to smoothen the resulting mask in sense of
suppressing noise and eliminating speckles. Also a more powerful registration
algorithm may be used to make it possible to match images taken without a tri-
pod. Current masking algorithm can deal with shadows quite well. The problem
of reflections seems to be very hard. At least, as long as just two images (back-
ground and background with object) are available. Nevertheless, some additional
research may be dedicated to the problem of transparent objects. Under some
reasonable assumptions it might be solved somehow. It is a challenging task, but
it will be certainly extremely useful to have a solution for it.

63

BIBLIOGRAPHY

Bibliography

[1] Adobe Photoshop Application Programming Interface Guide. Available on
demand at www.adobe.com

[2] Adobe Dialog Manager Programmer’s Guide and Reference. Available on
demand at www.adobe.com

[3] Kas, T.: How to Write a Photoshop Plug-In, Part 1, 2. Available at
www.mactech.com/articles/mactech/Vol.15/15.04/
PhotoshopPlug-InsPart1/index.html

www.mactech.com/articles/mactech/Vol.15/15.05/
PhotoshopPlug-InsPart2/index.html

[4] Lowe, D. G.: Distinctive Image Features from Scale-Invariant Keypoints. In
International Journal of Computer Vision, 2004

[5] Váša, L.: Resolution improvement of digitized images. Diploma thesis at the
University of West Bohemia, 2004

[6] Wikipedia, the free encyclopedia. Available at www.wikipedia.com

[7] Massimino, P.: implementing a fast DCT / IDCT with SIMD instructions.
Available at http://skal.planet-d.net/coding/dct.html

[8] Porter, T., Duff, T.: Compositing Digital Images. In Proceedings of SIG-
GRAPH 84, pp. 253-259, 1984

[9] Bradford, S.: The Blue Screen Page. Available at
www.seanet.com/∼bradford/bluscrn.html

[10] Theory of Blue Screen Matting. Downloadable from
www.comp.nus.edu.sg/∼cs5245/lecture/matte.pdf

[11] Smith, A. R., Blinn J. F.: Blue Screen Matting. In Proceedings of SIG-
GRAPH 96, pp. 259-268, 1996

[12] Ruzon, M. A., Tomasi, C.: Alpha Estimation in Natural Images. In Proceed-
ings of the IEEE Conference on CVPR, Vol. 1, pp. 18-25, 2000

64

BIBLIOGRAPHY

[13] Chuang Y.-Y., Curless, B., Salesin, D. H., Szeliski, R.: A Bayesian Approach
to Digital Matting. In Proceedings of the IEEE Conference on CVPR, Vol. 2,
pp. 264-271, 2001

[14] Hillman, P., Hannah, J., Renshaw, D.: Alpha Channel Estimation in High
Resolution Images and Image Sequences. In Proceedings of the IEEE Con-
ference on CVPR, Vol. 1, pp. 1063-1068, 2001

65

Appendix A

More masking examples

In following pictures you can see some other examples of masking results. All of
them were generated by methods described in sections 3.2 and 3.3. In first two
images you can see the reference background and the object respectively.

Figure A.1: Reference background

66

Figure A.2: Object over background

Figure A.3: RGB difference matte. Foreground object is full of holes. However if
we would lower the difference threshold, shadows from background will come up

67

Figure A.4: Matte based on Saturation and Volume differences. The result is
better then the one from RGB differencing. Though there are still many gaps

Figure A.5: Matte computed from L*a*b difference. Definitely the best one.
Although the matte is still not perfect, you can notice that fighter’s fists and feet
start to appear

68

