University of West Bohemia in Pilsen

Department of Computer Science and Engineering
Univerzitni 8

30614 Pilsen

Czech Republic

Triangle Strips For Fast Rendering

The State Of The Art And Concept Of PhD. Thesis

Petr Vané&ek

Technical Report No. DCSE/TR-2004-05
April, 2004

Distribution: public

Technical Report No. DCSE/TR-2004-05
The State Of The Art And Concept Of PhD. Thesis
April 2004

Triangle Strips For Fast Rendering

Petr Vané&ek

Triangle surface models are nowadays most often types of geometric ob-
jects description in computer graphics. Therefore, the problem of fast
visualization of this type of data is often being solved. The speed of high
performance rendering engines is usually bounded by the rate at which tri-
angulated data is sent into the machine. One can reduce the time needed
to transmit the set of triangles by compressing the topological information
and decompressing at the rendering stage. As neighboring triangles share
an edge, it is possible to avoid sending the common vertices twice by special
order of triangles, called triangle strip.

This work presents an overview and a comparison of existing stripifica-
tion methods. It also introduces a new stripification algorithm for terrain
models based on Delaunay triangulation that can be modified to handle
LOD. Finally an outlook for the future work is sketched out.

This work was supported by by the Ministry of Education of The Czech
Republic - project MSM 235200005..

Copies of this report are available on
http://www.kiv.zcu.cz/publications/
or by surface mail on request sent to the following address:

University of West Bohemia in Pilsen

Department of Computer Science and Engineering
Univerzitni 8

30614 Pilsen

Czech Republic

Copyright(©2004 University of West Bohemia in Pilsen, Czech Republic

Acknowledgments

| would like to thank to Prof. V. Skala for providing good catiohs under which this work
was born. My thanks also belong to Prof. J. Stewart for a k8gination and for the source
code of the tunneling algorithm, to X. Xiang and Prof. J. S. Btckkll for providing the
source code of FTSG and to D. Kornmann for technical supporhis program. | also
would like to express my thanks to Prof. Balik for a week full of interesting discussions
and new ideas. Last but not least | would like to thank to myisaivDoc. |. Kolingeroa
for her time, care and patience ...

Contents

1

Introduction

2 Triangle Strips

3 Methods

5

3.1

3.2

3.3

3.4

Directmethods
3.1.1 SGlmethod
3.1.2 Fast And Simple Triangle Strip Generation — Weight&dl S . .
3.1.3 Fast Mesh Rendering Through Efficient Triangle Strip&sation
—SStip . . . e
3.1.4 STRIPE e
Duality based methods
3.2.1 Fast Triangle Strip Generator—FTSG
3.2.2 EasyTriangle StripsForTIN
3.2.3 Tunneling for Triangle Strips in Continuous Levellxdtail Meshes
3.2.4 Triangle Strips Guided by Simplification Criterion
Miscellaneous Approaches
3.3.1 Hamiltonian Triangulation
3.3.2 Hierarchical Generalized Triangle Strips
333 SkipStrip
3.3.4 TransparentVertex Caching
OverallComparison i e
341 VerticesS e
3.4.2 SHUIPS . . . e
3.43 RenderingSpeed
3.44 ExecutionTime
345 MemoryUsage e
3.46 Conclusion

Delaunay Stripification

4.1
4.2
4.3

Delaunay Triangulation
Delaunay Stripification
TestandResults

Ideas and Future Work

18
20
23

A Activities
B Models

C Output Examples

65

66

68

1 Introduction

Triangle surface models (often calletkshesare nowadays the most often types of geo-
metric objects description in computer graphics. Theseealsoare often used for various
kind of applications such as CAD/CAM, VR, medical data or cormpgames. Therefore,
the problem of fast visualization of this type of data is nfbeing solved.

The performance of today’s rendering hardware is usually iggh and the speed of
the rendering is bounded not only by the power of the GPU lsd Bl the the rate at
which the triangulated data is sent into the GPU. To decréesamount of data, one can
use some techniques to prevent sending of unnecessarglésafe.g., visibility culling)
or some kind of simplification of complex objects (e.g., (CI)O Still it is important
to reduce the time needed to transmit the set of trianglesohypeessing the topological
information and decompressing at the rendering stage. Aghbbering triangles share
an edge, it is possible to avoid sending the common vertigee tby a special order of
triangles, called #&riangle strip.

Evans et al., showed that covering the mesh by an optimalf $eangle strips is NP-
hard [15]. To compute a stripification in a polynomial timejsi necessary to use some
heuristic that finds some local optimum. As the number ohtyies in meshes grows as
fast as the power of GPUs and the bus bandwidths, the stapdit topic is still very
important and many algorithms on stripification exists.

In this work, an overview of existing methods is presentedhfiiér 3). Basic principles
of these methods are described with a short conclusion fdr eeethod. For all available
methods for 3D meshes, | have made an overall comparisomipifisation quality, in-
cluding the running time of the methods and the rendering&péhave been in contact
with many other authors during writing this work (Stewariaixg, Mitchell, Kornmann,
Pedrini) and all of them appreciated such a complex compar®n the basis of the com-
munication it seems that a cooperation with some of thed®asitan be established.

| will also introduce a new stripification method based on Ereaunay triangulation
that was first published on the SCCG’03 conference (Chapteri$. miethod produces a
stripification of a low quality, but it can be adopted for auatization of LOD of terrain
models.

Currently | am working on a new algorithm based on a dualityaaph. Some sketches
of the algorithm as well as some ideas of a future work areudsed in Chapter 5.

2 Triangle Strips

A sequential tristripis a sequence of + 2 vertices that representstriangles: in Figure
2.1(a) the sequence (1,2,3,4,5,6) corresponds to triangylexs, A234, A345 and A456.
Using the sequential tristrip, the transmit costmariangles can be reduced by the factor
of three (from3 - n to n + 2 vertices).

2 4 6 2 4 2 4
W 1: Wi 5 W[s 5
1 3 5

(a)

6 6
(b) ()

Figure 2.1: An example of a sequential triangle strip (a)eaegalized triangle strip (b)
and a triangle fan (c).

There also exist situations where the triangle adjaceneg cmt allow a sequential
encoding. In Figure 2.1b) the sequence (1,2,3,4,5,6) produces an invalid triaAgles.

An extra vertex has to be added to change the sequence t8,41325,6). This operation
is called aswapand tristrips with swaps are callg@neralized tristrips Still, the transmit
cost is reduced more than twice (frdmn ton + 2 4+ swaps vertices).

In some special cases it is also possible to use a speciabtgameralized triangle strip
called atriangle fan Thefanis defined by the central vertex and its neighboring vertices
In Figure 2.1(c) the fan is defined by a sequence (3,1,2,4,5,6). As the lerigtiedan is
usually very low (the average number of neighboring vesticea usual mesh is six), it is
not used very often in practice.

3 Methods

In this section, a possible classifications of stripificatioethods are presented. Also an
overview and some comparison of existing methods is donis. ddmparison is based on
the references or on my own measurements if the source caslailable.

A variety of different approaches for creating triangleépstivere made. As the search-
ing of optimal stripification is NP-hard problem [15], allage algorithms use some kind of
heuristic function. According to the type of the heuristin€tion, it is possible to classify
stripification methods into three groups (this classifmais used within the scope of this
work).

¢ Direct methods use the information about the triangle meshmber of neighbors,
topological information about a region, etc.

e Duality based methods convert the mesh into a dual-grapfi.9] a graph where
a node represents a face and neighboring faces are conndtiiean edge in the
graph). These methods often produce a stripification wittebgroperties than the
straightforward methods

e Miscellaneous approaches are using some other technigpesduce the stripifica-
tion. Usually, these methods build a stripification from arengeneral type of input
data (e.qg., creating a triangulation together with the@gtcation from a set of points)

Very often, the heuristic function only decides in whichedition the strip should con-
tinue. For such a decision only some local criterion is sigffit To obtain a better stripifi-
cation, some global heuristic is necessary.

e Local heuristics use some local criterion to decide whetb@onnect a triangle to
a strip or not. This criterion often leads to a stripificatiith a high number of
triangle strips. Furthermore, such stripification oftemtains a huge number of
short strips.

e Global heuristics are searching for triangle strips by aisiglobal criterion. Usually
it takes a longer time to produce triangle strips by such goréhm, but in most
cases, these strips are better. Many global algorithmsaeedoon the graph duality.

Furthermore, the term ’optimal stripification’ is not un&jy determined. One can
optimize the stripification algorithm to produce low numloéwvertices needed for strips,
to decrease the amount of data sent through the bus to thermegengine and speed

8

up the rendering. As the initialization of a new trianglapstrosts some extra time, it is
also desirable to minimize the number of generated triaagglps. It is not possible to

minimize both these parameters at once — decreasing theemwhkriangle strips often

leads to increasing the number of vertices (due to higherbeurof swaps, needed to
preserve the strip) and vice versa. Very often, the strggifom algorithms contain more
heuristic functions for vertex or strip optimization.

e Strips minimizing algorithms minimize the number of tridagtrips. As the initial-
ization phase of a triangle strip takes some additional,timaimizing the number
of strips speeds up the rendering.

e Vertices minimizing algorithms minimize the number of vegs (swaps). Reducing
the number of vertices leads to higher performances, be¢haee is lower bus traffic
and less transformations and lighting operattons

To be able to visualize huge data sets, clipping or decimatie often used. To be able
to clip invisible regions, it is necessary to optimize thepgfication to create local strips
(i.e, strips that traverse cross the whole triangulatigvile using some model decimation
— usually by edge collapsing — triangle strips could be bnok& avoid these breaks, a
stripification that preserves triangle strips has to be u$bdre is also a possibility to use
some local repairs during the simplification process.

e Stripification for static meshes does not care about thegd®wim topology. While
using some kind of simplification, the number of triangléxstincreases, due to strip
breaks.

e Stripification for CLOD tries to construct triangle stripsathare being preserved
during the simplification.

1Some high-end graphic systems has a one-bit flag for trizsvgggs, thus there is no necessity to mini-
mize the number of swaps.

3.1 Direct methods

As mentioned above, the direct methods use directly thernmdton from triangle or
polygonal mesh, to produce triangle strips. Nearly all radghuse the criterion of number
of neighbors (local criterion) to decide whether to conraetrtangle to a strip or not.

3.1.1 SGI method

Akeley et al. [2] have developed one of the first stripificatadgorithms, known aSGI
or tomeshthat converts a fully triangulated mesh into triangle &trifi is a simple greedy
algorithm which uses a local criterion.

This algorithm (Figure 3.1) tries to build triangle stripkish do not divide the remain-
ing triangulation into too many small pieces. The strip mrtshg with the triangle with
the least number of neighbors. Then a greedy heuristic i@ tosadd adjacent triangles
with the least number of neighbors to a strip. If more triasglith the same number of
neighbors exist, the algorithm looks one step ahead. Ietieeno neighboring triangle, a
new strip is created. The algorithm stops after all triasg¥ere added to strips.

while there is any triangle in the nesh do

start a new strip
choose a triangle with the | east nunber of neighbors .

add the triangle to the current strip

1 2 2
renmove the triangle fromthe nmesh 2 2 1
updat e the nunber of nei ghbors

whil e there exists a neighbor do
choose a neighbor with the | east nunber of neighbors .

if there is an equality then
| ook one step ahead L

add the triangle to the current strip
renove the triangle fromthe mesh /\
updat e the nunber of neighbors !
end while 0 2
end while 1 1

Figure 3.1: Pseudo-code of the baSiGl algorithm and an example of strip construction.

The time complexity of this algorithm iS(n + s.n), wheren is the number of triangles
ands is the number of triangle strips. To reduce the complexit@te), it is necessary to
use some additional data structures (a hash table, or aypgoeue) to be able to find the
starting triangle quickly.

10

It is quite easy to change the heuristic function (i.e., thegon which chooses the
next triangle), thus many modifications of this algorithniséx

Although this algorithm is very simple, it produces quiteamd stripification in a short
time. As this algorithm was designed for Iris-GL (which udebit flag for the swap), it
does not care about swaps. It uses a local heuristic funatidrthat is why it produces a
big number of short strips.

3.1.2 Fast And Simple Triangle Strip Generation — Weighted Sl

The most important part of th®Gl algorithm is the heuristic function, which chooses the
next triangle. Kornmann [24] implemented an algorithm ttainbines several weighted
heuristic functions to improve the quality of triangle p#i

The first heuristic function is based on tB&I criterion, i.e. it returns the number of
neighboring triangles (mesh connectivity). As mentionetble, such a heuristic creates
strips containing triangles with low number of neighborsisTavoids the emergence of
short strips later on. In Figure 3¢ the triangle on the right of the current triangle will be
added to the strip because it has no other neighboring teang

The second heuristic function uses the triangle verticeshectivity. It evaluates the
number of triangles connected to each vertex and it retginfor the highest connected
node and-1 for the other nodes. This heuristic preserves the highlyeoted nodes for
remaining triangles. In Figure 3(®) the triangle on the right of the current triangle will
be added to the strip because the corresponding vertex\wasdonnectivity.

