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surface reconstruction from scattered point data

1. introduction

The past years have dramatically decreased the prices of three dimensional scanning
equipment as well as the visualization possibilities of modern computers. It is possible to use
the 3D models in applications which need to work with the piecewise linear approximation of
the objects surfaces, such as in computer graphics, CAD, scientific visualizations, even in
non-computer science applications, such as medicine, architecture or archeology. 

For example, the National  Council of Canada has conducted several projects over the
past 18 years of scanning historical artifacts  ranging from oil painting to archaeological sites.
Zheng, of the Kyushu Institute of Technology in the collaboration with the Museum of Qin
Shihuang Terra Cotta Warriors and Horses is conducting now an extensive scanning project to
build models of relics found at the site.

Well  known in this area is the Digital  Michelangelo project  [MLe00], solved at  the
Stanford university. The leader professor Marc Levoy and his students have been working on
this  project  since  1992,  they have  developed  methods  for  digitizing  the  shape  of  three-
dimensional objects using laser scanners and algorithms for the surface reconstruction. From
1998 they moved to  Italy promoted  by Italy government  and  scanned  there  10  historical
statues from different museums, the Michelangelo's David statue (Fig. 1.1) is the best known
and biggest, it is not till today fully reconstructed because of the data amount. The biggest
reconstructed statue St. Matthew contains 386,488,573 polygons.

The real object scanning is the first piece of the 3D computer model acquiring mosaic.
The 3D data - points lying on the object - should pass then through several next steps such as
data filtering, segments clustering, triangle mesh smoothing, NURBS fitting etc. This report
orients to the most important step of this pipeline, the surface reconstruction. The input to our
“black  box”,  surface  reconstruction  method,  is  the  set  of  3D  point  cloud  without  any
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Fig. 1.1: An example of David's statue scanning (courtesy of Levoy at al).
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additional information, such as normal vectors, and on the output of the surface reconstruction
we would have the surface triangle mesh of the scanned object. 

This report will be organized as follows. The first chapter presents the introduction to
the given problem, it  shows the basic principles of the data acquiring and sampling. The
second  chapter  orientates  to  the  explanation  of  the  Voronoi  diagram,  Delaunay
tetrahedronization and the basic topological terms. The third chapter focuses to the state of the
art in the problematic of surface reconstruction and the description  of popular algorithms,
while the fourth, fifth and sixth chapters elaborate the CRUST and COCONE algorithms and
theirs problems. The improvements published on the conferences are in the  seventh chapter
and the future work is analyzed in the eight chapter. The ninth chapter concludes this report.

 1.1. data acquiring

The shape of 3D objects may be acquired by many types of techniques, with a wide
range in the cost  of  acquisition hardware and in the  accuracy and detail  of  the geometry
obtained  [FBe00].  On  the  high  cost  end,  the  object  can  be  CAT  (computerized  axial
tomography) scanned and the object surface obtained with isosurface  technique, on the low
cost end we can use various techniques, which can obtain the data from a set of pictures.
Technical equipment for the 3D points scanning should fulfill these conditions:

• low noise
• guaranteed high accuracy
• high speed
• low cost
• automatic operation
• no holes

It is not simple to satisfy all these conditions, especially the condition that there should
not be holes in the scanned surface. The scanned object usually sits or hangs somewhere, so
there  exists  places  of   contact  invisible  for  the  scanner  and they look as  the  nonexistent
boundaries in the model, or there can be some inner hole where the scanner cannot sample
(scanners, such as CAT, working on principle of nondestructive ray infiltration to the object,
are not affected by this condition).

Important properties of 3D scanners1 are scanning resolution and accuracy.  Accuracy is
a statement of how close the measured value is to the true value on the surface. The absolute
accuracy of  any given  measurement  is  unknown,  but  the  precision  is  guaranteed  by the
manufacturer. The absolute value of the error increases with the distance between the scanner
and the object.  The resolution is the smallest  distance between two points that the device
measures, but this can be different from the accuracy. For example, devices which project
stripes on the object may be able to find the depth at a particular point with a submillimeter
accuracy, but because the stripes have some width, the system is able to scan data over the
surface in a millimeter resolution.

