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Abstract 
This thesis gives an overview of parallel techniques used in computer graphics. It 
investigates the problems of work distribution, load balancing, communication 
traffic reduction and merging of subsolutions. These problems are discussed in the 
relation to parallel rendering, the representative of traditional computer graphics, 
and the Delaunay triangulation, the representative of the computational geometry. 
The description is illustrated by numerous examples. This thesis also proposes 
several new parallel algorithms for the construction of Delaunay triangulation 
suitable for architectures with several processors and the shared memory. The 
proposed solution was tested and the results are summarized in this thesis. 
Preliminary proposal of some algorithms suitable for cluster architectures is given 
in the final part of the thesis.   
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1 Introduction 
The computational power of sequential computers grows. We are currently able to process 
data sets in fraction of the time that was needed few years ago. We can also process data sets 
such that their processing was impossible on old computers because of the technical limitation 
of these computers. Although the grow of the computational power is significant, the demand 
for the processing of larger data sets or for the processing in such a manner to get the more 
quality result or to get the results in an interactive or even real-time seems to outpace this 
growth in many applications.  

When an algorithm running on a sequential computer is not powerful enough to process a 
given data set according to the expected conditions or even it does not allow the processing at 
all, there are several ways how to deal with this data set. Simple and straightforward solution 
is to reduce the amount of data and/or to take some conditions back. Let us note that in many 
applications, however, this solution is not possible.  We can also buy or lend more powerful 
sequential computer. If neither the first nor the second solution brings a substantial 
improvement, it is a time to look for a better sequential algorithm, i.e. faster one, demanding 
less resources, etc. Let us note that the new algorithm has to be compatible with the original 
one, i.e. it has to fulfill the same condition (e.g. an algorithm that does not ensure the 
requested quality of the results is useless). We succeed in our task often but not always.  

If we are not successful on the field of sequential algorithms, the search for a parallel 
algorithm is the next logical step. The situation in the parallel processing is not, unfortunately, 
as easy as in the sequential processing because there exist plenty of parallel architectures and 
each of them is predetermined to be used for a different kind of problems. The algorithm 
designed for some architecture can be sometimes adopted for another but it requires very 
often a significant effort because different parallel architectures require different 
programming techniques. Moreover, the performance of such a modified algorithm is very 
often much lower than the performance of the original one. 

If we are not able to find any existing appropriate parallel algorithm (it is common in a case 
that the solved problem is not well-known or if we put too strict conditions on the solution), 
the last possibility is to develop a parallel algorithm, i.e. to parallelize a sequential one. Let us 
note that the strategy 'to develop' brings often better results than the strategy 'to adopt'. 
According to the chosen parallel architecture we have to decide how the processors will 
naturally communicate. May a processor communicate directly with any other processor or it 
requires a courier for the communication with distant processors? Is there such a memory that 
is accessible for read-write purpose to more processors? How to reduce the communication 
traffic? What data structures should be used? Is it necessary for a processor to wait for a reply 
on its request or it may work simultaneously on a different job? Besides the problem of the 
communication, there is also a problem how to split the work among the processors because 
the effective algorithm has to ensure that no processor is idle for a significant time. Another 
question is how to compose the partial results in order to get the final result. These are only 
some of the questions that have to be answered.  

1.1 Main Goals 
The computer graphics (including computational geometry) is a field of human activity, 
which often demands large amounts of processing. Parallel architectures have been employed 
to meet the considerable demands of many problems. This thesis provides an overview of 
parallel techniques used in, according to our opinion, the most known applications from this 



4 

field of research. Although we present these techniques in the relation to the applications, 
there are general enough. First, we investigate the parallel rendering, the representative of the 
traditional computer graphics, in detail. Next, the parallel construction of the Delaunay 
triangulation, an important problem of the computational geometry, is investigated. We have 
focused on data decomposition and load balancing, data structures used to reduce the 
communication traffic and the principles used to merge immediate results into the final result. 
We illustrate the discussion with numerous examples including the current state of the art. 

The experience acquisitioned in the theoretical part of this thesis is used in the development of 
ourselves parallel algorithm for the Delaunay triangulation based on the method of the 
incremental insertion with local transformation. This method is simple and robust (it produces 
fine quality meshes), however, it is rather bit of a sequential character. Therefore, no wonder 
that there is, as far as the authors know, no existing parallel algorithm. 

1.2 Acknowledgments 
The great thanks belong to Dr. Ivana Kolingerová, from the University of West Bohemia, 
Pilsen, Czech Republic, who is the leader of this project. Thanks belong also to my parents 
and my friends and colleagues for their help and support. 

 I would like to thank Dell Computer, Czech Republic, especially to Mr. Ponnert, for allowing 
us to experiment on their computers and for lending a HotPlug SCSI disk into Dell Power 
Edge 6400 and in this way allowing us to continue with our experiments. Thanks belong also 
to UniSys, Czech Republic for allowing us to experiment on their computer. 

I would also like to thank Prof. V.Skala from the University of West Bohemia, Pilsen, Czech 
Republic for providing conditions in which this work has been possible and to thank anybody 
else who has participated on this research. 

This work was supported by the Ministry of Education of The Czech Republic - project MSM 
235 200 005 and the project AV2030801. 

1.3 Basic terminology 
In this subsection, we explain various basic terms that are used in the next text of this thesis. 
Advanced terms will be explained in the text at the place where they firstly appear. 

Algorithm is a finite sequence of finite steps that are needed to achieve the given goal. 
Asymptotic complexity of an algorithm determines the speed of the growing of time 
elements consumed by an algorithm in the dependence on the number N of input elements, 
where N is larger than some constant N0.  

Let us assume that each access to the memory and each execution of a simple instruction (e.g. 
+,-,*,/,=,if,call) needs one time unit, then for all possible input data sets with some N we can 
find maximal, minimal and average number of time elements needed by an algorithm to 
process any data set with this N. The function fmax(N), which assigns an appropriate maximal 
number of time elements to each number N (> 0) of input elements, is called the worst-case 
complexity of an algorithm. Similarly, the function fmax(N), which assigns an appropriate 
minimal number of time elements to each number N, is called the best-case complexity of an 
algorithm and the function favg(N), indeed, is called the average-case complexity. Usually, 
asymptotical versions of these functions, which are valid only for N > N0 > 0, are used. 

Let consider the constants c1, c2 and N0 > 0 and the asymptotical complexities fx(N) and gx(N), 
where x is either max, min or avg. If c1⋅gx(N) ≤ fx(N)  ≤ c2⋅gx(N) for N > N0, then the functions 
fx and gx describe the same complexity and we write: fx(N) = Θ (gx(N)). For example, the 
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complexity of Divide & Conquer (explained later in this subsection) algorithm for the 
multiplication of two NxN matrices is: fmax(N) = 8 ⋅fmax(N/2) + 4 ⋅Θ (1), i.e. Θ (N3). It is often 
impossible to find a suitable function gx(N) with their constant that would limit the function 
fx(N) from both sides. Therefore, let consider the constant c instead of the constants c1 and c2 
then we write fx(N) = Ω(gx(N)) if fx(N) is greater or equal to c⋅gx(N) for N > N0, and we write 
fx(N) = O(gx(N)) if  fx(N) is less or equal to c⋅gx(N) for N > N0..   
For the algorithm evaluation, the asymptotical complexity for the worst-case is usually used. 
However, rarely the data set is 'so bad' that the worst-case occurs and, therefore, often the 
average asymptotical complexity is presented in addition to the classic worst-case complexity.  

Program is an implementation of an algorithm, i.e. it is a static notation of computational 
procedure written in such a form of operations to be recognizable by a processor. As the 
difference between the algorithm and the program is not significant, we often will substitute 
the term program for the term algorithm in this thesis. 

Processing element (PE) or processor is a general computational element characterized by 
the set of operations that is it able to execute. The operations usually load and/or store some 
data from the memory. The control unit determines which instruction should be executed. 

Process is some activity derived from the program. Its state is determined by the position of 
the operation to be executed in the program and by immediate values of processing data. The 
state changes whenever the processor performs the operation to be executed. Usually one 
processor runs one process for the whole process' lifetime. In such a case, we will substitute 
the term processor for the term process and vice versa.  

Thread does not differ too much from the process: to maintain the thread requires lower 
overheads than to maintain the process. Therefore, we will use the terms thread and process as 
the synonyms in this thesis.  

Critical section denotes a piece of the code in a program that cannot be executed 
simultaneously by more threads. When a thread reaches a critical section it checks whether no 
thread operates in this critical section. If the outcome of this test is negative, the thread has to 
wait until the critical section is free, otherwise it continues. Critical section usually also 
denotes a synchronization object used to handle the entering (included the waiting) and the 
leaving a critical section (in the meaning of protected piece of the code).  

Simplex is a geometrical object in the dimension d having d+1 vertices, each vertex is 
connected with all other vertices, i.e. it can be described by full graph. In E1 it is a line 
segment, in E2 a triangle and in E3 a tetrahedron. 

Convex hull CH(S) of a set of points S is the smallest convex geometrical object (polygon in 
E2 and polyhedron in E3) such that any point from S lies inside the interior of CH(S) or it is 
one of the vertices of CH(S). 
Divide & Conquer denotes a recursive strategy consisting of two stages. In the first one, the 
divide stage, the input data set is repeatedly subdivided as equally as possible into smaller 
subsets until each subset is small enough to be solved directly. Afterwards, the solution for 
each subset is found. In the second stage, the merge stage, solutions of subsets (i.e. 
subsolutions) are repeatedly merged until the solution for the whole input set is obtained. 
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1.4 Used Shortcuts 
The shortcuts used in this thesis are summarized in the following table:  

2D E2 two-dimensional case, i.e. planar case 
3D E3 three-dimensional case 

CH(S)  convex hull of S 
D&C  Divide & Conquer 
DAG  Directed Acyclic Graph 
DT DT(S) Delaunay triangulation 
MS  Microsoft 
PDT  Parallel Delaunay Triangulation 
PE  Processing Elements – processor 
PEs  number of processing elements 

 

1.5 Organization of the Thesis 
The rest of this thesis is structured into seven sections as follows. The next section gives a 
survey of existing parallel architectures and discusses general principles for the parallel 
algorithm design. This section should provide a good basic background to understand the 
problem of parallelization.  

Section 3 investigates parallel computer graphics, mainly parallel rendering (including 
polygon rendering and ray-tracing), which is one of the most power demanding application 
and, therefore, many parallel techniques were proposed for this problem. Among these 
techniques there belong an even subdivision of the scene among processors, merging of the 
partial solutions (see D&C) and the use of special data structures in order to minimize the 
communication costs. Brief introduction to the problem of the rendering should provide a 
background for a reader who is not focused on the problems of computer graphics. 

In Section 4, the problem of the Delaunay triangulation is described in detail. We discuss the 
properties of the DT and the methods for its construction. A survey of parallel algorithms of 
the DT is presented in Section 5. As the divide and conquer strategy is the most suitable one 
for many geometry problems and the problem of the construction of the DT is not an 
exception, we focused on the merging of the subsolutions. 

The remaining sections are more practically oriented. The sixth section describes a sequential 
method for the construction of the Delaunay triangulation that was chosen as a base for our 
parallel algorithms. We have proposed several parallel algorithms for the parallel 
architectures with several processors and the shared memory, common equipment of the 
computer graphics laboratories. The detailed descriptions of these algorithms with the results 
of the performed experiments are given in Section 7. 

Last section, Section 8, summarizes current results and concludes this thesis. In this section, 
the possibilities of the future work (e.g. the development of parallel Delaunay triangulation 
for clusters and the integration of the proposed algorithms into an application) are discussed.  

 

 



7 

2 Parallel and Distributed Computing 
Sequential computers are based on the model presented by John von Neumann. The 
performance of this model is limited by the speed of information exchange between the 
memory and the processing unit and by the execution rate of the instructions. In modern 
sequential computers, the speed of information exchange is improved by using memory 
interleaving (i.e. simultaneous memory access by having several memory banks) and by using 
caches; the executions rate is improved by pipelining. Despite these improvements, in many 
areas of human activity, there is a necessity to work with such data sets that their processing 
by any sequential algorithm cannot be finished in a reasonable time at a single sequential 
computer or the processing even requires more resources than are available at this computer. 
E.g., sometimes the task has to be finished in a real time or it needs more memory than is the 
addressable amount. Let us mention [Tam01] quantum chemistry, statistical mechanics, 
relativistic physics, astrophysics, computational fluid dynamics and turbulence, genetic 
engineering, cell modeling, medicine, modeling human organs, global wheather and 
environmental modeling, speech processing, data mining, computer graphics and 
computational geometry as examples of human activities where such data sets are common. In 
all these cases, a 'parallel computer' and an appropriate parallel algorithm are welcome. 

2.1 Parallel Models 
A parallel computer is a collection of processing elements (PE) that cooperatively solve the 
given task. While any sequential computer was based on the same sequential model, there is a 
quite a big set of physical parallel models to be adopted in a parallel computer. They can be 
generally classified into six practical models [Per99]: SIMD, parallel vector processor, 
symmetric multiprocessor, massive parallel processor, cluster (or network) of workstations 
and distributed shared memory.  

Single Instruction Multiple Data (SIMD) was firstly introduced by Flynn in 1966. This model 
has only a single control unit, i.e. only one process runs (one copy of an algorithm is stored in 
the memory). The control unit dispatches the instruction to all processing elements and each 
PE executes the instruction with different data. Therefore, this model suits for such an 
algorithm where input data can be subdivided into several groups and processed 
simultaneously (e.g. operations with vectors or matrices). The structure of SIMD model is 
sketched in Figure 2.1a. Famous commercial parallel computers based on this model are: 
CM-2, Illiac IV, MP-1 and MP-2. 

Parallel vector processor is an extension of SIMD. It contains a small number of powerful 
vector processing elements (they are based on SIMD) connected together and to the common 
shared memory (i.e. accessible to all processing elements) by a crossbar network switch. 
Famous parallel computers based on this model are Cray C-90, Cray T-90 and NEC SX-4. 
They are mainly used for the numerical computations. As this model is too specialized, the 
popularity of parallel vector processor has been going down in the recent years. 

Symmetric multiprocessor contains a small group of common processing elements that are 
used in the sequential computers, i.e. it suits for any algorithm. Each processing element has 
an equal access to common shared memory and I/O devices via bus or crossbar switch. The 
structure of the model is sketched in Figure 2.1b. The efficiency of the system goes down 
with the increasing number of PEs because of the limited speed of data transfers. Therefore, 
the number of PEs is limited to a small number only. Great advantage of symmetric 
multiprocessor model is, however, the low cost of parallel computers based on this model. No 
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wonder that these parallel computers (especially computers with 2 PEs) became widely spread 
in the last years. From the set of commercial computers, let us name SGI Power Challenge, 
DEC Alpha server 8400, Dell Power Edge 7150, Dell Power Edge 8400, etc. 

CU PE1

PE2

PEn

...

M

 

CU PE1

PE2

PEn

...

M

CU

CU  

CU PE1

PE2

PEn

...
CU

CU

LM1

LM2

LMn

 

a) SIMD b) symmetric multiprocessors c) massive parallel processor 

Figure 2.1: Scheme of the model structures. Legend: PE - processing element, CU - control unit, M - 
memory, LM - local memory. 

Massive parallel processor contains a large group (often thousands) of common processing 
elements.  Each processing element has an exclusive access to its local memory, all memory 
is distributed (i.e. there is no shared memory in the system). The processing elements are 
connected together by serial lines ensuring high communication bandwidth and low latency. 
Figure 2.1c brings the scheme of this model. There are various types of topology of the 
connection. Each topology is predetermined for some types of algorithms. A typical topology 
is a closed cube in En, briefly called n-Cube, where each element is directly connected to 2n 
others. Figure 2.2 shows an example of closed two-dimensional grid. Famous parallel 
computers based on this model are CM-5 (topology of a tree) and Intel Paragon (two-
dimensional grid). 

PU1,1 PU1,2 PU1,n … 

PU2,1 PU2,2 PU2,n … 

PUn,1 PUn,2 PUn,n … 

 …  …  … 

 

Figure 2.2: An example of the topology of E2 grid used in a massive parallel processor. Processing 
unit (PU) includes a processing element (PE) and its local memory (LM). 
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Cluster of workstations (or also computer networks) is very similar to the massive parallel 
processor. It consists of a large group of sequential computers. As each processing unit is a 
complete computer (i.e. it has its own processing element, local memory, I/O devices and 
operating system), each computer can be different. These computers are connected together 
via some low-cost, however, in the comparison with the massive parallel processor, slow 
network (e.g. Ethernet, FDDI, Fiber-channel or ATM). Clusters are very popular. Namely, 
IBM SP2 is a successful commercial cluster. 

Distributed Shared Memory (DSM) model belongs to a new generation of parallel computing. 
It combines advantages of the massive parallel processor and the symmetric multiprocessor. 
The model has distributed memory allowing higher number of PEs and, in addition, it creates 
an illusion of the shared memory, thus the implementation of algorithms is simplified. 
Moreover, the model is general enough. As far as we know, there is only one parallel 
computer based on this model – Cray T3D.   

Besides the practical models that we have just described, several theoretical models and 
parallel algorithms developed for them are published in the literature. Su [Su94] complains 
that many theoretical algorithms use complicated data structures or scheduling techniques to 
reduce the parallel “runtime” of basic algorithms, however, when they are implemented, they 
are so complicated and need so much data movement that achieve worse result than simpler 
solution. Despite it, the theoretical models can be used as a basis for designing parallel 
algorithms that are efficient in practice, for the explanation of results achieved by a parallel 
algorithm, or for the comparison of parallel algorithms. Therefore, let us introduce Parallel 
Random Access Machine (PRAM). This model assumes a machine with k (or even unlimited 
number of) processing elements and an unlimited random-access common shared memory. In 
a single machine cycle, each processing element can fetch a word, perform an operation and 
write the result back to memory. Different PRAM machines allow a different amount of 
concurrent memory access. EREW machine allow no concurrent access, CREW machines 
allow concurrent reads and CRCW machines allow concurrent writes as well.  

Each parallel model described above offers different means and, therefore, requires using of a 
different programming technique in the design of a parallel algorithm. While an algorithm 
developed for the architectures with the distributed memory can use for the communication 
among the processes message passing (i.e. sending and receiving messages) only, the 
architectures with the shared memory, including DSM systems, allow very simple and low-
cost (except for the DSM model) inter-process communication through the shared memory. 
Therefore, we have to keep the pros and cons of all parallel models in mind when parallel 
algorithms are evaluated. 

2.2 Parallel Programming 
Although many parallel models exist, as it was described in the previous subsection, we can 
identify only few parallel programming techniques used in parallel algorithms for the 
decomposition of computation [Jež97, Cro97]. These techniques include Multiple Program 
Single Data (MPSD) parallelism, Single Program Multiple Data (SPMD) parallelism and 
Multiple Program Multiple Data (MPMD) parallelism. Usually, a parallel algorithm uses 
only one of these programming techniques. 

2.2.1 Multiple Program Single Data 
MPSD is a functional parallelism. The computation is split into several distinct functions 
which can be applied in series to individual data items. Each function is exclusively assigned 
to its processing element and a data path is provided from one PE to another one. As the 
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resulting scheme resembles a processor pipeline, the term pipeline is often used in the 
literature when MPSD parallelism is considered. This parallelism has two significant 
limitations. First, the overall speed of the pipeline is limited by its slowest stage, so functional 
units must be designed carefully to avoid bottlenecks. In an ideal case, all stages consume the 
same time. More importantly, the available speed-up is limited to the number of stages in the 
pipeline. The number of stages can be increased only as long as we are able to split all 
functions into smaller pieces that run in a similar time. If some function has to be performed 
atomically, it is useless to split other functions.  

Let us assume a sequential algorithm that allows subdivision into k stages. A stage takes the 
time ti. To process N data items, the algorithm consumes the total time tseq where  

∑
=

⋅=
k

i
iseq tNt

1

 (2.1)

The parallel version of the algorithm then requires the total time tpar where 

i
k
i

k

i
ipar tNtt 1

1
max)1( =

=

⋅−+=∑  (2.2)

Speed-up s of this parallel algorithm can be calculated as tseq / tpar. The efficiency of such an 
algorithm is given by the expression s / k. 

2.2.2 Single Program Multiple Data 
In SPMD parallelism, data parallelism, instead of performing a sequence of functions on a 
single data stream, the data set is split into multiple streams that are processed simultaneously 
by several processing elements executing the same program (i.e. the same functions).  

Fixed partition of the data set, however, introduces a possibility of imbalanced workloads of 
PEs: the difference of the time consumed by the processing element that finished its work as 
the last one and the time consumed by the processing element that finished as the first one is 
not insignificant. Therefore, some algorithms use dynamic load-balancing that provides more 
flexibility in assigning workloads to processing elements. As the optimal dynamic load 
balancing strategy is NP-complete problem, some more or less efficient heuristics have to be 
used. There are two principal approaches: demand-driven and work stealing.  

In the demand-driven approach the input data set is split into such very small streams, that the 
number of these streams is much larger than the number of processing elements. The streams 
are assigned to processors one at a time. When a processor completes one task (i.e. the 
processing of a stream), it receives another task, and the process continues until all of tasks 
are complete. Work stealing strategy starts with a fixed partition of the input data set. 
However, when a processor becomes idle, the remaining workloads of busy processors are 
split (i.e. their work is 'stolen') and reassigned to this idle processor. 

In SPMD, the outputs of the processing of streams obtained by the processing elements are 
afterwards merged together to get the final result. As the merge stage very often cannot be 
parallelized and has to be performed in a sequential way, it limits the available speed-up of an 
algorithm. In many algorithms, it is also necessary to finish the execution of the operation j in 
the process A before the execution of the operation k in the process B can start. In such a case 
B has to wait until A completes the operation. Therefore, the processes have to synchronize 
themselves, i.e. some inter-process communication is required. The inter-process 
communication and the waiting of processes limit the performance of a parallel algorithm. 
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Despite these troubles, the data parallel approach opens an opportunity to use more processing 
elements than in the functional parallelism and, therefore, to reach higher speed-up. Let us 
assume a sequential algorithm that consumes the total time tseq to process N data items. If this 
algorithm can be fully parallelized and its parallel version running on k processors requires 
the total time tpar, then speed-up s of this parallel algorithm can be calculated as tseq / tpar and 
its efficiency is given by the expression s / k. 

2.2.3 Multiple Program Multiple Data 
MPMD enriches SPMD parallelism. The input data set is split into multiple streams. The 
streams are assigned (statically or dynamically) to processors executing multiple programs. 
Let us note that parallel algorithms combining the functional and data parallelism can also be 
included into this category. For the MPMD approach, it is typical that the input data set 
contains data items of various data structures requiring various programs to be processed.  

A very popular model, which exploits MPMD parallelism, involves two different programs, 
one program is executed only by one processor and the second program is executed by several 
processors. In the client-server strategy, several clients assign tasks to the server that has to 
perform a task and return results to the client. The opposite strategy is called the farmer-
worker. There exists one farmer, which drives the computation (it assigns tasks, collects sub-
results and merges them into the final result), and several workers performing their tasks. 
Such a strategy is welcome for parallel architectures with the distributed memory. 

As parallel algorithms with this parallelism are usually designed for the architecture with the 
distributed memory, they put the stress on the problems that cannot be processed on a 
sequential computer because of its technical limitations. Therefore, many MPMD algorithms 
do not compute speed-up and the efficiency. A very important characteristic, however, is the 
scalability of a MPMD algorithm, which shows the capability of the algorithm to employ 
efficiently large number of processors. Let us assume a parallel algorithm that consumes the 
total time tpar1 to process N data items on k1 processor. When k2 > k1 processors are used, the 
computation requires the total time tpar2. A value calculated as tpar1 / tpar2 evaluates the 
scalability of the given parallel algorithm. 

