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Abstract

There are many effects that can be achieved by a shape transformation (morphing),
and all of them cannot be covered by one algorithm. Most morphing algorithms
concentrate on aligning and preserving similar features of the two input objects,
which results in worse behaviour for the features that do not exist in the other object
or cannot be aligned. Our algorithm concentrates on a totally different effect, effect
of growing. The approach is based on the intersection of two objects. During the
morphing process, a part of the former object is disappearing in the intersection,
while a part of the latter object is growing from it. The described solution does not
need user interaction, however, different effects can be achieved by a change of the
mutual position of the objects.
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1 Introduction

From a general point of view, morphing can be described as a process when one
object is continuously changed into another. In nature, morphing process represents
a growth of animals or plants. In movies, morphing is one of the tools for special
effects, the types of objects used there depend only on the author’s imagination.
But morphing is not only the whole process (animation), it can be also a way to
achieve new shapes or patterns, which is usable in the area of design.

There is no definition of how should one object morph into another. Many effects
can be achieved when morphing between two objects, and the ”best” morph can be
determined only visually. Usually, the decision what is the best morph also depends
on the current application - we might need to preserve the most of the appearance
of the first object, or to preserve the volume no matter what is the shape, or we
might want to achieve some other effect during the morphing process. Therefore
each application implements one area of morphing effects and the user has to choose
the application according to which effect he wants to achieve. Most applications
concentrate on morphing objects that are similar or have common features (e.g. one
object is only transformed, both are four-legged animals, one face is smiling and one
not) and then try to preserve these features during the morphing process. In our
approach, we focused on growing processes. Such processes are common in nature
(e.g. a seed grows into a plant), or can be found in movies’ special effects (e.g.
horns grow from a head of an evil person and a tail grows from his back, hundreds
of fingers grow from the body of an alien).

The core idea of our work is to compute an intersection of two objects. The
intersection then stays unchanged during the morphing process, while the rest of
the first object disappears in it and the rest of the second object grows from it
to form the final shape. This idea was first introduced in [18], where morphing
between volumetric objects was described. We used their idea of the intersection
of two objects to construct an original algorithm for morphing objects given by
boundary representation.

During our research, we first concentrated on solving the problem in two dimen-
sions - between arbitrary polygons (the first part of our research has already been
published [15]). The research in 2D was done in cooperation with Ing. Jindřich
Parus1, who contributed by some ideas and advice also in 3D. With the experience
from 2D, we continued to construct the algorithm in 3D, where we concentrated on
objects in boundary representation.

In this text, after an overview of related terms, we will concentrate on other
solutions related to our work (Section 3), along with their advantages and disad-
vantages. In Section 4, the whole algorithm in 2D and consequently in 3D will be
described. The results of both 2D and 3D versions of the algorithm will be shown
in Section 5. The last section (Section 6) will conclude the whole text, summarising
what has been achieved and giving ideas of possible future extensions.

1jparus@gmail.com
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2 Related terms

A polygon is an ordered set of vertices vi, i = 0, . . . , n − 1. An edge ei of polygon
is a line segment with endpoints vi, vi+1. A simple polygon is a polygon whose
consecutive edges ei, ei+1 intersect only in the endpoint vi+1. An unclosed sequence
of edges is called a polygon chain. A closed polygonal chain is a polygonal chain,
where also p0 and pn−1 are connected by a line segment.

A polytope is the generalisation of polygon in two dimensions, polyhedron in
three dimensions, and polychoron in four dimensions. A convex polytope is defined
as the intersection of half-spaces.

A topological distance d(vi, vj) between vertices vi and vj in En is the number of
edges in the shortest path from vi to vj.

An object O is convex, when a line segment connecting its two arbitrary vertices
lies completely inside or on O. An object P is star-shaped, when there exists at least
one point p inside P , where a line segment connecting p with an arbitrary vertex of
P lies completely inside or on P .

According to [3], a topology of an object refers to the vertex/edge/face network.
An object is Euler-valid if its topology fulfils the formula V −E+F = 2−2G, where
V are the vertices of the object, E edges, F faces and G is the number of passages
through the object (genus).

2.1 2D Voronoi diagram

Voronoi diagram was first introduced in [22]. In the plane, the Voronoi diagram of
a set of points S is the partition of the plane which associates a region V (p) with
each point p from S in such a way that all points in V (p) are closer to p than to any
other point in S.

The region V (p) is the interior of a (in some cases unbounded) convex polytope
called the Voronoi cell for p. The Voronoi diagram is then the set of such polytopes,
which subdivides the whole plane. An example of a Voronoi diagram is in Figure 2.1.

2.2 Medial axis, medial surface and centerline

As is described in [7], the medial axis of a closed curve in 2D is a set of points that
have at least two closest points on the boundary, i.e., the set of centres of circles
which touch the curve at more than one point. The medial axis in 2D consists of a
set of curves. The analogy in 3D - set of centres of spheres which touch the surface at
more than one point - produces so called medial surface. Figure 2.2 shows examples
of the medial axis in 2D and the medial surface in 3D.

The medial axis and the medial surface are also known as the skeleton. The main
disadvantage of the medial axis is that small changes in the shape can produce large
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Figure 2.1: Voronoi diagram of a point set in 2D

(a) (b) (c)

Figure 2.2: (a,c) The medial axis in 2D and (b) the medial surface in 3D, a few examples of
inscribed circles and a sphere (from [7])

changes in its medial axis (Figure 2.2c). Also, as the medial surface consists not only
of the set of curves, but also surfaces, some applications, such as virtual navigation,
need it to be simplified to contain only curves. Such simplified representation of the
medial surface, consisting only of curves, is called a centerline or a curve skeleton.
Examples of centerlines of 3D objects are shown in Figure 2.3.

Figure 2.3: Examples of centerlines of different 3D objects (from [7])
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2.3 Weiler-Atherton’s algorithm

Weiler-Atherton’s algorithm [23] is used to compute the intersection of simple poly-
gons P and Q. The algorithm is described in Figure 2.4 An example of the process
is shown in Figure 2.5. The polygons P,Q should have the same orientation, in
our case we will assume a clockwise orientation. Two lists LP ,LQ are created from
the vertices of polygons P,Q (Figure 2.5a). The intersections of the polygons are
computed and inserted into the lists at the proper positions, the lists are linked at
the intersections (represented by an arrow at i0); the list of inbound intersections
IP with respect to P is generated (Figure 2.5b). The first intersection i0 from the
list IP is taken and found in LP (marked red in Figure 2.5c). The search starts from
i0 to the right, switching lists at each intersection (green arrows), and ends when
i0 is reached again (the result is filled green). Because IP 6= ∅, the intersection i3
is taken and the process is repeated. Because IP is empty after that, there are two
disjoint parts in the result.

Input: A polygon Q, defined by vertices q0, . . . , qm−1, a polygon P , defined by
vertices p0, . . . , pn−1.

Output: The intersection of P and Q: L = (Q ∩ P ).

The algorithm:

1. Create lists LQ,LP from the vertices of the polygons P ,Q.

2. Label the items of LQ,LP whether they are inside or outside the other
polygon.

3. Compute all intersections of the polygons and insert them into both lists to
the proper positions (between the vertices defining the edge they are lying
at), mutually linking the lists at the intersections.

4. If there are no intersections, there are only three possible solutions by testing
the position of an arbitrary vertex v of P and an arbitrary vertex w of Q:

– v is inside Q (whole P is inside Q) - return P .
– w is inside P (whole Q is inside P ) - return Q.
– v is outside Q and w is outside P (P ∩Q = ∅) - return ∅.

5. Generate a list of inbound intersections IP = (i0, . . . ) with respect to P .
Create a list L = ∅, which will contain the resulting intersection.

6. Take the first intersection ii from the list, set IP = IP \ii and find ii in LP .
Put ii at the end of the list L.

7. Continue from ii to the right through the list, and put all the visited vertices
to L. Each time the intersection vertex is reached, it is removed from I, and
its link is followed to the other list, until the intersection vertex ii is reached.

8. If IP = ∅, the algorithm is finished - return L. Otherwise, continue by 6.

Figure 2.4: The Weiler-Atherton algorithm.
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(a) (b)

(c) (d)

Figure 2.5: An example of clipping by Weiler-Atherton’s algorithm.
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3 State of the art

Because we concentrated both on 2D and 3D versions of our algorithm, algorithms
for morphing polygons will be described here as well as those for morphing meshes.

Most of the algorithms that will be described here are ”correspondence-based”,
meaning they first find a correspondence between vertices of the source and the tar-
get polygon. They usually need to add vertices to both source and target polygon
to make the best correspondence (according to their requirements). When the cor-
respondence is established, the trajectories between corresponding vertices need to
be found. This step can be very complicated, however, most solutions use a simple
linear interpolation here. As is discussed in [9], this simple choice has some disad-
vantages when computing rotational morphing. The problem is shown in Figure 3.1
on morphing between two line segments, both of them of the same length, but one
of them rotated. If we use the linear interpolation for computing the trajectory
of corresponding vertices, the line segments shorten during the morphing process,
which is something we do not expect.

(a) (b)

Figure 3.1: An expected morphing sequence (a) and a morphing sequence using linear
interpolation (b), from [9]

3.1 Polygon morphing algorithms

The first approach worth mentioning is A physically based approach to 2-
D shape blending [17] by Sederberg et al.. The polygon edges are modelled
as wires with some material properties (modulus of elasticity, stretching stiffness
constant). To get the resulting polygon, we need to bend or stretch the wire. The
goal is to minimise the amount of work needed to create the target polygon.

The stretching work can be influenced by the user, who can define a constant
representing the material and cross sectional area of the wire. Because the wire is
not only stretched in our case, but also compressed, it can happen that the target
length is zero (edge collapsed into a vertex) - such a case is penalized to prevent it,
the amount of penalization can be also altered by the user.

In the case of the bending work, two conditions need to be avoided in the bending
of the shape: first, the angle between two parts of the wire should never be zero,
and second, the angle should change monotonically during the time. Such cases are
penalized by other two constants.
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After the correspondence is found, the trajectories between the corresponding
vertices are computed by a simple linear interpolation of their coordinates. The
algorithm duplicates some vertices during the correspondence establishing (when an
edge of the target polygon collapses to a single vertex of the source polygon, such
vertex needs to be duplicated to be able to setup the one-to-one correspondence).
One of the negatives of this algorithm is that it only duplicates vertices and does not
add vertices anywhere on the edges. Therefore, it is dependent on the distribution
of the vertices. According to the results obtained, this algorithm is suitable for mor-
phing between similar polygons, where one of them is rotated or translated. For the
case of a rotated polygon, it does not preserve its shape during the process, because
it uses linear interpolation between the corresponding vertices, but it still has suf-
ficient outputs. It has problems with highly dissimilar shapes, where intersections
usually occur.

In 2-D Shape Blending: An Intrinsic Solution to the Vertex Path
Problem [16] Sederberg et al. describe a computation of trajectories, where
intrinsic parameters (e.g. edge lengths or internal angles) are interpolated rather
than the vertex positions directly. The polygons are converted to the so-called edge-
angle representation [9]. In the edge-angle representation a polygon is described
by one fixed vertex, one edge incident to the fixed vertex, the length of each edge
and the internal angle of each vertex. The advantage of this representation is that
except for the fixed vertex and edge it is invariant to rigid transformation. The
absolute vertex coordinates are extracted from interpolated intrinsic parameters.
This interpolation scheme avoids edge collapsing and non-monotonic angle changes.
This technique was used for generating in-betweens for the animation based on key
frames. The concept of interpolation of intrinsic parameters was also further used
for morphing of planar triangulations in [20, 21]. The intrinsic interpolation avoids
local self-intersections; however, it does not avoid global self-intersections, which
may appear especially in the case of highly dissimilar and complicated shapes.

Another optimization-based algorithm was presented by Zhang in A Fuzzy
Approach to Digital Image Warping [24]. It uses a similarity function to
obtain the vertex correspondence.

In Shape Blending Using the Star-Skeleton Representation [19] Shapira
and Rappoport outline a morphing using the star skeleton. The algorithm first
decomposes the source and the target polygons into star-shaped polygons. Then
it constructs the skeletons of the decompositions. The skeleton is a planar graph
which joins star-points of neighboring star-shaped polygons, i.e., it is a dual graph
to the star-shaped decomposition. Important is that skeletons of the source and the
target polygon have to be isomorphic, which requires an isomorphic star-shaped de-
composition. Then, the interior and the boundary of the polygon can be expressed
relatively to the skeleton. During the morphing, the skeletons are interpolated and
the intermediate shapes are reconstructed from the interpolated skeletons. The dif-
ference between this approach and previous approaches [16, 17] is that this approach
takes into consideration also the interior of the polygon and not only the bound-
ary. The problem of this approach is that it relies on an isomorphic star-shaped
decomposition which might be difficult to compute, especially in the case of dissim-
ilar shapes. This technique also does not include finding correspondence between
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vertices, so it needs to be found by using some other method or manually specified.