1 This word is used in the text for any device for data acquiring
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The 3D scanners are divided into two big groups depending on the method of data
acquirement: contact and contactless methods. The contactless methods use several kinds of
sensors, the contact methods may use a CAT, a laser range scanner, a sonic scanner or just
some set of pictures viewed from different angles. Next paragraph describes an example of a
typical laser range scanner.

A lighting system produces a pattern of  a light  (Fig.  1.2) which is  projected to the
surface.  The pattern may be a spot  or  a line,  sometimes  a detailed pattern formed by an
ordinary light source passing through a mask or slide. A sensor, typically a CCD camera,
sample  the  reflected  light  from  the  object  surface.  Software  provided  with  the  scanner
computes an array of depth values, which can be converted to the 3D points using scanner
coordinate  system with  a  calibrated  position  and  orientation  of  the  light  source  and  the
receiver. The data quality of this type of scanner may be affected by the properties of the
scanned surface, bad results are obtained on shiny surfaces, surfaces with low albedo or on
surfaces  which have subsurface  scatterings.  The 3D scanners  augment  sometimes  the  3D
points with additional information, e.g. a color or a normal vector, which can substantially
simplify the surface reconstruction.

 1.2. input and output

After having some 3D data, it is necessary  to use some algorithm to obtain the original
shape of the surface or something very close. The exact surface equal to the original object
surface is in most cases impossible to obtain because the sampling can never be so accurate
and the resolution will be almost always bigger than the tiniest features (details are explained
in the next section). So in the beginning of surface reconstruction process we have in our case
a point cloud  P sampled from an unknown object or objects  S, whereas the distribution of
points density is unknown, it can vary or it can contain noise.

• input : set P of 3D points p sampled from surface S

• output : surface S' interpolating or approximating the original surface S

The output surface should be close to the original surface and often is in the form of a
triangle mesh, but other representation, such as patches, is sometimes used, too. The problem
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of reconstruction is not simple and many algorithms were developed dealing with it. But no
algorithm can handle all  kinds of data. The acquisition pipeline is illustrated at Fig. 1.3.

 1.3. sampling

The surface (triangle mesh) obtained after the reconstruction from the set P will be just
a surface approximation of the object because some information is lost during the process of
digitization. E.g., there is no way how to obtain an exact reconstruction for the surfaces with
sharp edges (Fig. 1.4) because of the Nyquist criterion fnyq = 2fmax, where fmax is the maximum
frequency in a frequency spectrum of a function whose amplitude spectrum is finite. 

Shannon sampling theorem presents the relation of  fnyq to sampling frequency. It says
that the function can be exactly reconstructed if the sampling frequency is at least twice as
large as the maximum frequency fmax. So for exact reconstruction of the edge it is necessary to
have infinitely dense sampling.

The result of the reconstruction depends on the sampling density. There are two criteria
specifying whether the sampling is sufficiently dense. One is based on the local feature size
(LFS) and the other on the sampling path. 

This sampling criterion is based on parameter ε, which denotes a radius of a sphere. We
say  the surface  S is sampled with the sampling path  ε if any sphere with the radius  ε and
centered on S contains at least one sampled point. Fig. 1.5 presents an example of ε sampling
path. The smooth part of the surface (left) and the sharp edge are sampled according to the ε
sampling path, which is visible on the circles with radius ε. The reconstructed edge is on the
right. It is visible that this kind of sampling produces the uniformly sampled datasets without
regards to the scanned object features.
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Fig. 1.4: Some reconstruction possibilities of the sharp edge.