2.3 Amdahl's Law 
A sequential algorithm cannot usually be fully parallelized, i.e. some operations have to be 
performed in a sequential mode (e.g. write access to the shared memory, merge phase and I/O 
operations). Consider a program containing m operations, which take the same time T, to be 
executed on a parallel machine with k processors. If the fraction 1-q of the operations has to 
operate in a sequential mode, and q can be executed in parallel, the speedup is limited to: 
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This equation is called Amdahl's law [Amd67]. Although it ignores many of the realities of 
computing (e.g. parallelization is free, communication is free, parallel operation is a multiple 
of sequential operation, without changing data structures or operational design), researches in 
the parallel processing community have been using Amdahl's Law to estimate the highest 
possible speed-ups of their parallel programs. For example, if a parallel algorithm contains 
99% of operations that can be executed in parallel, then speed-up on a parallel architecture 
with unlimited number of processors will reach value 100. If we consider an architecture with 
10 000 PEs, speed-up will be about 99. 
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Let us warn against common error that some researches do when dealing with Amdahl's law. 
Assume a sequential program. First, parts that can be performed in parallel are found. The 
total time tp needed by the program in these parts to process N data items is measured as well 
as the total consumed time ttot. The parameter q is computed as tp / ttot. Let us assume the 
parallelizable parts contain mp operations and the remaining parts contain ms operations. 
However, when the considered sequential algorithm is parallelized, new operations have to be 
included into the code. Therefore, the resulting parallel algorithm has mp+dp and ms+ds 
operations. It may not be true that (mp+dp) / mp = (ms+ds) / ms. As dp << ds in many parallel 
algorithms, the value of q calculated as tp / ttot is incorrect! 

Even if the Amdahl's law is used correctly, there are some situations when a parallel program 
reaches higher speed-up than was the estimated one, or even it reaches super-linear speed-up, 
i.e. achieved speed-up is bigger than the number of used processing elements. Sun et al. 
[Sun95] discussed the reasons for such a behavior. First, the time needed to process a data set 
depends on the place where the required data set resides. If the data is stored in the cache, the 
shortest time is reached. On the contrary, if the data is stored in the external or remote 
memory (i.e. on the disk or in the memory of a remote computer), a large time is consumed. 
Sequential applications often need to work with such a data set that a part of this set has to be 
stored in slower local memory or in the, even more slower, external or remote memory. Let us 
assume such a data set of N items that only x < N items can be stored in the cache. While each 
of these items requires the time t0 to be processed, an item from the local memory consumes 
the time t1 > t0. The total times tseq and tpar required to process the entire data set on a parallel 
computer using one and two processors are in an ideal case: 
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Therefore, we achieve a super-linear speed-up s: 
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There is another reason for the super-linear speed-up related to the caches in [Sun95, Sie94]. 
Parallel computers very often contain larger caches than their sequential counterparts and, 
therefore, cache hit ratio could be increased. More or less theoretical reason is that the 
parallelization of a sequential algorithm reduces overheads hidden in the original code.  

A last but not least reason is typical for algorithms that perform a task only if some condition 
is matched. If we parallelize such an algorithm, we can avoid processing of more useless tasks 
than in the original serial algorithm. A good example is the backtracking [Rao92] where a 
node of the tree is expanded only in a case that we expect the solution somewhere in the sub-
tree of this node and we expand a node with the highest probability of the success first. In the 
parallel backtracking, we skip the expansion of a sub-tree earlier and, therefore, the result is 
often achieved sooner. 
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3 Parallel Computing in Computer Graphics 
In many tasks in the computer graphics, there is a necessity to process big data sets [Hum02]. 
How to define a big data set? It is such a data set that its processing demands more resources 
than are available if we consider sequential processing only. Specific hardware limitations, 
time, spatial resolution and money belong among these resources. Big data sets are, typically, 
results of some measurement (e.g. range scanning, imagery, sensor networks) or results of 
some simulation (e.g. scientific computing, light transport, CAD). Figure 3.1 shows several 
examples of really big data sets.  

 

a) double eagle tanker model containing 83 million triangles [UNC]  

�  

b) scans of Saint Matthew (386 MPolys) and the 
David (2 GPolys) - Stanford Digital Michelangelo 

Project  [Mich] 

c) simulation of compressible turbulence 
(2K x 2K x 2K mesh) - Sean Ahern and Randal 

Frank, LLNL [Sch00] 

Figure 3.1: An example of big data sets. 

There are two numerous groups of algorithms that need to deal with big data sets. The first 
one consists of algorithms that visualize big data sets (see Figure 3.1a and Figure 3.1b). The 
problem of rendering is the best known. We can identify five rendering strategies [Wat00, 
Cro97]: polygon rendering, volume rendering, ray-tracing, radiosity rendering and terrain 
rendering. They differ in the type of scenes, which they are able to process, and also in the 
available quality of the results. 

The second group includes mainly computational algorithms solving geometry problems. 
Typical problems are convexity problems, intersection problems, geometric searching 
problems, proximity problems (e.g. Voronoi diagrams), mesh generation problems (e.g. 
Delaunay triangulation) and optimization [Pre85]. Algorithms for the surface reconstruction 
(see Figure 3.1b), iso-surface extraction, etc. [Wat00] can be also included into this group. 
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In this section, we investigate parallel rendering, the representative of the first group. As the 
problem of parallel rendering is comprehensive, we focus on the best known rendering 
strategies: polygon rendering and ray-tracing only. Parallel algorithms for polygon rendering 
contain many approaches how to subdivide the work among the processors and how to merge 
the immediate results into the final solution. Ray-tracing introduces the problem of dynamic 
load-balancing and the problem of the use of proper data structures in order to reduce the 
communication among processors.    

Parallel Delaunay triangulation, the representative of the second group, with its merging 
problem is discussed in Sections 4 and 5. 

3.1 Polygon Rendering 
A scene for polygon rendering is a collection of objects in three-dimensional space with 
associated properties (e.g. lightning and viewing parameters). The object may be a model of a 
real or fictitious thing. Each object is described by a set of polygons, typically, a set of 
triangles. Most descriptions of the geometry or shapes of objects are only approximate. In 
many applications, the approximation is chosen as accurate as images with acceptable quality 
can be produced. In CAD applications, however, the description has to be accurate because it 
is often used to drive a manufacturing process. As more polygons usually imply better 
accuracy of approximation, CAD models often contain several millions of polygons. Figure 
3.1a shows a CAD model containing about 83 millions of triangles.  

The polygon representation of objects is simple and, therefore, it is commonly used. As, 
moreover, objects represented by bi-cubic parametric patches, CSG, voxels and implicit 
functions are 'simply' transformable into polygon representation, no wonder that polygon  
rendering is one of major importance in computer graphics.  

Rendering engines has to perform two main tasks [Wat00]. The first is to process the 
geometry of the object as it is determined by various transformations, e.g. modeling 
transformations, viewing transformations, etc. In this transformation phase, the geometry is 
transformed from 3D to 2D. It is followed by the rasterization phase that generates pixels 
from just computed 2D geometry. The rasterization includes a shading algorithm, which finds 
the appropriate shade for each pixel within the polygon's projection, and a hidden surface 
removal algorithm, which evaluates whether part of a polygon is obscured by another one that 
is closer to the viewer. 

Shading algorithms evaluate intensity at the vertices of the polygon, then interpolate from 
these values to find an appropriate intensity for the polygon pixels. Coincident with this 
operation, a similar interpolation scheme evaluates the depth of each polygon pixel from the 
depths at the vertices (which are evaluated from the geometry of the scene and the viewer). 
These depths are stored in an array, known as Z-buffer. If the currently calculated depth of a 
polygon pixel is lower than the previously stored depth, the value in Z-buffer and intensity of 
an appropriate image pixel are updated. 

3.1.1 Functional Parallelism in Polygon Rendering 
For complex scenes or high-quality images, the rendering is computationally intensive, 
requiring millions or billions of floating-point and integer operations for each image. No 
matter how fast is a polygon rendering implementation (no matter whether it is a software or a 
hardware implementation) and a system (may be sequential or parallel), on which it runs, the 
demand for power to render larger and more complex models in higher quality always seems 
to outpace it. Visualization of large models or producing of realistically looking images has 
applications in many areas including medicine, engineering and entertainment. 
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Let us demonstrate the hunger for the rendering performance. Prior to 1987 it was demanded 
only to produce wire models. Rendering of small scenes, usually with the flat shading 
algorithm, into images with low resolution (e.g. 320x200), which was successful in the years 
1987 – 1992, was superseded by rendering in the years 1992 – 2000, which could process 
larger scenes and produce images in higher resolutions and also better looking images due to 
the use of textures and antialising algorithms. The era 2000 up to now brings possibility of 
programmability. Curved surfaces, programmable shading and image-based rendering (IBR) 
are supported. Image-based rendering refers loosely to techniques that generate new images 
from other images rather than from geometric primitives. IBR seems to hold the promise of 
shortcutting the traditional modeling/rendering pipeline or at a minimum hiding the latency 
between rendered frames. All these improvements result in the convergence of computer 
graphics and media processing that opens a possibility to produce fully rendered movies, i.e. 
movies without real actors. Figure 3.2 shows several examples of applications from each 
generation. These examples were adopted from [Ake01]. 

  

a) wire model, prior to 1987 b) simple 3D model, 1987 - 1992 

 

c) textures, large models, 1992 - 2000 

 

d) programmability, 2000 - ? 

Figure 3.2: Development of rendering techniques - mainly polygon rendering (b,c,d). 
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Since 1987 hardware technology has advanced, processors are hundred times faster, memory 
sizes larger and their bandwidth is about Mbytes per second, a hardware implementation of 
polygon rendering was incorporated into graphical adapters. Let us give a brief description of 
this rendering hardware implementation. We can identify at least two phases in the polygon 
rendering, which are independent enough to be performed in a parallel way. These are the 
transformation and the rasterization phases. Usually it is necessary to render a sequence of 
images instead of a single one and, therefore, the functional parallelism comes into the 
consideration. The pipelining is a straightforward and simple solution used in all current 
graphical adapters. Figure 3.3 shows a typical polygon rendering pipeline. The number of 
units and their order, however, varies in details of implementation. Nowadays (August 2003), 
powerful ATI and nVidia graphics adapters have 12 stages of pipelining.  

Generate pixels from 2D geometry

Transfer geometry from 3D to 2D

ShadingHidden Surface 
Removal

Lighting 
Calculations

Back-face Culling 
and Clipping

Model and Viewing
Transformations

Scene 
Description

Display

 

Figure 3.3: A typical polygon rendering pipeline. 

3.1.2 Data Parallelism in Polygon Rendering 
No matter how fast graphics hardware technology advances, demanding applications, such as 
scientific visualization, CAD, vehicle simulation and virtual reality can require hundreds of 
MFLOPS of floating-point performance and gigabytes per second of memory bandwidth, far 
beyond the capabilities of a sequential computer. For example, GeForce 4 Ti 4800 nVidia's 
top graphical adapter (August 2003) cannot transform more than 136 millions of vertices per 
second. If an application needs to render several images per second, this limitation is serious, 
even when an image-based rendering is considered, because it limits the available size of 
scene. To keep the number of images per second but increase the size of scene, many 
applications use some sequential techniques to reduce number of vertices needed to represent 
an object. These include use of efficient data structures, i.e. vertex arays [OpenGL], strips or 
fans, use of data reduction, i.e. refinement [Pup94] or decimation [Sch92], and use of view 
dependent level of detail [Hop96]. However, there still exist applications such that even use of 
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all these acceleration techniques is not sufficient. An example of such an application is the 
walk-through visualization of CAD models. 

 Besides the performance limitations, there are also other limitations, e.g. the size of textures 
or the resolution of final images. In cases that a complex scene has to be rendered in a 
reasonable time (often in real-time) or an image of higher resolution than is supported is 
required, then a parallel solution using data-parallelism approach is necessary.  

There are two possible strategies: object-parallel and image-parallel. In the first one, the tasks 
for the processors are formed by partitioning the geometric description of the scene. 
Rendering operations are then applied in parallel to subsets of geometric data, producing pixel 
values which must be combined together to form a final image. Since time needed for the 
rasterization of geometric primitives depends on their size, one processor could finish its task 
much earlier than another one. Another problem is that the merging step can cause heavy 
bandwidth demands on memory busses or communications network. 

In the image-parallel approach, tasks are formed by partitioning the image pixels, and each 
processor renders only those geometric primitives which contribute to the assigned pixels. No 
merge phase is required, however, if portions of a single geometric primitive map to several 
different regions in the image space, it is necessary to exchange them among the processors. It 
may also result in additional or redundant computations. 

To avoid bottlenecks, most parallel algorithms exploit both approaches. Object and image 
data are partitioned among the available processors. At some point in the rendering pipeline 
the processors have to exchange their data. Molnar et al. [Mol94] introduced a classification 
of parallel algorithms as sort-first, sort-middle or sort-last, depending on whether the 
communication step occurs somewhere in the transformation phase, between the 
transformation and the rasterization phase or somewhere in the rasterization phase. Figure 3.4 
brings the scheme of these approaches. 

G G G...

R R R...

Scene

primitives 
redistribution

Display

arbitrary distribution 
of primitives
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screen-space 
primitives 
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Display

arbitrary distribution 
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G G G...

R R R...

Scene

pixels 
redistribution, 
image merge

Display

arbitrary distribution 
of primitives

 

a) sort-first b) sort-middle c) sort-last 

Figure 3.4: The principles of three general approaches in polygon rendering data parallelism. 
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3.1.2.1 Sort-first 
Sort-first algorithms distribute primitives early in the rendering pipeline to processors that can 
perform the remaining rendering calculations – see Figure 3.4a. At the beginning of the 
computation, object primitives (i.e. polygons) are distributed arbitrarily over available 
processors. The image-space is partitioned into regions (the number of regions is equal to the 
number of processors) and the regions are also distributed. Each processor performs enough 
transformations (generally, bounding boxes of disjunctive groups of primitives are used) to 
determine into which regions each of its primitive falls. Some primitives will fall into the 
regions of processors other than the one on which they reside. These primitives has to be 
redistributed over an interconnect network to the appropriate processors. If we are rendering a 
single image, almost all the primitives may need to be sent.  However, if we render multiple 
images in an animation or real-time application and the scene does not change too much 
between two images, only the small number of primitives has to be redistributed. In such a 
case, sort-first requires much less communication bandwidth than the other approaches.  

After the redistribution of primitives, each processor has to perform the entire rendering of its 
part of scene into its part of final image. Therefore, sort-first algorithms are capable to 
produce rendering in any resolution. Moreover, the speed of the rendering on each processor 
can be improved by the use of hardware acceleration of the graphical adapter – indeed, if this 
adapter is available to the processor. On the contrary, sort-first algorithms suffer from load-
imbalance, which reduces the performance. Such an imbalance arises from the distribution of 
primitives over screen. It is highly probable that some regions of the screen will receive much 
more primitives than other. The general strategy how to reduce the imbalance is to divide the 
screen into more regions than there are processors and assign the regions to the processors in 
an interlaced fashion – see Figure 3.5a. Although there is still the non-zero probability that 
one region will contain several times more primitives than others (no matter how small the 
regions are), it is unlikely to happen in practice. One problem with this strategy is that it 
increases the number of the primitives to be redistributed and the number of the shared 
primitives. A shared primitive is such a primitive that covers several regions and, therefore, it 
requires duplicated storage as well as computation effort.  

An efficient sort-first rendering algorithm needs a fast adaptive partition of the image-space 
ensuring even distribution of primitives over screen and minimizing the number of shared 
primitives. It is impossible to find an optimal partition that meets all these three goals and, 
therefore, many heuristic methods have been developed. 

Roble [Rob88] starts with a standard rectangular decomposition. According to the number of 
primitives in each region, lightly loaded regions are combined together and highly loaded 
regions are split in half – see Figure 3.5b. As the algorithm does not consider the sizes of the 
primitives, one region may contain much larger primitives than another one. It reduces the 
efficiency of the rendering because the time consumed in the rasterization is dependent on the 
size of the primitives. Moreover, it is possible that the most of primitives falls on one side of 
the split, no matter how many iterations of the algorithm are performed. Therefore, even 
distribution of primitives over the screen is not generally ensured.  

Whelan [Whe85] divides the longer dimension of the screen into two parts in such a manner 
that both regions contain the same number of primitives. To ensure even distribution of 
primitives, a median cut based on the centroids of the primitives is used. The regions are 
recursively partitioned until the number of regions equals to the number n=2k of available 
processors. One problem with this approach is that if there is large number of primitives, the 
computation of the median (even if an approximate method, e.g. [Bat99], or parallel approach 
[Har97] is used) consumes quite a lot of time.  As the sizes of the primitives are again not 
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considered, load-imbalances in the rendering may occur. Figure 3.5c shows a screen partition 
by Whelan's algorithm. 

1 2 1 2
3 4 3 4
1 2 1 2
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a) static - 4 PEs b) Roble - 4 PEs c) Whelan - 4 PEs 

Figure 3.5: Classic image-space partition. 

Another strategy is in Whitman [Whi92]. Firstly, the image-space is subdivided into fine 
mesh similarly as in the static method. Each cell of the mesh is capable to store an integer 
counter C and a list L of primitives.  At the beginning the counter is set to zero and the list is 
empty. Then bounding boxes of primitives are found [Wat00, Mue97] and they are tested 
against the cells. If a bounding box overlaps (i.e. fully or partly covers) a cell, the bounded 
primitives are inserted into the list L and the counter C is increased by one. When all 
bounding boxes are processed, the algorithm starts to create a hierarchical tree structure over 
the mesh. Each node in the tree contains an integer counter Ct+1 storing a sum of the counters 
Ct (or C at the level one above the mesh level) of all node children. Figure 3.6a shows an 
example of several levels in the quadtree, the mostly used hierarchical structure.  

5 5 1 3
3 4 2 5
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0 0 2 3
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50 87
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a) Whitman - several last steps of the creation of quadtree, the value in a cell counts the number of 
primitives overlapping this cell. 

50
(1)

13
(3)

29
(4)

27
(2)

22
(3)

20
(2)

18
(4)

13
(3)

29
(4)

27
(2)

22
(3)

20
(2)

18
(4)

17
(1)

11
(1)

10
(3)

12
(1)

13
(3)

27
(2)

22
(3)

20
(2)

18
(4)

17
(1)

11
(1)

10
(3)

12
(1)

11
(4)

8
(4)

8
(4)

2
(1)

50
(1)

87
(2)

13
(3)

29
(4)

 

b) Whitman - several first steps of the subdivision into regions to be used by 4 PEs. 

Figure 3.6: Whitman's image-space partition 

The generated tree is then traversed top-down. At the beginning all nodes are collapsed and 
the region described in the root (i.e. the whole image-space) is assigned to the first processor. 
In each step, the collapsed node with the largest value of Ct is unassigned, then it is expanded 
and the regions described in its children are successively assigned to processors. We assign 
always the region with the largest number of primitives to the processor with the minimal 
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work load. The algorithm stops, when the number of leaves in the expanded sub-tree, i.e. tree 
consisting of expanded nodes only, is ten times the number of processors. Each leaf in the 
expanded sub-tree describes one region to be assigned to one processor. Figure 3.6b show an 
example of the tree expanding. Numbers in round brackets identify the processor that will 
receive primitives stored in that region. 

Although Whitman's algorithm considers the sizes of the primitives, work load-imbalances 
may occur even if the sum of counters Ct of processor's regions is the same for all processors. 
The reason is that work may be overestimated due to double-counting of primitives. 
Figure 3.7 shows an example of this problem.  
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a) five identical triangles b) cells evaluation c) two regions to be assigned, the second processor 
will consume four times more time 

Figure 3.7: The problem with double-counting of primitives. 

Mueller [Mue95] combines Whitman's and Whelan's approaches. His MAHD algorithm starts 
with the evaluation of the cells of a fine mesh. Unlike Whitman's method, the counter C is of 
a float data type and it is increased by a value inversely proportional to the number of cells 
that a bounding box of primitive overlaps. It solves the problem with double-counting of 
primitives. In the next step, a summed-area table of the mesh is computed. Summed-area table 
Ts of a table T is such a table that the value of its cell at the position [i, j] is equal to the sum 
of the values of the cells in T at positions [0 up to i, 0 up to j]. Figure 3.8 shows an example 
of the mesh and its summed-area. 

1 2 3 3 2 1 0 1 0 0
3 6 5 4 3 2 2 2 2 0
4 7 6 5 5 4 3 2 3 2
6 8 9 7 7 6 4 3 2 1
6 5 6 4 3 2 2 1 2 2
6 5 4 3 2 1 1 1 2 1
7 6 5 2 1 1 0 0 1 1
8 9 7 2 1 0 1 0 0 0
6 8 9 3 2 2 1 0 0 0
6 5 6 5 4 3 2 1 0 0
6 5 4 4 6 4 3 2 1 0
7 6 5 4 2 2 1 1 1 1
6 6 6 5 4 3 2 0 1 1  

1 3 6 9 11 12 12 13 13 13
4 12 20 27 32 35 37 40 42 42
8 23 37 49 59 66 71 76 81 83

14 37 60 79 96 109 118 126 133 136
20 48 77 100 120 135 146 155 164 169
26 59 92 118 140 156 168 178 189 195
33 72 110 138 161 178 190 200 212 219
41 89 134 164 188 205 218 228 240 247
47 103 157 190 216 235 249 259 271 278
53 114 174 212 242 264 280 291 303 310
59 125 189 231 267 293 312 325 338 345
66 138 207 253 291 319 339 353 367 375
72 150 225 276 318 349 371 385 400 409  

a) mesh b) summed-area table 

Figure 3.8: First stage of Mueller's MAHD algorithm  

The summed-area table is then recursively subdivided into required number of regions. The 
subdivision is similar to the one in the Whelan's method, however, in the case of the Mueller 
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algorithm, it is very efficient thanks to the summed-area table and it allows using of any 
number of processors. Let us explain the subdivision by way of an example. We will divide 
the mesh from Figure 3.8a into five regions. In the first step, we divide the summed-area table 
into two parts in ration 3:2. Therefore one horizontal cut such that the first part of the 
summed-area consists of 3·409/5 = 245.4 primitives, has to be found. First, the position of the 
value 245.4 is found in the one-dimensional array 13, 42, up to 409 by the binary-search 
algorithm. Second, it is necessary to decide whether the value 247 will belong to the first part 
or the second one. The first possibility introduces the error 245-219=26 and the second 
possibility the error 247-245=2. Therefore, the cut between the values 247 and 278 is created 
and the summed-table area updated as Figure 3.9a shows. Next three steps are similar to the 
just described one – see Figure 3.9b, c, d. After the subdivision the work-loads are 89, 75, 83, 
91 and 71, i.e. relatively evenly distributed. 

