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Abstract 
 
At present, many devices produce the volume data as their output. The 
well-known data acquisition tools are e.g. MRI, CT or PET scanners, which are 
used mainly in the medical field. The volume data can represent density, 
velocity, humidity etc. in the form of structured or unstructured grid. Scientists 
need to explore such data to study their inner properties and relations and to 
make decisions. The volume data visualization is a strong tool for such 
explorations. There are many methods for the volume data visualization. The 
volume rendering and the surface rendering approaches are governing two 
main visualization branches in this field. The volume rendering methods 
visualize the data as a whole. In the apart of that, the surface rendering 
methods are trying to find surfaces in the volume data and visualize them. 
 The group of methods for the surface rendering contains also methods 
for the iso-surface extraction from the volume data. This thesis provides a 
reasonable overview of the main techniques that serve for the volume data 
acquisition as well as the state of the art in the field of the iso-surface extraction 
methods. The important methods are sensibly described together with 
appropriate references given and their difficulties, pros and cons are discussed 
as well. The offered work also concerns a research that was recently done and 
the outline of possible directions in which the future research can head towards. 
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1 Introduction 

1.1 Overview 

In recent period of time the volume data play a significant role in many scientific areas. 
The volume data are spread across many professions we can imagine. In the medical 
field, various devices such as CT scanners, MRI scanners, etc. produce the volume data. 
The volume data are also produced as a result of mathematical or physical simulations. 
Various devices use ultrasonic tester that can produce the volume data as an output as 
well. 
 Each year new technologies are investigated and the existing devices are 
improved. Also devices that produce the volume data are improved due to acquisition 
speed, accuracy and other parameters. Higher accuracy implies larger resolution to be 
used during the data acquisition process. The higher resolution is used the bigger 
volume data are generated. At present (year 2004) the acquisition devices provide 
thousands samples in each direction in a 3D space and a resulting volume data file can 
reach terabytes in size. 

As there are many various ways of how to obtain the volume data, there are also 
various kinds of volume data sets. Two main groups of the volume data are roughly 
identified as the structured volume data and the unstructured volume data.  

The structured volume data have easier data structures and adjacency among 
samples is easy to find due to regularity. Hence from a sample index we can easily find 
its coordinates. The passing is a simple matter and the structured volume data requires 
less memory space per data sample. These data are at most produced by the medical 
scanners. On the other hand, the unstructured data have more complex data structures, 
higher memory requirements but provide more freedom for scientists to represent 
complex environments and perform complicated simulations. Our interest is devoted to 
the structured volume data. 

One pretty good thing on the volume data is that its samples are taken not only 
on a surface of an object but also from its interior. Thus volume data characterizes the 
whole object. Samples can represent e.g. temperature, density and flow speed or air 
humidity at an appropriate position. To understand the underlying relations, structure 
and properties of an object we need to visualize the volume data. The visualization must 
be reasonable fast, because slow visualization decreases our perception and 
approximately 75% of information we get is accepted visually. 

There are two main techniques for the volume data visualization. The first 
approach is based on volume rendering (the ray tracing like methods) and the second 
one on surface rendering (the iso-surface extraction like methods). As known, the 
volume rendering methods are complex and works with the whole volume data. These 
methods are out of scope of this work. The surface rendering methods visualizes 
surfaces that are stored in the volume data, the iso-surface extraction methods are used 
to find such surfaces and their overview is given later. 

The field of the iso-surface extraction is quite large. There are various methods 
used for the extraction such as view dependent techniques, parallel or distributed 
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approaches, external memory (or sometimes called I/O) techniques, multiresolution 
(LOD) based extraction, etc. We are interested in standard (single processor) iso-surface 
extraction methods which find active cells and extract an iso-surface from them. The 
state of the art of such methods is presented in the first part of this work. In general, we 
can describe the iso-surface generation and visualization with the following steps: 

• Search for all active cells (such cells that are intersected by the iso-surface) 
• The iso-surface and normal vectors approximation within these cells (using a set 

of triangles) 
• Iso-surfaces visualization (visualization of a set of triangles; different 

iso-surfaces can be visualized with different colors depending on a selected 
threshold value, alpha blending, etc.) 

 
Let us make a remark about Shannon’s sampling theorem. A band (frequency) 

limited function is a function whose Fourier frequency spectrum is limited by some 
frequency fMAX. The functions with higher frequencies do not contribute to the total 
function value (they have zero amplitude). The Nyquist's criterion equals to 2*fMAX. 
Shannon’s sampling theorem says that each band limited function that is sampled with 
higher frequency then the Nyquist's criterion is exactly represented with such samples 
(and can be fully reconstructed – theoretically). When a function is sampled under the 
Nyquist's criterion it comes to aliasing. 

The volume data are in most cases sampled under the Nyquist's criterion 
(aliasing). Of course that the volume data can be in a special case (depends on a scanned 
object) sampled above Nyquist's criterion frequency, thus without aliasing, but the 
resulting data set would have the extremely large size. Note that a sampled object is 
represented in most cases with some error. The scan error size depends both on an 
object scanned and on a resolution used.  

Also the extracted iso-surface is not in computer graphics represented exactly 
but with an error. As everybody can imagine an iso-surface can be extracted with 
several different methods, all methods approximate the iso-surface with some 
geometrical primitives such as triangles, quadrilaterals or patches and use different 
interpolation of the data values inside of a cell such as linear or trilinear interpolation. 
An error of the iso-surface depends on all mentioned factors that are used method, used 
interpolation and used geometrical primitives. The error behaviour is discussed in the 
second part of this work. This error is the area of our interest. 

The total approximation error consists of the sampling error and the iso-surface 
approximation error. In our work we discuss only the total approximation error, which 
is the sum of both previously mentioned errors. 

1.2 Problem Definition 

The problem of the iso-surface extraction is clearly defined in [25] by Pasko et al. Let 
the continuous real trivariate function ξ = f(x,y,z) be defined for the domain 
x ∈ X = [x1, x2], y ∈ Y = [y1, y2] and z ∈ Z = [z1, z2]. The following problem of analysis 
of this function will be considered: for any given value ξ = c the properties of the 
preimage f -1(c) = {x, y, z: x ∈ X, y ∈ Y, z ∈ Z, f(x,y,z) = c} need to be investigated. The 
geometric model of the domain is parallelepiped in the space xyz. The function 
ξ = f(x,y,z) together with the domain xyz is geometrically interpreted as a hypersurface 



3 

(for ξ = c) in the xyzξ space. The geometric model of the preimage f -1(c) is the surface 
S, in xyz domain, which is usually called an iso-surface.   

Furthermore, in our case, we do not know exactly the function ξ = f(x,y,z). We 
have only its samples in e.g. regular grid. The domain xyz can be then subdivided with 
respect to the regular grid into a set of parallelepiped cells. The task is to find a surface 
S and visualize it. 

1.3 Organization 

At first, a brief description of basic volume data acquisition techniques, concretely CT, 
MRI and PET, is given. The ultrasound technique is omitted because it is not used as 
often as mentioned three techniques. Afterwards, the overview of existing methods in 
the field of the iso-surface extraction is made. In the next chapter the comparison of a 
set of methods is made. The comparison concerns different aspects such as an error of 
the iso-surface approximation, the iso-surface area, etc. And finally some conclusions 
and future work are presented. 

1.4 Basic Terms 

Volume data – is a set of samples. Samples are placed in arbitrary grid vertices  
   which are called nodes (see Section 3.2). 
Threshold (iso-value) – is in most cases a user specified value, but this process can be 
   also automated in special cases. A threshold determines the value that we 
   want to visualize in volume data. This value is visualized e.g. in a form 
   of iso-surface. The threshold can represent e.g. pressure, density or 
   temperature, etc. 
Iso-surface –  is a surface in the volume data such that the data values on it are 

constant. The data values on the iso-surface and hence also the 
iso-surface itself are determined by a threshold value (threshold in short). 
The process for finding an iso-surface is called the iso-surface extraction 
and the iso-surface is approximated with a set of primitives, in most cases 
triangles. 

Positive node – a grid node is said to be positive if its data value after a threshold 
  subtraction remains positive. 
Negative node – is a node whose data value is negative after a threshold is subtracted 
  from it. 
Local coherence – is some kind of a relation among adjacent nodes or cells. 
Global coherence – is a relation between the two different iso-surfaces that are defined 
   with two close but distinct threshold values. 
 
Here we would like to mention used symbols in mathematical expressions and 
equations: 
 

c scalar value 
c = (c1, c2, c3) vector or point 
C matrix or point 
f(x,y,z), F(x,y,z) function of three variables 
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log(x), ln(x) mathematical functions 

c  integer value of c (same as Floor(c); Examples: 
Floor(2.4) = 2, Floor(-2.1) = -3, Floor(2.6) = 2) 

(x,y,z) point or vector coordinates 
[a;b] closed interval 
(a;b) open interval 
% or mod modulo division 
F, A, B, … constant numbers 

Table 1 – Used mathematical symbols overview 

The introduction to volume data and to the problem of the iso-surface extraction was 
made as well as the overview of this work and basic terms description. The next chapter 
is focused on the overview of basic methods for volume data acquisition. 
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2 Hardware for Volume Data Acquisition 

In this chapter, basic volume data acquisition methods (Computed Tomography, 
Magnetic Resonance Imaging and Positron Emission Tomography) are overviewed. Of 
course, there are other methods or modifications of mentioned ones. These are not 
included in this chapter (e.g. ultrasound). The purpose of this chapter is to give the brief 
and basic overview in this area. 

2.1 Computed Tomography – CT 

History 
 
In 1972 Computed Tomography (also known as Computed Axial Tomography) was 
used in the medical area for the first time by Hounsfield and Cormac. It is based upon 
X-ray attenuation measurement at object’s cross-sections (slices). The volume data 
itself are afterwards reconstructed and filtered from these measurements. The word 
tomography comes from the Greek words “tomeo” meaning “cut” and “graphia” 
meaning “describing”. For more information, see [W5], [W7] or [22]. 
 
Basic Principle 
 
Let’s consider X-ray tube, X-ray detector and an object between them. We know the 
intensity of the X-ray in the source tube and, we can measure, intensity in the sensor 
after X-ray passes the object. From these two values we can determine µ as an average 
linear attenuation coefficient, which describes the reduction of X-ray by object’s 
material (therefore it is the property of material). The X-ray intensity decrease depends 
on object’s proton number, density and thickness as well, Figure 1. 
 

 
Figure 1 – Attenuation µ 
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Slice Acquisition 
 
Imagine we have an X-ray tube and many X-ray detectors (thousands), which are 
situated in the arc of a circle, see Figure 2. Fan beam of X-rays, aimed onto detectors, is 
produced by the X-ray tube. The radiation is registered by detectors after object passing 
and this information is furthermore processed by a computer. During slice exposure, 
both the X-ray tube and detectors are rotating around object 360o degrees (thousands 
measurements). Rotation time is usually up to 10 seconds. From gained attenuation 
coefficients, which pass an object’s slice in different directions, we reconstruct an object 
by a reverse process to a performed acquisition – filtered back projection (Radon 
transform and Fourier transform are used). 
 
Samples 
 
The acquired samples in volume data grid are called CT numbers. The coefficient µ 
itself describes the linear attenuation between the X-ray tube and an X-ray detector and 
it is dependent on the object density (atomic number). CT numbers are related to the 
linear attenuation of the water, as given by Equation (1). 