Alexa et al. [4] introduced an approach called As-Rigid-As-Possible Shape
Interpolation. The basic idea is to compute a compatible triangulation of input
polygons. The compatible triangulation is a dissection of the source and the target
polygon so that the triangulations are isomorphic, i.e., we have one-to-one corre-
spondence between triangles in the source triangulation and triangles in the target
triangulation. Then, for each triangle an affine transformation which transforms a
source triangle to the target triangle is computed. By interpolation of the affine
transformation a source triangle is transformed to the target triangle. The trans-
formation of one triangle influences the transformation of adjacent triangles as well;
therefore, the transformations for the whole triangulations are computed in the least
square sense. Similar approaches were also described by Surazhsky and Gotsman
in [20, 21]. A challenging issue of approaches based on compatible triangulation is an
extension of this idea in 3D, where it requires computing compatible tetrahedroniza-
tion of input 3D objects. This approach guarantees that the in-between shapes do
not self-intersect. The main problem here is the computation of isomorphic trian-
gulation of the input shapes, because the quality of the triangulation influences the
quality of the resulting morphing animation.

Another approach is called 2D merging [9]. It is a ”generalization” of an
algorithm which was originally developed for 3D meshes, e.g., [2, 13]. Input polygons
are mapped to the unit disc. Then both mappings are merged. The vertices of
the first polygon are mapped on the second polygon and vice versa using inverse
mapping. This results in polygons with the same number of vertices. A linear
interpolation is used to obtain the resulting morphing transition. This technique is
suitable for convex, star-shaped or slightly non-convex polygons. For highly non-
convex polygons (spirals etc.) it produces self-intersections during the morphing
transition.

In Warp-guided object-space morphing [5] Carmel and Cohen-Or showed
an algorithm which combines a 2D merging and a polygon evolution. A user first
specifies several anchor points to define a correspondence between features. Using
the anchor points a warp function is computed. The warp function warps anchor
points of a source polygon towards anchor points of a target polygon. Once the
source polygon is warped a polygon evolution technique is used to evolve the source
and the target polygon to a convex shape. The convex shapes are projected to
circles. Using the merging technique the circles are merged and new vertices are
projected back to the original polygons. This technique was extended to 3D (see
the next section).

Johnstone and Wu [12] described an approach to morph two separate poly-
gons into one in Morphing two polygons into one. The 2-to-1 morphing is a
fundamental case in morphing between different numbers of polygons. The basic
idea is to merge the two polygons into one and then use some 1-to-1 polygon mor-
phing technique to morph between the merged polygon and a target polygon. The
key step is the merging. During the merging the two polygons are morphed towards
each other until they meet at one point. Then a curve evolution technique is used to
morph the two polygons connected in some point into a more natural shape which
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is later morphed towards the target shape.

3.2 Mesh morphing algorithms

In 3D, the input objects for morphing can be implicit, volumetric or in boundary
representation. Our work deals with objects in boundary representation, therefore
we will discuss only one work from the field of volumetric objects, the one that gave
birth to the core idea of our algorithm.

In Cellular Automata for 3D Morphing of Volume Data [18], Semwal
et al. introduced an algorithm based on a volume intersection of two objects, called
core. During the morphing process, the core is left untouched and the other object
parts grow out of or disappear into it. Necessary changes to achieve this effect are
computed according to the neighbourhood of voxels.

Further techniques deal with morphing of meshes, more specifically triangular
meshes. However, we can use those techniques for polygonal meshes as well if we
triangulate them first.

As Alexa describes in his overview of mesh morphing algorithms [3], most of
these methods work in three following steps:

1. Establish a correspondence between the meshes. Decide which vertex
of the mesh M0 corresponds to which one of the mesh M1. This is usually the
crucial step of the whole process.

2. Generating a supermesh. A supermesh is a mesh that represents both M0

and M1.

3. Creating paths V (t), t ∈< 0, 1 > for the vertices. Usually the algorithms
use an interpolation of corresponding vertices, mostly a simple linear interpo-
lation.

Kent et al. propose in Shape transformation for polyhedral objects[13]
an algorithm that uses both the topology and the geometry of the input objects.
First, both objects are projected onto a unit sphere. The vertex to vertex correspon-
dence is established by merging the topologies of the input objects. The merging
process is done by clipping the projected faces of one model to the projected faces
of the other. The paths for the corresponding vertices are created by either a linear
interpolation, or using a Hermite spline with its tangent vectors equal to the vertex
normals.

The main problem discussed in their article is the projection onto the unit sphere.
Several methods for the projection were proposed, depending on the type of the
input objects. For the star-shaped objects, the center point (arbitrary point from
the kernel of the object) of the object is found and then the vertices are moved to
the surface of the sphere in the direction of a vector defined by their position and the
position of the center point. The convex objects are projected in the same manner,
only the center point is an arbitrary interior point of the object. Another type of
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objects are so-called objects of revolution. Such objects consist of a set of planar
contours arranged at angular increments around an axis (axis of revolution), e.g., a
glass constructed by rotating a curve around its axis. The contours are projected
onto a longitudinal arc of the sphere by several methods, where among the best is
the method of Ekoule [8]. Next type of objects, extruded objects, are created by
moving a planar polygon along the straight line. The ends of the object are capped
by two copies of the polygon. Projecting such object is done by mapping the two
caps to its convex hull by Ekoule’s method and then projecting the resulting object
in the same way as were the convex objects.

Another approach for the projection was to treat the surface model as a flexible
object, and inflate the object with air until it is convex. To ensure that the simulation
will produce the convex model, the vertices already lying on the convex hull were
fixed. The convex model was again projected to the sphere.

The methods of projection are discussed for the most of the genus-0 objects, the
authors only suggest how to project the other types of objects (replacing a sphere
by a representative manifold, or cutting the objects).

Alexa uses the idea of Kent et al. and presents another correspondence-based
algorithm for morphing polyhedra in his Merging polyhedral shapes with scat-
tered features [2]. First, the polyhedron is triangulated. Then the approximation
of the smallest enclosing sphere (a circumsphere) of the model is computed, the
model is transformed such that the circumsphere is transformed to a unit sphere.
Then the spherical projection is examined. Because the method is designed for all
genus-0 meshes, there can be overlapping edges (foldovers) in the projected result.
To remove the foldovers, the relaxation process is introduced. The relaxation works
iteratively, moving in each step each vertex to the center of its neighbors’ positions
in the previous step. Some vertices on the sphere need to be fixed to avoid the
vertices converge to one position. Such vertices are called anchors. At least four
anchors are needed (in case of three anchors the vertices would converge into the
triangle, as is shown in Figure 3.2a). Even with four anchors the embedding might
collapse (see Figure 3.2b). Also, because the anchors have fixed positions, they

(a) (b) (c)

Figure 3.2: Problems of the sphere embedding: (a) collapsed embedding fixed with three vertices
(b) collapsed embedding fixed with four vertices (c) foldovers (from [2])

can cause the foldovers themselves. Their solution is simple: As anchor vertices,
they choose a random regular tetrahedron with vertices on the unit sphere. Then
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they perform the relaxation until the largest movement of any vertex in one step is
smaller than a predefined constant. If the relaxation collapsed, they move back to
the original mesh and choose a different tetrahedron. If not, they fix the vertices
diametric to the tetrahedron used and relax again to remove the possible foldovers
made by the original tetrahedron’s vertices. They switch those two tetrahedra and
perform relaxation until there are no foldovers.

If the user has specified any vertex correspondence, the embeddings are deformed
so that the corresponding vertices have the same position on the sphere.

The resulting embeddings are merged. All edge intersections are found (edges are
here the shortest path between two points on the sphere), new vertices are inserted
at their positions and the corresponding edges are cut. The result of this process is
a merged mesh (a supermesh), which is not necessarily a triangle mesh, there can
be non-triangle (but still convex) faces. Also, it is not guaranteed that more than
three points lie on the same plane, so the supermesh needs to be triangulated after
the merging.

The supermesh is deformed to have the shape of the source (and equivalently
target) mesh by setting its vertex positions. The vertices of the source mesh remain
the same, but as the vertices of the target mesh do not exist on the source mesh,
their positions are computed by using the barycentric coordinates - the barycentric
coordinates of the vertex v in the triangle v′1, v

′
2, v
′
3 in the supermesh are computed

and used to find the position of v in the triangle v1, v2, v3 in the original object. Also
we need to compute the position of the vertices that were created due to the edge
intersection. Each such vertex lied at the intersection of two edges - one of the source
and one of the target mesh. When deforming the supermesh to have the shape of the
source mesh, we use the source edge, and compute the barycentric coordinates with
respect to the vertices defining this edge. And again, the barycentric coordinates
are used to find the position of the vertex in the source mesh.

Ahn et al. try to enhance the correspondence-based morphing by decreasing the
number of vertices of the supermesh in Connectivity transformation for mesh
metamorphosis [1]. They use a spherical embedding from Alexa’s approach [2] to
find the correspondence between M0 and M1. both M0 and M1 are mapped onto the
unit sphere. M ′

0 (and similarly M ′
1) is constructed by incrementally mapping each

vertex v1 of M1 onto the surface of M0: first, we find the face f0 that contains the
mapped position of v1. Then, v1 is added to M0 and connected to the three vertices
of f0 (see Figure 3.3b). Then they swap some of the created edges (not the original
meshes of M0) to reduce the difference between M ′

0 and M1 (Figure 3.3c).

Then, the sequence of connectivity transformations between M ′
0 and M ′

1 is com-
puted by using an adaptation of Hanke and Ottmann’s algorithm [10]: For each
edge of M ′

0 and M ′
1, they check if there exist the corresponding edge on the oppo-

site mesh, and if not, they compute an error (based on Euclidean distance) that
occurs if they swap the edge to get the correct position. In such a way, they build
the priority queue of edge swaps, sorted according to the computed errors. Because
some edge swaps are dependent on the other ones, they construct the transformation
dependency graph to perform all swaps in the shortest possible time. After the de-
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(a) (b) (c)

Figure 3.3: Mapping the target vertices onto the source mesh: (a) original configuration of target
vertices mapped onto the source triangle (b) result of simple embedding (c) enhanced result after

edge swaps (from [1])

pendency graph construction, they compute the exact time portions for each swap.
The resulting in-between meshes are constructed by transforming the vertices of
the supermesh according to the vertex-to-vertex correspondence established at the
beginning, and incrementally swapping the edges according to the plan established
by the dependency graph. Each swap is realized by a geomorph [11] to make it
smooth: A vertex is inserted at the intersection of the two edge positions, and it
moves towards one of the vertices of the target edges. When it reaches the vertex’s
position, it is removed.

Because of the used spherical embedding, the approach can be used only for
genus-0 objects. Another disadvantage is the need of computations during the cre-
ation of the in-between meshes, which slows down the resulting animation. On the
other side, the resulting meshes contain much smaller number of vertices in compar-
ison to other approaches using a fixed connectivity. The visual results are claimed
to be similar to Alexa’s approach.

Cohen-Or et al. describe a non-correspondence based approach in their Three-
dimensional distance field metamorphosis [6]. Their method needs the user
to define corresponding control points (anchor points) on the input objects first
(their number depends on their complexity). Then they use the corresponding points
to define such warp function {Wt}t=[0,1] that W1(M0) approximates M1 as well as
possible. The warp function consists of a rigid (rotation, translation) and elastic
transformation of M0. Then it generates a signed 3D distance field by rasterizing
the warped object into a binary discrete volumetric representation and converting it
into a distance field by a method presented in [14]. Both M0 and M1 are represented
as discrete distance field (DF) volumes, and the intermediate object (supermesh)
is constructed by generating its DF-volume and extracting its surface. The quality
of the resulting morph highly depends on a proper warp - if the corresponding
points of the two objects are correctly aligned by the warp, it produces the expected
results. Otherwise, it may produce results that are far away from the expected
ones, sometimes containing parts that unexpectedly disappear and reappear. Also
the creation of volumetric representation can consume a large storage space for
meshes with a large number of triangles. Then the method requires the object to
be simplificated before it is converted into a distance field. The main benefit of this
method is that it does not require the input objects to be of the same topological
genus.
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3.3 Summary

Unlike for morphing images, there are no rules how to measure the quality of the
resulting morph for meshes. The criteria are dependent on the expectations on the
user. However, there are some non-written criteria that the authors of the presented
articles probably tried to follow. First, the in-between shapes should not contain
self-intersecting edges. Second, the common features of the input objects (e.g. a
head, legs, a tail) should not change during the morphing process and no other
features should be introduced (no one expects a rib growing out of a dog’s back
when morphing it to a horse).