1 3 6 9 11 12 12 13 13 13
4 12 20 27 32 35 37 40 42 42
8 23 37 49 59 66 71 76 81 83

14 37 60 79 96 109 118 126 133 136
20 48 77 100 120 135 146 155 164 169
26 59 92 118 140 156 168 178 189 195
33 72 110 138 161 178 190 200 212 219
41 89 134 164 188 205 218 228 240 247

6 14 23 26 28 30 31 31 31 31
12 25 40 48 54 59 62 63 63 63
18 36 55 67 79 88 94 97 98 98
25 49 73 89 103 114 121 125 127 128
31 61 91 112 130 144 153 157 160 162  

1 3 3 6 8 9 9 10 10 10
4 12 8 15 20 23 25 28 30 30
8 23 14 26 36 43 48 53 58 60

14 37 23 42 59 72 81 89 96 99
20 48 29 52 72 87 98 107 116 121
26 59 33 59 81 97 109 119 130 136
33 72 38 66 89 106 118 128 140 147
41 89 45 75 99 116 129 139 151 158

6 14 23 26 28 30 31 31 31 31
12 25 40 48 54 59 62 63 63 63
18 36 55 67 79 88 94 97 98 98
25 49 73 89 103 114 121 125 127 128
31 61 91 112 130 144 153 157 160 162  

a) after the first step b) after the second step 

1 3 3 6 2 3 3 4 4 4
4 12 8 15 5 8 10 13 15 15
8 23 14 26 10 17 22 27 32 34

14 37 23 42 17 30 39 47 54 57
20 48 29 52 20 35 46 55 64 69
26 59 33 59 22 38 50 60 71 77
33 72 38 66 23 40 52 62 74 81
41 89 45 75 24 41 54 64 76 83

6 14 23 26 28 30 31 31 31 31
12 25 40 48 54 59 62 63 63 63
18 36 55 67 79 88 94 97 98 98
25 49 73 89 103 114 121 125 127 128
31 61 91 112 130 144 153 157 160 162  

1 3 3 6 2 3 3 4 4 4
4 12 8 15 5 8 10 13 15 15
8 23 14 26 10 17 22 27 32 34

14 37 23 42 17 30 39 47 54 57
20 48 29 52 20 35 46 55 64 69
26 59 33 59 22 38 50 60 71 77
33 72 38 66 23 40 52 62 74 81
41 89 45 75 24 41 54 64 76 83

6 14 23 3 5 7 8 8 8 8
12 25 40 8 14 19 22 23 23 23
18 36 55 12 24 33 39 42 43 43
25 49 73 16 30 41 48 52 54 55
31 61 91 21 39 53 62 66 69 71  

c) after the third step d) final subdivision 

Figure 3.9: Second stage of Mueller's MAHD algorithm  

One of many variations of the Mueller's algorithm called Graph Partitioning Based 
Subdivision (GS) is described in Kurc et al. [Kur97]. In the GS, each edge between the cells is 
evaluated proportionally to the number of primitives crossing this edge and the algorithm tries 
to form the region in such a manner to minimize the number of shared primitives. Unlike the 
Mueller's algorithm, generated regions may not be rectangular regions and, moreover, several 
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isolated regions may be assigned to one processor. According to the experiments published in 
[Kur97], the GS approach achieves better results than the Mueller's MAHD. 

[Sam99] introduces the KD-split algorithm similar to Whelan's approach. Firstly, axis-aligned 
bounding boxes of primitives are found. The region is split by a sweep-line into two parts. 
The sweep line starts at left side of the region and, therefore, the cost of the rendering of the 
left part is zero and the cost of the rendering of the right part is equal to the cost of rendering 
all primitives. The vertical edges of the bounding boxes are sorted and the sweep-line moves 
iteratively to the right side of the region stopping in each of these edges. Whenever the left 
edge of a box is reached, the cost of the left part is increased by the cost of the rendering of 
the primitives bounded by the reached box. Whenever the right edge of a box is reached, the 
cost of the right part is decreased by the same way. The cut is chosen at the location where the 
functions of estimated costs intersect themselves. The algorithm continues recursively until 
the required number of regions is generated. Let us note that the regions processed at even 
levels of the recursion are usually splits by a horizontal sweep-line. Figure 3.10 shows an 
example of the KD-split of a region. 

 

C-Left

C-Right
 

a) bounding boxes in the region and the optimal 
position of the cut 

b) estimated costs of the rendering of the left and 
the right part 

Figure 3.10: KD-split algorithm - one step. 

The survey of image-space partitioning algorithms just given in the text above is not 
exhaustive. There exist other algorithms [Sam00, Sam99, Kur97 and Ell94], mostly some 
variations of the presented, but they are not so commonly used. Moreover, it is not a goal of 
this thesis to investigate polygon rendering in detail. Therefore, let us omit their description. 

Some parallel polygon rendering algorithms are not fully satisfied with any adaptive 
partitioning used at the beginning of the rendering and, therefore, they add some advanced 
load-balancing features also during the rendering process [e.g. Ell94]. Typically, if a 
processor finishes its work and there is still some overloaded processor, it will 'steal' half of 
work from the overloaded processor. Let us note that it is necessary to implement some 
mechanism avoiding that several finished processors simultaneously will steal all work. 

If a sequence of images (frames) has to be rendered a new issue arises. The region boundaries 
can be recalculated by the algorithm in each frame or only when it is needed. In the second 
case, the boundaries are retained until one region is the bottleneck, i.e. it has to process more 
than 1/n of the entire workload, where n is the number of the processors. It is more difficult to 
be implemented but it usually leads to higher performance of the rendering. 

3.1.2.2 Sort-middle 
Sort-middle strategy distributes the object primitives arbitrarily among the available 
processors at the beginning of the computation and subdivides image-space into the regions as 
it was in the sort-first approach. Each processor performs the whole transformation phase, i.e. 
geometry processing is performed and the primitives are converted into the screen-
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coordinates, then it classifies the resulting screen-space primitives and sends them to the 
appropriate processors to be rasterized. Let us recall the sort-middle rendering pipeline in 
Figure 3.4b. 

Sort-middle algorithms are simple and straightforward. One problem with sort-middle is the 
high communication cost, proportional to the number of generated screen-space primitives. 
There are at least two examples when many screen-space primitives have to be generated. 
First, some rendering systems (e.g. RenderMan [Ups89]) generate several screen-space 
primitives to be distributed for each object primitive in order to generate images in higher 
quality. Second, in the image-based rendering by warping (IBRW), the number of distributed 
primitives is at least twice the number of output pixels.  

In a sort-middle algorithm, all processors may perform both the geometry processing and 
rasterization or the algorithm could divide the processors into two groups: one group 
performing the geometry processing and the second group performing the rasterization. 
Keeping the processors all in one group reduces the possibility of load-imbalance by the 
uneven distribution of primitives over screen. Although the imbalance is not as significant as 
in the sort-first, it is still problem to be faced. On the other hand, splitting the processors into 
two groups could reduce overhead in the algorithm and it reduces the redistribution. 

Now, let us discuss the possibilities of the redistribution. The straightforward solution is to 
redistribute the primitives after all processors have finished their transformations. In such a 
case, the sort-middle algorithm can easily adopt some sort-first adaptive algorithm for image-
space partition to reduce load-imbalance that could occur during the rasterization phase. On 
other hand, this solution introduces extremely high traffic and, therefore, it is often useless for 
rendering of a complex scene.  

Another possibility is to let a processor redistribute its generated primitives immediately. If a 
processor redistributed all its generated primitives at one time, it would not bring any 
substantial improvement to the first solution. Therefore, the processors send their primitives 
to the appropriate rasterizers in groups during the entire transformation phase. In such a case, 
the image-space is, typically, divided into more regions than there are processors and the 
regions are assigned to the processors in an interlaced fashion – see Figure 3.5a. 

3.1.2.3 Sort-last 
Let us recall Figure 3.4c showing the sort-last rendering pipeline. At the beginning of the 
computation, the sort-last algorithms distribute the object primitives arbitrarily among the 
available processors. Each processor performs the entire rendering of its assigned primitives, 
i.e. it processes the geometry of the object primitives, convert them into the screen-
coordinates and rasterizes the screen-space primitives to produce pixels of final image. No 
object primitive is processed redundantly by more processors as it appears in sort-first or sort-
middle approaches. Similarly to the sort-first, sort-last strategy can use hardware acceleration 
of graphical adapter. 

To obtain the final image, it is necessary to merge the generated pixels together and, 
therefore, their colors and depths in the z-buffer have to be distributed among the processors. 
Let us note that the transparency handling is not an easy task in sort-last algorithms and, 
therefore, many of them do not support it. Moreover, rendering systems usually uses anti-
aliasing and if it is performed by super-sampling, i.e. a several times larger immediate image 
is generated and then it is filtered down to get the required image resolution, the pixel traffic 
may be extremely high. 

Let us discuss two possibilities how to perform the merge phase. In the first one, the 
processors send only the generated pixels. It minimizes communication cost in the merge 
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phase, however, network traffic and merging can be imbalanced if more pixels are sent to one 
compositor than to another. Another possibility is to send full image containing the generated 
pixels. In such a case, load imbalances are usually insignificant.  

The merge phase influences significantly the efficiency of the entire sort-last algorithm. 
[Tay02] compares six commonly used approaches for the image composition: centralized, 
pipeline, tree, hypercube, mesh and bus. In the centralized approach, there are n renderers and 
just one composer – see Figure 3.11a. In each of n steps, one renderer sends its immediate 
image to the composer, which merges the received image with the previously stored image. If 
only generated pixels are sent, the total amount B of transferred pixels and the total time LB 
required by a renderer to send its pixels are independent of the number of renderers. On other 
hand, while the composer is heavily loaded for n steps, the activity of a renderer is limited to 
only one step. Therefore, the total time LC required by a composer to perform all its work 
grows linearly with the increasing number of renderers, which results in poor scalability.  
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d) bus f) hypercube 

Figure 3.11: Basic approaches for the image composition. Legend:  R - renderer, C - composer, RC - 
renderer + composer in one PE. 

In the pipeline approach, there are n renderers and n-1 composers. In each of n steps, one 
renderer and one composer (another renderer in the first step) send their generated pixels to 
the appropriate composer that merges the pixels together. Figure 3.11b shows a scheme of 
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this approach. All characteristics, i.e. B, LB and LC depend linearly on the number of 
renderers. However, pipeline approach achieves almost linear scalability when a sequence of 
images has to be rendered. In such a case, full-screen immediate images are typically used. As 
the efficiency for a sequence of images is unreachable by any other approach, many parallel 
systems adopted the pipeline technique, e.g. [Mol92, Sch88, Wei81 and Rom79]. 

Tree is a generalized pipeline approach. It consists of n=2k renderers and n-1 composers. In 
each of k steps, two composers (two renderes in the first step) send their pixels to the 
appropriate composer that merges the pixels together – see Figure 3.11e. All characteristics, 
i.e. B, LB and LC grow with a logarithmic trend according to the increasing number of 
renderers, however, tree approach achieves lower efficiency than the centralized or pipeline 
approaches if only several renderers are considered. Despite it, this strategy is used in many 
parallel systems, e.g. [Ran97, Sco93, Mol91, Li91, The89, Sha88 and Fus82]. Let us note that 
the best performance is achieved when a sequence of images has to be rendered on a parallel 
architecture with processing elements inter-connected to a binary tree. 
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c) step 3 

Figure 3.12: Three steps of hypercube composition approach. The numbers in each strip of image 
identify the already merged renderers' parts; the arrows show strip to be send. Legend: R – renderer.  

The hypercube contains n=2k processors. Each processor in this architecture (see 
Figure 3.11f) performs rendering as well as composition. After the rendering, the processor 
subdivides its immediate image into n strips and in each of k steps of the composition phase, 
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the processor sends at least one strip to another processor and merges the received strips with 
its appropriate strips. After k steps, each processor retains one strip of the final image. If 
hypercube approach is used within the n-Cube parallel architecture, the inter-processor 
communication is done only between neighbors and, therefore, the best performance is 
achieved. When the number of renderers increases, the characteristics LB and LC decrease with 
a hyperbolic trend while the total amount B of sent data grows logarithmically (the growing is 
slower than in the tree approach sending full-screen images). Figure 3.12 shows an example 
of the composition on the system with 8 processors. Hypercube approach or its variations are 
used, for example, in [Ude99, Kur98, San97, Han96, Kar94, Ma94 and Mac92]. 

Mesh approach, which is similar to the hypercube approach, suits well for parallel 
architectures with the processing elements structured into two-dimensional grid of n columns 
and m rows – see Figure 3.11c. The immediate images are partitioned evenly into n·m 
regions. The composition phase consists of two stages. In the first stage, which takes m-1 
steps, horizontal strips (i.e. blocks of n adjacent regions) are exchanged among the processors 
placed in one column. Figure 3.13 shows an example of the first stage for 3×4 processors. 
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Figure 3.13: The first stage of mesh composition approach. The numbers or letters in each region of 
image identify the already merged renderers' parts; the arrows show horizontal strip to be send. 

Legend: R – renderer. 

In the second stage consuming n-1 steps, regions are communicated among the processors 
placed in one row. Figure 3.14 shows an example of the second stage for 3×4 processors. 
After n+m-2 steps, each processor retains one region of the final image. 

All characteristics, i.e. B, LB and LC decrease with a hyperbolic trend (the decrease for LB and 
LC is faster than for the hypercube) when the number of renderers increases. Despite it, as far 
as the author knows, the mesh approach is used rarely, e.g. in [Kur98 and Lee96]. 

The bus approach assumes that n renderers and one composer are connected together via a 
shared bus – see Figure 3.11d. The architecture has to support broadcasting, i.e. data sent by 
one node (renderer or composer) can be received simultaneously by all nodes. The well-
known instance of such an architecture is any cluster of workstations. After the rendering, 
each renderer retains a prepared set of generated pixels to be merged together. There are n 
steps of the image composition. In the first step, the first renderer broadcasts its generated 
pixels. The broadcasted pixels are received by other renderers and the composer. While the 
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composer simply stores them, the renderes have to check their sets of pixels against them: if 
the depth of a pixel in the renderer's set is larger than the depth of the appropriate pixel in the 
received set, the pixel is removed. In the second step, the second renderer broadcasts its 
reduced set of pixels. The composer updates the final image while the third up to n-th renderer 
once again check their sets. After n steps, the final image is available at the composer. As the 
characteristics B and LB decrease with a hyperbolic trend when the number of renderers 
increases and, moreover, the total amount of transferred pixels (B) is the lowest of all here 
presented approaches, it can be used even in the case that the processors are inter-connected 
by low-cost slow links (e.g. Ethernet). On the other hand, the total time LC required by a 
composer to perform all its work grows with the increasing number of renderers.  As the 
amount of pixels to be processed is smaller and smaller in each step, the growth shows a 
logarithmical trend. More details about this approach can be found in [Cox94]. 
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Figure 3.14: The second stage of mesh composition approach. The numbers or letters in each region 
of image identify already merged the renderers' parts; the arrows show region to be sent. Legend: R – 

renderer. 

3.1.3 Hardware and Software Solutions with Data Parallelism 
Many hardware or software solutions were already mentioned in the previous text. In this 
subsection, which was written mainly according to the information published in [Cha02, 
Eld01, Ell96], we describe several famous hardware or software solutions in more detail.  

The Stanford WireGL [Hum01] is a group of several software components based on the sort-
first approach. WireGL is determined to be run on a cluster of workstations. The most 
important component of the system is a renderer. The renderer runs on the workstation with a 
graphical adapter connected to a display device. Each renderer processes OpenGL [OpenGL]  
compatible commands to get its part of the final image. Full hardware acceleration is used. 
The display devices are placed in a matrix forming a tiled display.  

Another component in the system is an OpenGL compatible software layer. This component 
is used by the client application. It is responsible for the sort-first stuff, i.e. it contacts the 
renderers and sends them the appropriate group of OpenGL commands. The WireGL 
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architecture allows the simultaneous rendering of the data to more client applications. 
Therefore, you can develop a distributed algorithm to improve the frame rate; each computing 
node in the cluster will render just its data. 

The WireGL contains also one very useful component. This component takes as an input an 
already existing binary application that uses the OpenGL API and allows this application to 
render on a tiled display depending on the configuration of WireGL. 

It allows users to build a graphical system capable of handling demanding real-time or high 
resolution tasks on the computers interconnected with Myrinet or TCP/IP compatible network 
technology. The disadvantages of the current version are that it does not support dynamic 
load-balancing and that the resolution of the final image is determined by the number and the 
hardware resolution of the used display devices.  

Correa et al. [Cor02] present a sort-first parallel system for a cluster of workstations with a 
tiled display. Their system has been designed for the rendering of large models. Given a 
model, a pre-processing algorithm is used to build an on-disk octree hierarchical 
representation of the model. At run-time, each processor renders the image for its display 
device using multiple threads to perform the fetching of primitives from the disk, the visibility 
computation and the rendering. The Message Passing Interface – MPI [MPI] is used for the 
communication. Unlike theWireGL, this system allows also the inspection of a model (i.e. a 
walk-through). The proposed solution is able to render more than 10 frames per second of the 
UNC Power plant model containing 13 millions of triangles in the resolution 4036x3072 
pixels on a cluster of 16 computers with Athlon 900MHz processor and 512 MB of memory.  

Samanta et al. [Sam99] describe other sort-first architecture for clusters. Each renderer is, as 
usually, equipped by a graphical adapter connected to a display device. Unlike the previously 
described systems, the division of the image-space is not predetermined by the number and 
the resolution of these display devices. The subdivision is much finer and the renderer has to 
process several distant regions. Therefore, the renderers have to communicate the generated 
pixels that should be displayed elsewhere. As the entire database of the primitives is 
replicated on each node, there is no other necessity of the communication.  

In their more recent work [Sam00], the authors try to minimize work load imbalances by 
integrating some sort-last features. According to the published results this hybrid approach 
outperforms sort-first and sort-last algorithms in the parallel scalability allowing larger 
numbers of processors and higher screen resolutions. 

Probably one of the most-known examples of a specialized multiprocessor for polygon 
rendering is the series of Pixel-Planes machines developed at UNC-Chapel Hill. Pixel-
Planes 5 [Fuc89] is sort-middle architecture. The available processors are split into two 
groups: graphics processors and renderers. All processors are connected to a ring network 
capable of handling eight messages simultaneously. The image-space is subdivided into 
128x128 pixels regions. Pixel-Plane 5 implements simple load-balancing: after the 
transformation phase, the regions are successively assigned to rasterizers in such a manner 
that the region with the highest estimated cost of rendering all its primitives is assigned to the 
processor with the lowest work-load. Let us note that the proposed inter-processor 
communication limits significantly the efficiency of the architecture. 

The SGI InfiniteReality [Mon97] is a sort-middle architecture that uses bus-based broadcast 
communication to distribute primitives. The image-space is subdivided into fine regions that 
are assigned to processors in an interlaced fashion.   

Sort-last systems have existed in various forms for more than thirty years. UNC Pixel-Flow 
architecture designed by Molnar et al. [Mol92] is one of the famous sort-last systems. The 
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processing elements are inter-connected in a pipeline fashion. The shading and texturing are 
not applied until the visibility of all primitives is calculated. Therefore, it is necessary to 
exchange z-buffers among all renderers before the shading may start. On the contrary, the 
rendering is faster because the complexity of shading is independent of the complexity of the 
scene. Moreover, it allows using custom shading algorithms. Pixel-Flow hardware 
implementation is modular, two or more chips could be easily connected together to increase 
the rendering speed. According to the results presented in [Mol92], the Pixel-Flow 
architecture shows almost linear speed-up.  

3.2 Ray-tracing 
A scene for ray-tracing is a collection of objects that are represented by sets of polygons, 
parametric patches (e.g. NURBS), CSG or implicit functions. Starting at the camera (or eye) 
position, one or more rays are casted through each pixel of the final image backward into the 
scene. The color value of the pixel is determined by the color values of the rays that were 
casted through this pixel.  

The kernel of the ray-tracing algorithm is a recursive function returning a color value of a 
given ray. The given ray is tested against all objects in the scene to determine if it intersects 
any object. If the outcome is negative, the appropriate color of the background is returned. 
Otherwise, reflected and transmitted rays are computed and the function is called recursively 
to get their color values. Let us note that the existence of these rays depends on the material 
properties assigned to the object; most surfaces of the objects are reflective only. Then, for 
each source of the light in the scene, a shadow ray directing to that point light is computed 
and the color value of this ray is evaluated. The evaluation depends whether the shadow ray 
intersects any object, i.e. whether the origin of the ray is illuminated by the light, it depends 
also on the color of the light and on the material and the texture of the object. The function 
returns a sum of the values of reflected, transmitted and shadow rays. An example of the ray-
tracing process is given in Figure 3.15. The letters P, R, T and S denote the primary, reflected, 
transmitted and shadow rays in the scene. 

screen

camera

point light

object 1

object 2

object 3

object 4

P

R

RT

S

S

S

 

Figure 3.15: The principle of the ray-tracing algorithm. 
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Wald et al. [Wal01] in their report mention many advantages of the ray-tracing approach. 
Probably the well-known feature of ray tracing is that it computes physically correct 
reflections, refractions and shading. Therefore, highly realistic images are produced. While 
the traditional polygon rendering processes the geometry of all primitives and then discard the 
non visible, the ray-tracing processes the geometry of visible primitives only. Moreover, if a 
simple search data structure is used, the logarithmic complexity in the number of primitives is 
achieved which enables an efficient rendering of complex scenes. Similarly, ray-tracing 
shades the screen-space primitives after the visibility has been determined which is in the 
contrast with the polygon rendering (if we ignore the deferred shading approaches). In the 
ray-tracing, programming shaders (e.g. for the RenderMan [Ups89]), which create special 
lighting and appearance effects, is straightforward.  

One problem with the ray-tracing is that it is computationally very intensive and, therefore, it 
consumes a lot of time. There are plenty of possibilities how to accelerate the rendering. 
Much research has focused on using acceleration structures [Watt00], e.g. BSP trees, octrees, 
hierarchical grids or bounding volume hierarchies.  

Another possibility is to combine polygon rendering and ray-tracing [Sta00]. One of the 
simplest solutions assigns a unique color to each object in the scene and then uses standard 
graphics hardware means to render the scene from the positions of the camera and light 
sources. Using these images accelerates the tracing of primary and shadow rays because the 
object to be intersected by a ray is simply identified by the color. There are two problems with 
this approach. First, it suffers from the potential occurrence of artifacts caused by the 
discretization. More serious problem is that it is useful only if rasterization hardware is 
considerably faster than the ray tracer. However, Wald et al. [Wal01] show that their 
implementation of ray-tracing runs faster than high-performance graphical adapters for 
complex models. 

The image based rendering mixed with the ray-tracing [Lar98, Par99] is not the least 
possibility how to speedup the rendering. In this approach, a new image is approximated with 
information from previous images and some new rays are traced in order to update this new 
image as time allows. The disadvantage of this approach is that it leads to noticeable artifacts 
in dynamic situations. 

3.2.1 Data Parallelism in Ray-tracing 
Ray-tracing is relatively easy to be parallelized because of its inherently parallel nature. This 
is definitely true especially in the case when the entire description of the scene can be 
duplicated on every processor. In such a case each processor computes independently a part of 
the final image. As different surfaces scatter different amounts of rays, i.e. different amount of 
computation needed, the cost to compute individual pixels can vary dramatically. Therefore, 
the efficiency of the algorithm is dependent on efficient load balancing. There are two main 
possibilities of load-balancing: static and dynamic (see Section 2).  

Heirich et al. [Hei97] compare various strategies for the load balancing. Their results show 
that any static subdivision of the image-space suffers from serious load imbalances. The 
subdivision into more regions than there are processors and assigning these regions to the 
processors randomly or in an interlaced fashion (see Figure 3.5a) does not help. The situation 
is rarely much better when the regions are as small as one pixel. 