0001_ ∗
−

=
WATER

WATERTISSUEnumberCT
µ

µµ  (1) 

For example the water has CT number equal to 0 (µ = 0.181 cm-1), air = -1 000 
(µ = 0.0003 cm-1), bone ≈ +1 000 (µ = 0.46 cm-1). CT numbers are also known as 
Hounsfield units. Artifacts in resulting set of samples can arise because of patient 
movement or metal objects (tooth filling) inside of the CT scanner. 
 
CT Examination 
 
The CT examination itself begins with the object overview – the object is scanned in a 
gantry (Figure 2), but without the X-ray tube rotation. Afterwards the proper area of 
interest is selected and a complete CT scan begins. The contrasting substance can be 
applied before examination. 
 

 
Figure 2 – The gantry 

 
There are two basic ways how can the X-ray tube with detectors rotate in 3D, the first is 
conventional CT and the second is spiral CT, see Figure 3. Both these techniques 
produce slices in axial plane. When conventional CT is performed, one slice of an 
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object is scanned and table with object then moves about constant distance, after that 
another scan is done, etc.  So we gain equidistant slices of whole examined object. 

In the other hand spiral CT is based on the continuous table movement and 
scanning, so the trajectory of X-ray tube is spiral. Complete set of slices is then used for 
arbitrary plane or 3D reconstruction. The main advantages are fast examination of 
whole object due to continuous scanning and possibility to create overlapping slices for 
3D reconstruction. 
 

 
a)     b) 

Figure 3 – Conventional a) and spiral b) scans 

2.2 Magnetic Resonance Imaging – MRI 

History 
 
Magnetic resonance was discovered by Bloch and Purcell independently in 1946. Both 
were awarded Nobel Prize in 1952. After the introduction of Computed Tomography in 
1972, hospitals were able to buy such expensive medical imaging hardware. This fact 
started a fast investigation of MRI, which is based on (nuclear) magnetic resonance. 
Word nuclear was omitted, because of its unpopularity in 1970s. Lauterbur, in 1973, 
demonstrated magnetic resonance plus back projection (CT) to create images. Current 
MRI data acquisition method was used in 1975 by Ernst. More on MRI is in [W9] and 
[W6]. 
 
Basic Principle 
 
MRI is based on protons magnetic field modification by radio pulses. Atomic nucleus 
rotates around its rotary axis (spin), and this produces a small magnetic field for 
nucleuses with odd proton number. The field intensity depends on a rotation speed and a 
nucleus charge size. Hydrogen H1 has one proton in nucleus, odd proton number and 
many objects contain it. Many protons in human body are stored in water. Up to 60% of 
body weight is the water, depending on age and sex. Proton does have a small mass, but 
apart of that it rotates very fast, so it produces noticeable magnetic field we are able to 
measure. Therefore, hydrogen is widely used in MRI. 
 Normally, the proton rotary axes are pointing in random directions. At first the 
examined tissue is inserted into static magnetic field (up to 2 Tesla). All protons inside 
of it are getting aligned with this field; some of them in the direction, the others against 
it. The number of protons aligned with static field is always slightly greater than the 
number of protons aligned against it. The stronger the field is the greater amount of 
protons is aligned in the field direction, see brilliant example in [W9]. The resulting 
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protons magnetic field direction is then pointing in the same direction as the static field 
does, because of excess protons aligned in its direction. 
 When the protons are aligned, they perform two kinds of movement, see Figure 
4. First, the proton rotates around its rotary axis (spin). Second, the proton rotates 
around imaginary cone’s axis (precess). Precess frequency depends on magnetic field 
strength. 
 

Precess
Spin

 
Figure 4 – Spin and precess of the proton 

 
When the radio frequency (RF) pulses are applied at the frequency of precesses 
(resonance frequency) proton magnetic moment changes the angle and precesses of all 
protons are synchronized. After RF pulses are finished, all protons are getting to their 
original state and the needed time is called relaxation time. The time needed to restore 
original magnetic moment position is called relaxation time T1 and the time needed to 
unsynchronize previously synchronized precesses is called relaxation time T2. The T1 
and T2 are both dependent on a material, where the examined protons are placed. These 
times can not be measured directly, instead of that, times are measured relatively by 
their comparisons. 
 During T1 and T2, when RF pulses are switched off, the protons retransmit RF 
pulses at the resonance frequency and we can measure this energy with special 
induction coils. Moreover, the resonance frequency depends on the magnetic field and it 
can be locally modified by gradient coils. Therefore, we can locate the source of 
retransmitted RF pulses on the basis of resonance frequency. 

2.3 Positron Emission Tomography – PET 

History 
 
The first PET camera for medical purposes was built by Hoffman, Ter-Pogossian and 
Phelps in 1973. Four years later (1977) the full-body PET scanner was constructed. 
During the following years PET resolution and sensitivity was improved, see example 
images in [W3]. CT or MRI scanners, both acquire the object structure information 
only, PET images describe chemical functioning of an object as shown in [W1]. 
 
Basic Principle 
 
The PET is used for life objects only, because PET images describe not a structure, but 
chemical functioning (metabolism) of an object. A special substance, which is called a 
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tracer, is introduced to a patient. Tracer is a substance, which has an excess number of 
protons; therefore it emits positrons (positive antiparticle to an electron). The tracer 
exists in a body for few hours and it still emits positrons. When a positron is emitted, it 
travels 1-3 mm and then it annihilates with an electron. After the annihilation two 
collinear γ-rays are produced; each of them aims at opposite direction (both of them lay 
at the same line). Highly precise sensors are capable to detect these γ-rays and estimate 
the distance, which both of them traveled.  
 

 
Figure 5 – Annihilation and γ-rays (1 … accepted event, 2 and 3 ... rejected events) 

 
Few situations can occur as evident from Figure 5: 

• both γ-rays are recorded by sensors (accepted event) 
• only one of γ-rays is recorded (rejected event) 
• none of γ-rays is recorded (rejected event) 
• more than one annihilation occurred within the same time window (rejected 

event) 
 
As mentioned at the beginning of this chapter, there are also other methods for volume 
data acquisition such as ultrasound [22], etc. These methods are out of scope of this 
text. The next chapter deals with volume data. 
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3 Volume Data 

In following chapter a voxel and a cell are described, volume data lattices types are 
shown and also the curvature computation in any voxel is described together with the 
appropriate reference given. 

3.1 Voxel and Cell 

The voxel (Figure 6) is a 3D representation of a pixel and is based on the nearest 
neighbor interpolation of spatial samples. Therefore, the interior of whole voxel has the 
same value. We can imagine voxel as a cube. In the apart of that, the cell is composed 
of 8 adjacent spatial samples and an arbitrary interpolation can be used to gain interior 
values of the cell. The cell can be drawn as a cube as well. 
 

 
Figure 6 – The voxel and the cell 

3.2 Grids Types 

There are several categories [38] of grids, which are used to store volume data samples. 
The main branch is stated bellow (Figure 7): 

• Cubic Grid – (Cartesian, equidistant) all the cells have the same cube shape. 
• Regular Grid – (anisotropic rectilinear, uniform) all the cells have the same 

block shape. 
• Rectangular Grid – (rectilinear, orthogonal) all the cells in a row or a column 

share faces but they can have different block shape. 
• Structured Grid – (non-rectilinear, curvilinear) all the cells can have different 

shape, but topologically it is cubic grid. It is necessary to store vertex 
coordinates for all vertices. 

• Unstructured Grid – all the cells can have an arbitrary shape (polyhedral, 
hexagonal, pyramidal, etc). It is necessary to store vertex coordinates for all 
vertices.  

• Block Structured – more types of different structured grids in the same volume 
data set. 
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• Hybrid Grid – more types of structured and unstructured grids mixed together in 
the same volume data set. 

 

a) cubic b) regular c) rectangular

d) structured e) unstructured  
Figure 7 – 2D outline of grid types 

3.3 Volume Data Curvature 

Another thing that we would like to mention in this chapter is curvature computation in 
each voxel. We would like to utilize this to develop a new iso-surface extraction 
algorithm as stated in the chapter 6. That is the main reason why we mention the voxel 
curvature computation in this work.  

Kindlmann et al. [13] uses the volume data curvature to construct a transfer 
function in volume rendering and the authors also propose the use of curvature for 
uncertainty visualization when extracting the iso-surface. 
 The process that is needed to compute the curvature at any point in a 3D scalar 
field can be summarized as follows: 

1. Measure the first partial derivatives to obtain the gradient g. Gradient g is 

computed as 







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gn −= . Compute the matrix P as TnnIP ⊗−= , where ⊗ represents vector 

direct product (the result is matrix). 
2. Measure the second partial derivatives to construct the Hessian matrix H and 

compute a matrix G. Hessian matrix has the form 
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and then compute the matrix G as 
|||| g
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3. Compute the trace of G [W11] as ∑
=

=
n

i
iiTr

1
)( GG and Frobenius norm of G 

[W11] as )( T
F

Tr GGG = . Using trace and Frobenius norm, compute the 

requested curvatures κ1 and κ2 as 
2

2 22

2,1
TFT −±

=κ . 

 
The matrix P projects into the tangent plane that is defined by n, Hessian matrix H 

characterizes how the g changes with small changes in position. 
The authors also perform a three dimensional data value reconstruction at an 

arbitrary position as a multiplication of three one dimensional convolutions in x, y and z 
directions. The convolution in x direction is defined as 

∫
+∞

∞−

−=∗= )()()()()( ττ gtfxgxftk , (2) 

where f(x) represents the object in volume data and g(x) is convolution kernel. 
Convolutions in other directions are defined similarly. Authors of [13] claim that 

the first order partial derivatives in x, y and z directions can be constructed using the 
first order derivative of the convolution filter, as outlined in Figure 8. The convolution 
formula is then defined as 

∫
+∞

∞−

−=∗= )(')()(')()(' ττ gtfxgxftk , (3) 

where f(x) represents the object in volume data and g(x) is derivative of the convolution 
kernel. 
 

a)      f[x]   *          g(x)        =   k(t)

b)     f[x]     *    g'(x)       =   k'(t)  
Figure 8 – Derivative calculation via derivative of the convolution filter outline   

(f[x] … discrete samples in x direction, g(x) … convolution filter and  
k(t) … reconstructed function) 

 
As mentioned the data values interpolation is made using multiplication of convolution 
filters in x, y and z directions. The combination of convolution filters in multiplication 
determines the result. The authors compute the second order derivative of the function 
f(x,y,z), ∂2f / ∂x∂y as a multiplication of the first order derivative filters of f in x and y 
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directions and zero order filter in z direction, etc. The accuracy of the interpolation 
depends mainly on the quality of chosen filters and their combination. 
 The authors of [13] use the curvature computation also in the field of iso-surface 
extraction to visualize the flowline curvature κf. Flowline curvature characterizes the 
degree to which an iso-surface changes its shape as a function of small changes in 
threshold. When the κf = 0, the change between adjacent iso-surfaces shapes, is zero and 
they are parallel. It describes the change between iso-surfaces rather than a change of 
one iso-surface only. In special orthonormal basis (tangent plane basis and its normal n) 
[13] it holds that 
















=−=∇

000
0

0

||||
1

22
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σκ
σκ

PH
g

n  (4) 

Generally the curvatures are not isolated as in (4). The flowline curvature can be 
computed using Equation (4) again with the use of a Frobenius norm as ([13]) 

21( σσκ +=⊗∇=
F

T
f nnn  (5) 

If we move along the normal, off of the surface or deeper into it, the normal tilts 
according to σ1 and σ2. 

Kindlmann et al. claim, in their paper, that the flowline curvature can be used for 
uncertainty visualization within the iso-surface (e.g. by a color mapping). The term 
uncertainty means that the iso-surface is in some places good approximation of the 
material boundary and in some places the iso-surface approximates the boundary of the 
material with less trustworthiness (due to significant changes in its shape with tiny 
changes in the threshold). These places are indicated with high flowline curvature. 