The last heuristic function analysis locally whether thigoswill need a swap to include
the next triangle. I returns 1 if a swap is needed andl if it is not needed. This heuristic
leads to straight triangle strips without swaps covered fmyramal number of vertices. In
Figure 3.2(c) the situation on the left side (no swap) will be preferred.

Combining all these functions, the weight for each neighimptriangle is calculated.
Then a triangle with the smallest weight is used in the stfifhere is a tie, the triangle is
chosen randomly. The strip ends either when there is no beigig triangle, or when the
strip reaches a sufficient length.

With default settings (all heuristics on) the algorithmgwoes less strips than tis€|
algorithm, but these strips are covered by more verticess iShyuite surprising. As the
algorithm uses the vertices minimizing criterion, | exgetthat the number of vertices will
be lower tharSGL Unfortunately, the source code of this algorithm is notilatzde, thus |
was not able to go into more details. Furthermore, the algoruses a randomization and
each time it produces different results.

11

: /
Q% < % 1
(@) (b)

% Current Triangle
MEII Previous Triangle No Swap Swap

(c)

Figure 3.2: Three types of heuristic functions in Kornmaradgorithm. A mesh connec-
tivity criterion (a), a vertex connectivity criterion (bhd vertices minimizing criterion (c).
(From [24])

The nice property of the algorithm is that all three functican be combined to achieve
a better stripification for the given purpose. Regrettablyak not able to make more
tests of this algorithm as the source code is probably lastar be used for static, fully
triangulated meshes only.

3.1.3 Fast Mesh Rendering Through Efficient Triangle Strip Geneation — SStrip

Another algorithm based on tI®GI| was developed by da Silva [29]. This algorithm uses
a local strategy based on a simultaneous constructionip§sifhe algorithm maintains
strips being built and at each step adds a triangle to onesddttips.

The algorithm chooses triangles as beginnings af strips, following the same cri-
terion asSGI method, i.e., the lowest number of neighbors. To avoid anexiate strip
concatenation, a new restriction is added — the beginniagefv strip may not be adjacent
to the extremities of an existing strip.

The next triangle that will be added to a strip is chosen frdmeandidate triangles (i.e.,
all triangles neighboring to both extremities of all trigagtrips) following this order:

1. If a neighboring triangle has degree 0, it is added imnteljido avoid a singleton
strip.

2. If there is no neighbor with degree 0O, the neighbor withrdedl is chosen. In
case of a tie, a look-ahead test is performed as follows. dfatijacent triangle
has degree 1, it is inserted, otherwise, the triangle thas dmt produce a swap
(vertices minimizing heuristic) or the triangle with nelgdr with lower degree (strips
minimizing heuristic) is chosen.

12

3. If all neighbors have degree 2, the chosen triangle is tieetlvat does not produce a
swap.

In some cases the insertion of a triangle can cause that@kts of two strips become
adjacent and these two strips can be concatenated and angWwast to be created. The
concatenation is performed according to the followingsule

e AtriangleT'1 of degree 0 is adjacent to two strip extremities — both stigscon-
catenated (in Figure 3.@) the triangleT'1 is adjacent to Strip 1 and Strip 2; these
strips are concatenated).

e A triangle T'1 of degree O is adjacent to three strip extremities — a conatits
that does not produce a swap is chosen (in Figure(l§.$trip 1 and Strip 2 are
concatenated).

e AtriangleT1 of degree 1 is adjacent to a strip and to a triarigde- if the triangle
T2 has a degree 1, it is connecteditbd to avoid a singleton strip, otherwise, the two
strips are concatenated (in Figure &Bboth triangles/’1 and7'2 are added to Strip

1).
Strip 2 Strip 2 trip 2
Strip 1 Strip 1 Strip 1
\
ABE A8 A
N
Strip 3 Strip 3

(a) (b) ()

Figure 3.3: Concatenation rules in da Silva’s algorithm:tHangle of degree 0 is adjacent
to two strip extremities, the strips are concatenatedf(#)siadjacent to three strip extrem-
ities, the concatenation that does not produce a swap i€ol{b. If a triangle of degree 1
is adjacent to two strip extremities and to other triandie,dconcatenation depends on the
degree of the neighboring triangle (c). (From [29])

A pseudo-code of da Silva’s algorithm and an example of genelous strip construc-
tion is presented in Figure 3.4.

This algorithm is designed for static, fully triangulate@shes. It produces a stripifi-
cation with lower number of strips and vertices than®t& method. This improvement is
partially caused by the multiple strip construction. Aadiog to the measurement, it seems
that optimal number of simultaneous constructed stripsis4, but the differences are not
significant. The source code of this algorithm is availalmdlee internet [28].

13

start s new strips
while there is any triangle in themesh do
whil e insert degree 0 candi date do

try concatenate strips 7
create new strips
end whil e T -
if insert degree 1 candidate then
try concatenate strips sy T6
create new strips To
el se insert degree 2 candidate then T2
try concatenate strips T3 T4
create new strips
end if
end while

Figure 3.4: Pseudo-code of da Silva’s algorithm and an elaofsimultaneous construc-
tion of strips. (From [29])

3.1.4 STRIPE

To improve the quality of stripification, Evans, et al. [16v@&loped an algorithm that
uses a global analysis of the structure of a polygonal mdded.algorithm is designed for
polygonal (i.e., not fully triangulated) meshes. In sucl@etof meshes, there are usually
many quadrilateral faces, often arranged in large condaegions. The global heuris-
tic attempts to find large rectangular regions consisting ohquadrilaterals — "patches”
(see Figure 3.5). These patches are triangulated alongeaadr column and then stripi-
fied.

(a)

Figure 3.5: An example of a rectangular patch (a) and a typolyhedral mesh with
patches (b). (From [16])

14

To compute the number of polygons in a patch, it is necessaydmine quadrilaterals
in both directions (east-west and north-south). It is alsoessary to ensure that these
guadrilaterals are all adjacent. To avoid generating toaynsmall patches, a minimal
patch cutoff size is predefined. This cutoff size defines thallest patch that is generated.

To stripify the patches, two different approaches were anq@anted. The first approach
— row/column strips- partitions the patches into sequential strips along r@asmns de-
pending on the length of patch in the given direction. By gatieg one strip along each
row, the number of swaps is minimized. The second approdcii-patch strips— con-
verts each patch into one generalized strip, at a cost of Bsper turn. Furthermore, each
strip is then extended from both extremes to neighboringldiagéerals. Such an approach
minimizes the number of strips.

After the global heuristic, ai®Gl based algorithm is used to stripify the remaining
polygons. For the triangulation of polygons, three différapproaches were suggested.
The static triangulationtriangulates all faces in a preprocessing stage, usingltiraate
left-right turns. Such a triangulation is more complex tlla@ conventional fan triangu-
lation, but it produces triangles that can be stripified byquential strip. Thelynamic
whole-face triangulatiortriangulates a face when a strip first enters it. Even bettsults
can be achieved by theyynamic partial-face triangulationThis approach allows to trian-
gulate only a part of the polygon that the strip is going tiglmuThe remaining part of the
polygon can be triangulated later on to allow to create abéiangle strip.

The algorithm is designed for static, not fully trianguthtmeshes with convex poly-
gons. For such meshes the algorithm produces very goodjleiatrips in nearly linear
time. According to authors’ tests [16], the best stripificatis obtained by the global
row/column strips with a cutoff size of 5, using the dynamizole-face triangulation.

For fully triangulated meshes it produces a higher numbestigps but a bit lower
number of vertices than tr&Gl method. The time needed for stripification is higher than
the SGI method. The implementation can be downloaded for free [hd]iais used in
many other papers for comparigon

2There were some bugs in the old implementatioS®RIPE- it was not very stable and it was not able
to stripify large models. Many authors reported similarerignce. These troubles were solved in the new
version. There are also some inconsistencies in B&RIPEcount strip vertices, thus some results may
differ from other papers.

15

3.2 Duality based methods

The group of duality based methods uses the dual-graphasfgmiation. Usually some
existing graph algorithm is applied to obtain a set of paffah(s are dual to strips) from
this graph.

3.2.1 Fast Triangle Strip Generator — FTSG

Xiang et al. [39] developed a stripification algorithm baseda spanning tree algorithm
and a careful partitioning into a set of paths. The algorittamgenerate triangle strips from
a polygonal mesh, containing even non-convex polygons.alg@ithm tries to minimize
the number of vertices, thus mainly sequential strips agel.us

The algorithm can be divided into five basic steps that willeiplained in a more
detailed way (Figure 3.6).

1. Compute a triangulation of non triangle faces

2. Construct a spanning tree in the dual graph of
the triangulation

3. Partition the spanning tree into a set of paths

4. Decompose the paths into sequential strips or “3
fans 12 .

5. Concatenate short strips into longer strips, using 10 .
a set of postprocessing heuristics g

Figure 3.6: FSTG algorithm steps and an example of a triatignl and its corresponding
dual graph. (From [39])

To make a fully triangulated model, a modification of a verpust algorithm EIST
[19]) is integrated. This algorithm allows to triangulatatty convex and non-convex poly-
gons in the mesh, even if the mesh is degenerated or corruptedmodification oFIST
used in the stripification outputs triangulation convexefathat are pure tri-strips. This part
of algorithm is done in the worst-caggn logn) time (for faces with holes). In practice,
it takes only a linear time, as most polygons in the real-dvareshes tend to be triangles,
quadrilaterals, or low-cardinality polygons.

16

For the construction of a spanning tree, three different@gghes were implemented.
The standard breadth-first search (BFS, Figure(8)7 depth-first search (DFS, Figure
3.7 (b)) and a hybrid variant of search that does BFS, but returnsediphest not yet
fully explored node (Figure 3.(€)). The goal of the Step 2 is to build a spanning tree that
has a small number of nodes of degree two, as such nodes laddgb number of paths.
The BFS tends to generate nearly balanced binary treesfdahethe number of nodes of
degree two may be large. The hybrid search and DFS both teng®duce more nodes
of degree one and the number of generated paths is lower. réingoto the results, the
DFS produces the best spanning tree from all three appreadhkile searching for the
spanning tree, the algorithm has to decide, which triargladit in the next step. As the
goal of the algorithm is to minimize the number of verticéghooses a triangle that does
not produce a swap.

(a) (b) (c)
Figure 3.7: Three approaches for the construction of spgninee. Standard breadth-first
search BFS (a), depth-first search BFS (b) and a hybrid segtchigthe root node of the
spanning. A dashed line represents returns in the grapblsalgyorithm. (From [39])

For the patrtitioning of the spanning tree into a set of pathdynamic programming
optimization is used. For each node of the spanning tree pattnle function being the
minimal number of sequential strips that can be derived ftbensubtree is defined. By
traversing the tree in a bottom-up fashion and storing thanah decomposition at every
node, one can achieve the optimal decomposition. This ctatipao can be done in linear
time, as there are only a constant number of cases per nodmahaode is visited exactly
once.

To minimize the number of vertices, the authors prefer tosesgiential strips only. In
this case, the decomposition step only converts the listiafigles into a list of vertices.
They have also implemented a decomposition using triargie fwhich, in practice, pro-
duces the worst results) and a combination of both sequietrtips and fans. In the last
case, i.e., strips and fans, the fan starts only if the greledpmposition encounters four
consecutive triangles that cannot be encoded with a segqlsinip.

17

In the last step the strip concatenation is performed. Herdbncatenation the zero-
area triangles, i.e., swaps, have to be allowed. There sstral typical configurations in
the stripification that can reduce the number of strips byaireecost of 0,1 or 2 vertices.
The concatenation algorithm is looking for such configamatnd performs them. Such
an approach optimizes the stripification only locally foegrair of neighboring strips. As
the strip may have more candidates for the concatenatiemridter of the concatenation
matters. The global optimization can be achieved by similalti-passes algorithm, but it
will increase the running time and memory usage.

The algorithm is designed for static not-fully triangulhteeshes, but the triangulation
phase is done before the start of the stripification prodss#.i The number of vertices
produced by the stripification is about 10% lower than by3i&d method but it produces
significantly more strips tha8Gl

3.2.2 Easy Triangle Strips For TIN

Speckmann and Snoeyink [30] suggested an original apprafacteating triangle strips
for triangulated irregular networks (TIN). They use the Ded&ealgorithm for traversing
a subdivision of a plane [6].