Because all the algorithms presented focused on the overall plausibility of the
resulting morph as was described, and not on the special effect of growing, the
comparison with these algorithms cannot be open-minded. If we compare such
algorithm with ours for an object, where we expect growing or disappearing of some
part, our algorithm designed for such effect should be better than the one designed to
follow the overall quality of the morph. On the other hand, if we compare the results
for two input objects that are about the same but only transformed, our algorithm
could produce different than desired results, because no growth or disappearing is
expected, and we put all our efforts on this effect, while repressing the need of the
common features preservation. However, we will compare our algorithm with a few
others in Section 5 to see how exactly the use of our algorithm achieves the growing
effect in comparison with the other algorithms that were not designed for it.
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4 Our solution

First (Section 4.1), we will describe the general structure of our algorithm indepen-
dently on the space. In Section 4.2, the 2D algorithm will be described in detail,
and in Section 4.3, the 3D algorithm will be involved from the knowledge from 2D.
The general idea of the 2D algorithm and one concrete method (Perimeter growing)
was already published in our paper [15].

4.1 General algorithm independently on the space

Brief description of the algorithm is as follows: First, the intersection of both input
objects is computed. This intersection is considered a morph base - part which does
not change during the morphing process. The parts of the input objects which are
not in the intersection will either grow up or disappear in it. For each vertex of each
part, so-called topological distance is computed, representing its distance from the
intersection. The last step is to compute trajectories for those particular vertices,
which are not part of the core, according to their topological distance.

Now, let us describe the algorithm in detail. As the input, we have two objects
A,B. We compute an intersection C = A∩B. In the further text, we will call such
an intersection a core. The core can consist of C = (0, . . . , c− 1) disjoint parts (see
Figure 4.1, shown in 2D for simplicity). Because our algorithm is dependent on the
existence of core, it cannot solve the case when C = ∅. It is designed for the case
when c = 1. However, we can solve the problem of multiple parts by choosing one
representative part as a core. Therefore, let us suppose that the core consists of
only one part.

(a) no core (b) c = 1 (c) c = 2

Figure 4.1: Different number of core parts (from [15])
(solid line: source polygon, dotted: target polygon, grey: core)

When the core C is computed, we compute the difference P = A−B, which will
disappear in the core, and the difference Q = B−A, which will grow out of the core.
In the following description, we will concentrate only on computing the disappearing
of one part Pi, P =

⋃
Pi. The other parts from P are computed equivalently, as

well as the parts Q, Q =
⋃
Qj. We achieve the growing of part Qi by just reversing

the time.
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Because we work with objects in a boundary representation, the computed core
and parts are defined by a set of vertices and edges: C = (VC , EC), Pi = (VPi, EPi).
We can divide the vertices and edges of Pi into two sets Cin, Cout, where Cin consists
of vertices and edges common for the core C and the part Pi (VCin = VC ∩ VPi,
ECin = EC ∩ EPi), Cout is the part of Pi which remains after removing Cin from Pi

(VCout = VPi\VCin, ECout = EPi\ECin). Intersection vertices vIi are such vertices
of Cin that lie at its ”edge”, meaning at least one of their neighbors belongs to
Cout. By morphing Cout to Cin we achieve the effect of disappearing of the part
Pi in the core C. Figure 4.2 shows the discussed terms, note that the fill is used
to distinguish between the terms, not to denote volumetric objects. Also notice
that in 2D, there are two intersection vertices, but in 3D, there are n intersection
vertices. Therefore we introduce an intersection chain, which is a closed polygonal
chain, whose vertices are the intersection vertices and its edges are such edges of Cin

that connect the intersection vertices. Part of the intersection chain is sketched in
Figure 4.2b by a solid black line between vI0 and vIm.

(a) 2D (b) 3D

Figure 4.2: General terms: Core C, part Pi = Cout ∪ Cin, intersection vertices vIi.

The morphing between Cin and Cout will be described using a vertex path for
each vertex of Cout excluding the intersection vertices. The vertex path of a vertex
vi is a list of couples (tj, pj), j = 0, .., l − 1, where tj is a time and pj is a position
of the vertex vi at the time tj, and l is the number of the elements in the vertex
paths, its value depends on the specific algorithm. A vertex path is usually defined
on a canonical time interval [0, 1]. The vertex path has at least two elements, i.e.,
the initial position of the vertex at the time t = 0 and a final position of the vertex
at the time t = 1. A movement of a vertex is obtained by computing intermediate
positions of a vertex. The intermediate positions are computed by interpolating the
position values pj within the vertex path. We can use an arbitrary interpolation
technique, e.g., a piecewise linear interpolation or cubic spline interpolation. Once
a vertex path representing the growing process is computed, it can be interpreted
in a reversed order to represent the growing process.

The computation of a vertex path depends on the specific method of our al-
gorithm. Most of the methods use a concept of a topological distance, which is
computed with respect to the intersection vertices. The concrete computation of
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the topological distance depends on the space, so it will be discussed later.

As already told, the vertex paths are computed only for the vertices of Cout.
That is because the final object (supermesh) will contain only the vertices of Cout

of each part, the intersection vertices and sometimes some parts of the core. The
reason why we cannot just take the whole parts and the core and produce the final
morphing sequence is that the vertices of Cin rest at their positions during the time,
while the vertices of Cout change their positions (travel towards their corresponding
vertices in Cin). During this change, some vertices of Cout can cross an edge of Cin

- and at that time, the vertices and edges that were inside and so were not visible,
are now visible producing self-intersections (see Figure 4.3).

Figure 4.3: Not removing Cin may result in unwanted self-intersections: Cin (grey), Cout (black)

The merging process is shown in Figure 4.4. The final object consists of vertices
of only Cout from each part and the intersection vertices. Sometimes it can contain
parts of the core - it happens when the input objects A and B share some edges and
vertices. The merging algorithm is also space dependent, so it will be described in
the corresponding sections.

(a) 2D (b) 3D

Figure 4.4: Merging (top: the input objects, bottom: the merged result)

4.2 2D algorithm

In 2D, the input objects A,B are simple polygons. A part Pi consists of two polygon
chains Cin, Cout (described in the previous section). The polygon chains Cin, Cout

are separated by intersection vertices vI0, vI1 (Figure 4.2a). An intersection vertex
lies in the intersection of the input polygons A and B. If Pi 6= A and Pi 6= B then Pi

has two intersection vertices. By morphing the polygon chain Cout to the polygon
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chain Cin we achieve the effect of disappearing of the part Pi in the core C. Hereby,
we decompose the polygon morphing problem into several polygon chain morphing
problems.

The topological distance d(vi, vj) between vertices vi and vj is the minimal num-
ber of edges on the polygon between vi and vj. We compute the topological distance
with respect to the intersection vertices. Because there are always two intersection
vertices, we use the minimal topological distance dmin(vi) = min(d(vi, vI0), d(vi, vI1)).
Intuitively, the topological distance establishes an order in which the vertices will
grow in order to form the whole part. The vertices with a smaller topological dis-
tance will finish earlier than vertices with larger topological distance. This avoids
self-intersections during the growing process. To distinguish between topological
distances of vertices lying on the polygon chains Cin and Cout, we add the negative
sign to the vertices lying on the polygon chain Cin. Then dmin, dmax are minimal
and maximal topological distances of the part Pi.

In the following text we will describe three methods how to compute the vertex
paths to be able to morph between polygon chains Cin, Cout and simulate a process
of disappearing of part Pi in this way. By simultaneous growing and disappearing
of all parts we will achieve the effect of morphing between two simple polygons.

4.2.1 Perimeter growing

The first method to be described is called Perimeter growing, because all the vertices
vi lying on Cout travel along the perimeter of the part Pi, i.e., their vertex path
contains only vertices of Pi. The problem is to determine at which vertex vj with the
topological distance dj is the specific vertex path supposed to end. Vertex path of a
vertex vi with the topological distance di contains vertices with topological distances
(di−1, di−2, ..., d0, d−1, ..., dj) (see Figure 4.5). There are two rules concerning the last
vertex of the vertex path, vertex vj. First, it must belong to the polygon chain Cin.
Second, we need at least one vertex path to end at each vertex that belongs to
the polygon chain Cin (to form the shape of the other polygon). Therefore, we use
the following approach: the vertex path of the vertex with dmax always ends at the
vertex with dmin. The vertex path of the vertex with dmax−1 should end at the vertex
with dmin+1. Generally, a vertex path of the vertex with dmax−i should end at the
vertex with dmin+i (Figure 4.5).

However, such a vertex does not always lie on Cin. If we denote n0, n1 the number
of vertices of Cin, Cout respectively, we can distinguish the following three cases:

• n0 = n1 (Figure 4.6a)
Each vertex of Cout ends its path at one vertex of Cin.

• n0 > n1 (Figure 4.6b)
There are some vertices of Cin that do not belong to any vertex path. It means
that some of the vertices of Cout need to be duplicated. In such a case, we
use such vertices of Cout that have the topological distance equal to one and
duplicate them as many times as is necessary to cover all the vertices of Cin

that are left.
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(a) (b) (c)

Figure 4.5: Vertex paths (dmax = 3, dmin = −2): (a) vertex path for the vertex with d = dmax

ends at the vertex with d = dmin (b) for the vertex with d = dmax−1 it ends at the vertex with
d = dmin+1 (c) and so on

• n0 < n1 (Figure 4.6c)
Some vertices of Cout cannot end their paths at the supposed vertex. In such
a case their vertex paths end at the intersection vertices.

(a) n0 = n1 (b) n0 > n1 (c) n0 < n1

Figure 4.6: Three possible inputs for computing vertex paths (dark grey: core, grey: selected
part, a full line: the first polygon, a dashed line: the second polygon, light grey: a part of the

core, grey arrows: vertex paths)

The algorithm is shown in Figure 4.7. The pointers i, j to the list Cout are set to
the vertex (vertices) with the maximal topological distance (step 2). The pointers
k, l to the list Cin are set to the vertex (vertices) with the minimal topological
distance (step 3). During the computation, the pointers i, k are heading backward
through their lists, and j, l forward, until they reach the edge of the list.

The step 4 computes vertex paths for the vertices at pointers i, j. After the
vertex path is computed, the pointers are tested whether they have reached the
edge of the list (step 5). If i > 0 and k > 0 (step 1), any of them has not done
so, therefore all the pointers are moved and the algorithm comes back to the path
assignment. If i = 0 and k = 0 (step 4), all of them have done so and so all the
vertices of Cout have their vertex path computed and the algorithm is finished. If
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i > 0 and k = 0 (step 2), it means that there are more vertices of Cout than of
Cin (Figure 4.6b). In such a case, the rest of the vertices of Cout head towards such
vertices of Cin that have the topological distance of −1, in our case, the first and the
last vertex of Cin - the ones that k, l pointer at. Therefore we will not move k, l, but
only i, j. The most complicated case is if i = 0 and k > 0 (step 3), meaning there
are more vertices of Cin than of Cout (Figure 4.6c). In such a case, we duplicate such
vertices of Cout that have the topological distance of 1, so the first and last vertex
in the list Cout, the ones that i, j pointer at (step 6).

Input: Part Ri: list of vertices of Cin = (w0, . . . , wm−1), list of vertices of Cout =
(v0, . . . , vn−1), the two intersection vertices vI0, vI1.

Output: Part Ri with a changed list of vertices of Cout = (v0, . . . , vp−1), where p ≥ n
(some vertices were duplicated), and each vertex of Cout has a vertex path, where the
number of elements in its path depends on its topological distance,maximal and minimal
topological distance of the part.

The algorithm:

1. The list Cin is sorted in the order the vertices lie on the polygon chain from vI0

to vI1. The list Cout is sorted in the same manner.

2. Find such i, j that i ≤ j and vertices vi,vj are the vertices with the maximal
topological distance. If there is only one such vertex (i = j), duplicate the vertex
vi and put it in Cout between vi and vi+1. Set j = i + 1.

3. Find such k, l that k ≤ l and vertices wk,wl are the vertices with the minimal
topological distance. There is no need of duplicating if wk = wl.

4. The vertex path of a vertex vi is set as the cou-
ples (vi, vi−1), (vi−1, vi−2), . . . , (v0, vI0), (vI0, w0), . . . , (wk−1, wk).
The vertex path of a vertex vj is set as the couples
(vj , vj+1), (vj+1, vj+2), . . . , (vn−1, vI1), (vI1, wm−1), . . . , (wl+1, wl).