Main facts concerning volume data were mentioned. The volume data are further 
processed with extraction methods. Most of methods work with the set of cells instead 
of volume data. These methods are reasonably described in the following part of this 
work. 



14 

 

4 Iso-Surface Extraction Methods Survey 

This chapter is the main part of this work. It covers methods for the iso-surface 
extraction from regular volume data and their speedup techniques. In previous chapters 
we discussed volume data acquisition methods and volume data lattices. The next step 
for volume data visualization is, in the case of iso-surfaces, the iso-surface extraction. 
Mentioned methods generate an iso-surface in a form of a set of triangles, that is further 
visualized using conventional methods. 

Word iso comes from Greek word isos meaning equal. Iso-surface connects points 
of equal value (temperature, tense, altitude, pressure, etc.). 

4.1 Marching Cubes 

This method was originally published by Lorensen and Cline in 1987, see [17]. It can be 
thought as an extension of the 2D Marching Squares method (iso-lines extraction) to 
3D. Marching Cubes (MC abbreviation will be used) has O(N) time complexity, where 
N is the number of all cells which can be created from given volume data. Inputs are the 
threshold value and the structured scalar volume data. Output is a set of triangles which 
is an approximation of the iso-surface. MC sequentially processes all cells which can be 
constructed from the volume data. Main steps of MC algorithm are (for one cell): 
 

• Cell construction from volume data samples 
• Comparison of 8 cell vertices values with a threshold and an index computation 

(8-bit) 
• Normal vectors approximation in the cell vertices 
• The use of index to find all intersected edges 
• Triangles vertices and normal vectors approximation at all intersected edges 

 

 
Figure 9 – The cell in structured volume data 

 
A cell has a cube shape and is easily created from the structured volume data. 
Appropriate four samples from two adjacent slices form the cell see Figure 9. The index 
is then created as an 8-bit binary number. Each cell has 8 vertices and each vertex 



15 

corresponds to one bit in index. Bit is set to 0 if the sample value in corresponding 
vertex is lower than threshold value (negative node) and vice versa (positive node). If 
the index (Figure 10) is 0 or 255 the cell is not intersected by the iso-surface. In total, 
we have 256 possibilities how an iso-surface can intersect our cell. All 256 possibilities 
can be reduced into 15 basic cases because of negation of index, rotation of a cell or 
symmetry, see Zara et al. [38] or Figure 11. The computed index points into a triangle 
table, where triangle configurations are stored. The triangle configurations table stores 
intersected cell edges for the given index and appropriate iso-surface approximation 
(inside the cell) by triangles.  Two adjacent cells share 4 edges (one cell wall), so a 
generated set of triangles is linked properly between these cells. MC generates up to 4 
triangles per cell, which means that for higher data resolutions the number of generated 
triangles grows quickly. A cube cell has 12 edges which can be intersected by an 
iso-surface. 
 

 
Figure 10 – The 8-bit index creation 

 

 
Figure 11 – All 15 basic cases in MC 

 
An iso-surface lies between two different volumes. Therefore, normal vectors can be 
approximated with data gradients ∇f = g = (g0, g1, g2) and calculated using symmetric 
difference. For an inner sample (does not lie on the border of volume data) with 
coordinates xi = (xi, yi, zi) the normal vector g is calculated as:  
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Where a, b and c are distances of adjacent samples in x, y, and z directions; f(x,y,z) is the 
value of the sample with coordinates x, y and z. When calculating normal vectors in 
samples that are stored at the volume data boundary, the one side difference is used. 

In the triangle table there are stored intersected edges corresponding to a 
computed cell index. Linear interpolation is used to find accurate coordinates of 
triangles vertices at the intersected edges:  
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Where xA and xB are coordinates of both edge ends; f(xA) and f(xB) are samples values in 
these ends; xP is the interpolated position of the triangle vertex. The division by zero can 
not arise, because such an edge is not intersected by any iso-surface. 

Normal vectors in the cell vertices are already calculated see Equation (6). To 
calculate normal vectors in triangle vertices that lie at the intersected edges, linear 
interpolation is used again: 
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Where a and b are normal vectors at the edge ends; f(xA) and f(xB) are data values that 
are stored in the edge ends; q is the resulting normal vector in the triangle vertex.  

MC is a simple method for the iso-surface extraction with minimal memory 
requirements for computation. It generates relatively low number of triangles when 
compared to Marching Tetrahedra (Section 4.3), Centered Cubic Lattice (Section 4.4) 
and others. Marching Cubes method sometimes produces holes in resulting set of 
triangles due to ambiguity (Figure 15), in Schoeder et al. [29], there are shown some 
approaches how to solve this problem. Overview of possible approaches is also given in 
[24] by Ning and Bloomenthal. 

4.1.1 Local Coherence Speedup 

A local coherence speedup (3D cell buffer) can be used for Marching Cubes, Marching 
Tetrahedra 5 and Marching Tetrahedra 6 methods. For Centered Cubic Lattice it can be 
used as well, but implementation is rather complicated.  

The local coherence speedup takes advantage of already computed results from 
adjacent cells, it skips redundant computations. This technique can be implemented via 
a 2D cell buffer as shown in Figure 12. The buffer stores one slice of cells (cell indexes, 
interpolated normal vectors, interpolated triangles vertices on edges, etc.) Therefore, its 
memory requirements depend on the volume data resolution. The cell buffer decreases 
total number of interpolations. The speedup is more noticeable for the inner cells then 
for the border ones. The inner cells can undertake results computed previously from left, 
bottom and previously stored cells.  
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Figure 12 – Cell buffer speedup overview (a...a cell situated UNDER  

the actually processed cell, b...actually processed cell will be stored here, 
c...a cell situated on the left side of the actually processed cell) 

 
Furthermore, the computation time can be reduced by placing triangle vertices to the 
edge center and edge end points instead of time consuming interpolations. However, the 
quality (mainly approximation accuracy and visual effect) of the output set of triangles 
will be lower. Such approach is suitable for the fast iso-surface preview. Such algorithm 
is called Discretized MC and was published by Montani et al. in [20]. 

4.1.2 More Accurate Normal Vector Estimation 

The typical approximation of the normal vector inside the volume data is shown in 
Equation (6). To get better normal vector approximation we can include other adjacent 
samples to the normal vector computation process, [27]. In the following equation, the 
2D diagonal differences are included. One sided difference can be used as well, for 
simplicity we consider unit cube cells: 
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Where xi = (xi, yi, zi) is i-th sample; f(xi) is the sample value; i, j and k are identity 
vectors in x, y and z directions. Also 3D diagonal differences can be used with 
appropriate weight, which is the length of a 3D diagonal, Figure 13. Note, that not all 
differences from Equation (9) are drawn. 
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Figure 13 – Improved normal vector estimation 

 

4.2 Improved Marching Cubes 

Chernyaev [3] discusses an algorithm for the iso-surface construction from the volume 
data. This algorithm approximates the searched iso-surface with respect to trilinear 
function. The values of coefficients of trilinear function are derived from the samples 
values in the cell corners, see Equation (10). 
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When the unit cell is moved to the origin of coordinate system, then each cell corner has 
local coordinates and Fiii represents the sample value in the appropriate cell corner 
(i = 0 or 1). F(x,y,z) is trilinear interpolation of samples values in the cell vertices (x, y, 
z are from [0; 1] interval), so the data value at any point inside of the cell can be 
evaluated. 
 For some kinds of cells, the iso-surface can intersect them in more than one way, 
but in MC look up table, there is stored only one possibility, see [3] or Figure 16 for 
such an ambiguous case. If all variants are taken into account, the lookup table should 
be increased from 15 basic cases to 33. For ambiguity cases solution Chernyaev uses the 
trilinear function F(x,y,z). The behavior of function F in any plane, which is parallel to a 
cell face and intersects this cell, is bilinear. The face ambiguity (Figure 14) can be then 
solved in the following manner, as described below.  
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Figure 14 – Marching Cubes face ambiguity 

 
If for example x = x0 then function F has the following bilinear form: 
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Four edges of the cell are intersected by the plane x = x0, data values in points of 
intersections are A, B, C and D. When x0 = 0 or x0 = 1 then A, B, C and D are sample 
values on an appropriate cell face. Let A, C be positive samples and B, D negative, as 
drawn in Figure 15. If F(y,z) = threshold, such contour has hyperbola shape (due to 
bilinear interpolation). The hyperbola from Equation (11), has the form 
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and its center is situated in the point 
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The decision, which of the two possible cases arose can be resolved by comparison of 
the data value in the point O, where hyperbola asymptotes are intersecting each other, 
and a threshold.  

DCBA
BDACzyF OO −+−

−
=),(  (16) 

To simplify the decision, the threshold is subtracted from sample values, positive and 
negative data values are obtained and a new threshold is zero. Therefore, new decision 
is based on comparison with zero and denominator in Equation (16) is always positive, 
so the test concerns only numerator AC – BD > 0 (positive samples are joined, negative 
separated) or AC – BD < 0 (positive samples are separated, negative are joined), see 
Figure 15. 
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Figure 15 – The face ambiguity 

 
There exists also internal ambiguity as apparent from Figure 16. This kind of ambiguity 
is solved in the manner, which is stated below. 
 

 
a)    b)  

Figure 16 – The internal ambiguity 

 
Let’s have a case, which is stated in Figure 16 and corresponding cell samples are 
named as shown in Figure 17. We can cut the cell with a parallel plane to a bottom face 
to obtain the samples Ay, By, Cy and Dy, which form a new face. If there exists such a 
new ambiguous face and it fulfills following Equation (17): 
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With the use of new face the decision of solving the internal ambiguity can be made. 
After insertion of Equation (18) into Equation (17): 
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Positive areas of the whole cell are then connected (Figure 16.b) when the quadratic 
function on the left side of inequality in Equation (19) has the same shape (a < 0) as in 
Figure 17.b and ymax = -b/2a lies in the interval (0, 1), otherwise the positive areas are 
disconnected (Figure 16.a). 
 

 
a)     b)  

Figure 17 – Internal ambiguity resolving 

 
As was mentioned, the original Marching Cubes table is extended to 33 basic cases 
including more than one variant for ambiguity cases solution. With described decision 
technique the appropriate case from a table is chosen and the iso-surface is locally 
approximated with a set of triangles. 

4.3 Marching Tetrahedra 5, 6 

Marching Tetrahedra 5 (MT5) and 6 (MT6) methods are similar to MC method (Section 
4.1). Difference is that the cell with a cube shape is divided into 5 or 6 sub-cells with 
tetrahedral shape. For MT5 there are 2 different division schemes shown in Figure 18 or 
follow one of these references [24], [15] and [26]. When using MT6, there is more than 
one possibility: [15] – 6 schemes, [32] – 2 schemes, [24] – one scheme MT5, [14] – all 
possible cases, or Figure 19. These sub-cells are then processed in the similar way as 
cells in MC. Index is, in this case, 4-bit, therefore there exists 16 possibilities how an 
iso-surface can intersect the tetrahedral cell. These possibilities can be due to index 
negation, symmetry and rotation reduced to 2 basic cases, see Figure 20.  