The idea of this algorithm is to define an order of trianglethetriangulation. For each
triangle an adjacent predecessor is defined and a direcpt gr formed. A stripification
can be easily obtained by the depth-first search traversiaisograph. As such an operation
is defined for the whole triangulation, no additional datatf® stripification are needed.

The predecessor relation is defined as follows. First, aitranp (starting) triangle
and its inner reference poiptis chosen. Then, for each triandleexcept for the starting
triangle the point ofl" closest top under Euclidean distance is computed. If the closest
point is an inner point of an edgeof the triangleT’, then the predecessor Bfis the other
triangle 7, adjacent to the edge (Figure 3.8(a)). Otherwise the closest point is one of
vertices of " with the edgee just before and’ just after (having the counterclockwise
orientation). If the edge is exposed to (i.e., the directed line induced @&hasp strictly
to the right) the triangld), adjacent te (Figure 3.8(b)), otherwise the triangl&; adjacent
to ¢’ is chosen as a predecessoflofFigure 3.8(c)).

The graph induced by such a criterion is connected and itpaarsng tree of the dual
graph of triangulation. This tree has two nice propertiesstfFthe branches of the tree
tend to alternate the left and right turn — the stripificag@merated from these branches is
more or less sequential. Second, the information aboutghersng tree does not need to
be explicitly stored, as the predecessor relation can bguted in a constant time.

18

(a) (b)\ ©"\

Figure 3.8: If the closest point to poiptis an inner point of the edgeof the triangleT’,
thenT,, is the predecessor @f (a). If the edge: is exposed te, thenT,, is the predecessor
of T' (b) elseT; is predecessor df(c). (From [30])

The basic tristrip can be constructed directly from the spantree, following the tree
in depth-first manner and starting a new strip every time éugience of left-right turns is
disturbed (Figure 3.98)). Sometimes, it is possible to connect a singleton striptoes
existing strip, even if they are not connected in the spaptrige, thus reduce the number
of singleton strips (Figure 3.@), dotted line). As the TIN algorithm does not store any
additional data, the insertion of an unconnected triangeot done in linear time in the
number of triangles.

To decrease the number of triangle strips and verticesailsis possible to allow the
swaps. They can be allowed by a simple modification of theetisat algorithm and no
additional data are needed. This modification does not bitealstrip, but it continues
even if the sequence of left-right turns is disturbed. InuFgg3.9(b), dense dashed lines
shows parts of strips that do not full fill the alternating4a§ht sequences.

It is also possible to look for nodes where the tree is "wide?,, the node has both
children, the left child has its own left child and the riglhild has its own right child (to
prevent too many swaps). In such a situation, it is possibjein the two strips starting
at the "wide” node, saving additional vertices. In Figur@ @), the root node is "wide”,
thus the strip can be extended to both directions, withoaipsw Still, no additional data
structures are needed.

The TIN algorithm is designed for static triangulated iukg networks. The main ad-
vantage of this algorithm is that it is quite fast and it doesrequire to store any additional
information. On the other side it produces more verticesranch more strips than tigGl
method.

As far as | know, the authors did not investigate the usageisfigorithm for flyovers
of some huge TINs (flight simulators, etc.). In my opinion d@incbe easily modified to
produce a dynamic stripification, by a simple change of thgisg triangle.

19

Tree edge
— Strip
Added single triangle

(@) (b) (c)

Figure 3.9: The basic traversal strictly maintains the-figfht turn sequences. Some sin-
gleton strips can be added to existing strips even if thexenat connected in the spanning
tree (dotted line) (a). Relaxing the left-right turn critari(allowing swaps — dense dashed
line), the number of strips can be lowered (b). The stripstmaxtended in "wide” nodes
(typically the root node) (c). (From [30])

3.2.3 Tunneling for Triangle Strips in Continuous Level-ofDetail Meshes

Stewart [32] has developed a global algorithm for fully mgallated static and continuous
level-of-detail meshes. The method is based on a graphtopeadled "tunneling”.

In the dual graph of the stripified triangulation, there carfdund two kinds of graph
edges (in Figure 3.1(®), the stripification containing three strips is show®)rip edges
join nodes whose corresponding triangles are adjaceneisdme strip. All other edges of
the dual graph areonstrip edgesA tunnelin the dual graph is an alternating sequence of
strip and nonstrip edges that starts and ends with nonstgpseand connects extremities
of two strips (Figure 3.1@b), the tunnel is shown in gray). By complementing the status
of each edge in the tunnel, i.e., changing the strip edgesnstrip and vice versa, the
number of strips can be reduced by one (Figure &0

The algorithm starts by choosing some extreme node of a &yijpreadth-first search
the shortest tunnel in the graph is found and the status @dges of this tunnel is changed.
The algorithm is repeated as long as a tunnel can be foundhamdimber of strips reached
the local minimum. As the stripification problem is NP-hatds not easy to say whether
it also reached the global minimum. The number of the stripthe final stripification
depends on the order in which the nodes are processed.

20

(a) (b) (c)

Figure 3.10: A triangle mesh with three strips (a). The tur{geay) is an alternating
sequence of strip (solid) and nonstrip (dashed) edges (binpl&menting the status of
edges in the tunnel, the number of strips is reduced by on€Rm [32])

There are two limitations for the breadth-first search tadpoe a valid tunnel. First,
the last edge of the tunnel cannot connect two nodes belgrgithe same strip (Figure
3.11(a). Complementing the status of the edges in such a tunnel duietenrease the
number of strips and causes an infinite strip (Figure gj)1

N 4 \ /7

(a) (b)

Figure 3.11: The last edge of the tunnel cannot connect twlesiof the same strip (a). In
such a situation an infinite strip appears (b). (From [32])

Second, if a nonstrip edge in the tunnel connects two nodeékeotame strip, the
direction toward the end of strip of the adjacent edges inttin@el has to be opposite
(Figure 3.12(@). Again, if the second condition is not fulfilled (Figure 3.1b)), the
number of strips is not reduced and an infinite strip appdagaife 3.12c)).

To be able to check these conditions, each node has to camaientifier of the parent
strip. When the strip is changed by the tunneling operatbthate identifiers have to be
updated, which requires a complete traversal of all aftesteps (in the worst case). Such
an operation is quite time consuming.

21

’ N ’
E A
(a) (b) (c)

Figure 3.12: If a nonstrip edge connects two strip edgeset#me strip, the orientation
of those edges toward the end of strip has to be oppositef (a)s condition is not fulfilled
(b) an infinite loop appears (c). (From [32])

The tunneling algorithm can be used in several ways. Facsteshes the algorithm
can simply start from the triangulation. Applying the tuling algorithm repeatedly, the
stripification is obtained. As the tunneling is quite slowisi also possible to use some
other algorithm to obtain an initial stripification and ingpe it by the tunneling.

The tunneling algorithm can be also used to repair the gtgtion in CLOD or view-
dependent progressive meshes during the simplificatiocegso After an edge split or
vertex collapse, the tunneling operator is used, startimlg fsom the triangles from the
neighborhood of the split or collapse. Such an approachliedca local repair. It is
also possible to maintain a list of all endpoints of the strijgVith each collapse or split,
several triangles from the list are used as starting poortghe tunneling. As the number
of the chosen starting points is small, the computationatload is negligible. Thiglobal
approach is much better than the local approach, as it niasttee stripification of nearly
a constant number of strips.

The tunneling algorithm can handle only fully triangulate@shes. It can be used
for both the static triangulation and for the CLOD represeota As far as | know, this
algorithm produces the stripification with the lowest numbikstrips. On the other side,
the number of vertices is much higher than the number ofeestproduced by th8Gl
The main disadvantage of the algorithm when used for staggh®s is the time complexity
that is substantially higher than t8&1 (while theSGl stripification takes several seconds,
the tunneling takes several minutes). When using globalinefm the CLOD meshes, the
tunneling maintains a good stripification of about a corntstaimber of strips.

22

3.2.4 Triangle Strips Guided by Simplification Criterion

Belmonte [5] designed an algorithm for stripification of brgee meshes that is guided by
a simplification criterion (a minimal quadratic error asated with the contraction of an
edge [17]). Triangle strips created with respect to thitkedon are preserved as the model
is being simplified.

The algorithm uses the edge collapsing for simplificatiothefmodel. While collaps-
ing an edge, some error occurs. The calculation of the esfoased on the sum of square
distances of vertices to an average plane. The algorithouleaés these errors and asso-
ciates them with corresponding edges. These errors aleongiee the weight of the edge
in the dual graph of the mesh.

Then an algorithm for searching for the maximum spanning isepplied on the dual
graph. Triangle strips are created by simple traversindnigf¢panning tree. As the tree
does not contain the edges with a small error (i.e., edgdsatikagoing to be collapsed
earlier), the triangle strips are conserved during the Bfiogtion process. To preserve
the strips, it is necessary to construct strips that do neéscedges with low error. In
Figure 3.13(@), a full resolution triangulation and its stripification isavn. During the
simplification step, both strips are preserved (Figure &))3

(a) (b)

Figure 3.13: A triangulation and its stripification (a). hetcase of a good stripification,
the strips are preserved during the simplification procesqErom [5])

The algorithm is designed for progressive triangle meshke.main goal of the algo-
rithm is to not split the strips during the simplification pess. It produces a higher number
of strips and higher number of vertices the@1 method. On the other side, the number of
strips is preserved even if approximately 45% of the edgesliapsed.

The idea of this algorithm could be extended to other dubkiyed stripification meth-
ods to produce a stripification that is more or less presetueithg the simplification.

23

3.3 Miscellaneous Approaches

In this subsection methods which produce the stripificatrom more general or more
specific type of data (i.e., point cloud, subdivision suefgcor which somehow improve
the stripification will be introduced.

3.3.1 Hamiltonian Triangulation

Arkin et al. [3] introduced two methods that construct artgalation of a point set that
can be covered with a single strip. The dual graph of thisgnigation contains a path that
connects all nodes and visits each node exactly once (a téamaih path), thus it is called
a Hamiltonian triangulation.

The first method is a simpi@sertionalgorithm which produces a triangulation with a
Hamiltonian cycle. It requires the points to be in generaifpan (i.e., no three collinear).
The second method is more complex, but it does not have treragyosition limitations.

The insertion method starts with a convex hull of a set of poistand a pointv €
S that is interior toconv(S). By adding chords from to each vertex otonv(S) an
initial triangulation that contains a Hamiltonian cyclecigated (Figure 3.14)). Now all
remaining points o5 can be added to the triangulation in an arbitrary order. Athnee
nodes are collinear, an inserted point lies in the interfosame triangle of the current
triangulation. The corresponding triangle is split intoetl new triangles by adding edges
from the inserted point to the three vertices of the triangjlee existing triangle strip is not
destroyed by this operation, as the three new trianglesleayabe connected with respect
to the entering and exiting edge (Figure 3(thj. The example of the final triangulation is
shown on Figure 3.1&).

k% k\% "

(a) (b) (c)
Figure 3.14: The initial triangulation contains the convexl and one inner point (a).
While inserting the remaining vertices, the strip can begme=d (b). The final triangula-
tion contains only one strip (c). (From [3])

24

The second method — amion method- does not require the points to be in general
position. The algorithm computes the convex hull and thevewrull of the remaining
points (the points that do not participate in the first conlwelt). Then the annulus region
bounded by those two convex hulls is triangulated (wittn) complexity) and a strip
connecting all the triangles is created (Figure 3ap The algorithm continues following
the same scheme for all points from the set. The strips of aachlus are then connected
into one triangle strip.

(a) (b)
Figure 3.15: The annulus bounded by the first and the secameexdull is triangulated
and a strip connecting all triangles is created (a). Folhguthe same construction scheme,
the whole triangulation can be created (b). (From [3])

Both these methods can be used only for a 2,5D set of points. >hithms have
O(nlogn) complexity (as they computes the triangulation whose Idveemd complexity
is O(nlogn)). The insertion method produces a large number of narramgies, thus
such a triangulation is not suitable for geometry compatatirhere are also some troubles
with rendering of such triangles. The onion method usualtydpces better triangulation
then the insertion method. Still, the triangles are notlifaurther computation.

It would be interesting to try to improve the quality of thetrgulation by repairing
the "bad” triangles (to check the quality of triangles, thel@unay condition can be used).
This could be done by swapping the diagonal edge in a quéstlaconsisting of two
triangles. In some cases, this swap breaks the triangfe sfthie reparation process can
stop if a concrete number of strips is achieved, or if the nemdd bad triangles is lower
than some required amount.

25

3.3.2 Hierarchical Generalized Triangle Strips

Velho et al. [36] introduced a refinement method for commartriangle sequences of a
mesh. This method is applied to construct a triangulatiahasingle strip that covers a
parametric or implicit surface. Furthermore, a hierarchyriangle strips defined at each
refinement level can be obtained.