Badouel et al. [Bad90] describes a dynamic load balancing scheme based on the master-slave 
model. There is no image-space subdivision at the beginning, i.e. no task is assigned. When a 
slave becomes idle, it contacts the master to get a task of 3x3 adjacent pixels. Another 
dynamic balancing of master-slave kind was proposed by Pandzic et al. [Pan95]. In their 
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approach, the size of each task is proportional to the workload left to be computed and 
inversely proportional to the number of processors. In this way it is ensured that the tasks get 
smaller as the work proceeds, with the effect of fine-tuning the load balance towards the end 
of the processing. The smallest possible task contains just one line of pixels. 

A dynamic load balancing strategy based on master-slave scheme is simple and efficient but 
not scalable. The bottleneck of the system is the central processor (master) because its work 
load grows with the increasing number of the slaves. Therefore, Green et al. [Gre90] uses a 
hierarchy of masters to improve the scalability. 

More efficient dynamic load balancing is based on the work stealing strategy. In this strategy, 
the image-space is initially statically subdivided and assigned to the processors. Whenever a 
processor becomes idle, it sends a query to all processors in order to determine their work 
load. The work load is quantified as a number of pending rays. After receiving all status 
reports, the first processor sends a request to every processor that reported more than is the 
average work load. Each of the contacted processors removes a designated amount of pending 
rays and sends it to the calling processor which places the received rays into its own queue of 
pending rays. 

The problem with the general work stealing strategy is that a processor has to wait until the 
rays are not received and as the time required for the sending of rays depends on the physical 
distance of the communicating processors, it might take a relatively long time. An improved 
load balancing strategy was proposed by Heirich et al. [Hei97]. A processor sends a query in 
advance, i.e. when it detects that the tracing of just few rays remains. Moreover, only the 
neighboring processors are contacted which leads to the high efficiency if the ray-tracing runs 
on a n-Cube parallel architecture. Similar solutions are described in [Cor97, Wil93].  

If data have to be distributed over local memories of the parallel computer processors, 
communications between processors cannot be avoided. For such inter-processor 
communication two principal strategies have been proposed: object dataflow and ray 
dataflow. In the object dataflow, when a computation cannot be performed because of a 
missing object, this piece of data is fetched and then copied in the local memory of the 
processor in order to complete its calculations. In the ray dataflow, when a computation 
cannot be performed because of a missing object, the traced ray is sent to the processor 
storing the missing object and the computation is performed by the contacted processor. 
Various dynamic load balancing strategies are described in [Žar95, Bad94]. Now, let us to 
describe few interesting approaches on the field of the distributed ray-tracing.  

One way of fetching a missing object in object dataflow is the use of shared virtual memory 
[Kea94, Bad90]. In such a case, the pixels redistribution strategies just described above are 
still useful. In the approach by Badouel et al. [Bad90], the description of the scene, i.e. the 
objects, are distributed at the beginning over the processors without any particular strategies. 
Each processor may access any object through the memory management. This management 
detects whether the demanded object is in the local cache. If the outcome is positive, the 
pointer on the object is returned, otherwise, the processor sends a request to its appropriate 
counterpart to get this object. When the processor receives the object, it stores the object in 
the cache. If the cache is full (i.e. it is unable to store a new object), the least recently used 
object is removed. As the search for this object is performed during the communication, it 
does not take any additional time. 

The algorithm by Caspary et al. [Cas89] represents a group of ray dataflow algorithms. It 
starts by organizing the objects in a hierarchical tree of bounding volumes, a well-known 
technique to accelerate the tracing. The basic idea is to cut the tree to produce a two-level 
object-space partitioning. The upper part of the tree including the root node is replicated on 
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every processor, while the sub-trees below the cuts are distributed among the processors. 
Figure 3.16a shows a scheme of this system. The key issue is where to cut the tree. If the cuts 
are too high in the tree, the number of sub-trees will be small, and load balance will be poor. 
If cuts are too low in the tree, much of the object data will have to be replicated, limiting the 
size of scenes which can be accommodated.  

A similar approach is presented by Jevans [Jev89]. The object-space is subdivided into the 
voxels and the structure of this subdivision is broadcasted to all processors. Then the voxels 
within their objects are distributed over the processors in random fashion. Figure 3.16b shows 
a scheme of this approach. 

  

a) Caspary[Cas89] b) Jevans [Jev89] 

Figure 3.16: The comparison of hierarchical structures by Caspary and Jevans on two processors. 
The gray cells of space contain the object stored on the processor. 

An alternative solution is resented in Kim et al. [Kim96]. The ring based network topology is 
assumed. In such a case, the communication is pipelined. The objects are distributed 
randomly over the processors. A ray will then have to be passed from processor to processor 
until it has visited all the processors. Load balancing can be achieved by simply moving some 
objects along the pipeline from a heavily loaded processor to a less busy processor. 

Nebel [Neb98] describes a hybrid dataflow approach. Each processor can exchange both 
objects and rays at any moment. The key issue is to determine which kind of dataflow to use 
to get optimal efficiency. In order to achieve this goal, each processor needs to know the work 
load of every processor, i.e. the number of still not processed rays, the list of rays that cannot 
be longer traced without a communication and the list of all the required remote objects. The 
information about the work load is sent within the rays or the objects. If a processor finds out 
that it is loaded more than is the minimal load, then it may send the rays from the first list to 
the appropriate processors. The group of rays supposed to belong to some processor is 
submitted only in a case that the number of rays in this group is sufficient enough and the 
receiving processor is loaded less than the sending processor. Afterwards, the first processor 
determines the remote objects that are required by a sufficient number of rays and asks for 
them. Nebel’s approach shows higher efficiency than traditional data flow algorithms. 
Moreover, this approach substantially reduces communication flows and, therefore, it allows 
using massive parallelism. 

3.2.2 Hardware and Software Solutions with Data Parallelism 
Many software solutions were already mentioned in the previous text. In this subsection, we 
describe several interesting hardware or software solutions in more detail. The first famous 
architecture for the interactive ray-tracing was proposed by Muuss et al. [Muu95]. The 
authors required to simulate the airplane and missile sensors and their automatic target 
recognition system. The model contained realistic outdoor scenes modeled with several 
thousands of CSG primitives, which correspond to several millions of polygons when 
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transformed to the polygonal representation. In order to achieve about 1-2 images in video 
quality per second, the authors used SGI PowerChallenge architecture with 96 processors and 
the shared memory.  

Another interactive ray-tracing system, called Utah, appears in Parker et al. [Par99]. Again a 
shared-memory computer is assumed. The implementation of their ray tracer is carefully 
optimized for SGI Origin 2000 supercomputer, e.g. it takes advantage of fast synchronization 
available on this supercomputer. The system supports also direct rendering of volumetric data, 
realistic shadows and image based rendering. An optimized static load-balancing scheme is 
used. The sizes of the tasks are multiples of the hardware cache-granularity in order to 
achieve higher speed-up. The proposed system is efficient, e.g. the rendering of the scene 
containing 35 million spheres ran at approximately 15 images in the resolution of 512x512 
per seconds using 60 processors. Moreover, the system showed also near-linear scalability for 
up to 128 processors. 

The Muus and Utah systems achieve interactive rates with high image quality even for highly 
complex scenes. However, their approaches are based on expensive supercomputers. Wald et 
al. [Wal01, Wal01a] designed a ray tracer using object dataflow strategy that runs on a cluster 
of workstations. In a preprocessing step, a top-level axis-aligned BSP tree is built similarly to 
the approach presented in [Cas89] and this structure is broadcasted to all processors. 
Simultaneously, the object space is subdivided into the small voxels as in [Jev89] and the 
voxels are distributed over the processors. Each processor then creates a low-level BSP tree 
for its every voxel. Unlike the classical approaches [e.g. Neb98, Kea94, Bad90], where an 
object is considered as the smallest element to be sent and cached, the proposed algorithm 
sends an entire voxel and its objects. This solution introduces some overhead, however, in 
practice it leads to higher efficiency because of the ray-coherence. The term ray-coherence 
denotes the tendency that two adjacent rays will intersect the same objects which can be 
exploited to accelerate significantly the tracing. To reduce the transfered data volume, the 
voxels are packed before they are sent. Rather than waiting for the required voxel, the 
processor starts to process next ray. For the load-balancing, Wald et al. use a similar approach 
to the one published in [Par99]. As the proposed ray-tracer was carefully optimized, it is very 
efficient and also scalable. It even outperforms the best hardware graphical adapters (2001) 
when the scenes with one million or more triangles are rendered. Using seven Pentium III 
800 MHz processors connected with 100 Mbit Ethernet, the authors were able to achieve 3-5 
images in the resolution 640x480 per second of four models of the UNC Power-plant [UNC]. 
The total complexity of the scene was roughly about 50 million triangles. If an additional 
hardware support is added, the frame rate increases up to 8.  

The solution just described is limited to static environments and walkthrough applications 
because a dynamic change in the scene (e.g. the movement of the object) would require 
changes in the structures for the acceleration of ray tracing and these changes cannot be 
performed in real-time. In their recent work [Wal03], Wald et al. faced this problem and 
improved their algorithms to handle few dynamic changes in the scene. 

SaarCOR [Sch03] is a hardware architecture for the ray-tracing being developed at present at 
the Saarland University. It is a single chip that reaches the performance comparable to the 
current graphical adapters but uses less hardware resources and requires less memory 
bandwidth. The hardware design is highly flexible and scalable.  

Another important event on the field of real-time ray-tracing is the development of graphics 
API that provides an abstraction layer, i.e. enabling programmers to write 3D graphics 
programs that can run with any underlying rendering engine. OpenRT [ORT] is such an API. 
As it is similar to the OpenGL API, it allows easy porting of many existing applications. 



34 

4 Delaunay Triangulation 
In this section, we describe the Delaunay triangulation and sequential methods for its 
construction. The Delaunay triangulation is a good representative of the problems of 
computational geometry that are often solved in a parallel or distributed environment. 
Parallelization of the Delaunay triangulation is discussed in the following sections. 

Given a point set S in Ed (for our purpose let d = {2,3}) , the triangulation T(S) of this set of 
points is a set of simplices such that: 

• The point p ∈ Ed is a vertex of a simplex from T(S) if and only if p belongs to S; i.e. 
the vertices of the simplices are some points from the input set. 

• The intersection of two simplices is either empty or it is a shared face, a shared edge, 
or a shared vertex. 

• The set T(S) is maximal: there is no simplex that can be added into T(S) without 
violating previous rules; i.e. union of simplices and convex polyhedron formed by a 
convex hull CH(S) is the same object. 

Delaunay triangulation (shortly DT) was proposed by a Russian scientist Boris N. Delone 
[Del34a, Del34b]. However, as his original papers are not written in English and their 
translations are usually rather complex, we would recommend Radke's [Rad99] or de Berg's 
[Ber97] papers for details about Delaunay triangulation.  

Delaunay triangulation DT(S) of a set of points S in Ed is a triangulation such that the circum-
sphere of any simplex does not contain any other point of S in its interior. In the next text, this 
criterion is also called the circum-sphere criterion (or circum-circle criterion in E2). 

There is also an alternative definition of the Delaunay triangulation:  the DT is a dual of the 
Voronoi diagram Vor(S), which is a set of points having the same distance from at least two 
points from S and, moreover, there is no other point from S with a smaller distance. The 
mathematical expression of the Vor(S) can be written: 
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Figure 4.1 shows the mutual relationship of the Vor(S) and the DT(S).  
The basic properties of the DT(S) are as follows [God97]: 

• If no d+2 points lie on a common d-sphere and no k+2 points lie on a common 
subspace of the dimension k, where k is less than d, then the DT(S) is unique. E.g. four 
points lying in the vertices of an empty square in E2 have a common circle and two 
possible configuration of their triangulation. 

• The Delaunay triangulation includes at most O(Nd/2) simplices, where N is the 
number of points to be triangulated. 

• It minimizes the maximum radius of the containment spheres of the simplices in the 
triangulation. The containment sphere of a simplex is the smallest possible sphere that 
encapsulates this simplex. 

• The boundary of the DT(S) is a convex hull of S. 



35 

• In E2, it maximizes the minimal angle and, therefore, the Delaunay triangulation 
contains the most equiangular triangles of all triangulations (i.e. it limits the number of 
too narrow triangles that may cause problems in further processing). 

• In the worst case, it can be computed in O(N⋅log(N) + N (d+1)/2), i.e. in O(N⋅log(N)) for 
E2 and in O(N2) for E3. However, algorithms with O(N) expected time also exist. 

Due to these good properties, Delaunay triangulation is used in many areas such as terrain 
modeling (GIS) [Gon02], scientific data visualization [Oku96, Oku97, Wal00, Att01] and 
interpolation [Par03], robotics, pattern recognition [Pra00, Xia02], meshing for finite element 
methods (FEM) [Chu03, Béc02, Nis01], natural sciences [Mul03, Ada03], computer graphics 
and multimedia [Ost99, Tek00], etc. 

Many algorithms for construction of the Delaunay triangulation exist. Some of them exploit 
the duality and construct the Delaunay triangulation using the Voronoi diagram – see 
Figure 4.1. It is, however, more efficient to use some direct algorithm. We classify them into 
several categories: local improvement, incremental construction, incremental insertion, higher 
dimension embedding and divide & conquer. 

 

Figure 4.1: The Delaunay triangulation (solid lines) and the Voronoi diagram (dashed lines) of the 
same set of points (big black dots) 

4.1 Local Improvement 
Local improvement method is used mainly in E2. First, a general triangulation T(S) is created. 
In the second stage, this triangulation is successively converted into the DT by applying some 
local transformations. The Delaunay triangulation is such a triangulation where all edges are 
locally optimal. The edge e is locally optimal if and only if the polygon P formed by two 
triangles sharing this edge is not convex or the circum-circle of one of these two triangles 
does not contain the far point of the second triangle in its interior. If the edge e, i.e. the first 
diagonal of the convex polygon P, is not optimal, it is removed from the triangulation and the 
second diagonal e' is inserted into the triangulation. Then it is necessary to check all four 
edges of the polygon P on optimality. An example of the process is given also in Figure 4.2. 
Let us note that there exists another strategy of local transformations: both possible 
triangulations of the polygon P, i.e. with the edge e and with the edge e', are investigated and 
the triangulation having the larger minimum angle of six angles in its triangles is picked as the 
proper configuration. This criterion is called max-min angle criterion. 
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The algorithms based on local improvement method are simple and robust: in the case of an 
incorrect or inconsistent Delaunay criterion evaluation caused by numerical inaccuracy, a 
triangulation with two or more non-Delaunay triangles is obtained, but it is still a valid 
triangulation. In practice, however, they are rarely used because it is not straightforward – the 
primary triangulation is required to be constructed, and because the convergence of the 
algorithm in E3 is not ensured [God97]. Let us note that their complexity depends on the way 
how the primary triangulation is constructed, which is usually O(N2) in the worst case for E2 
and O(N) in the expected case. 

e

p

P

 

e’e’
PP

 

a) not optimal edge e – the circum-circle 
contain the far point p inside its interior 

b) optimal edge e' 

Figure 4.2: Flipping the diagonals to convert a general triangulation into DT. 

4.2 Incremental Construction 
The Delaunay triangulation is constructed by successively building simplices whose circum-
spheres contain no points in S. Starting with a simplex as the primary triangulation, this 
triangulation is expanded by adding a proper point until the input set is not empty. Already 
constructed simplices are never reversed. Let us describe the general approach of the 
incremental construction [Cig93, Su94]. For easier understanding, we limit our explanation to 
the problem in E2. First, a point from S is picked, the point nearest to the starting one is found 
and the first edge is created. Then for each outer side of an edge on the boundary of the 
current Delaunay triangulation (the first edge has two sides), the algorithm finds a point lying 
in the outer half-space such that the circum-circle of a triangle formed by the tested edge and 
this point has the smallest radius. If the point is successfully found, a new triangle is built. 
Figure 4.3 shows several steps of the construction. 

  

 

a) initial two triangles b) construction of next triangles c) partial triangulation 

Figure 4.3: The incremental construction in E2. 
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This general approach is simple enough but if the algorithm does not incorporate some data 
structures to speed-up the location of the points, it has low efficiency: the worst-case 
complexity in E3 is O(N3). 

Another approach of the incremental construction is based on the sweeping paradigm. The 
sweeping algorithm by Fortune [For87] for the problem in E2 is well-known. Although his 
algorithm seems to be quite complex, the worst-case complexity is O(N⋅log(N)). The 
extensions for E3 also exist but it is not used in practice because of its complexity.  

Let us explain the main idea of the original Fortune's algorithm. More details can be found in 
[For87, Su94]. First, the points are sorted according to their y-coordinates. A moving up 
horizontal sweeping line separates the plane into two parts: in the lower half-space there is a 
current Delaunay triangulation, in the upper one are the points to be processed. The line stops 
in either a point or the top of a circum-circle of potential triangle that was generated during 
the process. If it does not reach any point before the top of the circum-circle is reached, the 
triangle with this circum-circle is added into the triangulation. Figure 4.4 explains the 
generation of potential triangles. Whenever the line reaches a new point, a potential edge 
between this point and some previously visited point is added into a special list called frontier. 
If another edge sharing a point with the currently inserted edge is already in the frontier, the 
circum-circle of the triangle formed by these two edges is constructed – see Figure 4.4a. 
When the point d is reached it invalidates the circum-circle of the triangle a, b, c and 
generates a new potential edge a, d and two circum-circles – see Figure 4.4b. Then the 
sweeping line reaches the top of the circum-circle of the potential triangle a, b, d and, 
therefore, this triangle is added into the Delaunay triangulation. Finally, it reaches the second 
circum-circle and the triangle a, c, d is constructed as it is shown in Figure 4.4c.  
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a) generation of a circum-circle 
of the potential triangle a,b,c 

b) the previous circum-circle is 
invalidated and new circum-circles 

are generated 

c) partial triangulation 

Figure 4.4: The sweeping in E2 by Fortune. 

4.3 Incremental Insertion 
Starting with an auxiliary simplex that contains all points in its interior (or with the convex 
hull of all the points divided into simplices), these algorithms insert the points in S one at a 
time. In each step, a simplex containing the point to be inserted inside in its interior has to 
found and this simplex and appropriate simplices in the neighborhood are modified in such a 
manner to incorporate current point and ensure that the resulting triangulation is the DT. 

As long as we do not consider time requirements, the order of the insertion is not important. 
The points do not need to be known in advance (although their range of coordinates is 
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needed). If the algorithm uses a randomized order of insertion, it becomes almost insensitive 
to the type of points distributions. 

The location of simplex per one point is possible in O(log(N)) expected time (and it is also the 
optimal time) and O(N) worst time, if Directed Acyclic Graph (DAG) is used [Ber97]. The 
worst case happens when the DAG is “totally imbalanced”, having the shape of a list – due to 
randomization, such a situation is highly improbable. The DAG structure stores the history of 
changes. Each inner node of the DAG stores one simplex that existed in some previous 
triangulation, the current triangulation is stored in the leaves. The DAG root describes an 
auxiliary simplex. Further information about this structure will be given later. 

There are other possibilities for quick location: random walk techniques [Gui85], use of 
quadtrees or bucketing techniques. The random walk techniques are especially popular. They 
consume less memory, however, expected time O(N1/4) is needed per one location. The 
possibilities for location are compared in [Žal03]. In the effort to reduce memory use, 
Devillers in [Dev98] suggests a hierarchical structure similar to the DAG. It consists of 
several connected levels; each level contains a random sample of the level below. The lowest 
level contains the current triangulation. Time O(log(N)) for location is ensured. 

After the location, there are two different methods. In the first one, the simplex containing the 
point to be inserted is subdivided and then the circum-sphere criterion is tested recursively on 
all simplices adjacent to the new ones and if necessary, their edges (faces) are flipped as in the 
local improvement approach [Ber97, Gui92]. This method was chosen as the basis for our 
parallel solution and, therefore, it will be described in more detail in the next section. 

Another approach was presented by [Wat81] and it is known under the name Bowyer-Watson. 
The original algorithm needs O(N(2d-1)/d) time in the worst-case. It works as follows: all 
simplices, which contain the point to be inserted in their circum-spheres, are removed from 
the triangulation and a convex cavity formed by the removed simplices is retriangulated using 
the currently inserted point. The retriangulation involves two steps. First, all vertices of the 
cavity are connected with the point to be inserted. Then, if it is necessary, the currently 
constructed edges (or faces) are swapped similarly to local improvement. Figure 4.5 shows an 
example of the insertion. In this example no local improvement technique is required, after 
the retriangulation we have already the Delaunay triangulation. 

  

a) triangles forming the cavity b) retriangulation of the cavity 

Figure 4.5: Insertion of a point (marked by the cross) inside the DT by Bowyer-Watson approach. 
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Another approach was presented by [Wat81] and it is known under the name Bowyer-Watson. 
The original algorithm needs O(N(2d-1)/d) time in the worst-case. It works as follows: all 
simplices, which contain the point to be inserted in their circum-spheres, are removed from 
the triangulation and a star-shape cavity formed by the removed simplices is retriangulated 
using the currently inserted point. The retriangulation involves two steps. First, all vertices of 
the cavity are connected with the point to be inserted. Then, if it is necessary, the currently 
constructed edges (or faces) are swapped similarly to local improvement. Figure 4.5 shows an 
example of the insertion. In this example, no local improvement technique is required, after 
the retriangulation we have already the Delaunay triangulation. 

In its simplest form, the Bowyer-Watson algorithm is not robust against floating-point 
roundoff error, which may cause appearance of overlapping simplices [Sch99]. It is also more 
difficult for the implementation than the approach with successive performing of local 
transformations. 

4.4 Higher Dimensional Embedding 
These algorithms transform the points in Ed into the Ed+1 space and then compute the convex 
hull of the transformed points. It was proven that the projection of the convex hull into Ed 
gives the Delaunay triangulation [God97]. In practice, these algorithms are mainly used only 
for E2 [e.g. Bro79]. In such a case, a lifting projection onto the surface of a paraboloid is used. 
Figure 4.6 illustrates this approach. Let us note that the complexity of construction the 
Delaunay triangulation in Ed is given by the complexity of construction CH(S) in Ed+1, which 
is O(N(d+1)/2+1) using gift-wrapping method. 

 

Figure 4.6: The projected points and the corresponding Delaunay triangulation [Har97]. Only a tiny 
part of the 3D convex hull is shown (black bold line segments). 

4.5 Divide & Conquer (D&C) 
The main idea of these algorithms [e.g. Dwy86, Cig93, Gui85] is to recursively divide the 
input set of points until only few points are in one group so that they can be easily 
triangulated in O(1) time. Then the local triangulations are recursively merged together in 
order to get the final Delaunay triangulation. Figure 4.7 shows several steps of the D&C 
algorithm. The merge phase is quite complicated because it involves not only building of the 
faces among simplices from both triangulations but also corrections of existing simplices to 
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satisfy Delaunay criterion. In the worst case, these corrections spread over the whole 
triangulation. Although the D&C algorithms are not simple to implement, they are in E2 
optimal for the worst-case. Let us note that the recursion usually stops when the size of the 
point set matches some given threshold and the local triangulation is then constructed by an 
algorithm belonging to any of the previous category (often the incremental construction). 

  
 

a) local triangulations b) the first merging, simple c) the second merging, local 
improvement necessary 

Figure 4.7: Several steps of the construction of the DT in E2 by D&C. 
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5 Parallel Delaunay Triangulation 
In this section, we give a survey of existing parallel algorithms for the construction of the 
Delaunay triangulation. Although the sequential construction of the Delaunay triangulation 
seems to be suitable for any application, it is not true in practice. The applications demanding 
real-time processing of some relatively small number of points exist as well as applications 
that need to process data sets with millions of points in reasonable time. The second kind of 
applications introduces the problem that to process their typical data sets, the applications 
need more physical memory than is available on a single computer. Good example of such an 
application is the surface reconstruction of the David's statue (Figure 3.1). 