5. Test i, k:

1. If i > 0 and k > 0, set i = i− 1, j = j + 1, k = k − 1, l = l + 1 and continue
by 4.

2. If i > 0 and k = 0, set i = i− 1, j = j + 1 and continue by 4.
3. If i = 0 and k > 0, set k = k − 1, l = l + 1 and continue by 6.
4. If i = 0 and k = 0, the algorithm is finished.

6. Duplicate the vertex vi+1 and put it in Cout between vi and vi+1. Set i = i + 1
(pointer i to the position of the new vertex), and because a new vertex was inserted
before vj , set also j = j + 1 to maintain the index the same.

7. Duplicate vj−1 and put it between vj , vj−1. Set j = j − 1. Continue by 4.

Figure 4.7:The Perimeter growing.

Because the vertex path computed by this method follows the perimeter of the
part, the results always seem as if something was really growing from the core. Two
things are ruining the nice effect. The former thing is the top of the growing part,
which is always a straight line connecting the vertices with the same topological
distance. This causes that the method is not suitable for parts, where some vertices
with the same topological distance are wide apart (Figure 4.8a). On the other hand,
it has really good results for the parts that are narrow and/or highly non-convex,
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like parts of a spiral or curly type or long and straight parts (Figure 4.8c,d). The
latter thing is that following the shape of the part is not always what we wanted -
for example if we have a part as in Figure 4.8b), the part will first grow from the
core and then come back a little, and until that it will continue growing. But that
coming back is something we do not expect.

(a) (b)

(c) (d)

Figure 4.8: When not to use (a,b) and when to use (c,d) the Perimeter growing (dark gray: part
of the core, light gray: part growing out, black: input polygons)

4.2.2 Half-line growing

The method called Half-line growing is similar to the Perimeter growing with a slight
variance: Instead of using the vertices of Cout as the elements of the vertex paths, we
use the midpoints of line segments defined by the vertices with the same topological
distance (Figure 4.9). Let us denote mi a midpoint of the line segment vivj where
di = dj. Then, the vertex path of a vertex vi with the topological distance di contains
vertices (mi−1,mi−2, ...,m0, ...,mj−1, vj). The vertex vj is computed according to
the rules described in Section 4.2.1. The results for all three cases with a different
relation between n0, n1 are shown in Figure 4.10. When n0 = n1 (Figure 4.10a), each
vertex of Cout ends its path at one vertex of Cin. If n0 > n1 (Figure 4.10b), some of
the vertices of Cout need to be duplicated (those with the topological distance equal
to one). If n0 < n1 (Figure 4.10c), some vertices of Cout cannot end their paths at
the supposed vertex (so they end at the intersection vertices).

Figure 4.9: Midpoints (black): points in the middle of the line segment (dashed) connecting the
vertices with the same topological distance

The algorithm is shown in Figure 4.11. The pointers i, j to the list Cout are set to
the vertex (vertices) with the maximal topological distance (step 2). The pointers k, l
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(a) n0 = n1 (b) n0 > n1 (c) n0 < n1

Figure 4.10: Three possible inputs for computing vertex paths (light grey: a part of the core,
grey arrows: vertex paths)

to the list Cin are set to the vertex (vertices) with the minimal topological distance
(step 3). During the computation, the pointers i, k are heading backward through
their lists, and j, l forward, until they reach the edge of the list. All midpoints of
the line segments defined by the vertices with the same topological distance are
computed.

The step 7 computes vertex paths for the vertices at pointers i, j. After the
vertex path is computed, the pointers are tested whether they have reached the
edge of the list (step 8). If i > 0 and k > 0 (step 1), any of them has not done
so, therefore all the pointers are moved and the algorithm comes back to the path
assignment. If i = 0 and k = 0 (step 4), all of them have done so and so all the
vertices of Cout have their vertex path computed and the algorithm is finished. If
i > 0 and k = 0 (step 2), it means that there are more vertices of Cout than of Cin

(Figure 4.10c). In such a case, the rest of the vertices of Cout head towards such
vertices of Cin that have the topological distance of −1, in our case, the first and the
last vertex of Cin - the ones that k, l pointer at. Therefore we will not move k, l, but
only i, j. The most complicated case is if i = 0 and k > 0 (step 3), meaning there
are more vertices of Cin than of Cout (Figure 4.10b). In such a case, we duplicate
such vertices of Cout that have the topological distance of 1, so the first and last
vertex in the list Cout, the ones that i, j pointer at (step 9).

Input: Part Ri: list of vertices of Cin = (w0, . . . , wm−1), list of vertices of Cout =
(v0, . . . , vn−1), the two intersection vertices vI0, vI1.

Output: Part Ri with a changed list of vertices of Cout = (v0, . . . , vp−1), where p ≥ n
(some vertices were duplicated), and each vertex of Cout has a vertex path, where the
number of elements in its path depends on its topological distance,maximal and minimal
topological distance of the part.

The algorithm:

1. The list Cin is sorted in the order the vertices lie on the polygon chain from vI0

to vI1. The list Cout is sorted in the same manner.

2. Find such i, j that i ≤ j and vertices vi,vj are the vertices with the maximal
topological distance. If there is only one such vertex (i = j), duplicate the vertex
vi and put it in Cout between vi and vi+1. Set j = i + 1.

3. Find such k, l that k ≤ l and vertices wk,wl are the vertices with the minimal
topological distance. There is no need of duplicating if wk = wl.
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4. Create a list of midpoints of Cout, M1 = {m1
0, . . . ,m

1
i−1}, m1

i−p is a midpoint of
a line segment given by vi−p and vj+p.

5. Create a list of midpoints of Cin, M0 = {m0
0, . . . ,m

0
k−1}, m0

k−p is a midpoint of
a line segment given by wk−p and wk+p.

6. Compute a midpoint mI of a line segment given by the intersection vertices
vI0, vI1.

7. The vertex path of a vertex vi is set as the couples
(vi, m

1
i−1), (m1

i−1, m
1
i−2), . . . , (m1

0, mI), (mI , m
0
0), . . . , (m0

k−1, wk).
The vertex path of a vertex vj is set as the couples
(vj , m

1
j+1), (m1

j+1, m
1
j+2), . . . , (m1

n−1, mI), (mI , m
0
m−1), . . . , (m0

l+1, wl).

8. Test i, k:

1. If i > 0 and k > 0, set i = i− 1, j = j + 1, k = k − 1, l = l + 1 and continue
by 4.

2. If i > 0 and k = 0, set i = i− 1, j = j + 1 and continue by 7.
3. If i = 0 and k > 0, set k = k − 1, l = l + 1 and continue by 9.
4. If i = 0 and k = 0, the algorithm is finished.

9. Duplicate the vertex vi+1 and put it in Cout between vi and vi+1. Set i = i + 1
(pointer i to the position of the new vertex), and because a new vertex was inserted
before vj , set also j = j + 1 to maintain the index same.

10. Duplicate vj−1 and put it between vj , vj−1. Set j = j − 1. Continue by 7.

Figure 4.11:The Half-line growing.

The Half-line growing method is suitable for similar cases as was the Perimeter
growing, with the slight difference that the top line of the growing part is not straight,
but it is in the shape of a spire. This can result in better outputs for growing prickles
or anything that is sharp, because the spire is there from the beginning, showing
the future shape of the part (Figure 4.12).

Figure 4.12: When to use the Half-line growing (dark gray: part of the core, light gray: part
growing out, black: input polygons)

4.2.3 Projection growing

The last method to be described is the Projection growing. Its first difference from
the previous methods is that all vertices of Cout have the same number of elements in
their vertex paths. We call One step projection such a method, where there are only
two elements in each vertex path of a vertex - the vertex itself and its destination.
The Two step projection represents a method, where the vertex path has also one
element in the middle (the assignment of this element is done in 4.15,step 2). Both
of them work in the same way. First, the vertices of Cout are mapped (projected)
onto the line segment defined by the intersection vertices (vertices with zero topo-
logical distance). An equidistant mapping is used - the line segment is divided into
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n + 1 parts, where n is the number of the vertices of Cout. We assign the vertices
of Cout chronologically to the new vertices on the line segment (Figure 4.13a, Al-
gorithm 4.15,step 3). The next step is to map the vertices of Cin in the same way
(Figure 4.13b, Algorithm 4.15,step 4). Then we sort the projected vertices of Cin

and Cout into one sorted list in the order in which they appear on the line segment
defined by the intersection vertices. The last step is to go through this sorted list
as follows (Figure 4.13c, Algorithm 4.15,steps 6-8):

1. Go through the list until a vertex of Cin is reached. All the vertices of Cout

that are before this vertex will have it in their vertex path.

2. Until the next vertex of Cin is reached, all the vertices of Cout will have the
recent vertex of Cin in their vertex path.

3. Repeat step 2 until the end of the list is reached.

(a) (b) (c)

Figure 4.13: Computing vertex paths in the Projection growing (a) mapping the vertices of Cout

onto the line segment between the intersection vertices (b) the same mapping of the vertices of
Cin (c) choosing the vertices of Cin for the vertex paths of the vertices of Cout(dashed: mapped

vertices, thin lines: vertex paths)

For the Two step projection method, the vertex into which the vertex vi was
mapped also belongs to the vertex path of vi. For the One step projection method,
only the vertex vi itself and the assigned vertex of Cin are in the vertex path of vi

(Figure 4.14).

(a) Two step projection (b) One step projection

Figure 4.14: Vertex paths (grey)
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Input: Part Ri: list of vertices of Cin = (w0, . . . , wm−1), list of vertices of Cout =
(v0, . . . , vn−1), the two intersection vertices vI0, vI1.

Output: Part Ri with a changed list of vertices of Cout = (v0, . . . , vk−1), where k ≥ n (some
vertices were duplicated), and each vertex of Cout has a vertex path containing three
positions in case of the two step projection method - its own position, its projected
position and the position of its corresponding vertex - or only two positions for the one
step projection (not containing the projected position).

The algorithm:

1. Compute the line segment li defined by the vertices vI0 and vI1.

2. For all the vertices of Cout put their coordinates as the first element in their vertex
paths (only for the two-step projection).

3. Map (”project”) the vertices of Cout onto li: divide li on n + 1 equidistant parts
(line segments) (p0, p1), . . . , (pi, pi+1), . . . , (pn, pn+1), and assign them chronolog-
ically to the vertices: the projected position of vi is pi+1.

4. Map (”project”) the vertices of Cin onto li in the same way: divide li on m + 1
equidistant parts (q0, q1), . . . , (qi, qi+1), . . . , (qm, qm+1). The projected position of
wi is qi+1.

5. If the first vertex in Cin is not neighbor of vI0, reverse the list Cin, so the vertices
vi appear on li starting from vI0, check the list Cout in the same manner and
merge them into one list C while maintaining the order.

6. Go through the list C until a vertex vi is reached. All the vertices of Cout that
are before this vertex will have vi in their vertex path.

7. Until the next vertex of Cin is reached, all the vertices of Cout will have the recent
vertex of Cin in their vertex path.

8. Repeat step 7 until the end of the list is reached.

Figure 4.15:The projection growing.

The projection growing is a method that provides its outputs somewhere between
the Perimeter (or Half-line) growing and typical algorithms based on the correspon-
dence. There is still dependence of the outputs on the core, however, the parts do
not follow any shapes of the original polygons but grow directly from the core. That
results in its usability when the shape of the part is convex or when it is non-convex,
but not curled or spiral (Figure 4.16).

4.2.4 Merging

As was already figured in the general description, after we handle separately each
part, we want to merge them, so that the result is one polygon with a vertex path
for each vertex. Also remember that vertex paths of the growing parts must be
reverted because we considered only the disappearing. The merging process in
2D is motivated by Weiler-Atherton algorithm for polygons intersection [23], recall
Section 2. It processes part by part by copying vertices with positive topological
distance to the new list of vertices. It skips between the adjacent parts at the
intersection vertices. The new list of vertices forms the new polygon. The details of
the merging process are in Figure 4.17.



4.2 2D algorithm 27

(a) (b)

(c)

Figure 4.16: Where not to use (a) and where to use (b,c) the Projection growing (dark gray: part
of the core, light gray: the part growing out, black: input polygons)

Input: List of parts R =
⋃

Ri, lists of vertices of each part li = (v0, . . . , vn−1), list of vertices
of the core C = (Cin, . . . , cm−1). The lists li and C are circular (so the next vertex to
vn−1 is v0 and the previous vertex to v0 is vn−1). Each part has a different number of
vertices in its list, but each part shares exactly two vertices with two other parts (the
intersection vertices) or with the core.