As the todays graphics hardware usually works on triangfiesigle meshes are often
used to approximate smooth surfaces. To be able to rendendkk in appropriate level
of detail the mesh refinement is used. Generally, refinemgotithms produce detailed
models from a coarse base-mesh by subdividing the originalst The face is subdivided
according to a template, calledsabdivision scheme

This algorithm produces @finable triangle sequencee., a triangle sequence whose
order can be preserved when its element is subdivided. Spcbpeerty depends exclu-
sively on the subdivision scheme. The algorithm has twospart

1. Initialization that creates the base-mesh and the corresponding indiagte strip.
2. Refinementhat refine the base-mesh preserving the only triangle strip

For the refinement it is possible to use both — the uniform ormoiform subdivision
scheme. The uniform scheme recursively subdivides alhgtes of a mesh, using the
same template, until a desired resolution is obtained. Wsthe uniform scheme splits all
three edges at the edge midpoint and subdivide the triantgidour sub-triangles. There
exists two possible templates — isotropic that subdivid@agie into four identical triangles
(Figure 3.16(a) and anisotropic (Figure 3.1@®)). It is obvious that only the use of an
anisotropic template produces the triangle sequence @i 6(c,d; the shown solution
is not the only possible, there exist more configurationséanisotropic template).

A & B

Figure 3.16: Isotropic subdivision template (a). Anisptoosubdivision template (b). Tri-
angle sequences in anisotropic template (c,d). (From [36])

The non-uniform (adaptive) refinement schemes can suleoidly a part of the mesh.
They also split the triangle edges into two parts, but nothakke edges have to be sub-

26

divided, therefore at least three different templates nexgtts. Figure 3.17 shows the
subdivision templates: (a) one edge split; (b) two edge;sptid (c) three edge split (this
template is the same as in the uniform subdivision). ForIpedt situations it is pos-
sible to find a corresponding triangle sequence that respketentry and exit edge. In
the situation when a non-split exit edge is adjacent to aryesub-edge, it is not possi-
ble to find the sequence, thus a new (so-called Steiner) pasninserted to the template
(Figure 3.17d,®).

h A A

Figure 3.17: For non-uniform subdivision, three templapktting one (a) two (b) and
three (c) edges exists. In two situations it is not possiblproduce a triangle sequence,
thus the subdivision template has to be modified by inserdin§teiner points (d,e).
(From [36])

The algorithm produces a single triangle strip hierarcimbfath uniform and adaptive
subdivision schemes. As it uses predefined templatesagisthd can be used for real-time
visualization of progressive meshes, such as NURBS or sualivsurfaces. To manage
to get only one strip for the whole mesh, a huge number of sugapscessary, thus the
number of vertices in the final stripification is high.

3.3.3 Skip Strip

An algorithm that efficiently maintains triangle strips thg view-dependent simplification
was introduced by El-Sana [13]. It is based on hierarchikigltbst-like data structure [27]
and it is possible to use it in combination with any stripifica algorithm.

To store the view-dependent hierarchy of the mesh, a steicalled merge tree [37]
is used. The merge tree is constructed in a bottom-up fagteama high-detail mesh to
a low-detail mesh by storing the edge collapsing operatiom@shierarchical structure. To
build a level of the tree, the maximal set of edge collapseshortest-edge-first order and
with the constraint of no overlapping area is selected. €n@aining vertices are promoted
to the next level of the tree. The no-overlapping criteribaves to display various details
depending upon view-dependent parameters such as ligltlygagn orientation. As this
tree does not change during visualization, it is generatedareprocessing stage.

27

As the stripification process does not depend on the mergetren the skip list, any
stripification algorithm can be used. The stripificationnsated for the highest resolution
model only.

A skip strip is an array of skip strip nodes, where each nodwaios vertex informa-
tion (e.g., coordinates, color, etc.), a list of child penrstand a parent pointer. The skip
strip node is allocated for each merge tree node (i.e., fon @artex of the base-mesh).
The parent pointer and all child pointers are set to copy teggmtree hierarchy. In Fig-
ure 3.18(a), an example of a merge tree is shown. The levels of the treesqmnds to
the levels-of-detail of a model. In the figure, the most detamodel consists of four
vertices. When simplifying the model, the vertex 2 collapsethe vertex 1 and the the
vertex 4 collapses to the vertex 3. The lowest LOD model isasgnted by a single vertex
(the vertex 1). In Figure 3.1@®) a corresponding skip list structure is presented.

0,
child pointers: — r il r—+ r
(1) (3) 1 1 2] 3] 4
parent pointers: J 1 J | f—J
ONONONO

(a) (b)

Figure 3.18: An example of a merge tree (a) and its corregpgnskip list struc-
ture (b). (From [13])

In Figure 3.19(a) a sample triangle mesh is shown. During the visualizatianeso
edges may collapse (Figure 3.19). The triangle strips can be preserved by replacing
the invalid vertices with valid vertices by looking into ailstrip structure. In the figure,
the original stripa is defined by a vertex sequence 7,6,4,5,3,2,1. As the vértelapses
to vertex5 in the lower LOD, the strip is displayed as a sequen&4/,3,2,1. One can
see that while replacing the invalid vertices a group of tabah vertices may appear (see
the end of the strig in the sample figure — the strip is displayed as a vertex seguen
1,10,3,9,47,7). To improve the stripification, the algorithm containsmgie triangle strip
scanner that detects and replaces these repeating segjuence

The algorithm does not produce a stripification, but it iSgiesd to maintain the strip-
ification in CLOD meshes. As the skip strip structure is gelpédrean be used in combina-
tion with any stripification method. The speedup while udimg skip-strip representation
is 30—95% in comparison to triangle representation. Fohndrigimplification (i.e., more
decimated meshes), the speedup is lower since the fragmoandhthe strip increases.

28

(a) (b) I:—J = |:—+F = INI=]
112345878]9]10
original strip a: 7645321 J ;J LJ J —J LJ JLJ
displayed strip a: 7545321
original strip b: 11039487
displayed strip b: 11039477 (c)

Figure 3.19: An original mesh covered by two strips (a), Aioeted mesh (b) and cor-
responding merge tree and skip list (c). The dark area in thgentree shows the active
LOD for the mesh. (From [13])

3.3.4 Transparent Vertex Caching

Deering [11] proposes the use of a vertex cache of more thawéxvtices to decrease the
amount of vertex transfer from CPU to graphics engine. Tha igléo reuse those vertices
that are currently buffered in the vertex cache. One year Bar-Yehuda [4] studied the
impact of the buffer size to rendering time (time/spacedraff). He has shown that a
buffer of size13.35,/n is sufficient to render any polygon mesh definedrovertices in
the minimum timeO(n).

Hoppe [20] presented an algorithm that optimizes triangipsfor a system of a given
memory and transparently reduces the geometry bandwidigorihm is based on a looka-
head simulation of the vertex-cache behavior.

The basic strategy of the algorithm is to incrementally geriangle strip and to
decide at each step whether it is better to add the new teatogthe strip or to start a
new strip. To make this decision, a lookahead simulatiorhefvertex-cache behavior is
performed. At the beginning the algorithm marks all trissgbf the mesh as unvisited.
As a starting triangle for a new strip, it chooses a triangiin the fewest neighbors. If
there is only one unvisited neighboring triangle, it is cected to the strip. If there are
two faces, the algorithm always continues the strip in a tauclockwise direction, but
it pushes the other neighbor into a queue of possible latafior strip restarts. If there
are no unvisited neighboring triangle, the strip cannotiooe and a new strip has to be
created. As a starting triangle a triangle from the queudé@sen. If there is no triangle

29

in the queue, the algorithm chooses a triangle whose veréicealready in the cache and
which has the fewest number of unvisited neighbors.

As the capacity of the vertex cache is limited, it can hapban the strip overflows it
and it will not be possible to re-use the cached verticesréfbee, a lookahead simulation
of the vertex cache is performed, before adding a new face sithulation performs
simulations of the strip-growing process for the nextiangles. It computes the average
number of cache misses per visited triangle. If the lowest ealue corresponds to= 0,
the strip is restarted, otherwise a new face is added.

The algorithm is designed to maximize the reuse of cachetesr According to the
results, presented in the paper, the average cache misgnpex vate is about 1.25 for a
vertex cache of size 16, whereas the absolute lower bound is 1

30

3.4 Overall Comparison

In this section, an overall comparison of most of the memttbmethods is presented. All
experiments were performed on a PC INTEL Pentium 4, 2.8GBA af RAM, ATI T32,
running on MS Windows XP. Naturally, times of /O operatidra/e been excluded from
measurements if possible.

| have chosen a set of ten models that are often used in otbécations and that are
available on the internet [31, 18, 8, 10]. Models are showkppendix B. All these models
are fully triangulated. The demi model consists of 37 dismmted components. The
dragon and the blade model contains some inconsistentisstite number of components
is higher.

| model # vertices| # triangles| # components
1| cow 2905 5804 1
2 | demi 9138 17506 37
3 | bunny 35947 69451 1
4 | dinosaur 56194 112384 1
5 | balljoint 137062 274120 1
6 | club 209779 419554 1
7 | hand 327323 654666 1
8 | dragon 437645 871414 151
9 | happy 543652| 1087716 1
10 | blade 882954| 1765388 295

Table 3.1: Set of testing models.

For the comparison, | have chosen the methods that are alskeipidy the full 3D
meshed Table 3.2 presents the algorithm overview. The first andrsgcolumn shows the
short name of the algorithm as it was presented in this wodkla& chapter with algorithm
description. As the programming language and the compdaricfluence the speed of
the program, the third column ("Compiler”) shows the used piben A short name under
which will be the algorithm presented in tables is shown i ¢blumn "Label”. For all
algorithms | have used the default parameters or parantbraere recommended by the
author. The concrete parameter is mentioned in the coluraraiReters”. Very often, the
algorithm has implemented both the vertices minimizingtion and the strips minimizing
function.

3] would like to thank to prof. Stewart for providing the soarcode of Tunneling, to X.Xiang and prof.
J.S.B. Mitchell for providing the source code of FTSG and t&@nmann for support for his program.

31

Algorithm Chapter| Compiler Label Parameters Minimizing
SGl 3.1.1 Delphi 7 SGl -LNLN strips
SGI-LS -LS vertices
Weighted SGI| 3.1.2 N/A WSGI keys 7,8,9 strips
SStrip 3.1.3 Cygwin, gcc| SSTRIP -m 2 strips
SSTRIP-Q | -m2-q vertices
STRIPE 3.14 Cygwin, gcc| STRIPE-L | -l strips
STRIPE-Q | -q vertices
FTSG 3.2.1 Cygwin, gcc| FTSG-SGI | -dfs -concat -sgi strips
FTSG-ALT | -dfs -concat -alt| vertices
Tunneling 3.2.3 Cygwin, gcc| TUNNEL strips

Table 3.2: Algorithms overview

e SGI(-LS) Although the originatomesh.code is available on the internet [1], | was
not able to make it work due to lack of documentation. | havplemented and
tested several methods based onSi&d algorithm in [34]. | have used the standard
SGI method $GI) and vertex minimizing heuristicSGI-LS for the tests.

WSGL There is only a binary version of the algorithm availabletoainternet [23].
As the algorithm output depends on some randomized desisien measurements
were taken and the average value is presented. All thregstiesiwere enabled for
the measurement. The program only visualizes the result does not export the
stripified mesh, thus | was not able to make some tests (FP&pnygetime).

SSTRIP(-Q)The source code of the program is available on the inte@&tynder

the GNU General Public License. The number of the simultagestrips was set
to two. The measurement for both heuristic (strips miningzivertices minimizing
(-q)) was performed.

STRIPE(-L/-Q) The source code of the program is freely available on theriet
[14] for non commercial use. The mesh is exported during g fscation process,
thus it is not possible to exclude the time of I/0O operatiohe Tests are performed
with two heuristic functions: "Look ahead one level in chiogsthe next polygon”
(-1) and "Choose the polygon which does not produce a swap. (fdpe tests are
performed with STRIPE version 2, which is much faster.

FTSG(-SGI/-ALT)The program is free for non-commercial purposes only aodrit
be obtained via e-mail [38]. The tests were performed with dbpth-first search

32

heuristic (-dfs) and enabled concatenation of strips atn The next triangle deci-
sion was based on tI&Gl criterion (-sgi — strips minimizing) and on alternating the
left-right turns (-alt — vertices minimizing).

e TUNNEL The program is not available on the internet, but it can b@iobd via
e-mail. The tests were performed with the default settiidgese memory usage and
computation time is very high!