5.1 Incremental Construction 
As the nature of the incremental construction allows a relatively easy parallelization, many 
parallel algorithms are based on this approach. In this section we describe several well-known 
algorithms. The D&C algorithms exploiting the incremental construction are described in an 
independent section. 

5.1.1 InCode 
Cignoni et al. proposed a parallel algorithm called InCode [Cig93]. The algorithm subdivides 
the E3 space (but can be easily modified for E2) into k cubical areas. Each area as well as the 
whole set of the input points are assigned to one processor. The processor constructs 
simplices that have at least one vertex in its area, thus the simplices at the area's boundaries 
are created by more processors. To get the final triangulation, redundant simplices have to be 
removed in the post-processing sequential phase. This, indeed, affects the efficiency of the 
algorithm. Figure 5.1 shows an example of the triangulation. 

 

Figure 5.1: The Delaunay triangulation in E2 of using 4 PEs. The dark triangles are constructed 
redundantly by more processors. 

For the problem of the DT(S) in E3 the authors present, for example, the speed-up 1.79 –
 19.01 for 2 – 64 PEs at nCUBE 2 system model 6410. The uniform data sets with 20 000 
points were tested. Hardwick [Har97], however, notes that InCode is about 10 times slower 
for non-uniform data sets. 
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A similar algorithm was proposed by Teng et al. [Ten93]. The difference is that the algorithm 
avoids the redundancy by some synchronization of the processors during the computation. For 
the problem of the DT(S) in E3, the authors present, e.g., speed-up 3.43 for 128 PEs and 6.08 
for 256 PEs on CM-5 parallel architecture for uniform data set with 16 000 points where the 
speed-up is calculated according to the time spent by their algorithm using 32 PEs. 

5.1.2 Lee et al. 
Another interesting approach appears in Lee [Lee97]. The algorithm is useful for massive 
parallelization. Each processor has a set P of several points to be processed (an ideal loading 
is one point per PE) and the whole set S of input points for tests. For each point it looks up the 
point nearest to the currently processed one and constructs the edge between them. The first 
PE afterwards collects all computed edges, removes redundant edges and distributes the 
computed edges among processors. They find the two nearest points for each received edge 
(one point in the left half-plane, one in the right half-plane) and constructs two triangles. This 
second stage is repeated until no new elements are created. As Lee used Intel Paragon 
equipped by fast message routing chips for his experiments, we can expect that overhead for 
communication is significantly reduced. Unfortunately, the author does not present any results 
of his experiments. 

5.2 Incremental Insertion 
The nature of the incremental insertion is rather sequential and, therefore, sequential 
algorithms belonging to this category are rarely parallelized. There is, as far as we know, just 
one purely parallel algorithm and several algorithms exploiting the principle of incremental 
insertion for their refinement purpose. These refinement algorithms start with already existing 
Delaunay triangulation and they try to find new artificial points that should be inserted in 
order to improve the quality of the triangulation (e.g. to improve the shape of simplices). The 
candidates for such points are usually the centers of circum-spheres of the simplices, the 
algorithm has to decide whether to use such a point or not. One very popular sequential 
solution was proposed by Chew [Che89]. 

5.2.1 Chrisochoides et al. 
Chrisochoides et al. [Chr99, Chr96] parallelizes the Bowyer-Watson’s algorithm. Let us 
remind that this algorithm is based on incremental insertion with cavity retriangulation. The 
parallel algorithm by Chrisochoides et al. starts by a sequential construction of a coarse 
triangulation of a subset of points by a sequential algorithm. The created simplices are 
partitioned into k continuous regions and distributed over k processors. The boundaries among 
regions are formed by some faces of the simplices and they may change during the process.  

After the distribution of work, the processors insert simultaneously the points. In each step, 
the cavity to be retriangulated is found. If the cavity crosses the boundaries, it is necessary to 
use some synchronization of processors sharing the simplices in this cavity before the 
retriangulation can be performed. The new simplices are redistributed heuristically over the 
participants in order to balance the load of the processors and to minimize the length of the 
boundary. Figure 5.2 shows an example of the retriangulation of a shared cavity.  

In their recent work [Chr99], the authors present that the speed-up is nearly linear due to the 
used heuristics, but there is neither proof nor experimental evidence for this statement.  
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a) the original partition b) the shared cavity c) the cavity retriangulation 

Figure 5.2: The insertion of a point (big dot) into the triangulation in E2. This insertion causes 
retriangulation of a cavity shared by three processors (PE1, PE2 and PE3) including the update of 

their regions' boundaries. The simplices belonging to the same region are shown in the same color. 

5.2.2 Pupo et al. 
A parallel algorithm based on incremental insertion with local transformations was proposed 
by Puppo et al. [Pup94]. It works with a dense regular grid of points in E2 only and it is 
determined to be used for terrain triangulations. The algorithm does not construct the 
Delaunay triangulation of all given points, it triangulates only such a subset of points that the 
error between the approximated triangulation and the full triangulation does not exceed a 
required threshold. 

At the beginning, only two triangles containing the four corners of the grid exist. Each input 
point, as well as each triangle, is allotted to one virtual PE. The parallel algorithm consists of 
a loop with three phases that are performed in parallel. In the first phase, for each triangle, the 
processor responsible for this triangle founds all yet non-used points such that they are, in the 
planar projection, overlapped by the projected triangle. The vertical distance between each 
point and its approximation lying on the tested triangle is computed. The point with the 
maximum distance is chosen to be inserted – see Figure 5.3. Let us note that if this maximum 
distance does not exceed a given threshold, the insertion is omitted. If there is no point to be 
inserted after the evaluation of all triangles, the algorithm finishes its work. 

The points which have been just chosen are inserted into the triangulation in the second phase. 
When a processor wants to insert a point that lies inside a triangle (as in the example in 
Figure 5.3) it inserts the point locally (using the incremental insertion principle). However, in 
a case that the point lies on a common edge of two triangles, only one point per these two 
triangles can be inserted and, therefore, the processors owning these triangles have to 
synchronize their work. After the synchronization of PEs, the processor with higher priority 
continues with the insertion. A higher priority is given to the processor holding the triangle 
whose point to be inserted lies further from the approximation.  

In the last phase, the Delaunay triangulation is restored. It involves the detection of all non-
optimal edges followed by the local transformations. Mutual exclusion similar to the previous 
one must be solved also in this phase. 

The algorithm was implemented on Connection Machine CM-2 with 16K processors, 
compared with a serial implementation on Sun SPARC1 and tested up to 5122 points. The 
speed-up was up to 80 for 16K points. The highest speed-up was achieved for the smallest 
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allowed approximation error because in such a case, more triangles are necessary and work-
load balance is improved. 

 

x

y

z

 

Figure 5.3: A triangular patch (bold triangle) and its appropriate set of input points (big dots). The 
point with the worst approximation (the approximations are marked by crosses) is shown bigger.   

5.2.3 Okusanya et al. 
Okusanya et al. [Oku96] developed a parallel version of Chew's refinement algorithm in E2. 
The primary triangulation is partitioned among processors. If the insertion of a new point also 
affects remote triangles (i.e. the triangles not physically presented at the current processor), 
the processor has to send a message to all participants to obtain these remote triangles. 
Concurrent processors locate remote triangles in a special tree structure, lock them for the 
initiator to avoid inconsistency and send them in a compressed way to the initiator. For 
communication, MPI or PVM is used. When the initiator completes its operation, all remote 
triangles are unlocked. However, in such a case that a contacted processor cannot grant an 
exclusive access to the requested triangles for the initiator, it denies the request and the 
initiator has to give up insertion of this point and focus itself on another point. Although 
authors also implemented some load balancing, they reached the speed-up only 1.6 – 3.0 for 
2 – 8 PEs at IBM SP2 for uniform data set of 1 000 000 points. Probably it is caused by the 
time-consuming communication among PEs. Let us note that the authors use a similar 
strategy also in E3 [Oku97]; their speed-up is roughly 1.2 – 2.3 for 2 – 8 PEs and 144600 
points. In our opinion, the reached speed-up is quite low. 

Probably better results could be achieved by the approach of Spielman et al. [Spi02] because 
it is able to determine quickly which points can be inserted without any synchronization. 
Authors present their algorithms for E2 and E3 and prove correctness of these algorithms. 
However, there is no experimental section in their paper. 
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5.3 Divide & Conquer (D&C) 
The parallelization of D&C algorithms seems to be straightforward, no wonder that parallel 
algorithms based on the D&C approach dominate. A naive parallel solution (e.g. Aggarwal et 
al. [Agg88]), however, suffers from a serious drawback: the merging of two local 
triangulations is limited to just one processing element (PE) and thus it negatively influences 
the overall efficiency of the algorithm.  

5.3.1 DeWall 
The DeWall algorithm by Cignoni et al. [Cig93] uses a slight modification of naive D&C 
strategy. In the divide phase, a cutting plane α separates the points to be triangulated into two 
groups. The simplices intersected by this cutting plane are constructed and then the 
simultaneous triangulation (based on the incremental construction) of both parts is started. No 
complex merge phase is required, the final triangulation is obtained by a simple union of all 
three triangulations (i.e. local triangulations of both parts and the joint of the simplices 
intersecting the cutting plane) – see Figure 5.4. 

 

Figure 5.4: The triangulation by DeWall in E2 [Mag98] 

A natural solution is to start a new process in each step of the recursion and assign it one half 
of the points. The second half will be processed by the currently running proccess. However, 
as the dynamic starting of the processes could be expensive on a parallel architecture with the 
distributed memory, [Cig93] recommend to start all required processes, say k processes, at the 
beginning. In such a case, all processes run the same task up to the level of recursion log(k) 
and their intermediate results are, except for one per level, discarded.  

Authors presented results of their algorithm for DT(S) in E3 (however, it may be used in E2 as 
well). The experiments ran at nCUBE 2 system model 6410. For example, speed-up 1.70 – 
3.35 for 2 – 16 PEs was noticed when the uniform data sets with 8 000 points were tested. 
The achieved speed-up is relatively low because of work-load imbalance. Hardwick [Har97] 
claims that the situation is much worse (up to ten times) if we consider non-uniform data sets.  
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5.3.2 Chen et al. 
Chen et al. [Che01] use an approach similar to DeWall. In their algorithm, which is intended 
to be used in E2 only, the input points are subdivided according to their coordinates into k 
rectangular areas (where k is the number of processors). Each processor is responsible for the 
triangulation of points lying in one area. To fulfill its task, the processor requires to have 
available all points lying in the areas adjacent to the area assigned to this processor (there are 
at most four such areas). As the processor does not need the whole input set (in contrast to 
InCode), the algorithm is able to triangulate huge data sets.  

The processor triangulates its 'central' area by the fastest sequential algorithm [Dwy86], which 
is based on the divide & conquer principle. Only points lying in this area are required. Then, 
an "interface" is constructed at each boundary using the principle of incremental construction. 
The interface is such a set of triangles that crosses the area's boundaries – indeed, the 
knowledge of the points of adjacent areas is needed. It is quite clear that we have two 
interfaces (constructed by two processors) at the same boundary.  

The merging of results of two processors consists of two stages. In the first one, both 
interfaces at the shared boundary are merged together in order to get a wall of Delaunay 
triangles. Then this resulting wall (or joint) is combined successively with both triangulations. 
Thanks to the interface methodology, this second stage involves only removal of triangles 
from both triangulations such that they overlap the constructed wall. The final triangulation is 
obtained afterwards by a simple union of all three products. Figure 5.5 shows the merging of 
two local triangulations and their wall of the points lying inside a circle. 

 

Figure 5.5: The Delaunay triangulation given by a merge of two local triangulations and its common 
interface (created from two local interfaces) [Che01] 

The entire algorithm, except for the merge phase, can be processed in parallel. Time needed 
for the merge phase is, however, negligible (thanks to interfaces) in comparison to other 
phases. Therefore, the algorithm achieved outstanding speed-up. For example, the tested 
uniform data sets with 96K points achieved speed-up 1.57 – 4.95 for 2 – 8 PEs at IBM SP2 
with High Performance Fortran.  

5.3.3 Hardwick 
Hardwick [Har97] chooses another approach allowing avoidance of the merge phase. Input 
points are subdivided recursively into two groups by the orthogonal line L that goes through a 
median q in x-coordinate (or y-coordinate at even levels of the recursion) – see Figure 5.6a. 
As it is not necessary to compute the exact value of the median, the author uses a very simple 
parallel algorithm for its computation: each processor computes a median of its local points 
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and then median of these medians is found by any sequential algorithm and the achieved 
value is picked as the representative “median”.  

 

a) the median line L going through the 
median point q 

 

 

b) the projection of the point p on the 
vertical plane using the paraboloid 
centered at q – perpendicular view  

d) the points and the lower convex hull (dark bold line 
segments) projected back onto the paraboloid and its 

relation to the resulting triangulation 

 

 

c) the projected points and their lower 
convex hull (bold line) 

e) the Delaunay triangulation with a median line (thin 
gray line) and a joint (thin black line segments) 

Figure 5.6: The construction of the Delaunay triangulation by Hardwick's approach. The images in c, d 
and e were adopted from [Har97] 

The main algorithm continues by the construction of a paraboloid in E3 centered at the median 
q and by the construction of the projection plane yz (or xz at even levels of the recursion) 
containing the median-line L. Then the algorithm transforms all points onto the projection 
plane using the paraboloid for this purpose, i.e. the coordinates of the transformed point p' are 
equal to (py-qy,  p-q2) where p is the original point from the input set. Let us note that at 
even levels we have to use x-coordinates of p and q. The projection is shown in Figure 5.6b. 

The lower convex hull of the projected points is found by a parallel modification of simple 
quickhull [Pre85] – see Figure 5.6c and the back projection of the resulting lower convex hull 
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into the plane xy gives a set of line segments – see Figure 5.6d. It was proven that these line 
segments form a joint that has to be present in final Delaunay triangulation. This joint 
separates the input region with the input points into two non-convex sub-regions. Both sub-
regions are simultaneously triangulated by Dwyer’s sequential algorithm [Dwy86] and the 
Delaunay triangulation is obtained by a simple union of both local triangulations. The 
resulting triangulation is given in Figure 5.6e. 

Although the algorithm by Hardwick uses a higher dimension, it cannot be included into the 
higher dimensional embedding category because this higher dimension is not used for the 
construction of the Delaunay triangulation but only for the subdivision of the set of points. In 
our opinion, the algorithm is extremely complicated. Moreover, it is limited to E2 only. On the 
other hand, it achieves a very good speed-up, e.g. about 1.8 – 5.8 for 2 – 8 PEs at SGI Power 
Challenge with shared memory for the uniform data sets with 128K points. There are several 
reasons for such a very good speed-up. First, the use of median ensures that each processor 
has almost the same work-load. Next, the algorithm does not need the merge phase and the 
divide phase, i.e. the described subdivision of input points, is solved in parallel. 

The just described algorithm was improved by Lee S. et al. [Lee01]. Their algorithm does not 
recursively subdivide the input points into two groups via a median line but it subdivides 
them immediately (in one step) into several slabs. The authors claim that such partitioning 
leads to a simpler algorithm. According to published graphs it is evident that also a better 
speed-up is reached. The experiments were done at INMOS TRAM network with 32 T800 
processors. Their algorithm achieves speed-up 1.36 – 12.5 for 2 – 32 PEs and uniform data. 
Better behavior of the algorithm is presented for cluster data; speed-up about 16.9 for 32 PEs 
was measured. Let us note that an objective evaluation of this algorithm is impossible because 
the authors do not present the numbers of points of their data sets. 
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6 Incremental Insertion with Local Transformations 
Let us remind that incremental insertion algorithms insert the points in the input set S one at a 
time into an already existing Delaunay triangulation. It consists of three phases: the location 
where a simplex containing the point to be inserted has to be quickly found, followed by the 
subdivision of this simplex and by the legalization where the circum-sphere criterion is 
applied and if it is necessary, the local improvement techniques are used to restore the 
Delaunay triangulation. In this section, we describe an incremental insertion algorithm with 
local improvements that was chosen as a base for our parallel solution. 

First, let us to explain why we choose an algorithm that is not the fastest one for the 
parallelization. It is true that the incremental insertion algorithm with local transformations 
has O(N2) complexity in the worst-case and, therefore, it is not worst-case optimal. Better 
complexity O(N·log(N)) in the expected case can be reached if some accelerating structure, 
such as already mentioned the DAG, is used. However, this algorithm has many advantages 
over others. First, it is very simple to understand and implement. There is no significant 
difference in implementations of the version for E2 and of the version for E3. It is also 
relatively robust: in the case of an incorrect or inconsistent Delaunay criterion evaluation 
caused by numerical inaccuracy, a triangulation with two or more non-Delaunay simplices is 
obtained, but it is still a valid triangulation. There are no holes or mutually overlapping 
simplices that may result from other methods (e.g., according to our experience, incremental 
construction or D&C algorithm, or Bowyer-Watson's incremental insertion [Gol97]). 
Moreover, the algorithm can be simply modified to incorporate constraints given in the form 
of prescribed edges (or faces in E3) [Vig97], to use non-Euclidian metrics [Oka92, Vig00] or 
weights of points. All input points do not need to be available at the beginning of computation 
(although their range of coordinates is required) and it can be also an advantage for some 
applications. As the algorithm uses a randomized order of insertion and the DAG structure for 
the location of simplices, it becomes almost insensitive to the type of point distributions. 

6.1 Initialization 
Let us have the input set S of N points. An auxiliary simplex large enough to hold all these 
points inside its interior is constructed. We prefer this large simplex to the convex hull (see 
Section 4) because it is easier and, according to our experience, more stable. One problem 
with this approach is how to choose the vertices of this simplex. If they are not far enough 
away, they may influence the empty circum-sphere tests, which may lead to the non-convex 
boundary of the resulting Delaunay triangulation. On the contrary, if the vertices are “too far 
away”, it may lead to numerical instability of the algorithm.  

Therefore, in our algorithm, the vertices have coordinates (K, 0), (0, K), (-K, -K) for the 
version in E2 and (K, 0, 0), (0, K, 0), (0, 0, K), (-K, -K, -K) for the version in E3. The value K 
is equal to the multiple of the size of the bounding box of points - see Figure 6.1. More 
detailed description is given by Žalik and Kolingerová in [Žal03]. 
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(–K,–K) 

(0, K) 

(K, 0)

 

Figure 6.1: The selection of the auxiliary simplex in E2. The black rectangle is the bounding box. 

 

6.2 Location – The DAG 
We use the Directed Acyclic Graph (DAG) to locate the simplex to be subdivided. Each node 
describes one simplex. If we want to find a simplex containing the current point to be 
inserted, we take the root (it describes the auxiliary large simplex) in the DAG and then test 
the mutual position of the point and the simplices stored in the children nodes. When the 
relevant child with a simplex containing the point is found, the process continues until a leaf 
of the DAG is reached. This leaf describes a simplex that has to be subdivided. When the 
simplex is subdivided (in the subdivision phase), new nodes are created and joined to the node 
that stores the subdivided simplex. Later, in the legalization phase, more simplices are 
transformed in one operation, i.e. we have more input nodes. Two or more new nodes are 
created and they are joined to all input nodes (it explains why the DAG structure is not a tree, 
although it resembles it). As the DAG structure stores the full history of the changes of the 
Delaunay triangulation, it consumes a lot of memory – O(N2) in the worst-case. More details 
about the structure can be found in [Ber97]. Figure 6.2 shows the changes in the triangulation 
and the corresponding changes of the DAG structure. We describe the possible changes in the 
following text. 

Let us discuss the allocation and the destruction of the DAG structure. Native solution is to 
allocate new nodes successively during the process, i.e. to allocate the memory for a new 
node when it is demanded. This strategy implies that the nodes have to be successively 
destructed at the end of the triangulation. Typically, it involves a recursive traversing of the 
DAG structure. As one node may be accessed more times via various routes (at most twice 
in E2) because of local transformations, it is necessary to count the number of still not passed 
routes and do not destruct the node until this counter is zero.  

There exists another strategy. It is a bit more complicated and consumes additional memory, 
however, using this strategy speed-ups the algorithm significantly. According to our 
experiments, the number of nodes in the DAG after the insertion of all points is about 6 up to 
10 times larger than is the number of points. If we allocate a continuous block of memory 
capable enough to hold 6⋅N nodes and provide the main algorithm with pointers on these 
nodes when they are demanded, the destruction of the entire DAG structure is very fast – only 
a few (usually up to 3) large blocks of memory are deallocated. 
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Figure 6.2: The changes in the planar Delaunay triangulation caused by the insertion of the point pr 
and the corresponding changes of the DAG structure. 

6.3 Subdivision 
Let us suppose we have successfully found the triangle pi, pj, pk (or the tetrahedron pi, pj, pk, pl 
in case of E3) containing the point pr to be inserted. There are several mutual positions of this 
point and the located simplex. The simplest possible configuration is that the point lies strictly 
inside the simplex. In this case, all vertices of the located simplex are connected with the 
point by an edge and the simplex is subdivided into several new simplices. These are three 
triangles in E2 (see Figure 6.3a) and four tetrahedra in E3 (see Figure 6.4a). 
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a) the point to be inserted lies strictly inside b) the point to be inserted lies on an edge 

Figure 6.3: Subdivision in E2. 

Slightly more complicated situation occurs when the point to be inserted lies on an edge (for 
E2 only) or on a face (for E3 only). In both cases it is necessary to subdivide not only the 
located simplex but also the adjacent simplex that shares this edge or face. It results in four 
new triangles (see Figure 6.3b) or six tetrahedra (see Figure 6.4b). 
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If the point to be inserted lies on an edge of the simplex in E3, all simplices sharing this edge 
have to be subdivided. In the worst-case all simplices in the triangulation will be subdivided. 
Each simplex is subdivided into two new simplices (tetrahedra) – see Figure 6.5. Let us note 
that this case is difficult to be handled. 
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a) the point to be inserted lies strictly inside b) the point to be inserted lies on a face 
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c) the point to be inserted lies on an edge; only two tetrahedra are shown - see the projection to xy-
plane in the right to see their position in space 

Figure 6.4: Subdivision in E3. 

6.4 Legalization 
After the subdivision, we have a new triangulation. However, it may not be the Delaunay one. 
Therefore, all outer edges (or faces in the case of E3) of currently created simplices have to be 
tested whether they do not violate the empty circum-sphere criterion, i.e. whether the far point 
of the simplex adjacent to the new one does not lie inside the circum-sphere of this new 
simplex. If the condition is not fulfilled, the triangulation has to be changed by applying the 
local transformations. The transformation in E2, which is shown in Figure 6.5, is simple: the 
edge is just swapped (see also Figure 4.2). 
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Figure 6.5: Local transformations in E2. The edge is swapped. 

After that, indeed, we have new outer edges (or faces) that have to be tested. Figure 6.6 shows 
an example of the propagation of the local transformations in E2. The located triangle is 
subdivided into three new triangles (Figure 6.6a – dotted line). Then, the circum-circle 
criterion is tested on all these new triangles. The test for the triangle T1 fails because the far 
point p1 of the adjacent triangle lies in the circum-circle of the triangle T1. The shared edge is, 
therefore, flipped. As the circum-circle of the just created triangle T2 is not empty, the flipping 
has to continue – see Figure 2b. Finally, the Delaunay triangulation is achieved (Figure 6.6c). 