Output: One list of vertices containing such vertices vj from the lists li that have dj ≥ 0.

The merging algorithm:

1. Choose an arbitrary part Ri from the list of input parts (for example the first
one). Start from the first vertex in Ri. Go through li until the first intersection
vertex vj is found. Add vj to the resulting list (which now contains only vj).

2. Check the vertex vj+1 if its topological distance is positive. If so, continue forward,
otherwise backward, in li. Add each visited vertex to the resulting list until the
next intersection vertex vk is added. Delete the part Ri from the list of parts.

3. Because vk was the intersection vertex, there are three possibilities:

• One of the parts in the list contains it - in such a case use this part and
continue by 2.

• The list of parts is empty (vk is the intersection vertex from step 1). In such
a case, the algorithm is finished.

• The input polygons A and B shared some vertices and edges, and therefore
no part in the list contains vk. In such a case, we find vk in the core list C -
let us denote the found vk as cj to know that it is in the list C. We check the
vertex cj+1 if it belongs to li of the part where vk was. If so, go backward,
otherwise forward, in the list C. Add each visited vertex to the resulting list
until the next intersection vertex ck is added. Denote ck as vk and continue
by step 3.

Figure 4.17:The merging algorithm.

4.2.5 Improvements

Both Perimeter and Half-line algorithm do not take into account lengths of edges
of the poly line they morph, they compute only with the topological distance of the
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points. That results in a different behavior for the same-shaped polygons with a
different number of vertices (see Figure 4.18). A solution is to include a preprocessing
part to this algorithm, when the polygons are ”resampled”, so that all their edges
are of the same length. If we include such resampling into our algorithm, the result
is even better (see Figure 4.19). Not only it results in a smoother and controlled
movement of each part, but also the segments that are about the same length have
approximately the same number of vertices.

(a) (b)

Figure 4.18: Adding one point to a polygon results in different behavior

(a) with preprocessing

(b) without preprocessing

Figure 4.19: Morphing between a snake and a tree (half-line algorithm)

Another improvement comes from the fact that each part Pi is computed sepa-
rately. It means that the parts do not have to be computed by the same method,
the methods can be arbitrarily combined. As each method is suitable for a different
kind of shapes (as is discussed in Section 5), combining the methods (so that we
can choose what method to use for each part, not globally) can result in a more
interesting output.
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4.3 3D algorithm

In 3D, the input objects A,B are triangle meshes. A part Pi consists of two surfaces
Cin, Cout (shown in Figure 4.2). The surfaces Cin, Cout are separated by polylines, let
us call them intersection chains. Unlike in 2D, there are not always two intersection
chains - the number of the intersection chains can vary from one to infinity. The
intersection chains are always closed. Figure 4.20 shows an example of a part with
one intersection chain (Figure 4.20a) and two intersection chains (Figure 4.20b),
which are the most often cases, however, there can be parts with also more than
two intersection chains. By morphing the surface Cout to the surface Cin we achieve
the effect of disappearing of the part Pi in the core C.

(a) one intersection chain (b) two intersection chains

Figure 4.20: There can be an arbitrary number of the part’s intersection chains (orange).

In 3D, we compute the topological distance with respect to the vertices lying on
the intersection chains and separately for Cin and Cout. We also use the negative
topological distances for Cin as we did in 2D.

The topological distance of a vertex vi is computed by the Breadth-first search
algorithm, where the search begins at the intersection chain(s). The vertices of the
intersection chain(s) are assigned a topological distance of zero, and put into the
stack. Than one by one, the vertices are popped from the stack, and for each vertex
vi (with a topological distance ti), we go through its neighbors. If the neighbor has
greater topological distance than vi + 1, we assign to it the new distance and put it
in the stack. The topological distances are computed separately for Cin and Cout of
each part (we could search the whole part together, but we want to assign negative
topological distances to Cin). The algorithm is shown in Figure 4.21. An example
of computed topological distances can be seen in Figure 4.22.

Input: List of vertices of the intersection chains of the current part I =
⋃

vIi, list of vertices
Ci = (v1, . . . , vN ), for which the topological distance should be computed. Stack S = ∅.

Output: List of vertices Ci = (v1, . . . , vN ) with assigned topological distances (d1, . . . , dN ).

The algorithm:

1. Initialization: For all vIi ∈ I: dIi = 0, push vIi in S. For all vj ∈ Ci: dj =∞.

2. Pop a vertex vi from the top of the stack. Go through all its neighbors, for each
neighbor vj : If dj > di + 1, dj = di + 1 and push vj in S.

3. If S 6= ∅, continue by 2. Otherwise the algorithm is finished.

Figure 4.21:The algorithm for computing topological distances (breadth-first search).
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(a) (b)

Figure 4.22: An example of topological distances in 3D
(a) side view of the part (blue), the intersection chain (black)

(b) top view - computed topological distances: - intersection points (di = 0, black), di = 1 (blue),
di = 2 (yellow).

In the following text we will describe how the extension of the Perimeter and
Projection growing to 3D can be one. We will also discuss why not to extend the
Half-line growing.

4.3.1 Perimeter growing

In 2D, the vertices vi lying on Cout travel along the perimeter of the part Pi. That
remains the same in 3D. Next, the first direction of a vertex vi is in 2D given by its
neighbor with the topological distance di− 1. There is only one case when there are
two such neighbors - when Cout consists of an odd number of vertices, the vertex
with the highest topological distance has two neighbors with dmax− 1. In that case,
we duplicate such a vertex. But in 3D, a vertex vi can have many neighbors with
di − 1 (see Figure 4.23).

(a) (b)

Figure 4.23: The first difference in 2D and 3D for Perimeter growing. The direction of a vertex vi

in 2D is clear, but there are many possible directions for vi in 3D.

The solution is to compute the vertex path during computing the topological
distance: When a vertex vi assigns the topological distance di + 1 to a vertex vj, its
vertex path and the vertex itself is copied to the vertex path of the vertex vj.
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Unlike 2D, we compute the vertex path also for the part Cin, which lies on the
core. We actually computed them also in 2D, during the path assignment - when
we assigned a vertex with dmax a vertex path to a vertex with dmin, we actually
computed a vertex path for dmax (ending at the intersection vertex), a vertex path
for dmin (also ending at the intersection vertex) and merged them into one vertex
path for only dmax. But because the vertex paths were so clear (each vertex had
always only one direction to go), we did not need to precompute them. We do need
it now, because if we did not remember during the topological distance computation
from which vertex the vertex was assigned (and so its vertex path), we would loose
the information forever.

So now we know how all the vertices reach the core, but we need only the vertices
of Cout to travel in the future. Intuitively, we want to assign the vertex paths of Cin

to such vertices of Cout that end at the same intersection vertex.

So we want to go through all the intersection vertices and separately for each to
solve the correspondence problem for the vertices that end at their position. For one
intersection vertex vIi, we need to deal with three possibilities, which are the same
as they were in 2D version, so let us discuss what happens if we want to use the
same solution as was in 2D. If there are no negative vertices ending at vIi, all the
positive vertices end at vIi. If there are no positive vertices ending at vIi, we use vIi

and duplicate it as many times as is the number of the negative vertices ending at
its position. The case when both negative and positive vertices end at vIi is shown
in Figure 4.24. In such a case, the vertices with dmax should end at the vertices with
dmin, the vertices with dmax−1 at the vertices with dmin+1 and so on. However, here
is the problem that more vertices have the same topological distance. In Figure 4.24,
we have four vertices with dmax (A,B,C,D) and three vertices with dmin (E,F,G),
and we need to solve the correspondence problem within them. Visually, we can
decide that A should end at E; B,C at F and D at G. But unfortunately, we do
not have any other information about the vertices than their topological distance,
and so we are unable to decide this automatically. We could try to decide it according
to the neighbors, but we still would not know whether A should end at E or G. Or
worse, also E and G could be neighbors and then neighboring information would
not help much.

Figure 4.24: Correspondence problem at one intersection vertex (black, other vertices are colored
according to their topological distance: ±1 light blue, ±2 blue, 3 green).
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In spite of this correspondence problem, we can achieve the resulting morph
by changing our expectations of the supermesh - according to 2D, the supermesh
should be obtained by merging the parts. But if we leave this solution, we can
define the resulting morphing sequence to consist of three parts (see Figure 4.25):
In the first part, (0, t− δ), the outside of the part (vertices with d > 0) is morphing
towards the intersection vertices. At t− δ, the resulting morph appears to contain
only the intersection vertices (but there are also the vertices of the outside part,
which are at the same positions as the intersection vertices), connected by edges
defined by the outside part. Let us call it S0. In the last part, (t + δ, 0) the inside
of the part (vertices with d < 0) is morphing from the intersection vertices towards
their positions. At t+ δ, the resulting morph appears to have only the intersection
vertices, connected by edges defined by the inside part. Let us call it S1. During
the time (t − δ, t + δ), we need to morph from S0 to S1, which are two triangular
meshes with the same vertices, but a different connectivity. This part is not solved
in this work, but possible solution is to follow the solution of [1]. First, find the
edges which should be swapped. Because some swaps are dependent on the other
ones, a dependency graph is constructed (otherwise, we would have to morph only
one edge at a time). Then according to the dependency graph, exact time portion
is computed for each edge swap. The swap itself is realised smoothly as is described
in [11] and summarised in Section 3.2.

(a) (b) (c)

Figure 4.25: The resulting morphing sequence consists of three parts: (a) the outside part
morphs towards the intersection vertices, (b) connectivity change, (c) the inside part morphs

from the intersection vertices.

4.3.2 Projection growing

The projection growing in 2D resulted in the effect that all the vertices of the
positive part headed towards certain points of the line segment connecting the two
intersection vertices, and then continued towards their corresponding vertices in the
negative part. That is an effect we want to follow in 3D - to compute the vertex
paths of all the vertices of the positive part to make them first travel to some plane
given by the intersection vertices, and then continue towards their corresponding
vertices in the negative part. In this section, we will discuss how to compute such
vertex paths and what geometrical problems occur.

When using projection growing, we actually establish a correspondence between
Cout and Cin, but we do it in the simplest way. In 2D, we used the line segment l
defined by the intersection vertices, onto which we equidistantly mapped the vertices
of Cout (Figure 4.13). Each vertex vi of Cout then ”occupied” one part of the line
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segment li, and his corresponding vertices were those vertices of Cout that were
mapped into li.

In 3D, the equivalent for line segment li would be probably an area on a plane
bounded by the intersection chain. However, it is not that simple for two reasons:
first, there is not always one intersection chain, and second, even if there is only
one intersection chain, it does not always lie on a plane. So we need to choose
a projection plane somehow dependent on the intersection vertices (vertices of the
intersection chain). For our first experiments we decided to use a plane given by three
arbitrary points of the intersection chain(s). When we are projecting the part onto
the plane, we would expect that the plane is rotated in a way that the orthogonally
projected part covers the largest possible area on the plane (so there will be the
least loss of information). Figure 4.26 shows four examples of the resulting plane,
when the vertices at the positions 0, 1

3
, 2

3
in the intersection chain were chosen. Let

us judge them according to our expectations. Figures 4.26a,c show parts where the
vertices of the intersection chain lie in one plane, and the resulting projection plane
is satisfactory. Figure 4.26b shows an example of a part with two intersection chains.
In such a case, we choose two vertices from the first intersection chain and one from
the second, to ensure that the plane will cut the part. We will discuss such parts
in Section 4.3.4. Figure 4.26d shows that also for the case when the vertices that
do not lie at the same plane the result is quite satisfactory. We will further discuss
the importance and choice of the projection plane in Section 4.3.3 along with other
expectations that should be fulfilled.

(a) (b)

(c) (d)

Figure 4.26: The construction of a projection plane: the part (blue), the core (black filled with
gray), three chosen points of the intersection chain (violet), the part projected onto the plane

(red).
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When we already know the plane, we need to project the points onto it. Here, we
cannot use the simple equidistant mapping as we did in 2D, because we do not have
a bounded area here. So we use orthogonal projection of the vertices to the plane
for our first experiments. We will discuss our choice of projection in Section 4.3.3.
We also project both vertices of Cin and Cout as it was in 2D. But now, we need to
decide how to define the area which will occupy one vertex of Cout (an equivalent
to a line segment li in 2D). We decided to use Voronoi diagram of the projected
vertices of Cout, which will divide the plane into cells C = ∩ci, where the closest
vertex of each vertex in a cell is the vertex that is defining this cell (the examples
of Voronoi diagrams of the parts are in Figure 4.27).