3.4.1 \ertices

In the Table 3.3 (Figure 3.2@p)*), a comparison of number of vertices in strips is pre-
sented. The number of vertices determines the size of datéeddor the model —i.e. the
amount of data sent to the rendering engine. The differentteei number of vertices does
not vary too much for different algorithms, because theestao theoretical boundaries.
The number of vertices could not be lower thammnber of triangles + 2 (for a sequen-
tial strip, covering the whole triangulation, which is quitnpossible for a real-life model)
and it could not be higher thah- number of triangles for a set of isolated triangles or
2 - number of triangles for a connected set of triangles. The Table 3.4 (Figure &80
tom)) shows a comparison of vertices per triangle, i.e., the@ matinumber of vertices to
the number of triangles.

The vertices minimizing algorithm$STRIPE-QSSTRIP-QndFSTG-ALT) produces
nearly the same number of vertices. The average V/T for thkegeithms is about 1.25.
The SGI-LS algorithm produces stripifications with the lstvaumber of vertices (1.23
VIT in average). As this algorithm strictly chooses therigkes which do not cause a
swap, the low V/T is compensate by a huge number of strips.

The EVANS-Lalgorithm produces a stripification with an average V/T dldod7. In
my opinion there is some bug in the code, as this algorithndyces a high number of
vertices and also a high number of strips (although it shoufdmize the number of strips).

It is quite interesting that nearly all algorithms (exc&tNNELandSTRIPE-L) have
the same behavior. For the bunny model (which is topololyicary simple), the average
V/T is very low, on the other side, the average V/T for the dragnd for the happy buddha
is more than 10% higher. Similar behavior is also noticeabthe average length of strips
(3.21(bottom).

4The left graph shows the dependency on number of trianglessth@ stripification process does not
depend only on the number of triangles but also on the togotdghe model, the right graph shows the
dependency on concrete model.

33

3.4.2 Strips

Number of strips produced by tested algorithms are predentde Table 3.5 (3.2{top)).
The number of strips as well as the number of vertices is aldior the rendering speed.
As starting a new strip takes some extra time, a huge numldgangle strips slows down
the rendering. On the other side, minimization of the nunabstrips often leads to higher
number of vertices (swaps). For better comparison, theagediength of triangle strips is
presented in the Table 3.6 (3.&dottom).

The TUNNELNng algorithm produces more than three times lower numbenarigle
strips than all other algorithms. On the other side, to olsach a long triangle strips, it is
necessary to use swaps (thus increase the number of virtices

The differences in the number of strips are very high. $&-LSalgorithm produces
stripification with more than 20 times higher number of &ripan theTUNNELNg.

3.4.3 Rendering Speed

As the triangle strips are mainly used to speed up the vizatadin, | have also tested the
rendering speed of models stripified by different technsgf@ble 3.7, Figure 3.2@op)).
To maximally use the graphics hardware, the OpenGL vertéeibobjects are used [26].
Note that the rendering speed depends on the GPU archéeahar can vary for other
graphics cards.

According to the tests, the speed of rendering depends onuitmder of vertices (as
these vertices has to be transmitted) and on the numberigd §as the creation of a new
strips cost some additional time). For this reason, thegisendering is neither achieved
by the TUNNELNg algorithm (that produces the lowest number of strips)byothe SGI-
LS (that produces the lowest number of vertices). The besterng performance was
achieved with models produced By RIPE-QandFSTG-SGI The differences in FPS are
less than 20% in the worst case but less than 10% in average.

In Figure 3.22(bottom a rendering time of a single frame is shown. The rendering
speed more or less linearly depends on the number of vedidhe model. Unfortunately,
itis not possible to find out the dependency of the rendepegd on the number of vertices
in strip — Figure 3.23top,lefy; or on the number of strips — Figure 3.@8p,righy (both
figures shows the rendering speed for three models strignfied! possible methods).

As theWSGIprogram does not produce any output file, it was not possibhegasure
the rendering speed.

34

3.4.4 Execution Time

The time of stripification process is actually not very calicas the stripification is usually
used in a preprocessing stage. The execution time presentadle 3.8 (Figure 3.24) does
not include the 1/0 operation (except tB& RIPEalgorithm, as the output operation runs
during the stripification process).

All algorithms exceptSTRIPEand TUNNEL produce the stripification in about the
same time.STRIPEis slower as the saving process is included in the measutemesn
TUNNELNg searches for a tunnel with a breadth first search mettood &ach strip end-
point, the complexity of the algorithm is higher th&in) and the execution time is not
comparable to other algorithms.

The SGI-LS algorithm is the fastest one, as it uses a verylsigrgerion and it does
not make the lookahead search.

The execution time o8STRIPalgorithms is not published for all models, as the algo-
rithm did not worked well on the Windows platfoPmAlthough theWwSGlprogram shows
the time needed for stripification, it is not included in thble, as it does not show the time
for temporary structures such as adjacency tables, etc.

3.4.5 Memory Usage

As different algorithms use different data structures,athmunt of allocated memory can
differ (Table 3.9, Figure 3.2®%ottom). To measure the memory usage, a program that
scans the running processes (using win32 API CreateTo@28Iipapshot function) and
stores the memory usage peak for a process is used. As theirsgas not continuous,
some inaccuracy may appear.

The TUNNELNg is the most memory consuming stripification program ef tbsted
programs. This is not very surprising as the algorithm needpecial data structure to
maintain the information about the tunnels. The memory es#gTRIPEIs also very
high, but I do not know the reason. As far as | know, it does eetdany special structures
(it works on the same principle as the SGI algorithm) funthere, the strips are being
saved during the stripification process.

As theWSGlIprogram provides also the visualization of the model (thngeds some
additional memory), | did not include the memory usage.

SFor high resolution models, the program crashed

35

3.4.6 Conclusion

According to all these tests, the algorithm presented byt al. ETSG-SG), provides
a stripification that is most suitable for the rendering.tR@rmore, this algorithm is very
fast and it does not need too much memory. Following the reémglespeed criterion the
STRIPE-Qalgorithm produces a stripification of the same quality.

Although SSTRIP-Qand SGI-LS (vertex minimizing heuristic) produces the lowest
number of vertices, the rendering speed is lower. Optirgizinly the number of strips
(TUNNELNQ) leads to lower rendering speed, too.

36

LE

model SGI| SGI-LS| WSGI | SSTRIP| SSTRIP-Q| STRIPE-L | STRIPE-Q| FSTG-SGI| FSTG-ALT | TUNNEL
cow 7618 7087 7681 7585 7079 8568 7190 7400 7186 8295
demi 23441\ 21838| 23457 22802 21861 25443 21939 22631 22169 24255
bunny 86982| 81730, 87034 85909 81890 101806 82760 85362 82213 98503
dinosaur| 148437| 138857 149516| 147477 139984 164430 141267 144788 140152| 159361
balljoint | 358070 337585| 360172 355481 340518 400951 343022 345862 339738| 385909
club 532253| 505036 536496, 527017 507086 613411 511751 521652 508143| 580683
hand 875690| 812042| 884921 866341 817614 965939 825434 855683 824224 938693
dragon | 1237019| 1129993| 1251062| 1217292| 1141854| 1289540, 1153301 1195550 1156027, 1260651
happy | 1545562| 1409575| 1563465| 1519534| 1424174| 16090654 1438639| 1492285 1442542 1574172
blade 2293726| 2134682| 2313250| 2265291 2142271 2609281 2159526 2248981 2166404 2542184

Table 3.3: Number of vertices in strips.

8¢

model SGI | SGI-LS | WSGI | SSTRIP| SSTRIP-Q| STRIPE-L| STRIPE-Q| FSTG-SGI| FSTG-ALT | TUNNEL
cow 1.31 1.22| 1.32 1.31 1.22 1.48 1.24 1.27 1.24 1.43
demi 1.34 1.25| 134 1.30 1.25 1.45 1.25 1.29 1.27 1.39
bunny 1.25 1.18| 1.25 1.24 1.18 1.47 1.19 1.23 1.18 1.42
dinosaur| 1.32 124 1.33 1.31 1.25 1.46 1.26 1.29 1.25 1.42
balljoint | 1.31 1.23| 131 1.30 1.24 1.46 1.25 1.26 1.24 1.41
club 1.27 1.20| 1.28 1.26 1.21 1.46 1.22 1.24 1.21 1.38
hand 1.34 1.24| 1.35 1.32 1.25 1.48 1.26 131 1.26 1.43
dragon | 1.42 1.30| 1.44 1.40 1.31 1.48 1.32 1.37 1.33 1.45
happy | 1.42 1.30| 1.44 1.40 1.31 1.48 1.32 1.37 1.33 1.45
blade 1.30 121 131 1.28 1.21 1.48 1.22 1.27 1.23 1.44

Table 3.4: Number of vertices per triangle (V/T).

6€

model SGI | SGI-LS | WSGI | SSTRIP| SSTRIP-Q| STRIPE-L| STRIPE-Q| FSTG-SGI| FSTG-ALT | TUNNEL
cow 98 352 87 78 127 141 136 105 312 19
demi 335 1183 315 293 419 456 418 286 1020 139
bunny 648 3560 622 575 1174 1531 1229 618 3238 166
dinosaur| 1177 7276| 1355 1271 2422 2470 2498 1346 6411 260
balljoint | 2279| 17454| 2910 2519 5746 6145 5820 2446 15371 536
club 2658| 23966| 3875 3111 7782 9210 8184 3054 21148 750
hand 8997| 44710| 9279 8318 14674 15309 15422 10394 38779 1590
dragon | 17399| 71182| 17112 16402 23564 22928 25356 20571 58377 3331
happy | 21578| 88143| 21250, 20119 29150 28563 31550 25576 72271 3710
blade 23125| 115568| 23468 21829 35101 41128 35952 26779 99890 4606

Table 3.5: Number of strips in a model.

ov

model SGI | SGI-LS | WSGI | SSTRIP| SSTRIP-Q| STRIPE-L | STRIPE-Q| FSTG-SGI| FSTG-ALT | TUNNEL
cow 29.64 8.25| 33.58| 37.24 22.87 20.60 21.36 27.67 9.31 152.89
demi 27.28 7.72| 29.02 31.19 21.81 20.04 21.86 31.95 8.96 65.74
bunny | 55.47| 10.10| 57.84 62.52 30.62 23.48 29.25 58.17 11.10 216.55
dinosaur| 47.74 7.72| 41.46| 44.21 23.20 22.75 22.50 41.75 8.77 216.13
balljoint | 60.14 7.85| 47.10| 54.41 23.85 22.30 23.55 56.04 8.92 255.71
club 78.92 8.75| 54.14 67.43 26.96 22.78 25.63 68.69 9.92 279.71
hand 36.38 7.32| 35.28| 39.35 22.31 21.38 21.22 31.49 8.44 205.86
dragon | 25.15 6.15| 25.58 26.68 18.57 19.09 17.26 21.27 7.50 131.39
happy | 25.19 6.17| 25.58 27.02 18.65 19.03 17.23 21.26 7.52 146.54
blade 38.18 7.64| 37.62| 40.45 25.15 21.47 24.56 32.97 8.84 191.70

Table 3.6: Average length of strips.

144

model SGI | SGI-LS | WSGI | SSTRIP| SSTRIP-Q| STRIPE-L| STRIPE-Q| FSTG-SGI| FSTG-ALT | TUNNEL
cow 421.24| 411.98 414.77 416.08 416.15 420.17 417.23 407.27 419.88
demi 334.02| 332.50 336.53 335.28 322.88 337.27 338.99 327.86 329.57
bunny | 137.76| 136.43 135.96 133.78 125.40 138.06 136.38 133.50 130.23
dinosaur| 107.51| 106.71 106.47 108.27 97.87 109.05 108.37 105.25 101.52
balljoint | 49.08| 48.94 49.55 49.88 44.45 50.58 50.74 49.04 46.34
club 34.38| 34.08 34.43 34.51 29.84 34.89 34.74 33.78 31.88
hand 21.86| 22.14 22.18 22.23 19.70 22.79 22.25 21.95 20.59
dragon 15.43| 16.38 16.09 16.13 14.72 16.26 15.86 16.09 15.28
happy 13.07| 12.89 13.58 13.72 12.84 13.51 14.28 13.27 13.78
blade 8.89 8.74 9.05 9.07 8.70 9.09 9.35 8.97 8.39

Table 3.7: The average FPS.