Fig.  1.3: 3D model acquisition pipeline. Some 3D object is scanned and the  sampled data are used for the
computer model reconstruction.
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Local feature size LFS (s) of the point s ∈ S is a function that assigns to every point s a
real value (LFS (s  ∈ S) : S  →  R)  corresponding to  the closest distance to the medial axis.
Medial axis of  S is defined as the closure of all points in E3 which have more than one closest
point on S, so the circles placed on the medial axis touch tangentially at least twice the surface
S. Because there is no surface information in the sampled surface, it is impossible to compute
the  medial  axis  and get  the  correct  LFS.  Some of  the  Delaunay-based  algorithms  use an
approximation of the medial axis, the poles (closer explained in chapter 6). 

Successful reconstruction depends on the ε-sampling [NAm98b]. The point set P ⊂ S is
called ε-sampled, if every point s ∈ S has a sample p ∈ S within the distance of ε LFS (s). It is
proved in [NAm99] that for  ε <  0.06 the reconstruction is homeomorphic to the surface  S,
however, in practice it is able to achieve a successful reconstruction even for ε < 0.5. 

This  sampling  criterion  works  well  and  using  it  we  can  show,  why  this  class  of
algorithm has a problem with the reconstruction of sharp edges (Fig. 1.6). On the left there is
a projection of a part of a smooth surface, the big point represents the medial axis. The LFS of
each point on the surface is the same. To achieve the ε-sampling good enough, so around 0.3
in this case (it is the rate of the distance of two closest black points and the distance of one
point to the medial axis), the surface must be scanned uniformly as the visible points present.

The other case is presented in the  right part of  Fig. 1.6. The medial axis painted bold
touches the sharp edge. Because we want to achieve the  ε-sampling at least 0.5 to be just
enough for the reconstruction, the closest point to the point  p1 must be in the  0.5*LFS (p1)

distance. The point p2  satisfies the condition. The similar condition 0.5*LFS (p2) has to state
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Fig. 1.5: example of the sampling with the sampling path ε.
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for the point p2 whose appropriate closest point is p3  and we continue till we touch the point in
the corner. But that is impossible because we need an infinitely dense sampling.

The big advantage of this kind of sampling is that on the planar part of a surface, with
regards to the distance to the medial axis, it is not necessary  to have many sampled points,
but on the places with small details the sampling density changes to handle them. 
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2. basic terms

This chapter describes the most frequently used terms in this work. Due to the algorithm
used for a reconstruction, the concept of Delaunay triangulation, Voronoi diagrams and basic
topological terms will be presented.

2.1. basic topological terms

This report deals with the problem of surface reconstruction in E3, thus in an Euclidean
space. The general Euclidean space  En is formed by the set of all ordered  n-tuples (a1,  a2,
a3,  ...,  an-1,  an) where  ai ∈  R.  In the Euclidean space the Euclidean metric is  defined, the
distance between two points x and y is:

Generally, the space En-1 is a subset of En space, thus:

For the definition of manifolds we need to explain the definition of an open unit disk.
The open unit disk is a set of all points (x1, x2) in a plane for which states that x1

2x2
21 .

This definition can be extended to bigger space than E2 , then the term an open unit ball or an
open unit sphere is used.

In  most  papers  dealing  with  the  surface  reconstruction  problems  the  term
homeomorphismus appear. This is a topological term and we say that two objects  X and  Y
(object is the set of points in a space) are  homeomorphic, if there is a continuous bijection
from  X to  Y and  the  inverse  transformation  is  continuous,  too.  If  two  objects  are
homeomorphic, then they are topologically equivalent.

The  neighborhood of some objects  X is defined as follows. Let  p be a point of some
object  X,  then a  basic neighborhood  is  a  set  of  points  in  X which lie  strictly within the
distance  d ∈ R  from p. By a  neighborhood we mean the subset of  X containing the basic
neighborhood. The definition of these terms is in most mathematic books more complicated
but for our purpose it is enough.