The resulting set of triangles does not contain holes. The triangle table contains 
only 16 triangulations for intersected tetrahedral cell. MT6 division scheme makes all 
tetrahedra to have the same size, volume and shape. The amount of generated triangles 
is greater, when compared to MC. The more tetrahedra the more generated triangles 
(MT6 > MT5 > MC). The use of division of the cell into 5 tetrahedra causes that these 
tetrahedra does not have the same shape, etc. And moreover the need of two different 
divisions arises. These divisions have to be alternated regularly, because of set of 
triangles consistency among adjacent cells. The cube cell with 5 tetrahedra has 18 edges 
(12 + 6 face diagonals), with 6 tetrahedra has 19 edges (12 edges + 6 face diagonals + 1 
cell diagonal) which can be intersected by an iso-surface, the maximal number of 
extracted triangles from one tetrahedral cell is 2. 
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Figure 18 – Two possibilities how to divide a cell into 5 tetrahedra 

 

 
Figure 19 – One possibility of the cell division into 6 tetrahedra 

 

 
Figure 20 – Two basic cases how the iso-surface can intersect a tetrahedral cell 

 

4.3.1 Number of Cell Tessellations 

Kolcun [14] investigated the cube cell tessellations and defined surface representation 
of the tessellation schemes, also the part of his dissertation is devoted to grid generation 
and deformation. The five non-equivalent (with respect to the rotation) tetrahedra which 
can be created using the cube cell vertices are shown in Figure 21. 
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Figure 21 – Five different tetrahedra within the cell 

 
The number of all tetrahedra which can be constructed from the cube cell vertices is 
following [14]: 
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The planar quadrilaterals are all six cell faces and six diagonal planar cuts of the cube.  
 Kolcun [14] also counts all possible cube cell tessellations into six tetrahedra 
using an incidence matrix and a graph theory. The total number of all tetrahedral 
tessellations of the cube cell into six tetrahedra is 72. 
 The author also mentions a cube cell tessellation into three pentahedra, Figure 22 
(to define the surface representation of the tessellation schemes). 
 

1 2

3 4

5

6

7 8                 
Figure 22 – Three pentahedra tessellation scheme 

 

4.3.2 Different Interpolations on Face Diagonals 

Guéziec and Hummel [9] address problem with sample value interpolation on face 
diagonal edges. The main problem is that a face diagonal is chosen randomly (depends 
on chosen division scheme) by the programmer. The value on the diagonal is 
interpolated using linear interpolation. That causes two different results (generated 
polygons), each for a different diagonal, see Figure 23.a and Figure 23.b. 
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Figure 23 – The difference between linear and bilinear sample value interpolation  

( a), b) … linear, c) … bilinear interpolation) 
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The authors solve this problem using bilinear interpolation (Section 4.13). This 
approach makes the difference between two face divisions smaller as obvious from 
Figure 23.c. We assume that the similar approach can be used with the cell internal 
diagonal (and the use of trilinear interpolation). 

4.4 Centered Cubic Lattice 

The cube cell is divided into 24 tetrahedra, Chan and Purisima [2], see Figure 24. The 
tetrahedron parts are shared among adjacent cube cells. The data value in the center of 
gravity of the cube cell is calculated via arithmetic mean. Of course, trilinear 
interpolation as described in [38] can be used as well as other approaches. Normal 
vectors in tetrahedron vertices are calculated as follows [2]: 
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Where a, b, and c are distances between adjacent samples in given volume data in x, y 
and z directions; q is weight parameter for normal vector calculation and it is from the 
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range [0; 1] (q determines the impact of adjacent data samples onto normal vector 
computation). Chan and Purisima [2] tried different values for q, their conclusion is that 
the value of q has a small effect on visual appearance of the resulting surface.  
 

 
Figure 24 – A centered cube division scheme 

 
The sharing of tetrahedra gives better link-up among adjacent cells. All tetrahedra do 
have the same size, volume and shape (similarly as in MT6 – Section 4.3). When the 
sum of volume of all 24 tetrahedra is done, we obtain the volume of two cube cells. 
Therefore, each cube cell is approximately divided into 12 tetrahedra (from the view of 
the cell volume). The number of tetrahedra is the main reason why this method 
generates much higher number of triangles than MC, MT5 and MT6. This method is 
much slower than other methods, because of the volume data approximation in the 
center of the cell and more complex normal vector computation. 

4.4.1 Another Division Scheme 

When we have the data sampled in centered cubic lattice grid and does not need to 
compute the central sample value, we can use following algorithm, that was proposed 
by Takahashi et al. [34]. They divide a parallelepiped cell into two tetrahedra and one 
octahedron, as in Figure 25. 
 

 
Figure 25 – The division scheme two tetrahedra and one octahedron 

 
This approach does not solve the ambiguity. Tetrahedron has 3 basic cases of 
intersection, as mentioned before. The octahedron can be intersected in 64 ways, but 
due to symmetry and rotation these can be reduced to just 7 basic cases (two of them are 
ambiguous), as described in detail in [34]. The authors tested their method only using 
metaball implicit functions.  
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4.4.2 3D Chessboard Speedup 

This speedup technique is often referenced as a 3D chessboard, Cignoni et al. [5], and it 
is based on a local coherence of adjacent cells and cell reduction together. The total 
number of explored cells is reduced to 25% of all cells, as it can be seen from Figure 26.  

 

 
Figure 26 – The 3D chessboard speedup overview 

 
The 3D chessboard is defined in the following way: 

• Let’s assume a 3D grid with resolution I⋅J⋅K in x, y and z directions. Such 
volume data consist of (I–1)⋅(J–1)⋅(K–1) cube cells. Black cells are then placed 
to the following positions (2i+(k%2), 2j+(k%2), k), where i=0...(I–2–(k%2))/2,  
j=0...(J–2–(k%2))/2 and k=0...(K–2). The character "%" stands for modulo 
division, e.g. (5%2) = (5 mod 2) = 1. 

In the other words, when we have a black pane (cell) C=(i, j, k) inside of a volume then 
the adjacent black cells are such cells which shares only one corner (cell vertex) with 
black pane C. 

4.5 Near Optimal Iso-Surface Extraction 

More information about this speedup technique can be found in Livnat et al. [16] or 
Shen et al. [30]. Active cells are searched via span space (also known as interval space). 
Span space can be represented with a kd-tree [16] or a range (interval) tree Cignoni et 
al. [5]. Kd-tree is tree data structure with O(N) memory complexity, where N is the total 
number of all cells in given volume data. Kd-tree is constructed for volume data only 
one time in offline preprocessing. 

Span space represents a set of intervals as a set of points in 2D. The interval 
I = [min; max] is represented as a point x = [x, y] where x = min and y = max, see 
Figure 27. If we are looking for intervals which contain number num it is the same as 
we would be looking for points (in span space) which have greater coordinate on max 
axis (or equal to) than num and coordinate on min axis is lower than num (or equal to). 
Intervals which contain given number num are represented by points in hatched area in 
Figure 27. For each cell in the volume data we created one interval (minimal and 
maximal data value).  
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Figure 27 – A span space (intervals are represented as points in 2D) 

 
The Kd-tree is a multidimensional binary tree. Each its node (father) contains the data 
value and two sub-trees (sons). In the left sub-tree there are all values lower than a value 
in the father node and vice versa. Binary trees are used to search among one 
dimensional data, in the other hand kd-trees are used to search among multidimensional 
data. In each kd-tree level single data dimensions are regularly alternated, e.g. points in 
2D in even levels of the kd-tree there are data ordered according to x coordinate and in 
odd levels there are ordered according to y coordinate. In our case the node of kd-tree 
represents an interval of data values of the cell. For each cell there is one kd-tree node. 
The NOISE method takes advantage of kd-tree. Particular steps of this algorithm are as 
follows: 
 

• The construction (or a load) of kd-tree for the given volume data 
• The recursive search for active cells with given threshold (via kd-tree) 
• The iso-surface approximation with a set of triangles within active cells 

 
In each kd-tree node there are stored minimal and maximal data value within 
appropriate cell, pointers to left and right sub-trees and pointer to the full cell 
information. The nearly balanced kd-tree for NOISE method is used in our case. The 
kd-tree can be easily implemented as an one dimensional array of kd-tree nodes 
(relatively low memory usage but little higher computational requirements). This 
representation is called the pointerless kd-tree, Livnat et al. [16]. Sub-trees are then 
represented as intervals in this array and the root is placed in the middle of this interval. 
The balanced kd-tree construction uses Wirth’s recursive algorithm [37] to search for 
the median (in general this algorithm can be used to search for the kth smallest element). 
This approach is many times faster than standard quick sort algorithm and does not 
completely sort the whole array. The kd-tree drawn in span space is displayed in Figure 
28. Steps for kd-tree construction are described bellow (principle is similar to creation 
of balanced binary tree):  
 

1. Create dynamically allocated one dimensional array. The size is the same as 
number of cells in given volume data. For each cell there is one node of kd-tree. 
Fill this array with required details (minimum data value, maximum data value 
and pointer to original cell). Cells, where minimum equals to maximum 
(singular case) can be omitted to save the memory space, because these cells are 
not intersected by any iso-surface. 
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2. Sort of all elements in the array into a kd-tree. With Wirth’s method find a 
median (root node) due to minimum data value among all cells. On the left side 
from the median there are only cells with less minimum value (left sub-tree) and 
vice versa (right sub-tree). The first level of kd-tree was created. 

3. Recursively find roots in all sub-trees from previous step but now with use of 
maximum data value. The even (e.g. second) level of kd-tree was created. All 
even levels are created on the basis of maximum data value. Jump onto 4th step 
until the kd-tree is done (sub-trees can not be further divided). 

4. Recursively find roots in all sub-trees from previous step but now with use of 
minimum data value. The odd (e.g. third) level of kd-tree was created. All odd 
levels are created on the basis of minimum data value. Jump onto 3rd step until 
kd-tree is done (sub-trees can not be further divided). 

 

 
Figure 28 – A kd-tree (numbers show the kd-tree levels) 

 
Example of the complete kd-tree, which was created from a sample set of intervals, is 
drawn in Figure 29. Steps for the kd-tree pass: 
 

1. Find the kd-tree root in one dimensional array – root is at the position  
0+(number of nodes)/2 (array is indexed from 0). The root divides an array into 
two sub-trees. The first sub-tree is from 0 to (number of nodes)/2–1, the second 
sub-tree then from (number of nodes)/2+1 to (number of nodes). After the root 
location, the comparison of nodes data values with given threshold is performed 
and decision whether this node represents an active cell or not is made. After 
this, the decision whether to pass both sub-trees or not follows. 

2. The next step is to recursively search all sub-trees from the previous step. Note 
that some sub-trees need not be traversed due to decision in the previous step. 
Find the roots of these sub-trees, decide whether they represents active cells or 
not, etc. Repeat this step until the whole kd-tree is traversed. 

 
As was mentioned before, odd levels of kd-tree are ordered according to minimum 
value and even levels according to maximum value. When the decision whether to pass 
both sub-trees in odd level node or not has to be done, one of the following situations 
can occur: 
 

• The threshold is less than interval’s minimum – we know that in the right 
sub-tree there are no active cells. In the right sub-tree there are all intervals’ 



30 

minimum values greater than the threshold. So we are going to pass only left the 
sub-tree. 

• The threshold is greater than interval’s minimum – we know that in the left 
sub-tree there are all intervals’ minimum values always less than the threshold 
value. So we can skip tests for interval’s minimum values in the whole sub-tree. 
We are going to pass both sub-trees. 

 

 
Figure 29 – A nearly balanced kd-tree for intervals: [7, 9], [2, 8], [5, 9], [1, 3],  

[4, 7], [6, 9] and [0, 8] 

 
When the decision whether to pass both sub-trees in even level node or not has to be 
done, one of the following situations can occur: 
 

• The threshold is greater than interval’s maximum – we know that in the left 
sub-tree there are no active cells. In the left sub-tree there are all intervals’ 
maximum values less than the threshold. So we are going to pass only the right 
sub-tree. 