(a) (b) (c)

Figure 4.27: Voronoi diagrams of the projected parts
(bottom left corner: a part (blue), projected part (red); top - diagram of the part: vertices

outside the core, forming the diagram (blue), vertices on the core (green))

The projected vertices of Cout are defining the cells of the resulting Voronoi
diagram, and the projected vertices of Cin are lying in the cells. An important fact
is that it can happen that more vertices of Cout define only one cell of the Voronoi
diagram - that happens when they are exactly above themselves (as is in Figure 4.29).
In each cell, there are n vertices V = (v0, . . . vn−1) defining the cell (vertices originally
of Cout, most of the cases n = 1) and m vertices W = (w0, . . . , wm−1) (vertices
originally of Cin) lying in the cell.

The Voronoi diagram is used to establish the vertex-to-vertex correspondence
between Cin and Cout. We need to assign vertices of Cin to the vertices of Cout (put
their coordinates in the vertex paths of vertices of Cout). The cell of the Voronoi
diagram defines the area, where all the vertices of Cin are closer to the vertex
(or vertices) of Cout defining the cell than to the other vertices. We will use this
information to establish the correspondence - each vertex of Cout will head towards
the vertices of Cin that projected into its cell. However, some problems occur here.
Some vertices do not have any vertex in their cells. In that case, the intuitive
solution would be to find the nearest vertex in the neighbourhood cells and let them
have it in their vertex paths. We do not mind, if more vertices of Cout head towards
one vertex of Cin, they simply have it both in their vertex paths. Another problem
is when some vertex of Cout has more than one vertex of Cin in its cell. As people
cannot go to two places at the same time, the vertex also cannot have two ending
vertices in its path. The solution is to duplicate the vertex and so the duplicated
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vertex can head towards the second vertex of Cin.

In the previous explanation, we expected that there is only one vertex defining
the cell. Let us now discuss what happens in the cell exactly, taking into account
the possibility of more vertices of Cout defining the cell. So three cases can happen
in each cell:

1. m ≤ n, m 6= 0, meaning there are less or equal vertices of Cin than of Cout,
but there is at least one (so we do not need to search the neighbors).

2. m = 0, meaning there are no vertices of Cin in the cell and so we need to
search the neighbors if they do have any.

3. m > n, meaning there are more vertices of Cin in the cell that the vertices of
Cout can handle, so some vertices of Cout need to be duplicated.

The first case has another two possibilities: The former one is that there is
one vertex wi of Cin in a cell defined by vertices vj, . . . , vk of Cout. That means
the correspondence establishment is simple here - we add wi to the vertex path
of all the vertices vj, . . . , vk. Figure 4.28 shows an example of the correspondence
computation for a part of a cylinder. In the Voronoi diagram (Figure 4.28c), each
cell contains more than one vertex of Cout, but only one vertex of Cin. The resulting
morph is as we would expected - all the vertices that are above some intersection
vertex head towards it (Figure 4.28d).

Figure 4.28: Computing projection when m = 1, n > 1
(a) input objects - cylinders, (b) core (black filled with gray) and one part (blue) projected onto
the plane (red) given by three arbitrary points of the intersection chain, (c) Voronoi diagram of

the part: vertices outside the core (blue), vertices on the core (green), (d) examples of the
resulting morph the part (red), the core (black)

But if there are also more vertices of Cin, we need to decide which vertex of
Cout will head towards which one of Cin. Because the vertices of Cout are at the
exactly same position, we cannot decide depending on their projected coordinates.
But we can decide according to their original positions - according to ”how far”
they were from the intersection vertex. This actually recalls our solution in the
perimeter growing - there we add the ”furthest” vertices of Cin (vertices with the



4.3 3D algorithm 36

lowest topological distance) to the vertex paths of the ”furthest” vertices of Cout

(vertices with the highest topological distance). That is exactly how we will solve
the correspondence here. So how to do it algorithmically: we sort the lists W,V
according to the topological distances; w0, . . . , wm−1 upwardly (so that the vertex
with the lowest topological distance is first) and v0, . . . , vn−1 in a descending order
(so the vertex with the highest topological distance is first). We add the vertex wi

(vertex at the position i in the sorted list of W ) to the vertex path of the vertex vi

(vertex at the position i of the sorted list of V ). Because m ≤ n, the list V may be
longer than the list W . In such a case, we add wm−1 to the vertex paths of the rest
of vertices in V . Figure 4.29 shows an example of the correspondence computation
for a part, where projecting Cout results in a Voronoi diagram, where cells filled with
grey contains more vertices of Cin and also more vertices of Cout. The cells that are
not filled contain no vertices of Cin and will be discussed in the following paragraph.
The resulting morph in (Figure 4.29d) shows that the correspondence is set up as
we would expected.

Figure 4.29: Computing projection when m > 1, n > 1, m ≤ n (yellow cells in (c), upper part of
the part in (a,b)) and when m = 0 (white cells in (c))

(a) input objects, (b) core (black filled with gray) and one part (blue) projected onto the plane
(red), (c) Voronoi diagram of the part: vertices outside the core (blue), vertices on the core

(green), corresponding vertices connected by gray lines, (d) examples of the resulting morph the
part (red), the core (black)

If there are no vertices of Cin in the cell, we already told that we try to find
the closest vertex of Cin in the neighbourhood cells. First, we look in the neigh-
bourhood cells of our cell, if they do not have any vertex inside either, we look in
the neighbour’s neighbours and so on until we find some cell containing at least one
vertex of Cin. If there is a large area of cells without any vertex inside them, this
process can be quite long, even if we do not use the neighbors that have been already
searched. An example of this case is in Figure 4.29: in the Voronoi diagram of the
part (4.29c), each vertex is connected by a gray line with the vertex that was found
as the nearest vertex in its neighbourhood, and therefore added to its vertex path.
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If there are more vertices defining one cell with m = 0, we still find only one nearest
vertex and add it to the vertex paths of all the vertices of the cell.

The worst case is when m > n, meaning that there are more vertices of Cin than
vertices of Cout. As was already told, we solve such a case by duplicating as many
vertices of Cout as needed (so m−n times). If there is more than one vertex defining
the cell, we duplicate the vertex with the lowest topological distance (as we did in
2D Perimeter growing). After the duplication, we assign the vertices of Cin to the
vertex paths of the vertices defining the cell and the duplicated vertices. But as the
duplicated vertices are not inserted into the mesh, they would not be visible in the
resulting object. So we need to place them somehow somewhere in the mesh Cout.

We tried two methods of inserting the duplicated vertices into the mesh Cout.
Both of them work with the projected coordinates of the vertices of Cout and Cin.

The first method redistributes the triangles of the vertex v0 (the original vertex
which was duplicated) among the duplicated vertices and itself. The vertex v0 is the
only one that is included in the mesh. Figure 4.30a shows v0 with its triangles and
path to one of the vertices of Cin (the other two vertices of Cin will be the target of
the duplicated vertices).

Then we add also the other the vertices of Cin to the vertex paths of the dupli-
cated vertices, and move them half way according to their paths (Figure 4.30b). We
move also the vertex v0. That is done to be able do distinguish the vertices in the
space and so reassign the triangles correctly.

For each vertex v0, ..., vm−n we construct a vector ~w0, ..., ~wm−n, which is defined
by the original position of the vertex vi and its new position. Then we sort the
vectors clockwise according to their angle with ~w0 (Figure 4.30b).

For each triangle ai, bi, v0 we construct two vectors ~v0ai, ~v0bi and find their posi-
tions in the sorted field ~w0, ..., ~wm−n: we find such a vector ~wi that has a larger angle
with the vector ~w0 than has ~v0ai. If there are more such vectors, we choose the one
with the lowest angle. We also find the vector ~wj that fulfils the same conditions for
~v0bi. The vectors ~wi, ~wj determine the vertices to which the triangle will be assigned.

If i = j (Figure 4.30c) or j = i+ 1 (Figure 4.30d), the new triangle will be ai, bi, vi.
Otherwise (Figure 4.30e), we need to add new triangles to the object, because we
have to assign one triangle to more vertices.

A more complex example of such a situation is shown in Figure 4.31. We solve
it in the following way: First, we choose a vertex vk with the largest angle aivkbi
and we assign our triangle to the vertex vk (Figure 4.31a). We continue recursively
for the vertices to the left of vk and to the right (Figure 4.31b), until there are no
vertices left.

Figure 4.30f shows the situation when all the triangles were redistributed. There
are still some triangles missing - first, the so-called border triangles. The neighbor
triangles used to end at the same vertex v0, and now they end at different vertices
vi, vj. Therefore, we also need to add the new triangles (border triangles) vi, vj, ai.
We keep track of what triangles to add during the redistributing process.
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(a) (b) (c)

(d) (e) (f)

Figure 4.30: Duplicating the vertex

(a) (b) (c)

Figure 4.31: Assigning one triangle to more vertices

After the border triangles are added, there is still an empty convex space bounded
by the vertices v0, ..., vm−n. This space needs to be triangulated (Figure 4.30g), for
example by the Delaunay triangulation.

It may seem that everything is done, however, there are still two situations that
need to be solved. First, we need to solve the case when two vertices vi, vj has about
the same angle with v0. We decided to solve such a case by using only the vertex
which has a larger distance from the original position of v0, and taking another
vertex into account during the triangulation process.

Another problem is when the vertices v1, ..., vm−n are not surrounding the ver-
tex v0, in the context, than if m − n > 2, v0 needs to lie in the convex hull of
v1, ..., vm−n. If this rule is not fulfilled, self-intersections may occur, because some
neighbors’ edges may intersect the area where the edges of v0 are redistributed.

Because this process is highly dependent on the current situation in the cell, we
decided to implement another, much simpler way of duplicating the vertex. The
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vertex v0 is duplicated again and the duplicated vertices are again put half way
towards their vertex paths. But the triangles are reassigned in a different way - for
each vi, a triangle of v0 in which it lies is found. Sometimes, it does not lie in any
triangle of v0, in that case, we need to search in the neighbors’ triangles. Then this
triangle is split into three new triangles, taking them into account when searching
the triangle of vi+1. This division is not very suitable for cells, where there are
more vertices to duplicate, because its result is not smooth. In such cases, using the
first way of duplicating would be better. This way of duplicating may also result in
self-intersections, if a vertex vi moves between several triangles during the morphing
process (only the triangle in its half way is taken in account).

When we assign paths to all the vertices, the Projection method is done and we
can merge the parts to get the resulting object. However, the paths are not always
assigned correctly. To be correct, they need both the positive and the negative part
to project in such a way, that the vertices in the neighbouring cells in the Voronoi
diagram are also neighbors in the original mesh. This can be achieved by choosing
the right projection plane (which is discussed in the next Section), but only if both
Cin, Cout are convex or star-shaped. If not, we need to divide them into convex or
star-shaped parts, which will be discussed in Section 4.3.5.

The resulting supermesh contains the merged parts, each part consisting of only
vertices of the outside (those with d >= 0). When the vertices of the part are at
their original positions (the first position in their paths), they exactly form their
part of the original shape. But when they are at the target positions (last position
in their paths) they do not form the original shape exactly. That is because we did
solve only the vertex paths, not the connectivity. As was discussed for the Perimeter
growing, two shapes with the same vertices does not have to have the same edges
(connectivity). Therefore, the vertices form only the approximation of the original
shape at their target positions. The quality of the approximation depends on the
fineness of the mesh (the finer the mesh is, the better is the approximation). To
morph the outside part into the exact shape of the inside part, we would have to
include the change of the connectivity during the morphing process as well, as was
discussed in 4.3.1.

4.3.3 Projection plane

One of the key steps of the Projection growing method is to choose a ”good” pro-
jection plane, meaning that when we are projecting the vertices Cin and Cout, we
want to avoid the case when two vertices, that are not neighbors, project into the
same cell or a neighbouring cells. This can happen for example when the part has
some unconvexities. We will try to deal with the non-convex parts later, so for this
moment, let us suppose that the part is convex. But also convex parts can produce
such a case, when the projection plane is chosen inconveniently.

We decided to use the orthogonal projection to project the vertices of Pi onto
the plane. Such projection is usable only for convex parts and several special types
of star-shaped parts. For the star-shaped parts, the perspective projection would be
better, so it would be useful to decide what projection to use according to the current
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type of the part. But for the first experiments with the algorithm, we decided to
start with the orthogonal projection.

Because we will use the orthogonal projection, the position of the plane is not
important, we only need to find a proper normal vector. However, to make the
examples more evident, we place the projection plane nearby the intersection chain
to be able to compare the results.

To describe the best direction of the projection plane, we will use a concept of a
centerline. For a general part, the centerline would contain one or more curves. As
we need it to contain only one curve, which is a straight or only slightly curved line,
we will compute only with convex parts (how to deal with the non-convex parts is
described in Section 4.3.5). If we project the convex part to the plane perpendicular
to such centerline, we achieve the best projection we can.