The 2-manifold is the set of all points in a space and it holds that all points must have
the neighborhood homeomorphic to the open planar disk. We denote the 2-manifold as the
manifold in this report. Finally, the surface is a compact manifold, the term compact means
that the manifold consists only of one component. 

In our approach we are working with the surface which contains boundaries so we need
to improve a little the definition of the manifold and add the definition of a manifold with the
boundary. This manifold has a neighborhood homeomorphic to the open planar disk while the
boundary points have a neighborhood homeomorphic to the open half-planar disk.
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2.2. Delaunay triangulation

A  finite  point  set  P ⊆ E3 defines  a  special  triangulation  known  as  a  Delaunay
tetrahedronization (Delaunay triangulation  in  E2). The triangulation has the name after the
Russian mathematician and geometer Boris Delaunay who first introduced the concept of this
triangulation in his paper [BDe34]. Assuming a general position of points, this triangulation is
unique and defines the space decomposition of the set P into tetrahedra, where all points from
the set P lie in the convex hull.

 The  Delaunay  tetrahedronization  of  P is  the  simplicial complex  defined  by  the
tetrahedra. It consists of elements Fk (k = {3, 2, 1, 0}): the tetrahedra F3, the triangles F2, the
edges F1  and the vertices F0. The intersection of all open balls b around each tetrahedra and
the set P must be zero set, ∀b ∩ P = ∅. It has following properties:

• if there are not more than five points lying on the sphere, then this tetrahedronization is
unique  for  each set  P.  Otherwise,  the  tetrahedronization is  unique  except  these  places
locally,

• the boundary of tetrahedronization forms the convex hull,

• the Delaunay tetrahedronization minimizes the maximum radius of a simplex enclosing
sphere,

• some edges of Delaunay tetrahedronization belong to the following graphs:

• EMST is the Euclidean Minimum Spanning Tree,

• RNG is the Relative Neighborhood Graph,

• GBG is the Gabriel Graph.

The Delaunay tetrahedronization is often used in space decomposition algorithms and in
surface reconstruction algorithms. Due to the behavior and properties of the triangulation it
can be proved that the reconstruction of the point set P sampled from the surface S belongs to
the subgraph of the DT(P). Fig. 2.1 shows a planar Delaunay triangulation of some point set
sampled from some object.
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Fig. 2.1: The Delaunay triangulation of the black points, black edges present the convex hull, gray edges are
the triangulation edges.
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2.3. Voronoi diagram

The concept  of  Voronoi  diagrams was  first  introduced by G.  Voronoi  in  [GVo07].
Voronoi  diagram  is  a  space  partitioning  which  decomposes  the  space  into  the  convex
polyhedral cells. For a point  p ∈ P the Voronoi cell V(p) is the set of points x ∈ R3 for which
the euclidean distance between x and p is less or equal to the distance between x and any other
point of P. 

Each cell forms a convex polyhedron and the union of all cells (one for each point of the
set P) is the Voronoi diagram of the set P. The face of the Voronoi cell is the geometric place
for which it holds that the distance of two given points to the face is equidistant. Similarly, the
edge of the Voronoi cell is the place where three given points have the same distance and the
vertices are the places where more than three points have an equal distance. In contrast to the
Delaunay tetrahedronization which is closed in the convex hull, the cells lying on the convex
hull are open. Fig. 2.2 shows the Voronoi diagram of the set of points from Fig. 2.1.

An important property of the Voronoi diagram and Delaunay tetrahedronization is that
they are mutually dual (Fig. 2.3). The vertices of the Voronoi diagram represent the centers of
circumspheres of the Delaunay tetrahedra. When there is an edge in the Voronoi diagram, then
there exists a face (triangle) in the Delaunay tetrahedronization (Fig. 2.4).
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Fig. 2.2: The Voronoi diagram of the same point set as in Fig. 2.1.The grayed lines are the edges of the Voronoi
diagram. 