 

a) subdivision b) propagation of flips c) the resulting triangulation 

Figure 6.6: The incremental insertion in E2. Edges that should be flipped are bold. 

While in E2 two simplices were replaced by new two simplices, the situation in E3 is not so 
simple. The local transformations [Joe91] are applied on a set of two to four simplices and 
result in new up to four simplices. Let us have a pair of tetrahedra with vertices pi, pj, pk, pl 
and pm sharing the illegal (i.e. needed to be changed) face pi, pj, pk. If the line segment pl, pm 
intersects this face and does not intersect any edge of the face, then this pair of tetrahedra is 
replaced by three tetrahedra pi, pj, pl, pm; pi, pk, pl, pm and pj, pk, pl, pm – see Figure 6.7.  

T1 

T2p1 

point to be 
inserted  
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Figure 6.7: Local transformation of two adjacent tetrahedra pi pj pk pl and pi pj pk pm sharing illegal face 
pi pj  pk into three tetrahedra pi pj pl pm, pi pk pl pm and pj pk pl pm. 

If the line segment pl, pm does not intersect the face pi, pj, pk and the simplex pi, pj, pk, pm is 
available, this triple of tetrahedra is replaced by a pair of tetrahedra – see Figure 6.8. 
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Figure 6.8: Local transformation of three adjacent tetrahedra (tetrahedron pj pk pl pm is shown 
separately to increase readability) pi pj pk pl, pi pj pk pm a pj pk pl pm into a pair of tetrahedra 

pi pj pl pm a pi pk pl pm. 

A more complicated situation occurs if the line segment pl, pm intersects some edge of the 
illegal face pi, pj, pk. In such a case, the faces pj, pk, pl and pj, pk, pm are coplanar and may or 
may not be shared with other two tetrahedra. If these tetrahedra are not available, the illegal 
face is simply swapped and new pair of tetrahedra is created, otherwise we need also to swap 
the face between the adjacent pair of tetrahedra, i.e. new four tetrahedra are generated. 
Figure 6.9 shows these local transformations. 
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a) Local transformation of two tetrahedra into two tetrahedra pi pj pl pm and pi pk pl pm. 
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b) Local transformation of four tetrahedra into four tetrahedra pi pj pl pm, pi pk pl pm, pj pl pm pn and 
pk pl pm pn. 

Figure 6.9: Local transformation of tetrahedra with the coplanar faces pj pk pl and pj pk pm. 

Let us note that to perform a transformation, it is necessary to find all simplices adjacent to 
the tested one. Adding pointers on the neighbors into the node of the DAG is the simplest and 
also the most efficient solution.  

6.5 Finalization 
Another small problem appears when the construction has been finished and the algorithm 
should extract the triangulation from the leaves. The most efficient solution is to have the 
leaves in a bidirectional list and know (or find) the head of such a list. Therefore, pointers 
'Next' and 'Last' were included into the data structure. Let us note that all simplices having at 
least one vertex of the big auxiliary simplex have to be removed from the triangulation.  
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7 Parallelization 
Modern computer architectures allow us to compute the Delaunay triangulation in E2 or E3 
with thousands of points by a sequential algorithm in reasonable time. However, current 
applications often need to work with millions of points. In such cases, a parallel algorithm is 
useful and welcome. Quite a big set of parallel algorithms exists (see Section 5), however, 
they were designed in times when parallel architectures, with hundreds of processors, 
dominated in the research area and thus they put stress usually on the scalability rather than 
on the robustness and simplicity. In the last few years, multiprocessors with several 
processors and shared memory, especially two-processors, have come into consideration due 
to their low prices. Many existing algorithms can be used after some modifications for these 
hardware architectures. However, it is a question whether the efficiency of a modified parallel 
algorithm is still good enough. Moreover, there is no doubt that the modified algorithm is 
often unnecessarily complicated for the low-degree of parallelism. This led us to the idea to 
develop a new algorithm, more suitable for architectures with a limited number of processors, 
typically 2 or 4, and with a shared memory (such an architecture is commonly used and 
widely available nowadays in the computer graphics laboratories). 

We have chosen the randomized incremental insertion algorithm described in Section 6 as a 
base for our parallel algorithms because this algorithm has many advantages: e.g. simplicity 
or robustness (see the previous section for more details). Let us assume we use parallel 
architecture with shared memory. The main idea is to let several threads to insert the points 
simultaneously into the one triangulation stored in the shared memory. Indeed, we have to 
prevent a thread to perform a non-consistent modification somehow. Let us note that the 
developed algorithms are simple to be implemented even by a person focused on computer 
graphics without a deep knowledge of parallel computations. 

7.1 The Shared DAG Structure 
We start several threads (usually one per each processor) and let them to insert points 
simultaneously into the shared triangulation accessing nodes of the DAG structure. A node 
can be accessed simultaneously by several threads if all threads need it for read-only purpose. 
When any thread needs to modify the node, some synchronization among the threads has to 
be implemented, otherwise the concurrency in this case could produce artefacts in the 
resulting Delaunay triangulation or even could lead to the collapse of the program. Figure 7.1 
shows one of the possible results of the unsynchronized subdivision phase when two points 
are to be inserted into the same simplex. 

 

 

 

 

a) subdivision to be performed by 
the first thread 

b) subdivision to be performed by 
the second thread 

c) one possible result of the 
performed subdivisions 

Figure 7.1: Simultaneous unsynchronized insertion in E2. 



57 

It is clear that the node N0 has to be modified if the simplex S0 described by this node has to 
be subdivided (regardless if it is performed in the subdivision phase or in the legalization 
phase). However, the node stores also the pointers on the nodes describing the simplices 
adjacent to the simplex S0. Therefore, when of any of these adjacent simplices is subdivided, 
the node N0 is modified as well. As the leaves are in a bidirectional list, another modification 
of the node N0 occurs if its 'next' or 'last' node is subdivided. Figure 7.2 shows the content of 
two nodes of the DAG structure from the last step in Figure 6.2.  

ID 

T3 
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Neighbors 

- T5 - 

Next Last

- T5 
 

ID 

T6 
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Neighbors 

T4 T7 - 

Next Last

T7 T4 
 

Figure 7.2: The content of two nodes of the DAG structure from Figure 6.2. 

There is another hidden synchronization among the threads: the allocation of memory for a 
new node has to be performed exclusively, otherwise the memory blocks could overlap which 
causes a crash of the application in the most cases. Naive solution uses a critical section 
whenever a node is to be allocated. As the application needs to allocate new node frequently, 
it is not an efficient choice. Therefore, we allocate, in a critical section, a group of nodes at 
once and store their pointers in a local cache. When a new node is required, first free pointer 
from this cache is picked up without any further synchronization. If the cache is empty (i.e. 
there is no free pointer), then another group of nodes has to be allocated. Experimentally, we 
decided to use the cache length of 512 nodes. 

7.2 Analysis of the Sequential Algorithm 
Let us first analyze the run of the sequential algorithm. All three phases of the algorithm need 
to access to the DAG structure, however, each one in a different way. In the location, DAG is 
accessed read-only in such a manner to find the triangle containing the point to be inserted. 
Then all corresponding triangles are subdivided, and new nodes are added to the DAG 
structure. The DAG is also modified during the legalization.  

Typical runtimes needed for these parts in E2 are in Figure 7.3a. The majority of time is 
consumed by the location phase (about 60 – 70%). The parts when the structure is modified 
take up to 25%. The remaining time is used for extraction of the DT(S) from the DAG 
structure and for the destruction of this structure, thus for the sequential part of the algorithm. 
The situation differs in E3 where the most complex part is the legalization phase (about 65 – 
80%) while the location phase needs up to 30% – see Figure 7.3b. 
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Figure 7.3: Typical runtimes needed for the sequential algorithm. Uniform data sets were tested. The 
data sizes N are on x-axis. 

7.3 Parallel Location Phase 
In the location phase of the algorithm, the DAG structure is accessed read-only in such a 
manner to find the simplex containing the point to be inserted. As the algorithm modifies 
leaves only, all parent nodes in the DAG may be tested simultaneously without any troubles. 
To determine which child of the currently tested node can be accessed without the 
synchronization, we added a parameter into each node in the DAG structure. If i-th bit in the 
value of this 3-bits (4-bits in E3) long parameter is set to one then i-th child is a leaf and has to 
be accessed exclusively. As any synchronization negatively influences the efficiency of the 
algorithm, the non-leaf children are tested first.  

 

MRLMLM 

LMR

 

Figure 7.4: The classification of the nodes in the DAG. 
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Figure 7.4 explains the meaning of the parameter in E2. For an easier understanding, let us 
indicate by a letter L that the first bit is set to one (i.e. the first – left – child is a leaf), 
similarly M for the second bit and R for the third bit. Thus, for example in the “MR node” the 
thread can test the triangle in the left branch but testing triangles in the middle and right 
branches has to be synchronized. 

7.4 Parallel Subdivision and Legalization Phase 
In both the subdivision and the legalization phases a thread has to access one ore more nodes 
and modify them. To avoid the collisions of the thread (in the meaning of simultaneous 
modification of the same node), we need to implement some synchronization mechanism. 
There are two possibilities of synchronization: the thread gets the exclusive access either to all 
leaves together or only to the currently requested node. We have identified three basic 
principles (they will be more discussed in the following text) according to these possibilities: 

• Batch – several searching threads do the location and only one specialized thread handles 
the subdivision and the legalization phases. 

• Pessimistic – all threads do the same work, however, the subdivision and the legalization 
can be done only in a critical section to ensure an exclusive access to the shared DAG.  

• Optimistic – all threads do simultaneously all parts of the algorithm, if they want to 
modify a simplex, they need to get an exclusive access to it. 

7.5 Batch Principle and Batch Method 
In the batch principle, there exist several searching threads and one specialized thread. When 
a searching thread (producer) finishes its unsynchronized location, it puts an index of the 
currently inserted point into a queue in the shared memory. The specialized thread (consumer) 
gets the index from this queue, completes the location of the node to be subdivided, 
subdivides it and processes the legalization.  

The searching thread 
Input:  A set Sk = { p0 , p1 , ..., pm-1 } of  m points in E2, Sk ⊂ S 
Output: Modifies the shared queue 
for r := 0 to m-1 do begin   
 Locate the triangle T0 containing pr on the level of the parents  
 of the leaves in the DAG structure; 
 if the shared queue is full then wait; 
 put {T0 , pr } into the queue 
end; 
 

The special thread 
Input:  Requests {Ti, pj} in the shared queue 
Output: Modifies the shared DAG structure, i.e. participates on the construction of DT(S) 
 
while not all points inserted do begin  
 if the shared queue is empty then wait; 
 get { T0 , p0 }from the queue; 
 Locate the triangle T1 ∈ DT(S) containing p0; //start at T0 
 Subdivide T1;  // in the case where p0 lies on the shared edge, say  
    //between T1 and T2 then subdivide also T2. 
 Legalize all new triangles; 
end; 

Figure 7.5: Parallel construction - the batch method 



60 

If the queue is empty, the specialized thread must wait, if it is full, the searching thread(s) 
must wait. The key issue is how long the queue should be to prevent the waiting of the 
threads. A long queue implies greater possibility that the unsynchronized part of the location 
stops for many points in the same node and the specialized thread will spend more time to 
complete the location. Even worse is to have a short queue because the queue would be full in 
a short time and the performance would decrease. According to our experiments (see 
Figure 7.6) the queue length of 1024 seems to be optimal. Algorithms for searching thread(s) 
and a specialized thread are described in Figure 7.5. 

 
N  Threads Length N Threads Length 

1 000 2:1 64 100 000 3:1 1024 
5 000 3:1 256 500 000 3:1 1024 

10 000 2:1 512 1 000 000 3:1 1024 
50 000 3:1 512 

Figure 7.6: The ideal queue length. The queue lengths of 16, 32, 64, 128, 256, 512, 1024, 2048 and 
4096 on a Dell P 410 (2 PEs) were tested. 

This method seems reasonable only for such a case when the time spent in the location is 
larger than 50%, therefore, it makes no sense to consider it in E3. According to analysis of the 
sequential algorithms, we can roughly estimate that the batch method in E2 should achieve the 
highest speed-up when 3 searching threads are used at the architecture with four processors. 

7.6 Pessimistic Principle and Pessimistic Method 
In this case all threads do the same work. When a thread needs to access a leaf-node in the 
location phase, it enters the critical section, finishes the location on the leaf level, performs 
the subdivision and the legalization, and finally leaves the critical section. The algorithm for 
inserting threads of pessimistic method is described in Figure 7.7. 

The pessimistic method is simple but critical sections can be expected to limit its speedup. As 
usually two threads do not need to enter the critical section exactly at the same time, one 
thread performs the location and another one performs simultaneously the subdivision or the 
legalization for some time before the first thread (i.e. the thread which has just finished the 
location) has to start its waiting. It allows using this method even in a case when the location 
phase does not consume more than 50%, i.e. pessimistic method is also available in E3 but 
substantial speed-up cannot be expected.  

Input:  A set Sk = { p0 , p1 , ..., pm-1 } of  m points in E2, Sk ⊂ S 
Output: Modifies the shared queue 
 
for r := 0 to m-1 do begin   
 Locate the triangle T0 containing pr on the level of the parents  
 of the leaves in the DAG structure; 
 Enter a critical section; 
 Locate the triangle T1 ∈ DT(S) containing p0; //start at T0 
 Subdivide T1;  // in the case where pr lies on the shared edge, say  
    //between T1 and T2 then subdivide also T2. 
 Legalize all new triangles; 
 Leave a critical section; 
end; 

Figure 7.7: Parallel construction - the pessimistic method. 
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7.7 Optimistic Principle and Optimistic Methods 
Although in the worst case the insertion of the point causes a modification of the whole 
triangulation (i.e. all leaves are modified), changes are usually limited to several nodes of the 
DAG only. Figure 7.8 shows an example of the locality of changes in the triangulation in E2. 
When a new point is inserted, only those triangles, whose circum-circles contain this point 
(see thick, dashed, and dotted circles in Figure 7.8) have to be modified. In the figure, these 
triangles are marked by the dark gray color. No other triangles are modified.  

 

Figure 7.8: The locality of changes in the triangulation in E2. Inserted point is marked by a cross. 

As the order of insertion of the points is randomized, it is very probable that the set of the 
nodes accessed due to the insertion of the point Pi and the set of the nodes accessed due to the 
insertion of the point Pi+1 are two disjunctive sets. Therefore, synchronization strategy that 
allocates all leaves to only one thread (like in the batch and pessimistic methods) is a kind of 
luxury. Let us consider more efficient strategy. In the shared memory, sets Mt of accessed 
nodes (t = 0 – k-1, where k is number of used threads) are created. The sets are distributed 
among all threads. Each thread can access any set for read-only purpose and its own set also 
for write purpose. The work of the thread Ti can be described by the following algorithm:  

1. Empty set Mi  

2. Perform the location 

3. Insert all nodes that are needed into the set Mi. Note: the detection of the nodes and 
their insertion to the set has to be done as an atomic operation. 

4. If the intersection of Mi and Mj (j = 0 – k-1 and j≠ i) is not empty then wait until Mj is 
modified (i.e. until Tj completes the insertion of its point) and go back to 1. Note: the 
whole testing has to be done as an atomic operation. 

5. Finish the location, perform the subdivision and the legalization and go back to 1. 

The node should be accessed during the subdivision or the legalization if the currently 
inserted point lies inside the circum-sphere of node's simplex. It may not be an easy task to 
determine all such nodes at the beginning of the subdivision. Moreover, in the legalization 
phase it is necessary to apply the same test once again to perform flips, which would reduce 
the performance of the proposed parallel solution. Therefore, the set Mi is constructed 
successively, i.e. whenever a node (simplex) Sn is needed by the thread Ti, the thread makes 
the following actions: 

1. If the node Sn already exists in Mi, go to 4. 
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2. If the node Sn exists in any concurrent set Mj, wait until Mj does not contain this node.  

3. Add the node Sn into Mi. 

4. Access the node Sn. 

This solution introduces a problem of the deadlock caused by a mutual waiting of the threads. 
We have designed several methods based on the just described optimistic principle: optimistic 
method, burglary method and circum-circle method. They differ in the representation of the 
set Mi and in the strategy of the deadlock handling. 

7.7.1 Optimistic Method 
We added a "lock" parameter into each node. The zero value of the parameter means this node 
is not allocated to (locked by) any thread, non-zero value i+1 means it is allocated to (locked 
by) the thread Ti. The thread can access only nodes already locked by it. The nodes are locked 
in the locking routine except for the nodes newly created in the subdivision or the legalization 
– these nodes are automatically allocated to the creating thread Ti by the simple setting of the 
"lock" parameter to the value i+1. In the locking routine, naturally, the thread can lock the 
node only if it is not locked by another thread.  

Let us note that the lock testing and lock setting in the routine has to be done together as an 
atomic operation.  It can be done in a critical section, however, entering and leaving a critical 
section slow down the computation if we use standard techniques for the synchronization 
provided by the operating system, such as semaphores. Fortunately, it is not necessary to use 
them because low-level atomic instructions are usually available, e.g., Intel x86 provides 
atomic instructions such as XADD, CMPXCHG, lock INC or lock DEC which are 
satisfactory for our purpose. Figure 7.9 demonstrates the inefficiency of standard critical 
sections on the Microsoft Windows platforms. Although the optimistic method is supposed to 
be faster than the pessimistic one, the results of experiments show an opposite if standard 
critical sections are used.  
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Figure 7.9: The comparison of the pessimistic method (PES) and the optimistic method (OPT) in E2, 
where standard synchronization object for critical section is used for the 'locking' of triangles. Uniform 

data sets on Dell Power Edge 8450 were tested. 
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If the thread cannot lock the node it has to perform one of the following two strategies: 

• Detection strategy – detect whether the thread should wait until the required node is 'free' 
or give up the insertion for the moment, undo all changes and return back to the location 
part because the mutual waiting of the threads would cause the deadlock. This detection 
requires a short critical section and it could limit the performance of the algorithm. 

• Priorities strategy – compare whether thread priority is larger than the priority of blocking 
thread. If the result is positive, it starts to wait, otherwise it gives up the insertion for the 
moment, undoes all changes, returns back to the location part and sets its priority to 1 + 
maximum of the current priorities of all threads. In such a strategy, the thread could often 
undo the changes unnecessarily.  

According to our experiments (not presented here) we found that both strategies are more or 
less the same. Therefore, the priorities strategy is no longer considered in the next text. 

We decided to use pseudo-active waiting: the thread repeatedly yields its short time interval 
until it can continue. The spared time can be used by another thread. If a thread waits only for 
a short time (as usually in our case), this solution leads to greater performance than the use of 
standard resources for synchronization supported by the operating systems, such as 
semaphores, etc. 

Whenever the node is newly locked, the pointer to this node is added to a local array 
accessible just to the locking thread. According to our experiments, the fixed length of 8192 
items in this array is sufficient enough in E2. It is impossible to find any fixed length in E3. 
Therefore, the algorithm enlarges the array dynamically during the computation whenever it 
finds that more than 60% of the array is full.  

The thread unlocks all nodes when it completes the insertion of its current point. However, it 
is usually not necessary to keep the node locked for the whole insertion of the point. 
Therefore, we also tried to unlock the node as soon as it is detected that the node will not be 
accessed again in this insertion of the point. Our experiments, however, show that such 
strategy is useless because it consumes more time than the original one. 

The subdivision and the legalization have to be considered as an atomic operation to ensure 
the quality of the resulting triangulation. Therefore, the transaction mechanism has to be 
incorporated in this method. When a thread modifies the node, it logs the changes into a 
journal. If the thread has to give up the insertion and return to the location phase, it reads this 
transactional journal backward and undoes the changes. The journal is implemented as a static 
stack data structure capable to hold 4096 items in E2 because, according to our experiments, 
no more than 1000 transactions are performed for any tested data set. In E3, the number of 
transactions is sometimes quite big – we have found up to 200 thousands of transactions. As it 
is unnecessarily to use such very large stack and, moreover, this value is not ensured to be a 
maximum, we use a dynamic solution similar to that one used for storing locked nodes. 

Figure 7.10 shows a simplified version of the deadlock (it is caused by the mutual waiting of 
threads) handling in E2. Number in a triangle identifies the thread that locked the triangle. An 
arrow crossing an edge means that the thread that locked the triangle where the arrow begins 
needs to access the triangle where the arrow ends. In Figure 7.10a, the thread T3 needs to 
access a triangle that is currently locked by the thread T1, therefore, it has to wait. As the 
thread T2 needs a triangle locked by T3, it has to wait as well. The last thread T1, currently 
operating with the upper left triangle, gets an exclusive access to the adjacent triangle and it 
flips the common edge to fulfill the circum-sphere criterion. This change could violate the 
criterion elsewhere and, therefore, the thread needs to access another triangle. This triangle is, 
however, locked by the thread T2 – Figure 7.10b. As the waiting would lead to deadlock, the 
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thread T1 gives up the insertion and unlocks all triangles. Now, the thread T3 can continue – 
see Figure 7.10c. Meanwhile, the thread T1 tries to insert its point once again. 
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Figure 7.10: The deadlock handling in the optimistic method – E2 case. 

7.7.2 Burglary Method 
There is no doubt that the transaction mechanism (needed for deadlock handling) negatively 
influences the performance of the parallel solution. Figure 7.11 shows that the probability of 
the occurrence of deadlocks is almost negligible and, moreover, it decreases with the growing 
number of input points. It means that the transactions are in most cases a kind of luxury and, 
therefore, some strategy, which avoids the transactions, is welcome. 
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Figure 7.11: Number of deadlocks detected in the optimistic method for uniform data sets. 
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Burglary method is a modification of the optimistic method. It does not use the transaction 
mechanism, the deadlocks are handled in a different way: when a thread detects the deadlock 
(i.e. it cannot access the requested node and it cannot start to wait because its waiting would 
cause the deadlock), it grants itself a right to access all nodes locked by its counterpart and 
continues. As its counterpart waits and will wait at least until the offending thread unlocks its 
nodes, the concurrency is avoided.  

Figure 7.12 brings an example of deadlock handling in E2. Number in a triangle identifies the 
thread that locked the triangle. An arrow crossing an edge means that the thread that locked 
the triangle where the arrow begins needs to access the triangle where the arrow ends. In 
Figure 7.12a, the thread T3 waits for the thread T1, the thread T2 waits for the thread T3 and 
the thread T1 needs to access a triangle locked by the thread T2 – i.e. a deadlock occurs. The 
thread T1, which detected the deadlock, gains access to any triangle locked by the thread T2 
and continues – see Figure 7.12b. 
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Figure 7.12: The deadlock handling in the burglary method – E2 case. 

When the owner of the attacked nodes finally finishes its waiting, it has to check whether its 
original request is still valid because, although it is not very probable, the offending thread 
could have modified the currently requested node(s). In such a case, the thread cancels the 
request and continues its work. When a request cannot be processed, the risk of the 
occurrence of some non-Delaunay simplices in the resulting triangulation is increased. If the 
cancelled requests were logged, it would be possible to correct the triangulation sequentially 
in the post-processing but, as explained before, burglary method does not use this 
methodology because our experiments show that the probability of incorrect triangulation is 
almost zero and when it happens, the number of wrong simplices is very low (in E2 no more 
than 5 in 2 000 000 triangles).  