• The threshold is less than interval’s maximum – we know that in the right 
sub-tree there are all intervals’ maximum values always greater than the 
threshold value. So we can skip tests for interval’s maximum values in the 
whole sub-tree. We are going to pass both sub-trees. 

 
Thus, in higher kd-tree levels it can easily become a situation when both tests (interval’s 
minimum and maximum value tests) are skipped and the sub-tree consists only from 
active cells. As mentioned before, the sub-tree is an interval in 1D array, thus we can 
pass it sequentially and extract appropriate part of the iso-surface. Described deciding 
mechanism skips such parts of kd-tree where are not active cells for given threshold.  

A degenerate cell in the kd-tree is defined [16] as the cell which has more than 
one data value equal to minimum or maximum data value within the cell. When the 
threshold equals to maximum or minimum value, in such cell one of the following cases 
can occur: 
 

• One value is equal to the extreme – the cell shares one vertex with the 
iso-surface 

• Two values are equal to the extreme – the cell shares one edge with the 
iso-surface 

• More than two values are equal to the extreme – the cell shares one wall or the 
whole cell is a part of the iso-surface 

 
We can ignore first two cases. When we would ignore the third case, there would be a 
hole in the resulting set of triangles. When we would decide to draw a whole wall of the 



31 

cell, it would be drawn twice because such a wall is shared by two adjacent tetrahedra. 
If the whole cell is a part of iso-surface then iso-surface contains bubbles and all cell’s 
walls are drawn twice. In Livnat et al. [16] there is proposed as a solution a small 
perturbation of data values and the iso-surface then intersects the cell, rather than 
touches it. Another solution is to utilize local coherence to decide what to draw. Note, 
that singular cases (cells) in iso-surface extraction are generally described as cells which 
do have one or more data values equal to the threshold value. This is the main 
difference from degenerate cell in the kd-tree. 

For 109 cells (data resolution 1001⋅1001⋅1001) we gain kd-tree depth only 30. 
Therefore, the recursion depth is not too deep and we can easily use recursive 
algorithms to traverse such a tree. Maximum recursion depth is given by the 
Equation (23): 
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4.6 Isosurfacing in Span Space with Utmost Efficiency 
(ISSUE) 

This improvement of search in span space was introduced by Shen et al. [30]. They 
propose equidistant span space division, which if properly used, is faster than search of 
active cells via kd-tree. Such division can be used for both serial and parallel iso-surface 
extraction. 
 

 
Figure 30 – The span space division and cell types 

 
The span space is subdivided into L⋅L uniform squares, assuming that there exist 
minimum sample value and maximum sample value across the whole volume data (e.g. 
8-bit unsigned samples have min = 0, max = 255). 
 When the threshold t is specified, the squares are divided into 5 categories as 
follows, Figure 30: 

• a – cells from the volume data, which are represented by points inside of such 
square and they are all active cells. For threshold t it always holds that t ∈ 
[min, max]. 
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• b – for cells in these squares, the minimum condition is always fulfilled  
(min <= t) 

• c – for cells in these squares, the maximum condition is always fulfilled  
(t <= max) 

• d – the d square (is only one) contains all kinds of cells, hence all cells inside of 
it have to be checked whether they are intersected or not 

• e – cells can not be in these squares, because condition min <= max would not 
be fulfilled 

 
The iso-surface from all cells, which are represented by points in a-type squares, can be 
immediately extracted. In all b-type squares, all the cells have to be ordered according 
to max. Such a sub-set of cells can be divided by binary search in two groups 
(intersected and non-intersected cells). Cells in c-type squares are ordered according to 
min and as well divided into two groups by binary search. The last sub-set, which can 
contain intersected cells, is defined by d-type square. For this sub-set, the kd-tree or 
min-max lists are constructed and searched to find active cells. The e-type squares can 
not contain any cells, as mentioned before. 

As perceptible, it can happen that one or more squares are empty, without cells. 
To quickly find non-empty squares the row data structure, see Figure 31, is created. 
This structure also establishes adjacency among squares. 
 

 
Figure 31 – Adjacent cells connection and empty cell skip 

 
As was mentioned at the beginning, this algorithm is serial and with small modifications 
it can also be used in the parallel environment. Each processing element should get 
approximately the same work. Shen et al. [30] order all cells in span space according to 
e.g. min value. Afterwards, the array is divided into L intervals (e.g. in min axis), which 
have the same length. The boundaries of these intervals are coordinates of equidistant 
grid. 

4.7 Material Interface Reconstruction 

For different input data, where only fractional material information is given for each 
cell, the Material Interface Reconstruction method can be used. This approach was 
published by Bonnell et al. [1]. The authors do not state how to transform volume data 
to required input data (fractional material information is known), e.g. when the 
threshold is selected. 
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 Let’s focus on two dimensional cases with just two different materials. The input 
data are given in the structured 2D cubic grid and each square cell contains fractional 
material information, which is expressed by percentages (from 0 to 1). The sum of 
percentages of all materials contained in one square equals to 1, Figure 32.a. 
 

 
a)     b) 

Figure 32 – Fractional material information a) and dual grid with simplices drawn in 
bold b) 

 
Each square cell can be transformed to a point in a dual space and the dual grid can be 
then constructed, as clear from Figure 32.b. Each vertex p from the dual grid has 
appropriate coordinates and the fractional material information as well 
p = (x, y, m1, m2). The fractional information is represented by barycentric coordinates 
tuple (m1; m2). The dual grid is furthermore divided into triangles (note, that in 3D into 
tetrahedra).  
 

 
Figure 33 – Finding the border between two materials by linear interpolation 

 
As mentioned, each end of the edge (p1 and p2) in the dual space has barycentric 
coordinates tuple (m(1) and m(2)). Such edge can be drawn in a material space (m-space) 
as in Figure 33. Material space is the space, where only barycentric coordinates of dual 
grid vertices are used. The point (0.5, 0.5) in m-space represents the intuitive boundary 
between two materials, in such point the dominance of materials is changing. This point 
is important because it isolates two different materials. One of the following cases has 
to arise: 

• The line m(1)m(2) does not intersect the point (0.5; 0.5) in m-space – the 
corresponding edge p1p2 in dual space does not intersect the material boundary. 

• The line m(1)m(2) intersects the point (0.5; 0.5) in m-space – the corresponding 
edge p1p2 in dual space intersects the material boundary and the point of 
intersection can be calculated by linear interpolation: 

)2()1()1()5.0;5.0( mm rr +−=  (24) 
The point of intersection pi=(x; y) in the dual space is calculated with use of the 
scalar parameter r (that can be computed from Equation (24)) as follows: 

21)1( ppp rri +−=  (25) 
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The dual grid in 2D is divided into triangles, in 3D into tetrahedra. Each edge is then 
checked, weather it intersects the material boundary or not. Afterwards, the computed 
intersection points are properly connected inside of the square cells (in 2D) in the dual 
space and iso-lines are drawn. When testing edges of a triangle in 2D, two basic cases 
can arise: 

• None of three edges is intersected – whole triangle consists of one material. 
• Two edges are intersected – triangle consists of two materials and two 

intersection points are calculated => one line is constructed. 
When testing edges of tetrahedron in 3D, three cases can arise: 

• None of edges is intersected – whole tetrahedron consists of one material. 
• Three edges are intersected – tetrahedron consists of two materials, three 

intersection points are calculated => one triangle is constructed. 
• Four edges are intersected – tetrahedron consists of two materials, four 

intersection points are calculated => two triangles are constructed. 
In two material cases, this approach gives the same results and the underlying process is 
the same as in Marching Tetrahedra methods. When more than two materials are present 
in the input data, the extended algorithms have to be used, for such cases, see [1]. 

4.8 Extrema Graph 

A graph based approach presented by Itoh and Koyamada in [10] is another alternative 
for fast active cells search and the iso-surface extraction. The main idea is to find 
extremum points in the volume data and connect them into an extrema graph. After the 
threshold selection the extrema graph is to be traversed and found active cells serve as a 
starting points for the iso-surface extraction. Afterwards, the iso-surface propagation 
approach is used to search for other active cells within the volume data. 
 The extremum point is defined as a grid node whose scalar value is higher (or 
lower) than the scalar values of all adjacent grid nodes that are connected to it with cell 
edges. In a 3D regular grid the inner nodes have always six neighbouring nodes, two in 
each direction (x, y and z). An extremum point defined in such a way represents a local 
minimum or a local maximum. An important rule that holds for extremum points is that 
y lie both inside and outside of a closed iso-surface. If there is an open iso-surface then 
it intersects the boundary of the volume data, Figure 34. 
 

 
Figure 34 – The 2D case E are extremum points, A is the closed iso-line and finally B is 

the open iso-line 
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The algorithm [10] has generally these three steps: 
• extremum points extraction and the extrema graph construction 
• the extrema graph traverse 
• the iso-surface propagation 

 
The extraction of extremum points is made by sequential traverse of all the grid nodes. 
The extrema graph construction is not a simple task. The extrema graph connects all 
extremum points. Each arc of the extrema graph contains a set of intersected cells and 
their minimum and maximum data value. The aim is to get such a graph that the sum of 
all cells, which are intersected by arcs of a graph, is minimal. Itoh and Koyamada 
propose approach to find such a graph but they do not guarantee that the algorithm 
works well for all volume data sets (their future work should improve the algorithm). 
The example of an extrema graph is shown in Figure 35. 
 

 
Figure 35 – The example of an extrema graph 

 
The next step is to traverse an extrema graph and generate the starting set of all active 
cells (from all its arcs). For faster graph traverse the minimum and maximum values for 
each arc can be taken into account. It is guaranteed that the extrema graph intersects all 
possible iso-surfaces for all threshold values. Hence all disjoint parts of the iso-surface 
are to be extracted. Note that whole extrema graph has to be traversed. 
 

 
Figure 36 – The iso-surface propagation among adjacent cells 

  
The final step uses the iso-surface propagation algorithm (Itoh and Koyamada [10] with 
reference to [33]) to extract all parts of the iso-surface from the starting cells. Each cell 
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has a flag whether it was already processed or not. All the starting cells are put into a 
FIFO like queue and their flags are set. The queue contains only active cells. The cells 
from the queue are processed until the queue is empty. The iso-surface is locally 
extracted from each cell. All cell faces that are intersected by the iso-surface are also 
shared by adjacent cells. Hence these cells are also active and are added into a queue 
and their flag is changed, see Figure 36. Naturally the cells with the flag set are not put 
into a queue. At the end the queue is empty and the iso-surface was extracted from all 
active cells. 
 The great advantage of this algorithm is that during the iso-surface extraction 
only active cells are visited and non-active cells in the extrema graph are simply 
ignored. Authors also propose an extension of mentioned algorithm that can handle 
special volume data with voids (missing cells) and through holes (a hole through a 
whole volume data). 

4.9 Seed Set 

Marc van Kreveld et al. [36] use a seed set for the iso-surface extraction. A cell can be 
thought to be a seed, so the seed set means a set of cells. For given volume data the seed 
set is said to be complete when any iso-surface or its disjoint part passes through one or 
more seeds. 
 An example of a seed set is e.g. an extrema graph that was mentioned in the 
Section 4.8. Similarly to an extrema graph with shortest total path (arcs length) a seed 
set with minimum cardinality is not easy to construct. Van Kreveld et al. [36] present an 
algorithm for a seed set construction. It is proved that their algorithm in the worst case 
constructs a seed set with cardinality twice as big as cardinality of a minimum seed set. 
The seed sets are generally smaller in size than cells contained within an extrema graph. 
They use a contour tree (described in [36]) as a preprocessing for a seed set 
construction. 