V  p=V p={∀ q∈P , x∈E
3
:∣p­x∣≤∣q­x∣}



surface reconstruction from scattered point data

page 11

Fig. 2.3: A planar example of Voronoi diagram in gray and Delaunay triangulation in black.
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3. existing algorithms

Many methods for solving the problem of surface reconstruction were developed during
recent years.  For curve reconstruction, the  E2 version of our problem, many methods exist
with strong theoretical background (e.g.,  [NAm98a], [TKD99], [TKD00], [DAt97]). The E3

problem has been addressed by many researchers in computer graphics and computer vision.
Methods can be divided into four groups [RMe98a] (division is not strict, some methods can
belong to more groups):

•  warping

• incremental surface construction

• distance function methods

• spatial subdivision

Warping works on the basic idea that we deform some starting surface to the surface
that forms the object. We can imagine the process of warping on some object, which is hidden
in a big ball filled with the air. When we start to deflate the air from the ball, the size of the
ball decreases and at the end of the deflating process there will be just an empty ball copying
the surface of the object. Geometrically, let us have as the starting surface some triangle mesh
around the sample points. For all vertices of the triangle mesh we find their correspondency
with the sampled points and we move them to these positions. The consequence is that the
starting triangle mesh deforms to the mesh which is close to the original surface, this is used
in the Müller's approach [JVM91].

The idea of warping is relatively old and basic methods are e.g. Muraki “blobby model”
for 2.5 mesh approximation [SMu91] or deformable superquadrics by Terzopoulos [DTe91a],
[DTe88]

Other approach was introduced by Szeliski [RSz92]. He uses oriented particles, whereas
every particle has some parameters whose values are updated during the modeling simulation.
Every sample point has a particle with corresponding parameters and the surface is created by
an interaction modeling between particles (attraction x repulsion).

Boissonat  [JDB84] presented  another  approach  (the  method  of  incremental  surface
reconstruction) how to obtain the model from point clouds. It begins on the shortest edge from
all edges between points and incrementally appends points to create a triangle mesh. Mencl
and  Müller  [RMe95]  [RMe98b] developed  a  similar  algorithm,  its  main  characteristic  is
creation of extended minimum spanning tree, identification and extraction of typical features
and using these properties for triangle mesh extraction.

Other  algorithms  (sometimes  called  volumetric  methods)  are  based  on  a  distance
function.  This  function  describes  the  shortest  distance from the point  to  the  surface.  For
closed surfaces, the value of the function is negative or positive depending on whether the
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point  is  inside  or  outside  the  object.  This  function is  computed  for  each point  using the
tangent plane. The plane can be estimated from  k nearest neighbours (points) by the least
square approximation.  Hoppe  [HHo94],  [HHo92] gave an algorithm,  where the surface is
represented by the zero set of a signed distance function.

Curless  and  Levoy  [BCu96]  gave  a  really effective  algorithm which  represents  the
signed distance function on a voxel grid and is able to reconstruct eventual holes by a post-
processing step.  Their  algorithm is designed for very large data and was used for statues
reconstruction in the Michelangelo project [MLe00].

The basic property of the methods based on spatial subdivision is that the boundary hull
(convex hull, box around points, etc.) of the point input set is divided to independent areas.
A typical example is  the division by a regular grid,  adaptive by an octree or an irregular
tetrahedronization. We find the areas which have some relationship to the surface described
by the input set and we extract the surface from these areas.

Algorri  and  Schmitt  [MEA96] gave  an  effective  algorithm  in  which  the  space  is
subdivided by a regular grid (into voxels). In the next steps those voxels are chosen which
contain points from input set and the surface is extracted. Edelsbrunner and Mücke [HEd92]
[HEd94] developed  the  program for  uniform sample  set  surface  reconstruction  using  the
algorithm called  α-shape. The decomposition of the input set is achieved by the Delaunay
tetrahedronization. Next step is deleting the simplices whose circumsphere radius is bigger
than the radius of a so called α-ball (the sphere with a radius α , which is the input parameter
of the method) and, finally, extraction is  done. The problem of the approach is  that  it  is
sensitive to sampling density changes, so the next version of the algorithm was developed to
bypass this limitation. 