[A%4

model SGI | SGI-LS | WSGI | SSTRIP| SSTRIP-Q| STRIPE-L | STRIPE-Q| FSTG-SGI| FSTG-ALT | TUNNEL
cow 0.028| 0.016 0.012 0.013 0.258 0.268 0.015 0.016 0.515
demi 0.088| 0.031 0.042 0.042 0.849 0.829 0.047 0.062 0.703
bunny | 0.387| 0.125 0.218 0.217 3.150 3.195 0.250 0.250| 101.375
dinosaur| 0.645| 0.235 0.386 0.389 4.847 4.888 0.422 0.437 44.719
balljoint | 1.669| 0.672 1.128 1.145 12.055 12.087 1.125 1.109| 107.500
club 2.545| 0.953 1.710 1.725 18.651 18.695 1.688 1.687| 366.076
hand 3.509| 1.235 34.340 34.195 2.031 2.578| 338.359
dragon | 3.863| 1.938 37.426 37.342 3.016 3.204| 662.406
happy | 6.260| 2.609 46.359 45.992 3.797 4.063| 889.938
blade 9.684| 4.125 112.472 112.375 5.735 5.984| 3488.190

Table 3.8: The computation time in seconds.

ey

model SGIl | SGI-LS | WSGI | SSTRIP| SSTRIP-Q| STRIPE-L | STRIPE-Q| FSTG-SGI| FSTG-ALT | TUNNEL
cow 1.7 1.6 4.7 4.7 4.2 4.2 2.7 2.3 5.1
demi 2.6 2.4 6.1 6.1 8.4 8.4 4.9 4.9 11.2
bunny 6.4 6.0 12.5 12.5 27.2 27.2 13.6 13.6 37.2
dinosaur| 10.4 9.8 17.7 17.7 42.5 42.6 17.5 17.5 57.8
balljoint | 23.3 22.2 37.5 37.5 100.7 100.7 38.8 38.8 137.6
club 35.0 33.3 55.3 55.3 152.9 153.0 58.0 58.0 209.3
hand 54.0 51.3 237.4 237.4 118.2 118.2 325.0
dragon 71.6 68.0 315.3 315.4 122.1 122.1 435.1
happy 89.0 84.6 393.0 393.0 190.2 190.2 540.8
blade 143.5| 136.3 636.5 636.7 298.8 298.8 873.7

Table 3.9: The amount of allocated memory in MB.

4%

3000k 1 3000k 1
---%-- SGI —%— SGILS ---%-- SGI —»— SGILS
..%-- WSGI R ---%-- WSGI
2001l 6. SSTRP ~ —6—SSTRP-Q 200k 1l 6. SSTRP ~ —e—SSTRP-Q
" --©-- STRIPE-L —— STRIPE-Q » --©-- STRIPE-L —6— STRIPE-Q
2 2000k 1]---&@-- FTSG-SGI —8—FTSG-ALT £ 2000k q]---@-- FTSG-SGI —8—FTSG-ALT
» ---A-- TUNNEL » ---A-- TUNNEL
=4 o
% 1500k 1 "o 1500k 1
o @
£ 8
E 1000k 4 5 1000k 4
> >
500k - 500k -
0Ok r r r r r r r r " Ok - r r r "
Ok 200k 400k 600k 800k 1000k 1200k 1400k 1600k 1800k} cow demi bunny dinosaur balljoint club hand dragon happy blade
Triangles Models
1.6 1.6 «
15 1.5 4
o Kan)
o 1.4 4, D 1.4 -
c R S c
8 S
= y £
- 138 - = 1.3 1
S 1
o) = o %
8 12 —s— SGHL.S 9 121 —%— SGH.S
s | |x- % ---%-- WSGI
g 23 —o—SSTRP-Q g ¢~ SSTRP —e— SSTRIP-Q
©-- STRIPE-L —e— STRIPE-Q --@-- STRIPELL —8— STRIPE-Q
1.0 --@-- FTISG-SGlI —B—FTSG-ALT 1.0 1 ---B-- FTSG-SGI —8— FTSG-ALT
---A-- TUNNEL ---A-- TUNNEL
0.9 + T T T T T T T T " 0.9 T T T T T T T
Ok 200k 400k 600k 800k 1000k 1200k 1400k 1600k 1800K| cow demi bunny dinosaur balljoint club hand dragon happy blade
Triangles Models

Figure 3.20: Graphs: Number of vertices in strips (top). Menof vertices per triangle (bottom).

1%

120k + 120k +
---%-- SGI —»— SGILS ---%-- SGI —%— SGILS
100k | --%-- wsal ook 4| %~ wsal
---©&-- SSTRIP —é6— SSTRIP-Q ---¢-- SSTRIP —o— SSTRIP-Q
--@-- STRIPE-L —— STRIPE-Q --©-- STRIPE-L —&— STRIPE-Q
80k {|--@-- FTSG-SGI —@— FTSG-ALT 80k {|---&@-- FTSG-SGI —@— FTSG-ALT
® TUNNEL " ---A-- TUNNEL
£ 60k 4 £ 60k 1
(7] [72]
40k 4 40k -
20k o 20k 4
Ok) A ; \ 0K 4 ====m arail I S
0Ok 200k 400k 600k 800k 1000k 1200k 1400k 1600k 1800K| cow demi bunny dinosaur balljoint club hand dragon happy blade
Triangles Models
300 - 300
- ---%-- SCI —»%— SGILS ---%-- SGI —»%— SGILS
250 4 A) %~ WSGI 250 | A= wsal
g : ---&-- SSTRIP —o— SSTRIP-Q 5._’ - ---¢-- SSTRIP —o— SSTRIP-Q
g AA’ --©-- STRIPE-L —e— STRIPE-Q g ATTA --©-- STRIPE-L —e— STRIPE-Q
= 2004 A" -@-- FTISG-SGl] —B— FTSG-ALT b 200 4 = ---B-- FTSG-SGl —8— FTSG-ALT
P ; ‘ ---A-- TUNNEL < A~ TUNNEL
2 150 p! - A 21501 A N
s | A S . AT
S 0] 3
g 100 4: g 100 -
[[
> >
< 5 < 50
. - = 4 S e e
T T T T T T T T - T T T T T T T T T —
0Ok 200k 400k 600k 800k 1000k 1200k 1400k 1600k 1800K] cow demi bunny dinosaur balljoint club hand dragon happy blade
Triangles Models

Figure 3.21: Graphs: Number of strips (top). Average lemdttrips (bottom).

o

Ok

200k 400k 600k 800k 1000k 1200k 1400k 1600k 1800K]

Triangles

450 450 -
---%x-- SGI —»— SGILS ---%-- SGI —%— SGILS
400 ¢ SSTRP —e—SSTRP-Q 400 1 - SSTRP ~ —e—SSTRP-Q
350 --@-- STRIPE-L —e— STRIPE-Q 350 4 --©@-- STRIPE-L —e— STRIPE-Q
---B&-- FTSG-SGI —8— FTSG-ALT ---B-- FTISG-SGl —8— FTSG-ALT
300 4 ---A-- TUNNEL 300 4 ---A-- TUNNEL
o 2501 o 250
o o
L 200 - W 200 4
150 4 150
100 4 100 4
50 4 50 1
0 —a 0
0Ok 200k 400k 600k 800k 1000k 1200k 1400k 1600k 1800K| demi bunny dinosaur balljoint club hand dragon happy blade
Triangles Models
120 - 120 -
-- SGl —— SGLLS -- SGlI —»— SGILS
100 4 -- SSTRIP —o— SSTRIP-Q 100 4 -- SSTRIP —6— SSTRIP-Q
i -- STRIPE-L —e— STRIPE-Q i -- STRIPE-L —— STRIPE-Q
£ o-- FTSG-SGI —8— FTSG-ALT = & FTSG-SGI —8—FTSG-ALT
& 80 .-- TUNNEL o 801]---A-- TUNNEL
o o
L L
< 604 =
(] [}
£ E
@ 40 A
£ £
o o
['8
20 -
0 . . . T T T T T)

demi

bunny dinosaur balljoint club hand

Triangles

dragon happy blade

Figure 3.22: Graphs: Average FPS (top). Rendering time farglesframe (bottom).

LY

200k 400k

600k 800k 1000k 1200k

Triangles

1400k

1600k

1800k

120 -+ 120
x SGI +SGHLS 4] ¥
blade
4 SSTRP #SSTRP-Q g, "_/';
n O STRIPE-L ® STRIPE-Q -
E 11| DOFTSG-SGI EFTSGALT E, 100
m A TUNNEL m
o o
L Iy
< g0 < 80
@ o [+ +
E £ A & o8 happy T,
o © o % SGI +SGH.S
g ol g 4 SSTRP +SSTRP-Q
w w 0 STRIPE-L ® STRPE-Q
K3 € o OFTSG-SGI WFTSG-ALT
& hand RS m o+ A TUNNEL
40 NS 40 N?nd y - ; ;
700k 1200k 1700k 2200k 2700k 0k 20k 40k 60k 80k 100k
Vertices in strips Number of strips
800 - 800 -
---%-- SGI —%— SGH.S SGl —»— SGKLS
---¢-- SSTRP —¢— SSTRIP-Q --8STRP ——SSTRIP-Q
--@-- STRIPE-L —e— STRIPE-Q - STRIPE-L —— STRIPE-Q
@ %0 1|--8-- FTSG-SGI —8—FTSG-ALT » o 8907 -- FTSG-SGI —B—FTSG-ALT
£ ---A-- TUNNEL A = -- TUNNEL A
S -) B
© A’ ©
8 400 1 - g
> >
S S
o o
£ £
[}] Q
= 200 4 =

demi bunny dinosaur balljoint club hand

Models

dragon

Figure 3.23: Graphs: Rendering time for a single frame (tbf@mory usage (bottom).

happy blade

8v

10.0 5 / X 10.0 - / <
---%-- SGI —%— SGILS ---%-- SGI —»— SGFLS
--¢-- SSTRIP —o— SSTRIP-Q ---&-- SSTRIP —é6— SSTRIP-Q
., 804|--©-- STRIPE-L —— STRIPE-Q —, 801|--@-- STRIPE-L —e— STRIPE-Q
2 --8-- FTSG-SGI —8B— FTSG-ALT 2 --@&-- FTSG-SGI —8— FTSG-ALT
g ---A-- TUNNEL £ A TUNNEL {
= : F 601 e
c c .
2]
g s
] S5 4.0 1
=y s - e
£ £
o o .
) © Lol R~
0.0 r r r r r r r r \ 0.0 4 = r r r r r r "
Ok 200k 400k 600k 800k 1000k 1200k 1400k 1600k 1800k cow demi bunny dinosaur balljoint club hand dragon happy blade
Triangles Models
3500 - A 3500 - A
---%-- SGI —%— SGILS ---%-- SGI —»— SGILS :
3000 4] ---¢-- SSTRIP —o— SSTRIP-Q 3000 4| --¢-- SSTRIP —ée— SSTRIP-Q
— --@-- STRIPE-L —e— STRIPE-Q —_ --@-- STRIPE-L —8— STRIPE-Q
2 o5004|--B-- FISG-SGI —B— FTSG-ALT s 2L 00 J|--B-- FTSG-SGI —B8—FTSG-ALT
o o
E A -- TUNNEL £ ---A-- TUNNEL
= 2000 - = 2000 -
c c
2 2 ;
& 1500 - T 1500
= = N
3 2
1000 - 1000 A g
3 A S A
00 A” _.A ______
500 4 500 4
oA AT A
T e e N e . —=. - e R
0k 200k 400k 600k 800k 1000k 1200k 1400k 1600k 1800K] cow demi bunny dinosaur balljoint club hand dragon happy blade
Triangles Models

Figure 3.24: Graphs: Execution time.

4 Delaunay Stripification

In this section | will concentrate on 2D and 2.5D triangwas, which are often used for
terrain modeling. The terrain models are often given as atggat and it is necessary to
make a triangulation of this point set first. One of the moshewn triangulations is the
Delaunay triangulation. This triangulation is very popwdapecially because of two facts:
(1) it produces the most equiangular triangles of all pdesibethods (it maximizes the
minimum angles); (2) it can be computedin logn) time in the worst case and ®(n)
time in the expected case. It is also possible to create adesels of detail while using
an incremental insertion algorithm for the Delaunay tridagon.

4.1 Delaunay Triangulation

In this section | will describe the Delaunay triangulatiomastructures that | use. More
details about the Delaunay triangulation are e.g. in [12].

Definition 1 A triangulation7’(P) of a set of points” in the Euclidean plane is a set of
edgesF such that

1. no two edges i intersect at a point not irP,

2. the edges ity divide the convex hull aP into triangles.

Definition 2 The triangulationDT'(P) of a set of points” in the Euclidean plane is a
Delaunay triangulation of if and only if the circumcircle of any triangle @#7’(P) does
not contain any other point a® in its interior.

There exist several approaches of constructing a Delauizagtilation, e.g.:
e divide & conquer [12],

e incremental insertion [25, 22],

¢ high-dimensional embedding [7].