7.7.3 Circum-Circle Method 
The circum-circle method is a modification of the burglary method. The decision whether to 
access a node or wait is, unlike the previous optimistic methods, solved by a geometric test. It 
can be proved that the subdivision and the legalization influence only such simplices where 
the input point lies in their circum-spheres – let us remind Bowyer-Watson algorithm and 
Figure 7.8. Therefore, any thread that is currently inserting such a point that lies inside the 
circum-sphere of some simplex will access the node of this simplex during the insertion. It 
means that when a thread needs to access the node, it has to check whether no other currently 
inserted point lies inside the circum-sphere of the simplex of this node. If the result of this test 
is negative, the thread has to wait, otherwise it continues. Let us note that the deadlock 
handling is identical to that one used in the burglary method. Figure 7.13 shows an example 
of the use of just described geometric test. 



66 

T 2

T 1

P 2P 1

 

a) the edge between T1 and T2 has to be swapped 

T 2

T 1

P 2P 1

T 0

 

b) P2 lies outside the circum-circle C0 of  T0 - no synchronization needed 

T 2

T 1

P 1

T 0

P 2

 

c) P2 lies inside the circum-circle C0 of  T0 - synchronization is necessary 

Figure 7.13: Example of the legalization with the circum-circle method. 

There are two serious problems with the circum-circle approach. Both negatively influence 
the efficiency of this method and limit its use on few processors only and, according to our 
experiments, to E2 only. The first problem is that sometimes a thread waits for a long time 
because we are unable to determine when exactly the second thread will reach the node. 
Especially a large circum-sphere can block a thread too early, i.e. the thread has to wait 
although its concurrent thread currently works with distant simplices. The second problem is 
related to the circum-sphere test evaluation. This test has to be done for each accessed node. 
However, the complexity of this test depends linearly on the number of tested points, i.e. on 
the number of used threads. 

7.8 Experiments and Results 
Parallel solution of Delaunay triangulation was implemented in Microsoft Visual Studio.NET 
7.0 C++ using serial incremental algorithm implemented in Delphi 6. Unfortunately, we have 
only very limited access (approximately one per half a year) to any suitable computer with 



67 

more than two processors and, therefore, the presented results are a collection of different 
experiments at various computers. The main tests were done on the following machines: 

• Dell Precision 410 (2x Intel Pentium III 500 MHz, cache 512KB, 1GB RAM) with 
Microsoft Windows XP Professional operating system,  

• Dell Power Edge 6400 (4x Intel Pentium III Xeon 550MHz, cache 1MB, 4GB RAM) with 
Microsoft Windows XP Advanced Server,  

• 64-bits Dell Power Edge 7150 (4x Intel Itanium, cache 4MB, 800MHz, 2GB RAM) with 
Microsoft Windows XP Advanced Server,  

• Unisys ES5000 (8x Intel Pentium III Xeon, cache 2MB, 700MHz, 2GB RAM) with 
Microsoft Windows 2000 DataCenter operating system,  

• Dell Power Edge 8450 (8x Pentium III, cache 2MB, 550 MHz, 2GB RAM) with 
Microsoft Windows 2000 Server.  

For additional tests, Shalla (2x Intel Pentium Celeron 533 MHz, cache 128KB, 512MB RAM) 
with Microsoft Windows 2000 Professional operating system was used.  

In our experiments, we used two kinds of testing data. The first group consists of artificially 
generated points with various distributions, such as grid, uniform, gauss, cluster, arc and 
sphere. The points were generated in a unit square. Points for grid distribution lie in a regular 
orthogonal grid. In the uniform distribution, the coordinates of points are chosen at random. 
Cluster distribution is formed by several groups of normally distributed points. Points for arc 
distribution converge to an arc. Sphere distribution provides points on the surface of a sphere. 
The arc and sphere were especially useful in testing the robustness of both serial and parallel 
implementation because these data contain many cases which are singular for Delaunay 
triangulation (e.g. 5 or more points laying on a sphere in E3). Examples of these distributions 
are shown in Figure 7.14. The tested number of input points, i.e. data size N, was between 
1 000 and 1 000 000.  

   

a) grid data b) uniform data c) gauss data 

   

d) cluster data e) arc data - E2 only f) sphere data, projection to the 
plane xy - E3 only 

Figure 7.14: Examples of tested distributions of the input points. 
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The distribution influences the types of local transformations and the linearity and the growth 
of the number of the required local transformations, i.e. it affects the total time. The different 
number of local transformations for various types of data also means different number of 
nodes in the DAG structure. If we plot the dependence of the total runtime on the size of the 
DAG structure for both sequential and parallel algorithms, these functions of the 
dependencies behave very similarly in almost all cases – see Figure 7.15. The different rate of 
the growth of the dependency can be noticed in E3 for grid data sets. The explanation is as 
follows. The transformations of two tetrahedra to two or four to four need to lock more nodes 
than other types of transformations and, therefore, they consume more time. However, 'two-
two' and 'four-four' local transformations are rare for other than grid distribution where they 
have on average about 20% of all transformations.  

The just described characteristic of the dependency of runtime on the size of the DAG allows 
us to estimate the parallel behavior of our parallel algorithms for any data distribution if we 
know the parallel behavior for another data distribution and sequential behavior of both these 
data distribution are available. This possibility was exploited to limit number of experiments 
on computers with more processors (to which we have only a limited access) and we have 
chosen uniform data sets as representative.  
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Besides the artificial data sets, we tested real data sets of terrain models (e.g. Crater Lake with 
100 001 points) and some popular surface models (e.g. whale with 52 635 points, CTMayo 
with 98 869 or bell with 213 373). Most of these models were obtained from the Stanford 
repository [Sta99] and Žalik database [Žal99]. In our experiments, there were no observable 
performance differences between real and uniform data sets of comparable sizes. 

For each data size we tested several different data sets with the same distribution except for 
the real data. The artificial data sets were generated and stored on the disk before the 
experiment. Experiments were repeated several times (at least five times) to increase 
reliability of the results. Let us note that the differences in time consumed by the different 
data sets with the same number of points did not exceed 10%. The resulting speed-up was 
calculated as the median of the total sequential time divided by the median of the total parallel 
time. Time for I/O operations (i.e. reading the point file into the memory and storing the 
resulting triangulation onto disk) is excluded. We prefer to use the median rather than the 
average because in this way we eliminate singular cases. The difference between the results of 
both functions, however, is insignificant. The efficiency is computed as speed-up divided by 
the number of used processing elements. 

In the next text, we assume that points are subdivided randomly into k groups (k is the number 
of used threads) in such a manner to ensure equal number of points in each group. As two 
insertions of m points of the same point distribution take almost the same time,  no dynamic 
load balancing is necessary (and also not used). 

7.8.1 The Results of Batch Method 
Figure 7.16 shows the achieved speed-up for batch method for uniform data sets. Speed-up is 
mainly influenced by the number of input points. At first, speed-up quickly increases with the 
growing size of the input data set, then for some sizes it is almost constant and when larger 
data sets are processed, it tends to slowly decrease.  
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a) Dell Precision 410 (2 PEs) b) Dell Power Edge 6400 (4 PEs) 

Figure 7.16: Speed-up of batch method when 2 - 8 searching threads were used. 

Let us discuss this behavior. The algorithm has to process one subdivision and zero or more, 
say L, swaps after the location. Time needed for one subdivision, indeed, does not depend on 
the data size. Although in the worst case swaps go through the whole triangulation, usually 
they are local and thus L is limited to a small number in average. It means that the time 
needed for the legalization is also independent of the size of the data set. While expected 
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complexity of both parts is O(1), expected complexity of the location is O(log(N)) and, 
therefore, time needed to locate a triangle is significantly dependent on the data size. How 
does this fact influence speed-up? When the data set is too small, the searching threads 
produce many points in a short time, the shared queue becomes full and the searching threads 
have to wait. The possibility of waiting drops quickly down with growing data size and, 
therefore, we can notice a quick increase in speed-up. When the searching threads are unable 
to insert the point into the queue in time, the queue becomes empty and the specialized thread 
has to wait. As this situation happens rarely and, moreover, in such a case only one thread has 
to wait, the performance decreases very slowly.  

It is clear that the optimal efficiency is reached when no thread has to wait and just one 
element to be processed is in the shared queue. Let us assume the PRAM computational 
model, i.e. the model of the architecture with an unlimited number of processors, common 
shared memory and unrealistically cheap synchronization between processors. For a given 
data set, the sequential algorithm spent the total time t1 in the location and the total time t2 in 
the subdivision and the legalization. In such a case, to achieve highest efficiency for this given 
data set, we have to use k searching threads, where k is equal to the round(t1 / t2). If the result 
of t1 / t2 is an integer, the achieved efficiency is optimal.  

The number of available processors is, however, limited to PEmax in the real architectures. Let 
us assume that k+1 is the total number of all threads (searching + specialized threads) for a 
given data set and, moreover, for a given architecture, k+1 > PEmax. Which strategy is better: 
to let k+1 threads run and admit sharing of the processor time among more threads or use at 
most PEmax threads and admit waiting of threads in the algorithm? According to our 
experiments, the waiting of the threads has greater negative impact on the efficiency if k+1 is 
not 'too different' of PEmax. Figure 7.16a shows a good example. 

There is no configuration (i.e. number of used searching threads) ideal for all data sizes. 
Therefore, we recommend a modification of the proposed batch method in such a manner to 
get an improved batch method that automatically estimates the number of threads that should 
be used for the location according to the number of input points. According to Figure 12, the 
best configuration seems to be 3:1 (i.e. 3 searching threads and 1 specialized thread) and 4:1 
for larger data sets (up to 1 000 000). Let us note that it corresponds to the results of analysis 
of the sequential algorithm as it was presented in Section 3.2. Use of five searching threads 
comes to consideration for data sets with more than approximately 1.5 millions of points. 
Probably, there exist such large data sets that would feed more searching threads (and also 
more PEs), however, computation of such data sets using the DAG structure needs more 
memory than is available in any 32-bits computer. Therefore, this method seems to be 
scalable only up to 4 PEs for common data sizes and, moreover, usable only in E2 because the 
location in E3 consumes less than 50%. 

Let us now discuss the possibility of super-linear speed-up recognizable in almost all graphs 
presented in this paper. The super-linear speed-up means that the speed-up is bigger than the 
number of used processors. This situation generally may appear; two main reasons are in 
[Sie94]. The problem was analyzed in detail by Sen et al. [Sen96]. Typically it is caused by a 
more efficient use of the memory cache and the caches of the processors. A memory cache 
influences also the time needed for processing data in the algorithm. For example, the data 
loaded into the cache for the thread T0 are needed also for threads T1 and T2 that access them 
when they are still in the cache, thus they do not need additional time for their loading. This 
case is rare for the sequential algorithm. The importance of cache effects grows with the size 
of the DAG structure, i.e. the number of points to be inserted. Effect of the processors caches 
is, especially in batch method, notable. There is no doubt that the code stored in the cache 
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runs faster than the code stored in the RAM. The multiprocessors often have big caches able 
to hold large pieces of code or blocks of data. The code of the location phase is simple and 
short, thus it fits in the cache. As for the sequential algorithm, it persists there for some time 
and then it is partially replaced by code needed for the subdivision or legalization, it means 
that the RAM has to be often accessed. However, in the batch method, searching threads do 
only the location, therefore, their code can be in the caches for longer time and so the location 
version takes a noticeably shorter time. Figure 7.17 brings a confirmation of the cache-effect. 
We compared speed-up achieved at Shalla (cache 128 KB), Dell Precision 410 (cache 512 
KB) and Dell Power Edge 6400 (cache 1 MB) for the batch method. To ensure comparable 
environment, we limited the run of the algorithm to two processors in case of PE 6400. 

 
Speed-up 

N Shalla 
128 KB 

P 410 
1024 KB 

PE 6400 
4096 KB 

1 000 1.132 1.072 1.642 
5 000 1.698 1.787 2.218 

10 000 1.606 1.910 2.391 
50 000 1.695 2.039 2.342 

100 000 1.749 2.025 2.422 
500 000 1.745 2.079 2.399 

Figure 7.17: Influence of cache-effect on speed-up at three different computers for the batch method 
with the configuration 3:1 (run limited to 2 PEs). 

Caches are not the only reason for the noted super-linear behavior. Speed-up is also 
influenced by the internal parallelization of the kernel of the operating system. Our further 
experiments show that when a sequential algorithm runs only on the first processor (like in 
our testing), it takes about 4% longer than when it runs on any other processor.  

7.8.2 The Results of Pessimistic Method 
Figure 7.18 shows the achieved speed-up for pessimistic method for uniform data sets.  
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Figure 7.18: Speed-up of pessimistic method - Dell Power Edge 7150 (64 bits, 4 PEs). 
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Speed-up increases with growing number of input points. The optimal efficiency of this 
method is reached when a thread enters a critical section without waiting. This condition is 
equivalent to the condition of optimal efficiency in batch method and, therefore, the results in 
E2 are similar. As the location in E3 takes only about 30%, threads always have to wait. 
Therefore, use of more than 2 PEs in E3 makes no sense. 

7.8.3 The Results of Optimistic Method and Burglary Method 
Figure 7.19 shows the achieved speed-up for optimistic method and burglary method for 
uniform data sets. Speed-up increases with the growing number of input points and also with 
the growing number of used threads. In burglary method, the transactions are avoided. It, 
indeed, has a positive impact on the total time needed for the construction. On the other side, 
burglary method requires more complicated locking routine than optimistic method and it 
introduces some additional tests necessary for the decision whether to continue in the 
legalization or not. It negatively influences the efficiency. Although number of the 
transactions required per one insertion in E2 is similar to number of the transactions required 
per one insertion in E3, the numbers of calling locking routine are different – methods in E3 
need several times more callings. That's why burglary method achieves slightly higher speed-
up than optimistic method in E2 and lower speed-up in E3. 
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Figure 7.19: Speed-up of optimistic method (OPT) and burglary method (BG) - Dell Power Edge 7150 
(64 bits, 4 PEs). 

According to our previous experiments [Kol02, Koh03], both methods should be scalable at 
least up to 8 PEs. As we have no longer access to an appropriate multiprocessor, let us present 
the results of experiments with older versions of our algorithm. Since that time we have 
reduced the number of required synchronization and, therefore, one can expect better results 
using the current version. Figure 7.20 acknowledges the scalability of the optimistic method.  
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Figure 7.20: The speed-up and the efficiency of the optimistic method for grid data sets. The results 
are valid for older versions only. The experiments ran on Dell Power Edge 8450 (8 PEs) for E2 and on 

UniSys ES5000 for E3. 

7.8.4 The Results of Circum-Circle Method 
Our preliminary experiments revealed that circum-circle method is useless in E3 because the 
threads have to wait very often. The reason is that circum-spheres occupy a large part of the 
space. Figure 7.21 presents achieved speed-up for circum-circle method for uniform data sets 
in E2. Speed-up grows with the growing number of input points but the efficiency of the 
algorithm decreases with the increasing number of used threads. The reasons for the decrease 
are two: the complexity of the geometric tests and also the possibility that a point inserted by 
a concurrent thread lies inside the larger circum-circle (constructed for narrow triangles) 
grows with the number of used threads.  
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Figure 7.21: Speed-up of circle-circum method - Dell Power Edge 6400. 

7.8.5 Experiments with Different Data Point Distributions 
Let us discuss the influence of various distributions on the run of our methods. Figure 7.22 
shows samples of Delaunay triangulations for different data point distributions in E2. 

 
  

a) uniform data set b) gauss data set c) cluster data set 

Figure 7.22: Examples of triangulations of different types of data point distribution in E2. 
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Figure 7.23: Speed-up of the optimistic method in E2 for different types of data point distribution - Dell 
Power Edge 6400 (4 PEs). 
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Figure 7.23 demonstrates the efficiency of optimistic method in E2 for different data point 
distributions. As we can see, the differences in speed-up among the distributions are almost 
insignificant – up to 12% (on average the difference does not exceed 8%). Batch, pessimistic 
and burglary methods behave similarly (see Kol03, Koh03a). 
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Figure 7.24: Speed-up of the circum-circle method for different data point distributions - Dell Power 
Edge 6400 (4 PEs). 

A slightly different situation occurs when circum-circle method is tested – see Figure 7.24. It 
seems that the method of circum-circle is useless for arc data sets and the most efficient for 
cluster data sets. The reason for such behaviour is directly related to the previously described 
problem of circum-circles of narrow triangles. In arc data sets, many triangles are narrow, 
thus many circum-circles are huge and the probability that a thread has to wait is quite high. 
Figure 7.25 shows an example of the Delaunay triangulation of arc data set.  

 
 

a) the entire Delaunay triangulation b) the detail of selected area 

Figure 7.25: An example of the Delaunay triangulation of 100 points lying on arc. 

On the contrary, when dealing with cluster data sets, the possibility grows slower than when 
dealing with other distributions. It is caused by the fact that insertion of a point into one 
cluster barely influences another cluster, thus if the thread T0 works with a cluster A and the 
thread T1 works with a cluster B then the probability that T0 or T1 will have to wait is almost 
zero. Therefore, we can see better speed-up for large cluster data sets. 
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Pessimistic, optimistic and also burglary method in E3 achieve similar results for all tested 
data point distributions with one exception: optimistic and burglary methods for grid data sets 
achieve lower speed-up than for any other data sets. It is caused by the necessity to lock more 
nodes in the subdivision and/or the legalization (see the beginning of section 7.8). However, 
the grid points are not a typical input - if the user prefers a structured mesh, he will probably 
not use Delaunay triangulation. 

7.8.6 Experiments with Real Data Sets 
Besides artificial data, we tested real data sets from [Sta99, Žal99]. The experiments were 
done under the same conditions as were applied on the generated data sets. There is usually no 
significant difference between the results of experiments with real data sets and uniform data 
sets when corresponding numbers of input points (data sizes) are compared.  

Figure 7.26a shows an example of real data set in E2. It is a digital elevation model of Crater 
Lake, USA containing 100 001 points. Batch method (configuration 3:1) reached speed-up 
2.01 at Dell Precision 410 with 2 PEs and 4.40 at Dell Power Edge 6400 with 4 PEs. 
Optimistic method reached speed-up 2.50, 4.33, burglary method 2.50, 4.44 and circum-circle 
method 2.62, 4.09 at Dell PE 6400 with 2, 4 threads. Let us note that the model was rendered 
using the MVE visualization package [MVE]. 

 

 

a) E2 b) E3 

Figure 7.26: Examples of triangulations of real data sets. 

Figure 7.26b shows an example of real data set in E3. It is a model of a whale containing 
52 635 points. Pessimistic method reached speed-up 1.54, optimistic method 1.95, 2.72, 3.51 
and burglary method 1.75, 2.53, N/A at Dell Power Edge 7150 with 2, 3, 4 threads. Let us 
note that the final model in Figure 7.26b was obtained from the resulting triangulation by the 
method publicated in [Var03]. 
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7.8.7 Subdivision of Input Points among Threads 
In the previously described results, we assumed that points are subdivided randomly into k 
groups (k is the number of used threads) in such a manner to ensure equal number of points in 
each group. This strategy is reasonable for methods based on the batch or the pessimistic 
principle because the subdivision and the legalization in these methods are performed by one 
thread only. 

The optimal efficiency of all optimistic methods is reached when a thread does not need to 
access a node locked by another thread. To achieve efficiency as close to the optimal 
efficiency as possible, we have to minimize the total time spent in the waiting loop of the 
locking routine, i.e. we have to minimize the number of cases when a thread needs to access 
the node locked by another thread. Usually the thread accesses only the nodes that store 
simplices lying closely to the position of currently inserted point. Therefore, better strategy 
seems to be a subdivision of input points into k groups in such a manner that not only the 
equal number of points in each group is ensured but also the bounding boxes of these groups 
have minimal intersection. In an ideal case, all triangles (tetrahedra) created by one thread 
then form just one fragment, i.e. a continuous area (volume). 

The simplest way is to subdivide input points into k slabs in x-coordinate. To do this, we use a 
modified sequential algorithm for median computation1. Another possibility is to apply 
median subdivision on the distances of input points from the origin, i.e. x2 + y2 or x2 + y2 + z2. 
Figure 7.27 brings an example of the various strategies of the subdivision of input points 
among four threads. 

 

a) random b) slabs c) x2+y2 

Figure 7.27: Various strategies for the subdivision of input points among four threads. 

All possibilities, indeed, require additional time. Figure 7.28 compares average number of 
fragments obtained using these strategies. We tested uniform data sets such that their 
computation does not need more than 512 MB of physical memory (because of used Shalla 
multiprocessor). For all that, the presented values are sufficiently representative. As 
Figure 7.28 shows, the simplest way (i.e. slabs) should achieve also the highest efficiency. 

                                                 
1 The algorithm for median computation was implemented by our students Mr. Kroc and Mr. Šimána 



78 

 

Number of fragments in E2 Number of fragments in E3 Threads N random slabs x2 + y2 random slabs x2 + y2 x2 + y2 + z2 
1000 50.7 1.2 1.0 48.5 6.0 5.0 4.5 

10000 505.7 1.5 1.3 416 15.5 13.0 20.5 
25000 1289.0 1.5 1.5 1017.5 19.5 32.5 35.0 
50000 2527.0 1.7 1.8 2128.5 36.5 36.0 62.5 

100000 5101.5 2.3 2.2 N/A N/A N/A N/A 
150000 7709.2 2.3 3.0 N/A N/A N/A N/A 
250000 12742.0 3.7 3.7 N/A N/A N/A N/A 
350000 17785.8 4.3 4.2 N/A N/A N/A N/A 

2 

500000 25329.3 5.2 4.7 N/A N/A N/A N/A 
1000 57.0 1.3 1.1 452.3 34.7 58.0 30.7 

10000 593.8 2.0 1.8 4910.7 80.7 83.0 67.0 
25000 1479.0 1.9 1.9 12211.7 143.3 142.3 119.0 
50000 2984.1 2.1 2.8 24698.0 211.3 247.7 196.0 

100000 5973.3 3.4 3.1 N/A N/A N/A N/A 
150000 9025.9 4.3 3.8 N/A N/A N/A N/A 
250000 15145.4 5.1 4.8 N/A N/A N/A N/A 
350000 21230.5 5.0 6.7 N/A N/A N/A N/A 

8 

500000 30339.0 6.6 7.3 N/A N/A N/A N/A 

Figure 7.28: Comparison of total number of fragments achieved by optimistic method with various 
strategies for the subdivision of input points among the threads for uniform data sets - Shalla (2 PEs).  

Our further experiments [Kol02, Koh03, Koh03a], however, show that the additional time 
needed for a more sophisticated subdivision is not counterbalanced in the computation and, 
therefore, the use of such possibilities brings worse results. Figure 7.29 brings an 
acknowledgment of this behavior. 
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Figure 7.29: The influence of subdivision of the input points among threads on the achieved speed-up 
for the circum-circle method. Uniform data sets were tested on a Dell P 410 (with 2 PEs). 

The explanation is simple: the number of cases when a thread has to wait is negligible 
(especially for large data sets), i.e. the total time spent in the waiting is lower than the 
additional time. For example, optimistic method in E3 calls the locking routine about 27 times 
per one point (almost does not depend on the size of the data set). During these calls (MA) it 
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accesses about 226 nodes; 62.8% of them were locked in some previous call (AL), 37.1% are 
locked without waiting (F) and only in about 0.03% cases a thread has to wait (W) for a short 
time. The details are given in Figure 7.30. 

 
N MA/N AL/N F/N W/N 

1000 25.80 134.62 79.95 0.202 
10000 27.27 143.26 84.60 0.0321 
25000 27.47 144.48 85.22 0.015216 
50000 27.62 145.36 85.68 0.008452 

 

Figure 7.30: Analysis of the nodes accessed by optimistic method in E3 during the calls of the locking 
routine - Shalla (2 PEs). MA - the number of the calls of the locking routine, AL - the number of nodes 
already locked by the thread in any previous call of the locking routine, F - the number of free nodes, 

W - the number of nodes that are locked by another thread.  