Bernardini  and  Bajaj  [FBe97]  developed  an  algorithm  which  gets  the  surface
subcomplex of the Delaunay tetrahedronization. This algorithm extends the idea of α-shapes
and it use the binary search on the parameter  α  to find this subcomplex. Smaller concave
features not captured by the  α−shape are found using heuristic. The surface is then used to
define a signed distance function and a C1 piecewise polynomial function is then adaptively
fitted to the signed distance field.

A paper by Bernardini[FBe99] describes an algorithm to interpolate a set of points not
based on the Delaunay sculpturing, but extending the surface (Delaunay triangles initially)
like  in  the  surface  growing methods.  A ball  of  fixed  radius  (approximately the  distance
between two sampled points) is placed to three points which form the initial triangle. The
edges are put to the queue and the ball pivots through all edges in the queue to obtain new
surface triangles.  For  places  of  undersampling it  is  possible  to  restart  the  algorithm with
a bigger ball  radius. The advantage of the algorithm is that is very fast and it  can handle
millions of points.

Amenta introduced a concept of CRUST, it has two versions, two-pass [NAm98b] and
one-pass  [NAm99]  [NAm00].  The  two-pass  version  creates  the  subcomplex  of  Delaunay
tetrahedronization S ∪ P, where P is the point cloud and S is the set of poles taken from the
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Voronoi  diagram.  The surface triangles are formed just  with the  triangles  whose vertices
belong to the input set P. The one-pass version can choose the surface triangles from the first
tetrahedronization using a little different  approach. Dey extends the ideas of  Amenta and
gave an effective COCONE algorithm. The basic idea is presented in [NAm00]. Other papers
presented by  Dey introduced  the  way how to  handle  large data  [TKD01b],  which  is  the
common problem of Delaunay based algorithms, and what to do with boundaries [TKD01c],
undersampling and oversampling [TKD01a]. These ideas are based on the observation that the
places with point density changes can be detected using shape of the Voronoi cells in these
places. Both authors gave an algorithm for a watertight surface reconstruction, Nina Amenta
her  PowerCRUST  based  on  medial  axis  transformation  [NAm01]  and  Tamal  Dey  his
TightCOCONE based on tetrahedra removal [TKD03].

In the next subsection we orientate to the description of the most popular algorithms.
The algorithms are chosen to cover different ways of surface reconstruction.

3.1. Hoppe's distance function approach

Hoppe presented his approach in [HHo92]. It uses the signed distance function, which
means the closest distance from the point to the surface. For the closed surfaces the sign is
negative if the point lies inside the object and positive otherwise.

First the estimation of the tangent plane is counted for every point pi ∈ P using k-nearest
neighbors to the point  pi  (Fig. 3.1). As we have to know which sign the function has in the
case  of  the  closed  surface,  the  planes  have  to  be  oriented  to  the  same  direction  using
Riemannian graph. Nodes of the graph are all  centroids  σ  i (the arithmetic  center  of the
k- nearest neighbors). Two nodes i, j (of the point pi and pj) are connected by the edge (i, j) if
one node is in the k-neighborhood of the other node. Each edge has an evaluation computed as
1-|ni · nj|, where ni and nj are the normal vectors of the tangent planes in the point pi and pj. The
minimum spanning tree (MST) is then obtained from the Riemannian graph (Fig. 3.2).

The algorithm starts with the orientation on the point whose centroid has the largest z
coordinate. The normal vector of the tangent plane of this point has to direct to the positive z
direction, if not, the orientation is changed.  Then, rooting the minimal spanning tree at this
initial node, the tree is traversed in depth-first order. To each tangent plane an orientation is
assigned consistent with its parent.
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Fig.  3.1: The estimation of the tangent plane for the point p. Points p1-p5 are the closest points to p used for

estimation computing, σ is the centroid and n is the computed normal vector of the tangent plane.
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Using the first surface approximation from the tangent planes, the value of the distance
function for the point  pi is computed as the distance of the point  pi and its centroid σ i. The
sign of the function depends on the tangent plane orientation.