Although the fastest method is divide & conquer [12] (acaagdo [33]), | decided to
use the incremental insertion for several reasons: divid@@guer methods are often too
sensitive to numerical inaccuracy, another reason is tigainisertion method allows us to
insert points in a specific order (e.g., according to the ingmze of the point) to obtain
different levels of details. Also the implementation ofr@mental insertion is easier than

49

the divide and conquer. While using randomized incrementrtion, the algorithm is
insensitive to input data configurations. Last but not leattte incremental insertion has
been already implemented in our computer graphics groujp [22

The incremental insertion algorithm is described in Figutde

Input: the set of point$ in £?
Output:DT(P)

1. Create a temporary triangle, such that all point® afre
enclosed in it;

2. Foreactp from P do

(a) Find the triangle or edgee that contains the point
D;

(b) If the p point lies on an edge, find the triangles
sharing this edge and subdivide them into four new
triangles <

y

~

else subdivide the triangtanto three new triangles;

(c) If new triangles do not fulfill the Delaunay condi-
tion, flip the edges (thus create new triangles) and
repeat this step.

Z

Figure 4.1: Algorithm steps for the incremental insertidrDd and an example of the
triangulation construction.

The most time consuming part of the algorithm is step 2a — akgiaication of the
triangle containing the inserted point. In our approaciantyles are kept in a directed
acyclic graph (DAG) — a graph where the history of insertiod #8ipping is stored.

An example of vertex insertion and edge flipping is shown iguFe 4.2. In the first
step, a new vertex is inserted. Then the correspondinggigar divided into three new
triangles (4,5,6). Because the new triangles do not ful@l@telaunay condition, edge flips
are performed in steps three and four.

4.2 Delaunay Stripification

To speed up the visualization of different levels of detbihe triangulation, it is possible to
use triangle strips. In Figure 4¢&), one can see that it is possible to obtain a stripification

50

T o D
. °g°° Ag

Figure 4.2: Example of DAG. A new point is inserted into anigalation (a). The corre-
sponding triangle is subdivided into three new trianglgs {ine triangles checked for the
Delaunay condition (c) and (d).

for each step of the triangulation process by traversindginees of the DAG structure very
quickly. This algorithm was published in [35].

To improve the quality of stripification, it is necessary todtfy the existing algorithm
[22] to avoid breaking strips. There are two steps in therdlgm where the strip could
be broken: (a) insertion of a new vertex, and (b) flipping edgefulfill the Delaunay
condition.

While inserting a new vertex two situations can appear. liriserted vertex lies inside
a triangle, three new triangles are created. To preservsttipe we need only to keep the
right order of sons in the DAG (see Figure 4.3).

If we don’t care about the Delaunay condition (do not perfdlips), we obtain a
Hamiltonian triangulation (as described in [3] — we get otrgpdor the whole triangu-
lation, penalized by worse quality of triangles).

In Figure 4.3 (left) an old triangulation with a strip is showin the middle, there is a
new triangulation and a new triangle strip after a verterihsn. On the right side, there
is the corresponding DAG.

In the other situation the inserted vertex lies on an edgesutth a situation several
cases may appear. In the first case, the incoming edge kieeedge on which the strip
enters the triangle) of the first triangle and the outgoingee(.e., the edge on which the
strip leaves the triangle) of the second triangle have a comwertex. It is possible to
connect all four new triangles into one strip and continge (Sigure 4.4).

The second case, where the incoming edge of the first trimlmiet share any vertex

51

Figure 4.4: Insertion of a vertex on an edge (case 1)

with the outgoing edge of the second triangle, is the modilproatic. In this case it is not
possible to insert all four new triangles into a strip and & s&ip has to be created.

There are two possibilities: (1) Insert three new triangethe existing strip and create
one new single-triangle strip (in Figure 4.5 triangle 4)(®y to avoid the single-triangle
strip it is possible to divide the strip and insert triand3emnd 4 to the first strip and triangles
5 and 6 to the second strip.

Figure 4.5: Insertion of a vertex on an edge (case 2)

In the last case, the first triangle lies in another strip tttensecond one. The new
triangles are simply inserted into the existing strips (Sgere 4.6).
To make the Delaunay triangulation, each new triangle hae tchecked and if it does

52

Figure 4.6: Insertion of a vertex on an edge (case 3)

not fulfill the condition, it is necessary to flip the edge. Agaeveral cases may appeatr.
When the incoming edge of the first triangle does not sharetex/iith the outgoing edge
of the second triangle, it is possible to connect both neangies into a strip (Figure 4.7).

Figure 4.7: Edge flipping (case 1)

If the incoming and outgoing edges share a vertex, a newestnigingle strip has to be
created (Figure 4.8).

Figure 4.8: Edge flipping (case 2)

If the two flipped triangles lie in the same strip but do notrelacommon edge in the
strip, the existing strip is divided into two strips (Figu¥®).
In the last case the two triangles do not belong to the sanpe sAfter the edge is

53

Figure 4.9: Edge flipping (case 3)

flipped, the beginning of the first strip is connected to the ehthe second strip and vice
versa (Figure 4.10).

S

Figure 4.10: Edge flipping (case 4)

When the insertion and flipping step is finished, it is posdibkxtract the stripification.
It can be performed in three steps:

¢ In the first step, the algorithm is traversing the leaves efAG (triangles of the
final triangulation). If it is possible, it connects the trgde to an existing strip, if
not, a new strip containing this triangle is created.

¢ Inthe second step the algorithm goes through the list gfssemd tries to concatenate
strips into longer ones. To detect whether two strips coalddnnected or not, each
strip has a pointer to its terminal triangles and each teairtimangle points to the
corresponding strip.

e To speed up the visualization, we can use the OpenGL ventaysaor vertex buffers.
To be able to use this extension, the algorithm has to exwetices of each strip
into a continuous block of memory in the last step.

54

4.3 Test and Results

This algorithm was implemented in Borland Delphi 6.0. It ha=ib tested on a set of
16 randomly generated and 8 real terrains. Experiments besa performed on a PC
AMD Duron 850MHz with 256MB of RAM, running on MS Windows 200§stem. The
implementation was compared 8IRIPE 1.014] with default settings (compiled with
gcc, 1/0 operations excluded from time measurement) andytown implementation of
SGlalgorithm [34]. This comparison is not completely fair, base unlike this algorithm,
bothSTRIPEandSGl algorithms are more general and work also for fully 3D modBlst
as far as | know, there are no public free methods for our das®dels. Naturally, times
of 1/0 operations have been excluded from measurements.

In Table 4.1 the name and description of all methods is pitintdhese names are used
in the following tables. In Table 4.2 the number of triangéesl vertices in models is
shown.

DT Delaunay triangulation only
DTS Delaunay stripification
DTS(O) | DTS time minus DT time
(only the time of stripification)
SGl Our implementation of SGI method
STRIPE| STRIPE (default settings)

Table 4.1: Methods

model | # of vertices| # of triangles
1 4,897 9,774

2 13,829 27,642

3 15,820 31,617

4 20,014 40,016

5 41,853 83,678

6 60,244 120,465

7 70,433 140,841

8 100,000 199,114

Table 4.2: Models

Next tables show comparison of tBE Sto STRIPEand toSGL Table 4.3 shows the
time needed for stripification. The time for the Delaunaipsication is only 2-5% higher
than the Delaunay triangulation without stripification¢egt of the model 1, which is too

55

small to give reliable results). In comparison 33 RIPE the DTSis about 8-15 times
faster. Itis also more than five times faster than3i& algorithm. This speedup is caused
by several things. Nearly all temporary structures are sibteedirectly inDTSwhile in
other algorithms we need to create them. The order of ilgedi triangles into strips is
done simply by traversing the DAG leaves. The concatenatidrangle strips is done via
a greedy algorithm which is very fast.

model| DT | DTS | DTS(O) | STRIPE| SGI | [#0007 ————

1 | 190 | 210 |20 128 |70 || aso| o+ "
2 701 | 721 | 20 356|201 ||, |-

3 832|851 |19 402 | 230 v

4 1072| 1132 60 514 | 200 || ™ e
5 | 2634|2714/ 80 1163 | 591 || 100 A el

6 4086 | 4197 111 1690 | 872 || s + @

7 |a017| 5108/ 101 1041 | 1001|| |gBE L —
8 | 6349|6599| 250 | 2432 |1261|| o 100000 20000

Table 4.3: Runtime in milliseconds

Table 4.4 shows the number of strips needed for a model. Weearhat botlfsGI
andSTRIPEcreates approximately three times less triangle strips BRES This is quite
surprising because | have expected an algorithm that credtev number of strips. This
problem is caused by a big amount of flips during the triantgpiaprocess (6 flips per
vertex on average).

model| DTS | STRIPE| SGI || 000 ————
1 638 252 242 12000 1 ---4--- STRPE

2 1785 | 697 672 || 10000{| ~--o--sa

3 2030 | 795 769 8000 -

4 2625 | 946 929 6000 1

5 5457 | 2052 | 1895|| 4000

6 7753 | 2759 | 2627 || 000 PR Tl
7 9074 | 3288 | 3144 gl B | | |

8 12048 | 3445 3363 0 50000 100000 150000 200000

Table 4.4: Number of strips in a model

56

Table 4.5 lists the number of vertices in strips for all altfons. TheDTSalgorithm
produces 5-6% more vertices than SiERIPEand 8—11% more vertices than t8&1

model | DTS STRIPE| SGI 350000 e ors

1 15,390 | 14,589 | 14,175 || 300000 4 <-4 - STRPE -

2 43,651 | 41,489 | 40,243 || 250000 ~ o -sa -

3 49,874 | 47,429 | 45,936 200000

4 63,012 | 59,805 | 57,707 150000

5 131,921| 125,090| 120,887|| 100000 .

6 189,790| 179,222 | 172,991|| 4y000 |

7 222,116/ 209,703 | 202,607 o
8 2617001 294’706 280’387 0 50000 100000 150000 200000

Table 4.5: Number of vertices in strips

There could be two reasons why is my algorithm worse t8&i or STRIPE First,
the number of strips is higher. Second, in the stripificativere exists a lot of fan-like
strips caused by the flips (see Figure 4.11). Therefore a ic@tbn of triangle strips and
triangle fans could bring some additional reduction.

In Figure 4.11 (left) a new vertex is inserted into a triagain. After the insertion,
flips are performed and the order of triangles in the strighsnged. The color intensity
marks out the order of triangles.

y=

Figure 4.11: Insertion of a vertex changes the order of gtes(the color intensity marks
out the order of triangles).

Although my algorithm produces higher number of strips,gheedup is sufficient for
the previews. There is probably still a place for reducing mlumber of strips by some
improvements in the insertion and flipping stage.

57

5 Ideas and Future Work

In this section, my current and future work is presented.r@lage also several ideas that
may or may not be realized in the future.

Several last months | have been working on a new stripifinalgorithm that uses the
duality approach. This algorithm is inspired by the aldomtfor searching the Hamiltonian
circle designed by Christophides [9] and improved by Kocay.[Zheir algorithm is based
on an exhaustive search of paths in a graph. The algorithrs sté&th an arbitrary node
and any incident edge. While recursively extending the patbes that are incident to the
node, which is in the middle of the path, are removed, becthese is no possibility to
use them (Hamiltonian path visits each node only once). hmescases, this edge removal
leads to starting of a new path. The algorithm stops in the taast a Hamiltonian path
was found. The algorithm works well for Hamiltonian graphs.(graphs that contain a
Hamiltonian path).

From that algorithm, | have taken the basic idea — to maketaguattaining a node of
degree of two and one of its adjacent nodes (such nodes hasrisitie a strip, otherwise
the strip is broken here). As it is not necessary to produgeghesstrip, but a small group
of strips, the exhaustive search part can be eliminatedrenddmplexity of the algorithm
can be reduced tO(n).

My new algorithm does not build one strip at a time, but it éesaa strip for each
suitable group of triangles and concatenates these sfrjpsssible. Such an approach
produces triangle strips of about the same length and itasiiort or singleton strips (i.e.,
strips containing one triangle only).

According to the first tests, the algorithm is able to prodacripification with very
low number of triangle strips (comparable ttmmneling[32], which produces the lowest
number of strips from all algorithms — as far as | know). On ttieer side, it seems to
produce a huge number of vertices.