An extrema graph connects local minimum and local maximum points. A 
contour tree connects also local minimum and local maximum points but moreover also 
saddle points. The sweeping algorithm is used by Van Kreveld et al. for its construction. 
New contours arise at local maximum points, expires at local minimum points and the 
contours spilt or merge in saddle points. All the cells (their data intervals) are then 
compared with the contour tree and the set of cells that covers scalar ranges of the 
whole contour tree is selected as the seed set. 
 This algorithm has the same advantage as a previously mentioned one (the 
extrema graph), non-active cells in a seed set are skipped during the iso-surface 
extraction process. 

4.10 Volume Thinning Algorithm 

The extension of image thinning algorithm, which is used for skeleton finding in 2D 
images, into 3D is presented by Ithoh et al. [11], also implementation details are 
mentioned there. Such extension is called the volume thinning algorithm and it 
constructs a skeleton in the volume data. 
 At first all extremum points are found using the algorithm of [10]. All cells are 
thought to serve as a starting seed set. The cells that share the extrema points are 
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marked. Marked cells can not be further deleted from a final seed set that will represent 
the extrema skeleton. All non-marked cells are repeatedly tested (by volume thinning 
algorithm) and the unnecessary cells are deleted from a seed set. At the end the resulting 
seed set forms a one cell wide extrema skeleton. 
 The image thinning algorithm in 2D forms a skeleton of a binary image, the 
skeleton is one pixel wide and describes features of figures in image processing 
applications. The algorithm in 3D is similar to 2D version. The 2D version is briefly 
described here. 
 It visits pixels that touch the boundary of a painted area and eliminates many of 
them. This process is repeated until no pixels are removed. Pixels that are not removed 
have to fulfill one of the following rules: 

• If all the adjacent black pixels (at most eight) of the visited pixel P that shares an 
edge with P can not be visited by traversing the adjacent pixels through their 
shared edges in order (cases A and B in Figure 37). 

• If the visited pixel P has only one adjacent black pixel that shares edge with P. 
 

 
Figure 37 – The image thinning algorithm 

 
Pixels P in cases C and D from Figure 37 can be removed, because they do not fulfill 
the rules. Original image and its skeleton are also shown in Figure 37. 
 The extension of the image thinning algorithm to the volume thinning algorithm 
is simple and intuitive. The similar rules with some extensions do apply for cells in 3D. 
The adjacent cells are traversed using the cell faces. The cell edges and vertices are also 
taken into account and each cell stores some additional information e.g. number of 
adjacent cells, adjacent cell pointers, boundary faces, etc. 
 This algorithm can be used also for the volume data that contain some voids or 
through holes. The seed set, which is the result of the volume thinning algorithm, can be 
further processed to form a kd-tree or an interval tree to accelerate its traverse. 

4.11 Min-Max Lists 

This method uses two sorted lists to quickly extract the searched iso-surface and the 
global coherence is partially used by Min-Max lists, see Giles and Haimes [8]. The cell 
is intersected by the iso-surface when the selected threshold is between minimum and 
maximum data value within such cell. The list of all probably intersected cells which 
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this method uses is called an action list. Such special list is updated with use of other 
two lists: 

• Min list – this list contains for each cell its minimum data value and the pointer 
to cell’s complete information, moreover this list is ordered according to the 
minimum value. 

• Max list – contains maximum data value for each cell and it is also ordered but 
according to the maximum value. 

In each cell we have minimum and maximum data value and the difference can be 
calculated as (maximum-minimum), the global variable ∆Z equals to maximal difference 
among all cells. When the threshold T is specified for the first time, or the threshold 
changed about more than ∆Z due to its previous value, all cells with minimum value in 
the interval (T−∆Z; T) are placed into the action list. The action list is then traversed and 
all cells which are not intersected by the iso-surface are discarded. If in the next step the 
threshold value increases about less than ∆Z, all cells with minimum value in the 
interval (TPREVIOUS; TNEW) are added into the action list. The min list is used for fast 
search of such cells. If the threshold decreases about less than ∆Z, all cells with 
maximum value in interval (TNEW; TPREVIOUS) are added to the action list. The max list is 
used for that. Afterwards, all cells which are not intersected by the iso-surface are 
discarded from the action list. As evident, the action list can change drastically from 
threshold to threshold, and its maintenance is complex. 

4.12 Sweeping Simplicies 

Shen and Johnson [31] described Sweeping Simplicies method for the iso-surface 
extraction. This method uses a global coherence and hierarchical data decomposition. 
Previously stated Min-Max method [8] uses two ordered lists, this method uses also two 
different ordered lists: 

• Sweep list – for each cell, which is stored within this list, it contains a pointer to 
cell’s complete information, maximum data value of the cell and a flag, 
moreover this list is ordered according to the maximum value. 

• Min list – the min list contains minimum data value for each cell, and a pointer 
to this cell in the sweep list. Min list is ordered according to the minimum data 
value. 

 
After the first threshold selection, the algorithm sets the flag for all cells in sweep list 
with less minimum value than the threshold. When the threshold was previously 
selected, the algorithm passes only cells in min list with minimum value in interval 
(TPREVIOUS; TNEW). If the new threshold value is greater than previous one, flags of 
appropriate cells are set, else they are cleared. The algorithm than passes the sweep list 
from the first cell with greater maximum value than the new threshold and it 
approximates the iso-surface, but only inside of cells whose flag is set. 
 As mentioned above, the sweeping simplicies method also uses hierarchical data 
decomposition. There are several sub-groups and each sub-group accepts only such cells 
with minimum and maximum data value within its interval. Of course, it can happen 
that some cells do not fit into any sub-group, because of its minimum or maximum data 
value exceeds it. The set of such sub-groups form the first level of the tree structure. In 
the next step, always two adjacent sub-groups are merged into one, and cells from 
previous step, which did not fit into any sub-group, are tested again. Also there can be 
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again some cells, which do not fit into any of such sub-groups, the second level was 
created, etc. The last level, which will be created, will cover the data interval of whole 
volume data set. 

Sweep and min lists are created for each sub-group. When the threshold is 
selected, it is easy to identify all sub-groups, which contain such number. All cells from 
such sub-groups are then passed using sweep and min lists and non-intersected cells are 
discarded. Intersected cells are then used for the iso-surface extraction.  

4.13 Trilinear Interpolation 

At present, trilinear interpolation is often used to represent the data value inside of a 
cell. The data within a cell are supposed to have a linear behaviour. As already 
mentioned (Section 4.2), Chernyaev [3] used two special points to solve two kinds of 
ambiguities. These points are called either face saddle point or body saddle point. The 
face saddle point is used to solve the face ambiguity and the body saddle point is used to 
solve the cell internal ambiguity. Cignoni et al. [4] with reference to Natarajan [21] 
describes Exhaustive Look Up Table (also known as ELUT) that stores all possible 
configurations of the iso-surface within a cell and its appropriate triangulations with 
respect to the topological correctness. Lopez and Brodlie furthermore extend this idea in 
[18]. The extension improves the representation of the iso-surface in the cell interior. 
Their approach also minimizes visual changes that can be caused by a small threshold 
change when using mentioned approaches. An example of such changes can be 
observed in Figure 38. 
 

 
a)   b)   c)   d) 

Figure 38 – A small threshold change produces a significant visual change (in 2D) 

 
In Figure 38.a (bilinear iso-line) and Figure 38.b (linear iso-line), the positive vertices 
are cut off. Afterwards, a small change was made the visual appearance of iso-line 
changed significantly Figure 38.c and Figure 38.d and negative vertices were cut off. 
These changes motivated Lopez and Brodlie to add some additional points to the final 
triangulation within a cell.  
 For simplicity let’s consider a 2D case. Bilinear interpolation is used to represent 
the data in the 2D cell interior and an iso-line is approximated with hyperbola arcs. The 
more new points are added the slower visualization will follow. To minimize the 
number of added points and maximize the accuracy of hyperbola approximation with 
line segments just one special point is added for each hyperbola arc. Such point lies on 
hyperbolic arc and is called a shoulder point, see Figure 40. 

If a function f = f(x, y) is a scalar function of two variables, then the saddle point 
is any point s where the gradient of f is zero and s is not a local minimum or maximum. 
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Figure 39 – A face saddle point computation 

 
A face saddle point s computation example follows. At first we need to calculate 
coefficients of bilinear interpolation 

dcybxaxyyxF +++=),(  (26) 
These coefficients are obtained easily when we move the unit cell into the origin and 
insert cell corners coordinates and values (see Figure 39), then we obtain the system of 
four equations whose solution is: 
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The resulting saddle point coordinates are computed from the system of two equations 
(partial derivatives are equal to zero) as: 
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And the data value in the computed saddle point is 

a
bcdF −=)(s  (29) 

where s is a saddle point, F(s) is the value of bilinear interpolation in a saddle point. 
Face saddle points, which are out of the unit square, are discarded. 
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Figure 40 – Face shoulder point 
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The face shoulder point r is defined as the point of hyperbolic arc where the tangent is 
parallel to the chord pq that joins the end points of an arc on the cell borders p and q. 
Moreover the authors claim that a shoulder point r lies on a line segment ms, where s is 
a saddle point of bilinear interpolation. Hence, the threshold value changes the position 
of r on ms line segment. For the critical threshold value (equal to the data value in s) the 
r is at the same position as s and thus visual appearance is not changing significantly 
with small threshold changes around s. Note, that when a threshold value approaches s 
the hyperbolic arcs tend to appear as two perpendicular line segments and r approaches 
to s. The point r is optimal point for the area of hyperbolic arc approximation with a 
polynomial. It maximizes the covered area of hyperbolic arc. 
 The face shoulder point r can be found by the following procedure [18]. The 
bilinear interpolation at the face is defined as: 

dcybxaxyyxF +++=),(  (30) 
Thus partial derivatives of F(x,y) that define the gradient ∇F are: 
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Because for p it holds that x=0 and F(x, y)=0 in it, then from Equation (30), the 
tangential vector t we want to find is: 
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The following dot product has to hold at a point we are looking for (tangential and 
gradient vectors are perpendicular to each other): 
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The curve at which we are looking for a shoulder point is F(x, y)=0 and this also holds: 
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From the system of two equations Equation (33) and Equation (34): 
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And from Equation (31) and Equation (35) we gain shoulder point coordinates r = (x, y) 
as: 
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Note that face shoulder points which are out of the unit square (Figure 39) are 
discarded. 
 Such approach can be extended into 3D where body saddle point and bishoulder 
points are computed, see [18]. Note that the bishoulder point computation is not simple 
and its approximation has to be found using numerical methods. 



42 

4.14 Skeleton Climbing 

A Skeleton Climbing method is published by Poston et al. [28]. The name of the method 
comes from the fact that vertices (0-skeleton, 0-cell) are examined at first, edges 
(1-skeleton, 1-cell) and faces (2-skeleton, 2-cell) follow. The basic principle of Skeleton 
Climbing method can be described with the following sequence of steps: 

• Volume analysis with regards to the threshold 
• Adaptive construction of simple boxes (multiresolution cells) 
• Sharing the information among adjacent boxes 
• The iso-surface extraction 

4.14.1 1D Case 

In the first step the voxels are grouped in 1D to form segments and then in 2D to form 
rectangles. The 1D case is described in more detail then other steps. Let’s imagine a set 
of voxels as a set of dots in 2D. A whole line of samples is called a lign and its special 
subset is a dike, Figure 41. 
 