However, computing a medial axis would be inadequately time consuming, and
also we do not have fully convex parts, so there would be even more artefacts, and
we would probably not be able to automatically decide which vertices to use. So we
need to find some approximation of the centerline.

Our approximation uses the topological distances of the vertices. If we com-
pute a gravity point gi of vertices with the same topological distance di, we get a
vertex somewhere near the centerline. So computing such a gravity point for each
topological distance would give us an approximation of the whole centerline. As
was already said, the vertices of the centerline should lie on one line for the convex
parts. Therefore the computed gravity points should lie approximately on one line
too. So we can use only two of them to compute the line we need. We decided to
use the gravity points g0 and gm, where m = dmax

2
e, max is the maximal topological

distance of the part. We did not use the gravity point at the maximal topological
distance dmax itself, because vertices with d = dmax can be only at one side of the
part and produce a gravity point lying too far from the centerline. We use the
maximal topological distance only if max = 1.

The difference in the resulting morph when the projection plane is chosen from
three arbitrary vertices of the intersection chain (as was in 4.3.2) and when the
plane is perpendicular to our approximation of centerline is shown in Figure 4.32.
Notice that in the example, the part Cin = ∅. We will involve the part Cin in our
computations now.

So we know the approximate centerline of the part Cout. If the part Cin also
contains some vertices, we can compute the approximate centerline also for Cin.
But we cannot project each part on a different projection plane. A simple solution
is to compute an average between the two normal vectors of the planes. If angle of
the two normal vectors is obtuse, we reverse the direction of one of the vectors and
compute the average after this reversion.
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(a) a plane defined by three arbitrary vertices of the intersection chain

(b) a plane perpendicular to the centerline

Figure 4.32: The resulting morph is highly dependent on the choice of the projection plane:
projected part (red), core (grey), part (green), resulting morph sequence (brown)

4.3.4 Parts with more than one intersection chain

As was already discussed, the part does not always contain only one intersection
chain. An example of a part with two intersection chains was given in Figure 4.20.
However, also a part with more than two intersection chains can occur. Such parts
must be handled differently than the ones with one intersection chain because of a
problem with projection - with one intersection chain, we are able to find a projection
plane, where each part projects in a way that its edges do not intersect in the
projection. However, we are not able to project parts with more than one intersection
chain to a plane to satisfy such requirement. One solution would be to project such
parts on a sphere with a centre in the gravity point of the part. To follow our
technique, we would then need to construct a Voronoi diagram on the sphere and
assign the vertices as was described above. Or better, use the technique from [1]
to find the correspondence of the part’s vertices by projecting onto the sphere. To
non-violently follow our technique, we decided to find a projection plane and split
the part by the plane into two subparts, which are handled separately by the method
for parts with one intersection chain. The normal vector of the projection plane is
found in the same way as was described in the previous chapter.

4.3.5 Dividing the part into convex or star-shaped parts

When computing the projection plane, we presumed that the part was convex, but
we would like our algorithm to be usable to more general parts. If a part Pi is not
convex, it can be divided into several convex parts Pi0, . . . , Pin−1. Than we construct
a graph of the created parts: Each part Pij represents a node of the graph, and the
parts that are neighbours are connected by an edge. The core is represented by a
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node connected to the parts neighbouring it.

Then we compute a topological distance of each part with respect to the core
(which has a topological distance of 0). We start with the part with a maximal topo-
logical distance, compute the projection plane and project the vertices to the plane.
The projected coordinates are only put to the vertices’ paths, and the projected
vertices are now considered as the vertices of the part’s neighbour in the graph. In
such a way, we project all the vertices of the parts with the topological distances
greater than one, and then we have one or more parts with a topological distance
of one. We will handle such parts together, because otherwise, we would have to
decide which part corresponds with which part of Qi. The rest parts are handled the
same way as were the convex parts. The whole process is sketched in Figure 4.33,
for simplicity in 2D.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4.33: Projecting a non-convex part by dividing it into convex pieces: (a) original part
(grey: core), (b) topological distances of the parts, (c-g) projecting the parts, (h) the resulting

convex part
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5 Results

First, results from the 2D algorithm2will be discussed as well as their comparison
with the Sedeberg’s and Greenwood’s algorithm3 [17] and with the Carmel’s and
Cohen-Or’s algorithm4 [5], well-known correspondence-based algorithms. In the
next part, the results from the 3D algorithm4 will be shown along with their evalu-
ation. Other interesting results in 3D are in D.

5.1 Results for polygons

In the following examples we will demonstrate a behaviour of different methods
of vertex path computation of our algorithm for different shapes. Although it is
possible to morph each part of a shape independently, in our examples we will morph
all parts using only one method, so that we can clearly demonstrate its suitability
for the given shape and the given type of effect.

As already mentioned, our algorithm is completely suitable for the cases when
one would expect some parts of the polygon B to grow out of the polygon A (or some
parts of A disappearing in B). Those parts can be horns, prickles, fingers or tails,
usually in situations when the user wants them to appear (grow out), or disappear
in something. However, our algorithm is not suitable for similar polygons which are
only transformed (e.g., moved, rotated, scaled), where the user expects the polygon
only to move according to the transformation, not to change its shape.

Examples 5.1.1 and 5.1.2 show the case where the user expects some parts of the
polygon to grow or to disappear, the example 5.1.3 shows morphing of completely
different polygons.

5.1.1 Parts of a spiral type

For the shape of a spiral type, the Perimeter (Figure 5.1) or the Half-line growing
are better then the Projection (Figure 5.2), where the result contains many self-
intersections.

Figure 5.1: The Perimeter growing

3An implementation by P. Celba, Charles University, Faculty of Mathematics and Physics,
Prague, Czech Republic, http://iason.zcu.cz/~kolinger/vyukaUK.html/Metamorfoza_
Celba.zip

4An implementation obtained from http://w3.impa.br/~morph/software/
softw-2d-morphing.html

4Implemented in Microsoft Visual Studio 2005, C#, .NET Framework 2.0. Using configuration
Mobile AMD Sempron 3100+, 1800MHz, 512MB RAM

http://iason.zcu.cz/~kolinger/vyukaUK.html/Metamorfoza_Celba.zip
http://iason.zcu.cz/~kolinger/vyukaUK.html/Metamorfoza_Celba.zip
http://w3.impa.br/~morph/software/softw-2d-morphing.html
http://w3.impa.br/~morph/software/softw-2d-morphing.html


5.1 Results for polygons 44

Figure 5.2: The Projection growing

Although the Projection growing is not producing results we would expect when
we want something of a spiral type to grow out of the core, it can sometimes give
interesting aesthetical results when we fill the polygons by some color (because the
overlapping parts have the color of the background).

Carmel’s and Cohen-Or’s algorithm (Figure 5.3) and Sedeberg’s and Green-
wood’s algorithm (Figure 5.4) give results containing many self-intersections here.

Figure 5.3: The Carmel’s and Cohen-Or’s algorithm

Figure 5.4: The Sedeberg’s and Greenwood’s algorithm

5.1.2 Convex parts

For parts which are convex or nearly convex the Projection growing (Figure 5.5) is
more suitable then the Perimeter or Half-line growing (Figure 5.6).

In the example of a butterfly and an alien, the body of the butterfly is similar
to the alien, so one would probably expect the wings of the butterfly to disappear
in the body of the alien, and the eyes (at the end of the antenna) to grow out from
the antenna of the butterfly.

Both Carmel’s and Cohen-Or’s algorithm (Figure 5.7) and Sedeberg’s and Green-
wood’s algorithm (Figure 5.8) result in many self-intersections in this case.

5.1.3 Long and more or less straight parts

When the shape of the parts is long and more or less straight, the Projection (Fig-
ure 5.10), Perimeter and Half-line (Figure 5.9) growing have results of a similar
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Figure 5.5: The Projection growing

Figure 5.6: The Half-line growing

Figure 5.7: The Carmel’s and Cohen-Or’s algorithm

Figure 5.8: The Sedeberg’s and Greenwood’s algorithm

quality. In this example, such a case appears at octopus’s fingers. For the other
parts, the Projection growing appears to be more suitable.

The case shown in this particular example is not the case, where one would
naturally expect the growing behaviour, because the octopus and the shark do not
have any similar part. However, growing of the octopus’s fingers is probably the only
way how to morph from the shark’s stomach into them without an intersection.

Figure 5.9: The Half-line growing

The result Carmel’s and Cohen-Or’s algorithm (Figure 5.11) is quite similar
as our growing algorithm for the case of octopus’s fingers. The Sedeberg’s and
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Figure 5.10: The Projection growing

Greenwood’s algorithm (Figure 5.12) experiences a few intersections here.

Figure 5.11: The Carmel’s and Cohen-Or’s algorithm

Figure 5.12: The Sedeberg’s and Greenwood’s algorithm

5.1.4 Summary

In the previous three examples we showed that our algorithm produces expected
results for the case when some parts of one polygon are supposed to grow out of
the other polygon or disappear in it. However, as we can see in the last example
(Section 5.1.3), the algorithm can be also used in some cases where growing is not
expected and still produce acceptable results. On the other hand, it is not very
suitable for the polygons that are similar or nearly similar with dissimilarities of
non-growing type (like faces with different expressions, bent and straight finger
etc.).

5.2 Results for meshes

In the following examples, we will demonstrate a general behaviour of the Perimeter
and Projection growing in 3D.

5.2.1 Convex parts

If the parts are about convex, the Projection growing produce better or about the
same results as the Perimeter growing. There are two things making the results
of the Perimeter growing worse - first, the case discussed already for 2D - that it
”flattens” the top (in the sense of the highest topological distance) of the part during
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the process. Second, its results are dependent on the distribution of the vertices and
therefore their topological distances. It can produce different results for about the
same parts, as is shown in Figure 5.13 - the figure’s hands morph nicely, however,
the resulting morph of its legs, which are quite similar as the hands, is worse. The
use of Projection growing for the same input is shown in Figure 5.14.

Figure 5.13: The Perimeter growing

Figure 5.14: The Projection growing
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5.2.2 Parts whose centerline contains only one curve

If the centerline contains only one curve, it means that the part is convex, or that it
is somehow curved, but does not have any branches. In such a case, the Perimeter
growing is the best choice, containing none or not much intersections. Figure 5.15
shows an example of morphing between a piece of a rope (M0) and the whole rope
(M1) - the core and M0 are identical, therefore there is only one part (part of
M1) to morph out of the core. The Projection growing in its raw form that was
presented produces many self-intersections in this case (Figure 5.16). That is because
our implementation expects a part, which is about convex, and searches the best
projection plane and projects onto it based on this expectation. However, a different
projection plane or a different type of projection would not help here to remove the
self-intersections. We would need to split the part into several (about) convex pieces
as was discussed in Section 4.3.5 to achieve a result without self-intersections or with
a small number of them.

Figure 5.15: The Perimeter growing

5.2.3 Star-shaped part

If the part is star-shaped, the Projection growing has usually better results than the
Perimeter growing, which flattens the tops of the convex pieces of the star-shaped
part, or can produce some unwanted connections between the neighbourhood pieces.
The Figures 5.18 and 5.19 shows an example of about star-shaped part (the part in
Figure 5.17d), where the Perimeter growing produces some unwanted edges between
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Figure 5.16: The Projection growing

the two convex pieces, and the Projection growing produces self-intersections in the
area of the balls situated at the top. In case the balls would not be there, the result
would be satisfying enough.

5.2.4 Non-convex part, having a convex inside and convex outside

The Figures 5.18 and 5.19 also describe a case of a part, where its outside is convex,
its inside is convex, but the part together is not convex (Figure 5.17e), because the
outside and the inside are on the same side from the intersection chain. In this
case, the Projection growing is definitely better, because when we use the Perimeter
growing, the vertices first travel towards the intersection vertices, and then back to
the vertices of the outside part. However, when we use the Projection growing, the
vertices of the outside part travel straight towards their corresponding vertices of
the inside part.

(a) (b) (c) (d)

Figure 5.17: (a,b) the input meshes (c) mutual position of the meshes, the core is filled with gray
(d,e) the toplogical distances of the part’s vertices (black-intersection vertices)
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The Figure 5.18 also shows another interesting fact about the Perimeter growing.
That is what always appears in its result, when the two meshes share one core, and
after subtracting the core from the meshes, each one of them consists only of one
part. At a time t = 0.5, the vertices of the first part are at the intersection chain as
well as the vertices of the second part. Because the parts share the same intersection
chain, that results in a mesh defined only by the vertices of the intersection chain, in
this case a flat area bounded by the intersection chain. This result can be affected
by using a slightly different time periods for the parts to make the vertices not meet
at the intersection chain.