 Nevertheless, some of these sophisticated subdivision of input points among the threads (if a 
parallel version of median computation were used) could be a way how to further increase the 
efficiency of some methods (e.g. optimistic), although the increase would not be substantial. 

7.8.8 Comparison and Summary 
We have described several parallel methods for the construction of the Delaunay triangulation 
based on randomized incremental insertion with local improvements. All methods are 
designed for multiprocessors with shared memory and limited number of processors, typically 
2 or 4. According to our experiments we found the methods almost insensitive to the point 
distribution of input data set. The implementation of the developed methods is available as a 
part of the Modular Visualization Environment [MVE] – a software package developed at our 
institute. The methods differ in the complexity of implementation, scalability and also 
efficiency. Batch method is limited to few processors only and usable in E2 only, however, it 
is very efficient and, moreover, simple to be implemented. Pessimistic method is the simplest 
method to be implemented, however, inefficient. Optimistic needs more complicated 
implementation but this method is efficient and scalable. Burglary method is also 
complicated, however, very efficient in E2 (not that efficient in E3) and scalable. Circum-
circle method is very efficient in E2 when 2 threads are used. The simplicity, scalability and 
efficiency of all methods are summarized in Figure 7.31 – higher number means that a 
method is more simple, scalable or efficient. The grades were assigned by our best personal 
opinion and experience, especially in the case of the simplicity criterion.  

 
E2 E3 Method Simplicity Scalability Efficiency Simplicity Scalability Efficiency 

Batch 2 1 3 N/A N/A N/A 
Pessimistic 3 2 0 3 0 0 
Optimistic 0 3 2 0 3 2 
Burglary 1 3 3 1 3 1 

Circum-circle 2 0 1 N/A N/A N/A 

Figure 7.31: Comparison of all methods (higher value means higher evaluation). 
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According to these results, it is quite clear that each method has its pros and cons and, 
therefore, a researcher should use a method the most suitable for his or her purpose. If a 
general solution is required, optimistic method seems to be the best choice. The comparison 
of the best speed-ups achieved by optimistic method and speed-up achieved by other existing 
parallel algorithms is given in Figure 7.32. 

 
2D 3D PEs OPT Har–Ble OPT DeWall InCode 

2 1.75 1.82 1.66 1.70 1.79 
4 3.25 3.33 3.67 2.46 3.11 
8 5.711 5.88 4.422 3.05 5.31 

1 From previous results (at present we have no access to multiprocessor with 8 PEs 
and, therefore, we are unable to repeat the experiment), expected similar 

2 From previous results (at present we have no access to multiprocessor with 8 PEs 
and, therefore, we are unable to repeat the experiment), expected higher 

 

Figure 7.32: Comparison of best speed-ups achieved by optimistic method (OPT), Hardwick's 
algorithm [Har97] (Har-Ble), DeWall and Incode algorithms [Cig93] for uniform data sets. 

 
As far as we know, there are no published results of any parallel algorithm based on the 
incremental insertion principle. Therefore, we choose the Hardwick's algorithm [Har97], 
DeWall and InCode algorithms [Cig93] for the comparison. These algorithms were described 
in Section 5. All our methods ran at Dell Power Edge 7150, the Hardwick's algorithm at SGI 
Power Challenge, DeWall and InCode algorithms ran at nCUBE 2 system model 6410. As the 
experiments ran at different machine and speed-up evaluation also differs, it is impossible to 
say without any doubt whether our optimistic method is more or less efficient than other one. 
However, let us claim that the results achieved by our optimistic method are at least 
comparable. 
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8 Conclusion and Future Work 
The first task of this thesis was to investigate parallel techniques used in the computer 
graphics and computational geometry. It includes the possibilities of even distribution of the 
work over processors and internal data structures used in parallel algorithms. We focused on 
parallel rendering because the problem of rendering is well-known and there exist a lot of 
various parallel strategies. We tried to give a survey of the state of the art in the rendering 
including samples of current parallel systems.  

Next, we discussed sequential principles how to construct the Delaunay triangulation in E2
 

and E3 – one of the fundamental problems in Computer graphics and described the best-
known existing parallel algorithms. We proposed several parallel algorithms based on the 
incremental insertion with local transformations (i.e. the quality of the resulting mesh is 
ensured) for parallel systems with several processors and shared memory. Such a hardware 
configuration (especially the case with two-processors) became widely spread in the last few 
years in the computer graphics area. Some of the proposed algorithms are easy to be 
implemented but not very efficient (e.g. the pessimistic method), while some of them prove 
opposite characteristics (e.g. the optimistic method). Some of them are usable in E2 only (e.g. 
the batch method), other work in E3 as well. We implemented the algorithms in C++ and 
tested them carefully on workstations with up to eight processors. According to our 
experiments, we reached similar efficiency as already existing more complex parallel 
algorithms. This acknowledges that a development of a sophisticated solution consumes huge 
time and the resulting solution often reaches comparable efficiency that the simplest one – i.e. 
our hint is: make your solution as simple as possible. 

The first objective of our future research is to develop a parallel system suitable to construct 
the Delaunay triangulation of very big data sets (hundreds million in E2). This system should 
be composed only of the cheap components produced for a mass market, i.e. common 
computers interconnected via a network into a cluster. We need to ensure that the points may 
arrive on-line and the entire mesh can be simply extracted after a single insertion of a point 
and to ensure the quality of generated triangulation. Therefore, an algorithm by the 
incremental insertion is welcome. It is clear that the stress should be put also on the scalability 
and efficiency of the proposed algorithm. 

There are two more objectives to be solved. One is theoretically oriented and another one is 
application oriented. The theoretical objective consists of three different goals. First, as our 
current results show, we cannot rely on speed-up evaluation of algorithms because the same 
implementation of a parallel algorithm with the same input data set may need different time 
on different computers (see Section 7) and, therefore, any comparison is difficult. Therefore, 
theoretically based complexity of our algorithms independent on the architecture and the 
platform of the operating system should be calculated. Moreover, if we are able to estimate 
the complexity of already existing parallel algorithms, e.g. Hardwick [Har97], the comparison 
of our algorithms with these will be more precise.  

Next, all our parallel algorithms described in previous sections and distributed algorithms 
intended to be implemented (they will be described later) exploit the DAG structure. The key 
issue is what changes must be done in our algorithms if anyone decides to replace the DAG 
by another structure for the location (e.g. Devillers [Dev98]) and how this replace will affect 
the efficiency of algorithms. According to the preliminary results, the changes in the 
algorithm are usually not significant and, therefore, the efficiency is left intact. Further 
research is, however, still needed. We would like also to investigate the possibility of the use 
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of the same techniques from our algorithms in any other algorithm that exploit the DAG or 
tree-like data structure.  

Finally, there exist applications that need to construct the Delaunay triangulation in higher-
dimension. Typically, these applications deal with the topology problems [Gar03, Krä02]. As 
it was shown in Section 6, the generalization of the incremental insertion with local 
transformations from E2 to E3 was straightforward. Is it possible to find out similar 
generalization for E4 or even for any higher dimension? Is there any way to modify any of our 
parallel algorithms so that it is capable to handle any dimension? As this is a great challenge 
and an intensive research is expected, we are not sure that we will succeed in this matter. 

The application oriented objective consists of two different goals. First, the proposed parallel 
system should be integrated into the algorithm for the surface reconstruction proposed by 
Varnuska et al. [Var03]. Let us briefly describe their approach. In the modeling and virtual 
archeology, the points on the surface of a real object (very often historical monuments or 
factory equipment) are obtained (e.g. by a laser scanner or from a sequence of photos). The 
goal is to create a digital model from these points scattered in space. One popular and 
relatively robust solution is to construct the Delaunay triangulation and then check all 
tetrahedra in order to select such tetrahedra that probably intersect the surface of the model. 
From the selected tetrahedra, the triangles on the surface are refined. The approach in [Var03] 
is based on the same sequential algorithm as our.  The authors found out that the Delaunay 
triangulation consumes the largest part in their approach and, moreover, its hunger for 
memory limits the available size of input points to several hundred thousands. It is impossible 
for them to reconstruct surface of complex models such the statue of David [Mich] is (see 
Figure 3.1). Therefore, the integration of our distributed Delaunay triangulation could help 
them to overcome these drawbacks.  

The last goal is to integrate our parallel system into the approach by Hlavatý et al. [Hla03]. 
The authors have developed a system for model classification. For a given model, they 
calculate a vector of its characteristic features and then the database of stored models is 
searched in order to find models with similar features. Such a tool is useful for designers or 
animators. In the Delaunay triangulation, an edge interconnects the nearest points. Let us 
assume we can map the vector of features to the coordinates of a point in E3, then it is 
possible to construct the DT and we can very efficiently find all models related to the given 
one. In a case that we cannot find such a mapping function, we may use an implementation of 
the generalized DT (see theoretical objectives). At present, no further investigation of the 
classification problem was done and, therefore, we are not sure that we will succeed in this 
matter. 

The first objective is the most important and also it refers to the nearest future. Let us, 
therefore, describe the possibilities how to solve this objective in more detail. Straightforward 
solution is to modify the optimistic method for a system with virtual shared memory [Kea94, 
Bad90]. Figure 8.1 shows the schema of such a system. There are k processors and each of 
them has assigned a unique identification (numbered from one). The DAG structure is 
distributed over these processors and each node in this data structure is fully identified by the 
ID of PE and its local pointer (i.e. any 32-bits pointer in the original data structures was 
replaced by this pair). The pair {any ID, 0xFFFFFFFF} denotes the root of the DAG, which is 
always stored in the local memory of the first processor (i.e. the processor with the number 
one), and the pair {any ID, 0x00000000} denotes an invalid node. 
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Figure 8.1: Schema of a parallel system with virtual shared memory. 

Whenever a processor needs to access a valid node, it has to call the VSM layer to get an 
appropriate pointer on this node. In this call, the processor has to specify whether it requires 
the node for the read-only or for the read-write access. If the processor is going to modify the 
node, the VSM automatically tries to lock it. In a case that the deadlock has been detected, the 
processor gets NULL pointer and it has to perform rollback. When the processor finishes the 
insertion of its point, it calls the VSM for any locked node to complete the modification of the 
Delaunay triangulation and to unlock this node.  

Let us assume that a processor has called the VSM to get the pointer on the node S0 identified 
by a pair {ID, ptr} for read-only purpose. The VSM checks whether ID is equal to zero or to 
the number assigned to the processor. If the outcome is positive, the requested node is stored 
in the local memory of this processor and, therefore, the VSM simply returns ptr. In the 
opposite case, the node is stored on a remote computer identified by ID. At first, the cache is 
searched in order to find a local copy of this node. If no appropriate entry is found in the 
cache, the VSM sends a request to the remote computer to get the missing node and waits 
until the reply comes. The received node is, afterwards, placed into the cache. Let us note that 
LRU (Least-Recently-Used) policy is used. 

When the pointer on the node S0 is needed for read-write purpose, the situation is more 
complex. If the node is stored locally, standard locking routine of the optimistic method is 
used. In the opposite case, the remote computer is contacted (the cache is never checked) and 
it uses the same standard locking routine to get an exclusive access to the given node for the 
initiating processor. The initiator waits until the reply comes. The received node is, 
afterwards, placed into the cache. The processor is responsible for calling the VSM for the 
node S0 after the transaction (see the optimistic method) was committed. If the node is stored 
locally, it is just unlocked, otherwise it is sent to the remote processor, which updates the 
appropriate local node by the received data and unlocks this node.  

There is no doubt that this is not very efficient solution because the intensive network 
communication cannot be avoided. Probably the amount of the network traffic could be 
reduced if the points are subdivided into k groups (where k is the number of processors) in 
such a manner that the equal number of points in each group is ensured and also the bounding 
boxes of these groups have minimal intersection – see Section 7. 

Let us consider another distributed solution. The basic idea is to separate the input points into 
disjunctive regions and distribute these regions over processors. Bucketing strategy combined 
with Mueller's algorithm [Mue95] handle the problem how to subdivide evenly the input set 
of points. Each processor is responsible for the triangulation of its points. The synchronization 
among the processors for simplices at the boundaries of the regions is necessary.  
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Straightforward approach is to let each processor to triangulate its points independently and 
then merge the local triangulations into the result. There are two problems with this approach. 
First, the merging of two local triangulations is limited to just one processor and thus it 
negatively influences the overall efficiency of the algorithm. Next, it violates our request to 
have a valid triangulation in each step of the construction. It is also impossible to use strategy 
similar to DeWall algorithm, i.e. to construct the joint first, because we would like to ensure 
that the points may arrive on-line.  

Therefore, we have to retain a distributed triangulation and update it simultaneously. Because 
of our good experience with the DAG, we use the distributed version of this data structure. 
Since now, let us consider the construction of the Delaunay triangulation in E2 only; the 
generalization to higher dimension is simple. 

Let us assume we already somehow obtained a distributed triangulation and that this 
triangulation is distributed over two processors labeled Worker 1 (briefly W1) and Worker 2 
(briefly W2), where the processor W1 is responsible for the left rectangular area and the 
processor W2 for the right one – see Figure 8.2. 

Worker 1Worker 1

SS
SS

SS
SS

SSSS

Worker 2Worker 2

 

Figure 8.2: An example of the Delaunay triangulation distributed over two processors (workers). 

From the point of view of the W1, there are three kinds of triangles in this triangulation to be 
considered:  

• The local triangles are fully inside the workspace of the processor W1 and, therefore, 
they are stored in the local memory of this processor. No synchronization is required 
to access them. The local triangles are the most numerous group. 

• The shared triangles are partially inside the workspace of the processor W1 and 
partially inside the workspace of the processor W2. They are stored in the local 
memories of both processors. Simultaneous modification of these triangles has to be 
avoided and, therefore, some synchronization is necessary (will be discussed later). 
There is about √N shared triangles in the triangulation, where N is the number of 
points in an uniform data set. Figure 8.3 acknowledges this. 

• The remote triangles are stored in the local memory of the processor W2 only. 
However, when the processor W1 modifies a shared triangle, it has to know the 
identification of the remote triangle adjacent to the shared one in order to update the 
neighborhood correctly. Again some synchronization is necessary. 
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Figure 8.3: The cut of an object containing N uniformly distributed points has approximately square 
root of N points in its vicinity. 

The same categorization of the nodes can be done from the point of view of the second 
processor W2. Now, let us assume that the processor W2 wants to insert the point p into the 
triangulation and this point lies inside the shared triangle S0 as it is shown in Figure 8.4. Both 
processors have to synchronize their work, which involves sending of the index and the 
coordinates of the point p and of the identification of triangle S0 to the processor W1. 
Afterwards, both processors subdivide S0 into three new triangles and update the 
neighborhood with triangles S1 and S2. The W1 has to update neighborhood with R0 as well.  

S
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SS

S 0

S 1

S 2

R 0

 

Figure 8.4: An example of the insertion of the point p lying inside a shared triangle – see text. 

We have just introduced two problems. First, a processor has to store not only its local points 
but also remote points received during the process. Therefore, it is needed to have a hash table 
that maps the index of a point to a pointer on the structure storing the coordinates of this 
point. For a given point, it is also necessary to determine efficiently whether the point is local 
or remote one. Therefore, we use the highest bit of the indices of points to distinguish them. 
This allows us to apply an efficient test on a triangle in order to find out whether this triangle 
is shared (at least one of its vertices is a remote point) or local. 

Another problem is how to identify a triangle. We cannot use the pair ID of PE and pointer on 
the appropriate node as in the VSM approach because of shared triangles. Let us, therefore, 
assign an integer to each node. Shared triangles are identified by negative values (assigned 
synchronously), local triangles by a pair ID of PE and positive values (assigned locally). We 
can either store the full 64-bits identification in all nodes or used only 32-bits identification 
and translate the short form of identification into the full identification only if it is necessary. 
As the DAG structure consumes a lot of memory generally and the most of triangles are local, 
the second possibility seems to be better. 
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Let us assume an extra processor called Interface responsible for retaining connectivity 
among local triangulations of the processors, i.e. for the translations. It needs to store shared 
triangles to perform the translations. Figure 8.5 shows an example of the part of triangulation 
distributed over two workers and the interface. 

Worker 1

-1
REMOTE-2

1

Worker 2

-1REMOTE

-2 4

Interface

-1
1|10

-2 2|4

 

Figure 8.5: An example of a part of triangulation. Dashed triangles are not physically stored in the 
local memory of that computer. A number (or label Remote respectively) in the triangle shows its 

identification known on that computer. 

The interface has also other functionality. At the beginning, this processor distributes the 
points over the processors called Workers, constructs the big auxiliary triangle (shared one) 
and broadcasts it to all processors. Whenever a worker needs to subdivide or legalize a shared 
triangle, it calls the interface. Interface enters a critical section (i.e. only one synchronized 
operation can be performed), performs the subdivision or the legalization of this triangle (the 
original triangle is removed from memory), contacts all participating workers sending them a 
command to perform the changes and leave a critical section. The worker has to wait until the 
operation is completed. The performance of the proposed algorithm can be increased if the 
worker processes the insertion of another point instead of the waiting. Figure 8.6 shows a 
scheme of the DAG structure in this approach. 

Interface

1 1

11

Worker 2

2 2

2 2

TCP/IP

Worker 1

 

Figure 8.6: The scheme of the DAG structure in the interface-workers approach. The gray nodes 
denote shared simplices. 

When the resulting triangulation is required, each worker extracts its local triangles and the 
interface extracts its shared triangles. The union of these triangles gets the requested Delaunay 
triangulation of up to 2⋅109 points.  

The solution that we have just described suffers from several problems. First, the efficiency of 
the algorithm drops down if the requests on the interface cannot be handled immediately 
because the interface is busy by handling a previous request. As the number of requests grows 
with the increasing number of workers, the overall number of processors is very limited. 
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Another problem is that each shared simplex requires at least triple computational effort than 
any local simplex. The efficiency can be improved by reducing the number of requests 
generated on the interface by moving part of its functionality onto the processors. 

Let us consider another approach. This, in our opinion very efficient, approach is based on the 
previously described solution. The main difference is that there is no interface, i.e. all 
processors have to handle all cases. For each triangle, we assign just one processor as an 
administrator. A triangle can be administrated only by a processor that contains at least one 
vertex of this triangle in its area. This means that while for a local triangle, there is only one 
candidate for the administrator, for shared simplices, we have several options – we prefer the 
processor that occupy minimum administration posts. 

The processor can access the triangle only if it is an administrator of this triangle. In a case 
that the administrator has changed the shared triangle, it sends an asynchronous message 
about the change to all processors sharing this triangle. These messages are handled by the 
receivers when they are in an idle status or they have to face the problem of the inconsistency.  

If a shared triangle is required by a processor that is not its administrator, this processor either 
sends asynchronously its point to be inserted to the appropriate administrator or it applies for 
the administrative post of the triangle in a synchronous way. Let us note that the first 
possibility is available for the subdivision phase only. 
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Appendix: Activities 
Reviewed publications 

• already published 

[Koh03] Kohout J, Kolingerová I. Parallel Delaunay triangulation in E3: Make it 
simple.Visual Computer 2003, Springer-Verlag Heidelberg; 19(7&8): 532-
548 

[Koh03c] Kohout J, Kolingerová I. Parallel Delaunay Triangulation based on 
Circum-Circle Criterion. In: Proceedings of SCCG 2003, Comenius 
University, April 24-26 2003, Budmerice, Slovakia. p. 85-93 

[Koh02] Kohout J, Kolingerová I. Parallel Delaunay Triangulation in 2D and 3D. 
In: Proceedings of East West Vision 2002, Österreichische Computer 
Gessellschaft, September 12-13 2002, Graz, Austria. p. 143-148 

[Kol02]  Kolingerová I, Kohout J. Optimistic parallel Delaunay triangulation. 
Springer-Verlag Heidelberg, Visual Computer 2002; 18(8):511-529. 

[Kol01] Kolingerová I, Kohout J. Pessimistic threaded Delaunay triangulation by 
randomized incremental insertion. In: Proceedings of Graphicon 2000, 
August 28-30 2000, Moscow, Russia. p. 76-83 

• accepted for the publication 

[Koh03a] Kohout J, Kolingerová I, Žára J. Practically oriented parallel Delaunay 
triangulation in E2 for computers with shared memory. Elsevier Pergamon, 
Computer & Graphics 2003; accepted for the publication 

• submitted for the publication 

[Koh03b] Kohout J, Kolingerová I, Žára J. Parallel Delaunay triangulation in E2 and 
E3 for computers with shared memory. Elsevier North-Holland, Parallel 
Computing; submitted for the publication 

Not reviewed publications  
• related to this work 

[Koh01] Kohout J. Parallel Incremental Delaunay Triangulation. In: Proceedings of 
5th Central Europian Seminar on Computer Graphics, Comenius 
University, Budmerice, Slovakia, 2001. p. 85-94 – awarded by the third 
prize as the best paper 

 [Dou01] Doubek J, Kohout J. Spojenou silou, Systém pro distribuované zpracování 
- GSD. Chip 10/01 + CD ROM, 2001. p. 154  (in Czech) 

• other 

[Koh99] Kohout J, Mautner P, Zuzák F. Automatická detekce částic v digitálních 
mikrogramech. In: Proceedings of the 15th Konference s mezinárodní 
účastí - Výpočtová mechanika '99, Nečtiny, Czech Republic, 1999. (in 
Czech) 

[Koh99a] Kohout J, Mautner P, Zuzák F. Metody zpracování digitálního ferogramu 
pro tribodiagnostiku. In: Proceedings of the 15th Konference s 
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mezinárodní účastí - Výpočtová mechanika '99, Nečtiny, Czech Republic, 
1999. (in Czech) 

Presentations and talks abroad 
• January 2004 – Paralelní rendering, presentation (in Czech), VŠB–TU Ostrava, Czech 

Republic 

• October 2003 – Delaunay triangulation in parallel and distributed environment, 
presentation, TU Graz, Austria 

• May 2003 – Delaunay triangulation in 2D and 3D in parallel and distributed 
environment, TU Chemnitz, Germany 

Stays and other activities 
• September 2003 – passive participation on the EG 2003 conference  
• October 2003 – two weeks stay at  TU Graz,  project Aktion  
• May 2003 – one week stay at  TU Chemnitz,  Socrates-Erasmus teaching mobility 
• Spring 2003 – one semester study abroad at Queen's University of Bath, UK 
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Appendix: Color figures 

 

a) double eagle tanker model containing 83 million triangles [UNC]  

�  

b) scans of Saint Matthew (386 MPolys) and the 
David (2 GPolys) - Stanford Digital Michelangelo 

Project  [Mich] 

c) simulation of compressible turbulence 
(2K x 2K x 2K mesh) - Sean Ahern and Randal 

Frank, LLNL [Sch00] 

Figure 3.1: An example of big data sets. 

 

Figure 4.6: The projected points and the corresponding Delaunay triangulation [Har97]. Only a tiny 
part of the 3D convex hull is shown (red bold line segments). 
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a) the original partition b) the shared cavity c) the cavity retriangulation 

Figure 5.2: The insertion of a point (big dot) into the triangulation in E2. This insertion causes 
retriangulation of a cavity shared by three processors (PE1, PE2 and PE3) including the update of 

their regions' boundaries. The simplices belonging to the same region are shown in the same color. 

 

a) random b) slabs c) x2+y2 

Figure 7.27: Various strategies for the subdivision of input points among four threads. 

 