  
Figure 41 – The lign and the dike 

 
The special subset means that a dike has to start at k* 2m position and it ends at (k+1)* 2m 
position, where m and k are natural numbers with respect to the data resolution. All 
possible dikes can be assigned IDs according to the binary tree structure Figure 42, the 
higher ID number the shorter dike.  
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a)     b) 

Figure 42 – All possible dikes a) and a dike binary tree b) 

 
Every dike has its binary index in the occupancy array (00B … not crossed, 01B or 10B 
crossed once and 11B crossed more times by the iso-line; 1 represents a positive sample 
and 0 a negative one). A dike is called simple when its index is less than 11B. All 
maximal length simple dikes, with respect to the binary tree dike organization (hence 
the dike does not need to be the longest), are stored in a simple dike array, Figure 43. 
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Figure 43 – The simple dike ID array (black dot means positive sample) 

 

4.14.2 2D Case 

In this step the rectangles are formed from ligns and dikes. Two dimensional elements 
are named a strip, a plot and a padi, Figure 44. 
 

   
Figure 44 – The strip, the plot and the padi 

 
The plot is simple if and only if its two dikes are also simple. Plots are also labeled with 
use of the binary tree. Also the simple plot array is defined in a similar manner as a 
simple dike array. The longest simple plots are found easily with use of the fact that the 
shorter the dike is the higher ID it has. Hence, when constructing the plot using two 
adjacent dikes (each from a different lign), the longest plot length equals to the length of 
a dike with the higher ID and the longer dike is subdivided, Figure 45. 
 

Lign1
Lign2

Plot

a) Plot = MAX(Lign1, Lign2)  
 

 
Figure 45 – The plot construction from two adjacent ligns 

 
The main step in the volume analysis is the use of ASC2D (Adaptive Skeleton Climbing 
2D) algorithm to create simple padis with maximal size. As well as dikes, plots, also 
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padises are created with respect to the horizontal and vertical binary tree structures. The 
ASC2D algorithm is described by authors in [28] in a form of a pseudocode. 
 The padis is simple when all plots inside of it are simple and furthermore the 
side dikes are simple as well. The goal is to subdivide the 2D sample grid (a farm) into 
as large padises as possible. 
 For a 2D iso-line extraction the slightly modified Marching Squares algorithm 
can be used at this stage. 

4.14.3 3D Case 

The 2D case can be analogously extended to 3D, so instead the iso-line extraction the 
iso-surface is extracted. A slab, a brick and a highrice are defined, Figure 46. 
 

a) slab  b) brick  c) highrice  
Figure 46 – The slab, the brick and the highrice 

 
As well as in previous definitions the simple highrice (simple box) has to fulfill some 
conditions. It has to be composed of simple bricks and all its faces have to be simple 
padises. A simple brick is formed from two simple padises. 

An ASC3D algorithm (pseudocode in [28]) is used for highrice construction 
within the volume data with respect to the binary data division in all three directions.  

Sharing of the information on highrices faces among adjacent highrices is solved 
via face iso-lines. The algorithm subdivides adjacent highrices faces to match each 
other. Afterwards it extracts iso-lines on all the highrices faces. This step produces one 
or more edge loops and these are further triangulated (modified ear clipping algorithm) 
and the iso-surface is thus properly connected among adjacent highrices. Moreover, the 
256 cases table is not needed. Instead 16 cases table for the iso-line extraction is used. 

The authors also propose the multiresolution version of their algorithm. The 
multiresolution iso-surface extraction is achieved by specifying the maximum highrice 
size, which is set by a global parameter. This parameter is then used as a restriction in 
the highrices construction phase. The memory consumption requirements of their 
algorithm are not specified. 

This method is the last mentioned one in this chapter. The overview of existing 
methods for the iso-surface extraction was made. All described methods can be used for 
the iso-surface extraction from regular volume data. Some of them, as indicated in 
appropriate sections, can be also used for tetrahedral networks and other volume data 
lattices. The following chapter will discuss our work, what we have done. The main part 
deals with basic methods comparison and the error analysis using mathematical objects 
and appropriate extracted iso-surfaces. 
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5 Basic Methods Comparison 

The fifth chapter is about our research. It consists of tests that we have performed to 
compare and analyze the iso-surface approximation error of basic methods. Also our 
results are contained here together with our opinions and thoughts.  

5.1 Data Generation 

At first, we should mention the ways we use for the volume data generation. We 
generate synthetic samples in them. There are two basic approaches.  

The first is that an object is represented by ascending (or descending) values 
from its centre of gravity. E.g. a sphere, the value the sample holds represents the 
distance between an appropriate grid vertex and a sphere center: 
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Where x, y and z are the sample coordinates in 3D; sX, sY and sZ are the sphere center of 
gravity coordinates; f is a computed sample value. 

 A set of iso-surfaces can be further extracted from such data set (Figure 47). In 
the case of a sphere, the threshold determines the radius of a sphere that will be 
extracted. The sample value can be rounded (Figure 47.a), but the new error is 
introduced with such an approach. When working with the integer volume data all data 
samples can be generated using: 

( )  222 )()()(,, ZYX szsysxzyxf −+−+−=  (38) 
The value of f is then truncated (3.6 to 3), but it can be also rounded (3.6 to 4) to an 
integer value. 

To examine methods properties we prefer to use float numbers as samples 
(Figure 47.b), hence the rounding error is not introduced. 
 

   
a)     b) 

Figure 47 – From the left: a) integer data (two spheres with radius 1 and 2); b) float data 
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Iso-surfaces that are extracted from such data approximates the sphere surface with a set 
of triangles. The selected threshold determines the sphere radius. Several different 
iso-surfaces (spheres) can be extracted depending on the chosen threshold. 
 The second approach for the sample value generation we use is a distance 
function. The sample is assigned the value that represents its distance from the object 
surface. The sample has the negative value if it is inside of the object and the positive 
otherwise. This approach offers more flexibility in object generation than previous one. 
Zero threshold then represents the object surface in the volume data. 

5.2 Comparison Approaches 

5.2.1 Hausdorff Distance 

We use Hausdorff distance [W11] for comparisons mainly for iso-surfaces that are 
extracted from real data sets. Firstly, we define a distance between a point p (from a 
surface S) and a surface S’ (containing points p’) as 

d(p, S’)=min||p-p’|| (39) 
for all p’ from S’. Now we can define Hausdorff distance between two surfaces S and S’ 
as  

dH(S,S’)=max d(p,S’) (40) 
for all p from S. Note the important thing that Hausdorff distance is not symmetrical 
d(S,S’)≠d(S’,S). When we call d(S,S’) the forward and d(S’,S) the backward distance, we 
can define symmetrical Hausdorff distance [1] as  

dSH(S,S’)=max(d(S,S’), d(S’,S)) (41) 
We utilized a METRO software tool (described in [6]) for accurate computation of 
Hausdorff distance of two discrete surfaces (triangle meshes). The METRO tool was 
mainly used to compare original triangle mesh with its simplified (e.g. decimated) 
version. We use it for comparison of two iso-surfaces, each generated using different 
method. 

5.2.2 Root Mean Square Distance 

We use also the Root Mean Square (RMS) of computed distances. RMS distance in 
discrete case is defined as [W11] 
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where n is a number of points of a mesh S’, xi (where i=1.. n) represents the distance of 
corresponding point pi’ from S, xi=d(pi’, S). We compare S’ to S. 
 Note that RMS is not symmetrical as well as Hausdorff distance. We do not use 
symmetrical RMS distance in our tests, thus there is no need to define it here. RMS is 
computed with METRO tool as well. 
 Both the Hausdorff distance and the RMS distance are calculated according to 
some source mesh. As such a mesh, we use a mesh generated with MC method. 

5.2.3 Mathematical Data 

When we know the object equation and its dimensions, we are able to compute some 
additional information concerning the object, such as a surface area, an object volume, 
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triangles positions difference from the object surface, etc. We believe that these 
properties are worth to compute, because they can help us to differentiate among the 
quality of methods from different views. 
 Surface area – the iso-surface is generated by an extraction method in a form of 
a set of triangles. We compute the total area as a sum of all triangles areas. Then we can 
compute the area of mathematical object and compare it with the iso-surface area 
obtained. For special objects such as sphere, we are able to track the error behaviour 
dependency on a sphere radius. 
 Volume enclosed with the iso-surface – for basic mathematical objects the 
volume is computed using appropriate formula. The volume enclosed with the 
iso-surface is computed in the following manner (for tetrahedra methods only). There 
are three cases for a tetrahedron: 

1. The whole tetrahedron is outside of the iso-surface – it does not affect the total 
volume computation. 

2. The whole tetrahedron is inside – the whole tetrahedron contributes to the total 
volume. The tetrahedron volume is computed easily. 

3. The tetrahedron is intersected with the iso-surface – we have to compute the part 
of the tetrahedron which is inside of the iso-surface. As there are at most two 
triangles generated per tetrahedron, these triangles form two small tetrahedra 
with appropriate tetrahedron vertex and we are able to compute the volume of 
the tetrahedron part which contributes to the total volume. 

 
Triangles position difference – we measure the difference between triangle center of 
gravity and the object surface. This gives us information about triangles position 
difference compared to the object surface. 
 Three mentioned properties together with Hausdorff distance and RMS distance 
are the main aspects that we use for extraction methods output comparison. The 
obtained results are discussed in the next section. 

5.3 Experiments and Results 

5.3.1 Used Data Sets 

In this section, we will describe data sets we used for our comparisons and give the 
reasons why we chosen them. The main part of the used data set is a set of 
mathematically generated objects, Figure 48. Real data sets were used to show how the 
Hausdorff distance is dependent on the applied iso-surface extraction method. The brief 
description of used data sets follows in upcoming paragraphs. 

Sphere – a sphere is an example of an object that we use to follow the error 
behaviour dependency on a sphere radius. The sphere equation used for data generation 
is a modified implicit equation  

rszsysxzyxF ZYX −−+−+−= 222 )()()(),,(  (43) 
where x, y and z are samples coordinates, sx, sy and sz are the sphere centre coordinates, r 
is the sphere radius and F(x,y,z) is the corresponding sample value. This equation 
assigns data value to all the volume data samples. The sphere is then represented with a 
zero threshold iso-surface. The samples that are inside of the sphere have negative 
values, on the sphere surface zero value and samples placed out of the sphere have 
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positive values. The sample value represents the distance of the sample from the sphere 
surface. The radius was 25 in our experiments.  
 

 
Figure 48 – Generated objects preview (csph, torus, sombrero, cube, sphere and noised 

sphere) 

 The cell edge has length 1 for our purposes. The object dimensions (e.g. radius, 
edge length) are then related to the cell edge length.  
 Noised sphere – (noisedsph) to study the influence of the noise to the shape of 
the output set of triangles we generate a noised sphere. The random noise is introduced 
(added) to all samples of the volume data. The size of the noise is given in percentage 
from the sphere radius size. We used radius 25 and 10% noise.  
 Cube – this kind of an object we use to track the behaviour and properties of the 
iso-surface on edges. We will show the iso-surface difference mainly visually. The 
inner, on surface and outer samples have the negative, zero and positive values 
respectively. Cube was generated using a=b=c=42.  
 Cube minus sphere – (csph) such an object was constructed to combine both 
properties of the sphere (r=25) and cube (a=b=c=42). The generation of it is a little bit 
complicated. At first, the cube is generated in the volume data. Afterwards, the values of 
all samples that are closer to the sphere than to the cube are modified to the new 
distance.  
 Torus – is another mathematically generated object. Torus is defined with the 
following equation [W11] 

azyxczyxF −++−= 2222 )(),,(  (44) 
where x, y and z are samples coordinates, c is a torus main radius, a is a torus secondary 
radius and F(x,y,z) is a corresponding sample value. The samples values are negative, 
zero or positive as well. Torus dimensions are c=20 and a=42 in our case.  
 Sombrero – is the last mathematically generated object we use. Its surface is 
defined with the mathematical equation (taken from Derive mathematical program) as: 
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where x, y and z are sample coordinates and F(x,y,z) is a corresponding sample value 
and a, b and c are constants modifying the shape of the function. The Sombrero 
parameters we used are a=12, b=0.25 and c=3.  
 Real data sets – Samples of real data sets have only positive values that 
represent a density of the space in the sample position (we used engine.vol, ctmayo.vol 
and hplogo.vol sets). 
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5.3.2 Tests and Results 

For all our mathematically generated objects, we are able to compute triangles position 
difference compared to the mathematical object. Firstly, a triangle center of gravity is 
computed. As we have routines for a point to an object distance computation, we can 
compute the distance of the center of gravity of a triangle from the appropriate object. 
The overall position difference PERR is computed as 
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where Ti (i goes from 1 to n) is the center of gravity of the i-th triangle, n is the number 
of triangles and objDist(O, X) is the distance of a point X from an object O surface. 