Figure 5.18: The Perimeter growing

Figure 5.19: The Projection growing

If the part is of some other, more complicated shape, but contains only one inter-
section chain, the Perimeter growing is usually better than the raw implementation
of the Projection growing. If the part contains more intersection chains, the decision
is even harder and depends on the exact shape of the mesh.
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5.2.5 Summary

We have shown that the Perimeter growing produces best results for long and curved
shapes, but can be used also for the convex shapes and more complicated shapes
containing only one intersection chain. The Projection growing produces best results
for convex shapes, because it was designed for them. However, it can be extended by
cutting the non-convex shapes into convex pieces, or by using a different projection
method (i.e. perspective projection). A disadvantage of the Perimeter growing is
its dependence on the distribution of the vertices.
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6 Conclusion

We have presented a novel algorithm for morphing geometrical objects in boundary
representation. The algorithm is different from the others in its field in a way that
it does not compute the correspondence between the whole two objects, but it first
computes an intersection of the objects, subtracts the intersection from the original
objects and so it decomposes them into several parts lying outside the intersection.
Then it computes the correspondence separately for each part - correspondence
between the vertices lying outside the intersection and the vertices lying on the
intersection.

Although we did not avoid the correspondence computation as was first expected,
we can base our computation on a knowledge that the two pieces do not intersect,
and share a set of vertices (the intersection chain). We presented three methods
for the correspondence computation. Along with the correspondence, the methods
deal with the vertex path problem, a problem that is usually solved by only lin-
early interpolating between the corresponding vertices. Our methods construct the
vertex paths containing several vertices describing the vertex positions during the
time. This way, we can produce a not self-intersecting results also for the curved
parts, where the simple linear interpolation would be useless for any combination of
corresponding vertices.

The experiments confirmed that our algorithm is suitable for the cases, where the
user expects some parts of the object to grow out from the intersection or disappear
in it. Our algorithm can be suitable also for some other than grow-like cases, but it
is not useful for the objects that are of the same shape and they are only transformed
(rotated, translated etc.).

6.1 Future work

There are still some parts that are not completed in our 3D algorithms. The Ahn’s
algorithm [1] should be implemented to continuously change the connectivity be-
tween the two in-between meshes in Perimeter growing. The same algorithm should
be used to handle the connectivity in the Projection growing, so that its result for
the pieces lying on the core are precise, not only approximations as it is now. And
last, the merging algorithm should be established for the 3D parts.

In both 2D and 3D, the projection method could be improved to produce better
results for the non-convex parts by splitting the part into about convex pieces, as
was discussed in Section 4.3.5.

The intersection of the two input objects has been computed manually in 3ds
max 7, so part of the future work will be to implement this computation to be able
to change the positions of the input objects in our program.
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B User manual

2D program - PolygonMorphing.exe

Running the program

To successfully run the program, you need the following files:

• PolygonMorphing.exe (the program itself)

• AviFile.dll - a library for exporting resulting animations to *.avi

• gpc.dll - a library for computing boolean operations on polygons

Main window

After successfully running the program, the program’s main window appears (Fig-
ure B.1). The numbered items are described in the following table.

Figure B.1: The program’s main window
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number description
1 load input polygons (Section B)
2 export polygons into a different format (Section B)
3 enable moving the polygon by mouse dragging
4 compute the resulting morph by a method in (5)
5 select method for the vertex path computation
6 mix different methods for one set of input polygons (Section B)
7 influence what is rendered on the canvas (12)
8 animation scroll bar, the current time is shown above the bar
9 playing exporting an animation (Section B)
10 influence the precision of the animation scroll bar (8)
11 if checked, all the vertices travel at the same time
12 the canvas where everything is rendered

Input and output files

As input files, our program accepts files in .pol and .ps formats. It can export the
input polygons into .pol, .txt and .cel.

.pol format

.pol format is a simple text file, where on the first line is the number of vertices of
the polygon, on the second line is ”closed” if the polygon is closed, and on the rest
lines, there are coordinates of the polygon’s vertices.

70

closed

-6.20689651770484E-0001 -3.90804597701149E-0001

-6.66666663012742E-0001 -4.65517241379310E-0001

-6.80839640679162E-0001 -5.10870770160431E-0001

-6.95402295039153E-0001 -5.57471264367816E-0001

...

.ps format

.ps format is also a text file, but can be quite complicated. Our program accepts only
a file with one polygon, where some of its line segments do not have to be lines, but
also curves. However, the curve is considered as a line with the curve’s endpoints.
Therefore, you need to refine the curves before exporting from the program where
the polygon was created (we used a free drawing program Inkscape to create our
input polygons).

0 842 translate

0.8 -0.8 scale

0 0 0 setrgbcolor

[] 0 setdash

1 setlinewidth

0 setlinejoin

0 setlinecap
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gsave [1 0 0 1 0 0] concat

0 0 0 setrgbcolor

[] 0 setdash

2.363097 setlinewidth

0 setlinejoin

0 setlinecap

newpath

65.350638 335.53387 moveto

65.350638 335.28149 65.350638 333.82109 65.350638 331.54657 curveto

65.350638 329.27204 65.350638 326.18335 65.350638 322.67437 curveto

65.350638 319.16538 65.350638 315.23609 65.350638 311.28034 curveto

...

polygons in .txt format
Polygons in .txt format are required by the implementation of [5]. The file is almost
similar to our .pol.

##_POLYGONAL_CURVES_FILE

Number of vertex:

74

258.000000 385.000000

252.000000 379.000000

247.000000 371.000000

245.000000 365.000000

...

.cel format
Polygons in .cel format are required by the Celba’s implementation of [17]. The
format is also nearly similar - first line contains the number of vertices, the following
lines the vertices themselves, only as integers.

341

486 358

486 358

486 358

487 359

...

Running and exporting an animation

To run the animation, you simply push the button ”play” in the animation field
(Figure B.1(12)). If you also want the animation to be exported into .avi format,
you need to check ”save avi” checkbox before clicking the button. The resulting file
will be saved in the same directory as the input polygons are located.
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The button right to the ”play” button is used to export the animation as a
sequence of six images. If you want such a result, first you need to define six keys -
values of time used to render the results. You do so by scrolling the animation scroll
bar and pressing ’K’ whenever you want the time to be saved as a key. If you change
your mind, you can reset the whole sequence by pressing ’R’. The number of keys
entered is shown in the left bottom corner of the window. When you have entered
the sixth key, you can view the resulting image by pushing the white button.

Mixing different algorithms for different parts

The part mixing is not very user-friendly. There are two input fields, the first for the
parts of the first input polygon, the second for the second one. In each field, you need
to put a sequence of numbers delimited by semicolons. Each i-th number denotes
the method for computing the vertex part of i-th part. The method’s numbers are
as they appear in the select box: 0-Half-line, 1-Perimeter, 2-Projection, 3-One step
projection. So if you put in for example the sequence 0;0;1;0, the third part will be
computed by the Perimeter growing, and the rest by the Half-line growing method.

3D program - CoreMorph.exe

Running the program

To successfully run the program, you need the following files:

• CoreMorph.exe (the program itself)

• FortuneVoronoi.dll - a library for computing 2D Voronoi diagrams

• sphere.WRL - coordinates of a unit sphere

• input files - files containing the input objects, the sets of input objects are in
the directory objects and was computed in 3ds max 7.

– a.WRL, b.WRL - the input objects themselves

– core.WRL - the intersection of the objects

– a0.WRL,...,a[n-1].WRL - n distinct parts (result of A− core)
– b0.WRL,...,b[m-1].WRL - m distinct parts (result of B − core)

Main window

After successfully running the program, the program’s main window appears (Fig-
ure B.2).

On the canvas, the intersection (black) and the result computed by the Projection
growing (brown) is shown. The scene on the canvas can be rotated by holding the
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Figure B.2: The program’s main window

right mouse button and moving the mouse, translated by holding the left mouse
button and moving the mouse (or using the ASDW keys), and scaled by scrolling
the mouse wheel (or using the +- keys).

By using the checkboxes in the toolbar, we can influence what will be shown on
the canvas (from the left):

• A - the first input object

• B - the second input object

• core - the intersection

• fill core - if the intersection will be filled

• partsA - the input parts a0, a1, ..., a[n− 1]

• partsB - the input parts b0, b1, ..., b[m− 1]

• result - the resulting morph

• projected - this checkbox belongs to the Projection growing method. It shows
the projected part a0 (or b0 if a0 does not exist). The showed projected part
can be switched by the button switch part.

In the right part of the toolbar, there is an animation slide, which is used to
influence the time. At the time 0, the resulting object should be A, at the time 100
it should be B. The current time is shown to the left of the slide.
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Figure B.3: Window with Voronoi diagram

The window’s main menu consists of the following:

• View

– Voronoi diagram - shows a new window (Figure B.3 with computed
Voronoi diagram for the current part (as was discussed for the check-
box projected, you can switch the displayed part by the button switch
part). In the Voronoi diagram, the blue points are the projected ver-
tices of the outside part (lying outside the core), the green points are the
projected vertices of the inside part (lying on the core), the grey line seg-
ments connect the corresponding vertices, the black line segments show
the voronoi diagram of the outside part.

– Algorithm - here you can switch between the Projection growing and the
Perimeter growing. Notice, that for the Perimeter growing, no projection
plane or Voronoi diagram are computed, the projected parts with their
Voronoi diagrams shown are computed from the Projection growing.
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C Implementation

Two applications were created, the former on the 2D version on our algorithm, the
latter on its 3D version. Both programs were written in C#, using Microsoft Visual
Studio 2005.

2D version

Clipping

Clipping polygons is done by a C library gpc.dll5, which has a port for C# - class
GpcWrapper.

Data structures

The program works with clipped polygons, which are saved as an object MyPolygon,
containing a list of objects Part. Each part stores its minimal and maximal topo-
logical distance, and a list of its vertices. Each vertex then stores its coordinates,
topological distance and its vertex path, which is implemented as a list of coordi-
nates. For the data to be consistent, each vertex have the vertex path, but those
with a negative topological distance do not have any items in it.

Visualization

The visualization is done using the GraphicsPath object, to be independent on Di-
rectX. That brings problems when exporting the animation to .avi, because when
using DirectX, we can export its output directly to files, but when using the Graph-
icsPath object, we do not have a direct access to the output. This is not solved very
professionally, because the program screenshots and saves the window.

3D version

Clipping

Because we did not found any C# library for clipping objects in boundary repre-
sentation, the clipping is done in 3ds max and the program loads already clipped
polygons. As the input objects, the application uses WRML objects (*.WRL), as a
format of objects that can be exported from 3ds max, and easily altered.

5http://www.cs.man.ac.uk/~toby/alan/software

http://www.cs.man.ac.uk/~toby/alan/software
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Data structures

Most of the objects are stored as a list of vertices and list of triangles’ indices, to
be easily loaded, saved and rendered. Only the clipped polygoons are saved in a
different way, because some additional information needs to be stored during the
computation. We store them as an array of Parts, where each part again stores the
information of the maximal and minimal topological distance, list of its vertices, and
here also the list of indices (triangles). The vertices again store their coordinates,
their topological distance and their vertex path. New information stored in each
vertex are its neighbors - to be able to quickly assign the topological distances and
reassign the triangles when duplicating the vertex. For the method of Projection
growing, the vertices also store their projected coordinates.

Voronoi diagram construction

The Voronoi diagram is computed by using a FortuneVoronoi library6. The library
has some computational problems after DirectX is initialized, therefore we are not
able to offer the user an interface to load the objects during the application run.

Visualization

Visualization is done by using DirectX 9.0c. The objects stored as a list of vertices
and indices are easily to visualize (using vertex and index buffers), and the computed
objects with vertex paths are visualized by altering one additional object with a
vertex and index buffer - index buffer do not need to be altered, but we rewrite the
vertex buffer each time the time changes.

The vertices are visualized using a unit sphere. For each vertex, the sphere is
moved to the vertex’s coordinates, its color is set according to the vertex’s topological
distance, and it is rendered.

6http://www.codeproject.com/KB/recipes/fortunevoronoi.aspx

http://www.codeproject.com/KB/recipes/fortunevoronoi.aspx
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D Other results

(a) Perimeter growing

(b) Projection growing

Figure D.1: Another example showing that the Perimeter growing is better for long curved parts
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(a) Perimeter growing

(b) Projection growing

Figure D.2: Projection growing does not always produce bad results for the non-convex parts

Figure D.3: Perimeter growing for more complex parts
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