For the future, there are several challenges related t@aldpasithm:

e One of the most import task for the future is to find a way howeduce the number
of swaps (number of vertices) in triangle strips producethiy/algorithm and create
even better stripification. This improvement should insestie rendering speed.

e There is probably still a place to create even less triangigssby using the loops,
which occasionally appear in the stripification. In the préed algorithm, the edges
that could lead to such a loop are removed to speed up thatalgorOn the other

58

side, such loops could be very useful, because they can teniscted on any seg-
ment and concatenated with some other strip, which is stgeinding in the neigh-
borhood of this loop.

e Because the algorithm is based on the dual graph, it is alslpp@so make a mod-
ification which uses a weighted graph. Changing the weighésigés could help to
control better the stripification process. It could be useavibid swaps, make more
local strips (i.e., strips that are located on a small arelecanld be removed by some
clipping algorithm), etc.

e It could be also possible to combine this new algorithm wittnBente’s algorithm
[5] and produce triangle strips, which are preserved duhegimplification process.
If the stripification will be constructed from a weighted gha this can be easily
archived.

At present, | am also cooperating with Radek Skibn a FR\G/G1 on the data re-
construction from orthogonal slices. Our goal is to use ashmaoformation as possible
from the reconstruction process for the stripification. Wpdithat such an approach will
increase the quality of the stripification.

As the stripification problem is NP and there is no exact gatefor the "optimal
stripification”, 1 would like to perform a set of tests to getnse better definition of this
problem. According to the tests presented in Section 3.4,cam see that the optimum
stripification is neither the one with the lowest number oipst nor the one with lowest
number of vertices. As the speed of visualization of triargjtips is hardware dependent
there is probably no exact answer. On the other side, | hoigepibssible to get at least
some guidelines.

| was quite disappointed by the results of Delaunay strigiios. Still, | am convinced
that there exists a better way how to produce a good stripticéor 2D data. | think that
one possible way is to make a combination of Delaunay and laman triangulation to
obtain a good triangulation with a low number of strips. Thairmidea is to create the
Hamiltonian triangulation — using the onion method. Thiartgulation can be improved
by repairing "bad” triangles. The repairing process cap sffter the triangulation achieved
some requested quality or the number of strips reaches soedefmed maximum. The
main problem of this idea is that the quality of the triangiola decreases very rapidly with
each triangle that does not fulfill the Delaunay condition.

The algorithm described in [30] or some modification of tHgoaithm could be prob-
ably used to generate a dynamic stripification for flyoversahe huge terrain data by

59

moving the reference point to the viewers position. Suchpgm@ach can be used to gen-
erate a stripification of some limited part of the triangwat The restripification process
should be started e.g. after a new block of data is loadedhetonemory.

| would like to establish a cooperation with Sebastian Kgnaal on compression of tri-
angular meshes. During the decompression phase of thethitggresented in [40], there
is a possibility to construct the stripification directlyjthout decompressing the triangle
mesh first and stripifying it afterward. This could signifitly speedup the preprocessing
stage of rendering.

60

References

[1] K. Akeley, P. Haeberli, and D. Burns. tomesh.c. http:ge@&ch.microsoft.com/
~hollasch/ cgindex/ geometry/ tomesh.c.

[2] K. Akeley, P. Haeberli, and D. Burns. tomesh.c. C ProgramSs&l Develope’s
Toolbox CD, 1990.

[3] E.M. Arkin, M. Held, J.S.B. Mitchell, and S.S. Skiena. Hitonian Triangulations
for Fast RenderingVisual Computervol. 12, no. 9, pp. 429-444, 1996.

[4] R. Bar-Yehuda and C. Gotsman. Time/Space Tradeoffs forgeoljMesh Rendering.
ACM Transactions on Graphigsol. 15, no. 2, pp. 141-152, 1996.

[5] O. Belmonte, J. Ribelles, I. Remolar, and M. Chover. SeagAinangle Strips
Guided by Simplification Criterion. In V. Skala, editdySCG 2001 Conference
Proceedings2001.

[6] M.de Berg. Simple Traversal of a Subdivision without Ex8torage.International
Journal of GIS 1997.

[7] K.Q. Brown. Voronoi Diagrams from Convex Hulls. Information Processing Let-
ters pp. 223-228, 1979.

[8] CCGDV, University of West Bohemia. Data archive. http:/fdides.zcu.cz/ re-
search/mve/ download.php.

[9] N. Christophides.Graph Theory, an Algorithmic ApproachAcademic Press, New
York, 1975.

[10] CYBERWARE. Sample models. http:// www. cyberware. cormpkes/.

[11] M. Deering. Geometry compression. Pnoceedings of the 22nd Annual Conference
on Computer Graphics and Interactive Techniqugs 13-20. ACM Press, 1995.

[12] R.A. Dwyer. A Simple Divide-and-Conquer Algorithm for Ceuting Delaunay
Triangulations in O(n log log n) Expected Time.Pnoceedings of the Second Annual
Symposium on Computational Geomepy. 276-284. ACM Press, 1986.

[13] J. El-Sana, E. Azanli, and A. Varshney. Skip Strips: Maining Triangle Strips for
View-Dependent Rendering. FProceedings of the Conference on Visualization '99
pp. 131-138. IEEE Computer Society Press, 1999.

61

[14] F. Evans. STRIPE, 1998. http://www.cs.sunysb.eduip&t

[15] F. Evans, S. Skiena, and A. Varshney. Completing Segaldmtangulations is Hard.
Technical report, Department of Computer Science, Stateddsity of New York at
Stony Brook, 1996.

[16] F. Evans, S. Skiena, and A. Varshney. Optimizing Trlar&trips for Fast Rendering.
In Roni Yagel and Gregory M. Nielson, editotEEE Visualization '96pp. 319-326,
1996.

[17] M. Garland and P.S. Heckbert. Surface Simplificatiomg<Quadric Error Metrics.
Computer Graphicsvol. 31, pp. 209-216, 1997.

[18] Georgia Institute of Technology. Large Geometric Misdérchive. http://
www.cc.gatech.edu/ projects/ largeodels/.

[19] M. Held. Efficient And Reliable Triangulation Of PolygeninProceedings of Com-
puter Graphics Internationapp. 633—643, 1998.

[20] H. Hoppe. Optimization of Mesh Locality for Transpat&fertex Caching. In Alyn
Rockwood, editorSiggraph 1999, Computer Graphics Proceedings. 269-276,
Los Angeles, 1999. Addison Wesley Longman.

[21] W. Kocay. An Extension of the Multi-Path Algorithm foiirkling Hamilton cycles.
Discrete Mathematics 10pp. 171-188, 1992.

[22] 1. Kolingerova and B.Zalik. Improvements to Randomized Incremental Delaunay
Insertion.Computers & Graphicsvol. 26, pp. 477-490, 2002.

[23] D. Kornmann. Fast and Simple Triangle Strip Generatiattp:// www.dlc.fi/ dkpa/
strip/ strip.html.

[24] D. Kornmann. Fast and Simple Triangle Strip Generatidachnical report, VMS
Finland, Espoo, Finland, 1999.

[25] D.E. Knuth L.J. Guibas and M. Sharir. Randomized IncretakeConstruction of
Delaunay and Voronoi Diagrams. In M. S. Paterson, editotpmata, Languages and
Programming: Proc. of the 17th International Colloquiupp. 414-431. Springer,
New York, 1990.

62

[26] NVIDIA Corporation. Using Vertex Buffer Objects. White par. http:// devel-
oper.nvidia.com/ object/ usingBOs.html, 2003.

[27] W. Pugh. Skip Lists: A Probabilistic Alternative to Balzed Trees. IWorkshop on
Algorithms and Data Structurepp. 437-449, 1989.

[28] M.V.G.da Silva, O.M.van Kaick, and H. Pedrini. Fast Md8endering through Effi-
cient Triangle Strip Generation. http:// pet.inf.ufpf.brom/ software.php.

[29] M.V.G.da Silva, O.M.van Kaick, and H. Pedrini. Fast Md3endering through Effi-
cient Triangle Strip Generation. WSCG’2002pp. 127-134, 2002.

[30] B. Speckmann and J. Snoeyink. Easy Triangle Strips fof Térrain Models. In
Canadian Conference on Computational Geomegipy 239-244, 1997.

[31] Stanford Computer Graphics Laboratory. The StanfordR{Ianning Repository.
http:// graphics.stanford.edu/ data/ 3Dscanrep!/.

[32] J. Stewart. Tunneling for Triangle Strips in Continudwevel-of-Detail Meshes. In
Graphics Interfacepp. 91-100, 2001.

[33] P. Su and R.L.(Scot) Drysdale. A Comparison of Sequebidhunay Triangulation
Algorithms. InSymposium on Computational Geomepy. 61-70, 1995.

[34] P. VareCek. Comparison of Stripification Techniques. @fth Central European
Seminar on Computer Graphics CESCG'@p. 6574, 2002.

[35] P. VareCek and I. Kolingero&. Fast Delaunay Stripification. Froceedings of the
19th Spring Conference on Computer graph2303.

[36] L. Velho, L.H.de Figueiredo, and J. Gomes. Hierarchi@aneralized Triangle Strips.
The Visual Computewol. 15, no. 1, pp. 21-35, 1999.

[37] J.C. Xia, J. EI-Sana, and A. Varshney. Adaptive Real-Tlmeeel-of-Detail-Based
Rendering for Polygonal Model$EEE Transactions on Visualization and Computer
Graphics vol. 3, no. 2, pp. 171-183, 1997.

[38] X. Xiang. Fast Triangle Strip Generator. http:// wwmasunysb.edut-xxiang/
strip.html.

63

[39] X. Xiang, M. Held, and P. Mitchell. Fast and Effectiverifification of Polygonal
Surface Models (short). IBODA: ACM-SIAM Symposium on Discrete Algorithms
(A Conference on Theoretical and Experimental Analysis sti@ie Algorithms)

1999.

[40] B. Zalik and S. Krivograd. Compression of Triangular Meshex<®ssing Two Tri-
angles at the Same TimeContributions to Geometric Modelling and Multimedia
vol. 2, no. 8, pp. 1-23, 2002.

64

A Activities

Publications

e VanéCek P. and Kolingerav |. Weighted Multi-Path Algorithm for Triangle Strips,
Electronic Computers and Informatics 2QQ4erlany, Slovakia, 2004 (waiting for
review).

e VanéCek P. and Kolingerav 1. Multi-Path Algorithm for Triangle Strips, IGomputer
Graphics International (CGI) 20Q4Crete, Greece, 2004 (accepted as full paper).

e Vanétek P. and Kolingerav |. Fast Delaunay Stripification, 18pring Conference
on Computer Graphics (SCCG) 2Q@udmerice, Slovakia, 2003 (also published in
ACM ISBN 1-58113-861-X).

e Vanetek P. Comparison of Stripification Techniques6tth Central European Sem-
inar on Computer Graphics (CESCG) 2Q0gages 65—74, Budmerice, Slovakia,
2002.

Related Talks

e Vanetek P. Teorie graf a jej aplikace v pditatove grafice, Center of Computer
Graphics and Data Visualization, University of West Boheniddsen, Czech Re-
public, April 2004.

e VareCek P. Trojihelrikové stripy, Center of Computer Graphics and Data Visualiza-
tion, University of West Bohemia, Pilsen, Czech Republic, Naler 2003.

e VanéCek P. Triangle Strips For Fast Rendering, Technical Unityec§ Graz, Aus-
tria, October 2003.

e VanéCek P. Triangle Strips For Fast Rendering, University of Marj Slovenia,
September 2003.
Stays Abroad
e Technical University of Graz, Austria, October 2003.
¢ University of Maribor, Slovenia, September 2003.

e University of loannina, Greece, February — August 2001.

65

B Models

Figure B.1: Cow. 2905 vertices, Figure B.2: Demi. 9138 vertices,
5804 triangles. 17506 triangles.
\ /’/ \\\

Figure B.3: Bunny. 35947 vertices, Figure B.4: Dinosaur. 56194 ver-
69451 triangles. tices, 112384 triangles.

66

Figure B.5: Balljoint. 137062 ver- Figure B.6: Club. 209779 vertices,
tices, 274120 triangles. 419554 triangles.

Figure B.7: Hand. 327323 vertices, Figure B.8: Dragon. 437645 ver-
654666 triangles. tices, 871414 triangles.

Figure B.9: Happy. 543652 ver- Figure B.10: Blade. 882954 ver-
tices, 1087716 triangles. tices, 1765388 triangles.

67

C Output Examples

The bunny model consists of 35947 vertices and 69451 tesnglrheSGI method (LS
heuristic) produces the highest number of triangle stijgure C.1). As these strips do not
contain a high number of swaps, they are narrow straight.n@mther sideTUNNELing
produces more than 20 times lower number of triangle stbpsthe number of vertices
(i.e., swaps) is more than 20% higher (Figure C.4). Thegesstover huge regions.

Figure C.1: SGI-LS. 3560 strips, Figure C.2: STRIPE-Q. 1229 strips,
81730 strip vertices. 82760 strip vertices.

Figure C.3: FTSG-SGI. 618 strips, Figure C.4: TUNNEL. 166 strips,
85362 strip vertices. 98503 strip vertices.

68