The position difference for the sombrero object was slightly smaller and similar 
to results obtained for the sphere. For the cube the CCL method gives the worst results, 
see Figure 49. This is probably due to different interpolation of the cube edges (Figure 
50). The csph object has more edges than a cube itself. The more tetrahedra we create 
the worse results we get. Surprisingly for the torus the MT6 method gives the greatest 
position difference. We think this is because of the interpolation at a cell interior edge 
(the longest one). 
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Figure 49 – The triangles position difference comparison (edge vs. smooth object) 

 
 

 
Figure 50 – The iso-surface on edges (from the left: MT5, MC, MT6 and CCL) 

 
Note that RMS distance is related to the results of MC method. For the sphere and the 
torus obtained results were slightly less than results for the sombrero. Again, when the 
object has edges the CCL method is the worst from the view of RMS distance, see 
Figure 51. For the noisedsph object the CCL method gives the best results. We suppose 
that the central cell sample value computation (using arithmetic mean) filters data a 
little bit as well. 
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Figure 51 – The RMS distance histogram 

 
Again, the sphere and the sombrero give approximately similar results compared to the 
torus. From the view of Hausdorff distance the MT6 method gives the worst results for 
all tested objects, see Figure 52. As you can see for the noisedsph the CCL method is 
the best choice. The best choice in this case is probably MT5 method because it does 
not generate as much triangles as CCL method. 
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Figure 52 – The Hausdorff distance histogram 

 
The more tetrahedra is used the larger area is extracted for all tested objects that have 
edges, see Figure 53. Results in Figure 53 and Figure 54 are relative due to 
mathematical results. For objects like the torus (does not have edges) results were 
approximately the same as for the sphere. We think that for the area approximation 
purposes the best choice is MC method. 
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Figure 53 – The area comparison (relative to the mathematical area) 
 
The MT5 method is in most cases slightly better than MT6 method and both methods 
are approaching to the original volume from below, see Figure 54. The CCL method in 
the other hand is in most cases approaching to the mathematically computed volume 
from above. The MC method is not included because it is hard to compute the volume 
enclosed with the iso-surface (due to 256 cases). 
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Figure 54 – The volume comparison (relative to the mathematical volume) 

 

5.3.3 Sphere Additional Tests 

The relative volume error is defined in a following way 

V
VVError TR −

=  (47) 

where VTR is a volume enclosed with the iso-surface triangles, V is the mathematically 
computed volume of a sphere. 
 The CCL method is the best choice for the volume approximation, see Figure 55. 
We assume that it is due to high number of tetrahedra. The CCL method error oscillates 
around the zero value. The MT5 gives slightly better results than MT6 method. The 
progress of error is similar. Both methods are approaching the zero error from below. 
Another thing we compare is a number of extracted triangles. 
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Figure 55 – The sphere volume error graph 
 
It is well known fact that a number of generated triangles is mainly dependent on the 
type of the cell division, see Figure 56. The MC works with a cube cell (at most four 
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triangles per cell) and it does not divide it into tetrahedra (at most two triangles per 
tetrahedron). MT5 divides the cube cell into 5 tetrahedra, MT6 into 6 tetrahedra. In fact, 
CCL divides the cube cell into 24 tetrahedra, but these tetrahedra also contain parts of 
adjacent cube cells. When we sum the volume of all 24 tetrahedra, we obtain volume of 
two cube cells, so on average 12 tetrahedra per a cube cell. 
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Figure 56 – The number of extracted triangles 

 
Methods MC, MT5 and MT6 test all cells from the volume data, one by one. The CCL 
method checks only 25% of all cells, due to used speedup method. All mentioned 
methods, except NOISE, need some constant time to scan through the volume (it 
depends on the tests complexity and on the used method). The NOISE uses a kd-tree to 
find all active cells. A kd-tree parts (sub-trees), which do not contain active cells, are 
step by step skipped (are not completely traversed). It is the general reason why this 
method is so fast, assuming that a kd-tree is created in offline preprocessing. The total 
extraction time also depends on the size of an output set of triangles (number of 
interpolations). When increasing the sphere radius from zero, time consumption (and a 
number of interpolations) grows proportionally to the sphere surface growth (S=4πr2), 
see Figure 57. Note that graphs for MC, MT5 and MT6 methods are overlapped in 
Figure 57. The bigger sphere the greater amount of active cells is found in the volume 
data. 
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Figure 57 – The iso-surface extraction time dependency on chosen sphere radius  

 
The average number of triangles generated per second (Figure 58) is given as a sum of 
all triangles divided by the time of the iso-surface extraction. The NOISE extracts most 
triangles per second. The reason is that NOISE traverses the lowest number of non-
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active cells (it uses a kd-tree) from all described methods, therefore, redundant tests on 
non-active cells are not performed. In the apart of this, CCL method, which generates 
the largest total number of triangles, generates the smallest amount of them per second. 
The reason may be that the decision whether a cell is active or not is more complicated. 
It is necessary to check all 24 tetrahedra and these tetrahedra contain parts of adjacent 
cells and a computed cell center data value. Note that the number of extracted triangles 
for larger data sets easily overloads current graphics hardware.  
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Figure 58 – The dependency of extracted triangles per second on a sphere radius 

 

5.3.4 Real Data Results 

Detailed information about the real volume data sets that were used for tests are 
summarized in Table 2. 
 

Data No. Data File Name Data Set Resolution Cells to be processed 
1 syn_64.vol 64x64x64 262 144 
2 ctmayo.vol 128x128x128 2 097 152 
3 hplogo.vol 236x150x64 2 265 600 
4 cthead.vol 256x256x108 7 077 888 
5 engine.vol 256x256x108 7 077 888 
6 bentum.vol 256x256x256 16 777 216 

Table 2 – Real data sets details 

 
A number of extracted triangles, when working with real data sets, is highly dependent 
on a selected threshold. Results, we gained for real data sets, were expected due to 
previously conducted experiments using generated objects. 

For provided real data sets, it is better to use MC to extract up to four different 
iso-surfaces. To extract five or more iso-surfaces, it is more efficient to use NOISE 
method with preprocessing (kd-tree) as it is evident from Figure 59. The similar 
situation occurs when using MT5 or MT6, see Figure 59. 
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Number k of Iso-surfaces When NOISE is Worth of Use
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Figure 59 – The number of iso-surfaces where NOISE is worth using 

 
From the time consumption point of view (Table 3), the best method is NOISE with a 
kd-tree constructed in offline preprocessing.  
 

Data No. MC [ms] MT5 [ms] MT6 [ms] CCL [ms] NOISE *) [ms] 
1 67 100 95 270 16/240 
2 585 965 880 3065 320/2431 
3 675 1220 1160 3930 331/2325 
4 2065 3225 3005 12170 1030/9520 
5 2005 3150 2925 11730 950/9080 
6 4210 4815 4745 13005 610/23640 

*) iso-surface extraction/kd-tree creation 

Table 3 – Extraction times from real data, threshold was selected as 40% from  
<min; max> data set value interval 

 

  
Figure 60 – Example of iso-surfaces from real data sets 

 
All experiments were done on the PC model: HP Compaq EVO D310 (P4, 1.8GHz, 
512MB RAM). Times were measured via motherboard hardware performance counter. 
 The performed tests and reached results were presented here. The next and last 
chapter will describe possible directions in future research. 
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6 Future Work 

Iso-surfaces are still plentifully used in many areas of volume data visualization. Many 
methods for the iso-surface extraction take advantage of their ancestors in 2D or extend 
them into 3D. In 2D these methods serve for the iso-line (contour) extraction. 
 Methods for the iso-surface extraction that are used on personal computers are 
reasonably described in this work in the form of the state of the art (Chapter 4). Their 
properties and particular difficulties are also discussed. This description is the main goal 
of this work. The second part of this work (Chapter 5) is devoted to an examination of 
the error of the iso-surface extraction. We think that the provided information is a good 
starting point for the further research in this area. 

Various methods for the iso-surface extraction solve several problems such as 
the issue of holes in the Marching Cubes algorithm or the non-active cells bottleneck. 
Also decimation techniques or view dependent iso-surface extraction methods can be 
used to decrease the output number of triangles. Extremely large data sets are processed 
in massively parallel or distributed environments. The extreme data sets that do not fit 
into system memory can be processed using external techniques for the iso-surface 
extraction. 

However, not many methods in the field of the iso-surface extraction are dealing 
with the approximation of a normal vector in other way than central difference or one 
sided difference due to computational complexity and huge data sets. There are some 
approaches (linear regression [23], extended surface subdivision technique [19]) but 
these are still not in use. It is a well known fact that the visual information is accepted 
much faster than the information given in any other way. Also no one can doubt that a 
normal vector has a huge impact on the rendered graphical information (e.g. a triangle 
mesh). These are reasons for a better normal vector approximation but with respect to 
the computational expensiveness, this problem still remains open. 

In Chapter 5 of our work, a set of methods was tested also with respect to the 
error of the iso-surface approximation. The authors of the appropriate methods do not 
present some detail analysis concerning an error estimation of their methods. We proved 
that different methods have different approximation errors. The methods we 
implemented use linear interpolation (both for normal vector and triangle vertex 
approximations) and hence need only two neighbouring data samples. We want to 
develop our own method that will consider larger neigbourhooding than current 
methods in order to achieve a more accurate interpolation among adjacent data samples. 

In the area of interpolations, the cooperation with our colleague ing. Karel Uhlíř 
is possible. He uses the Radial Basis Functions (RBF) for the interpolation. We have 
already tested this method in 2D for the iso-line extraction. The RBF functions can 
interpolate the data value within a cell also with the use of local surroundings. 

The synthetic sphere and mathematical objects that were used for a whole set of 
tests were not sufficient. More complex objects should be used to obtain results that 
would correspond more accurately to real data sets. As described in [14] there are many 
tessellations of a cube cell. We are working on the error behaviour exploration using 
different tessellation schemes. In addition, recent methods will be implemented and 
tested to gain more complete overview of all existing approaches. 
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The reading of interesting papers from various fields and their analysis weather 
they can be applied in our area or not will also follow. But the final way our research 
will head towards depends on a further research, results and analyses. 
 
The following list summarizes the goals of the doctoral thesis: 

 
1. To generate more complex objects and to explore the behaviour of tested 

methods on such data. 
2. The extension of the 2D iso-line extraction algorithm with RBF into 3D and its 

implementation. 
3. To test the influence of the size of local neigbourhooding to the extracted 

iso-surface within a cell. 
4. To use the flowline curvature and develop an adaptive iso-surface extraction 

algorithm with use of RBF interpolation. 
5. The comparison of developed algorithm with existing ones. 
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