Next step of the algorithm creates the regular space subdivision by the voxel grid and
the marching cubes algorithm [WEL87] is used for the creation of the surface which has the
zero distance function value. We can apply the marching cubes algorithm just to those voxels
whose neighboring voxels have different distance function value, so the extraction is faster.
The disadvantage of this method is that the obtained surface does not contain the original
point  cloud and it  approximates  the  surface only.  The surface can be  improved by other
postprocessing steps [Hho93, HHo94]. The example of the reconstruction is in Fig. 3.3.

3.2. Mencl and Müller's approach

The main feature of the Mencl and Müller's approach [RMe95, RMe98b] (it belongs to
the group of incremental surface reconstruction algorithms) is the use of euclidean minimum
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a)         b)    c)           d)

Fig.  3.3: a) The input point cloud, b) the voxelization by the regular grid, c) the triangle mesh obtained by
marching cubes algorithm, d) the resulting surface after NURBS fitting (courtesy of Hoppe).

            a)  b)  c)

Fig. 3.2: a) The Riemannian graph, b) the minimum spanning tree created from the Riemannian graph, c) the
visualization of the distance function (courtesy of Hoppe). 
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spanning tree  (EMST), whose computation is the first step of the algorithm. The algorithm
assumes that the edges of the EMST are lying on the surface if the surface consists of one
component. If more surface components are present then the components are connected by
one edge whose length differs from the length of other graph edges.

The EMST is then extended to the surface description graph (SDG). The extension is
done by connecting the tree leafs with their neighbors under the conditions that the length of
the connected edge does not differ so much from the length of the other edges connected to
the point and that this edge lies in the cone defined by the end edge of the leaf and an angle
(suitable choice is  90°).  The formation of SDG prevents  the creation of narrow and self-
intersecting triangles in next steps. Fig. 3.4 shows an example, the point p2 is the leaf of the
EMST and it is being connected to other graph vertices. The length of the edge p1 p2  does not
differ so much from the other edges length and this edge is in the cone defined by the edge
p2 p3 and some angle so it will be added to SDG.

In the third phase the algorithm recognizes the main features of the surface. The surface
structures such as a surface edge, a path or a ring are detected using heuristic rules. Each
surface structure has its own rule.

After the feature extraction the structures are connected or  disconnected according to
certain rules to obtain proper objects situated in the point cloud. This step is followed by the
last phase - triangle filling of the wireframe. A basic assumption for this is that when the angle
between two connected edges makes smaller angle than the triangle generated by these edges
belongs to the surface. The whole triangulation is then generated incrementally by choosing a
pair of incident edges in a greedy fashion with respect to the following rules:

• At most two triangles may be incident to an edge.

• Triangles may not intersect each other.

• For all triangles  abc and all points  p, whose orthogonal projection fall to the triangle, at
least one of the angles abp, apc, pbc and the triangle abc exceeds the angle 45°. 

• The angle between two faces at their incident edge must not be less than some constant.

The triangles are written as other edges to the SDG so no other data structures are
necessary (see an example of reconstruction in  Fig. 3.5). The problem of the method is the
amount of the parameters and that  all  rules are heuristics.  The output of the algorithm is
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Fig. 3.4: The point p2 is a leaf  of the EMST. The point p1 lies in the cone defined by the edge p2 p3 and the angle
and the length of the edge p1 p2  does not differ much from the length of the edge p2 p3, so the edge p1 p2 is added
to the SDG.
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a piecewise linear surface which exactly interpolates the input point set. It can handle points
sets with different point sampling density so the surface can be described according to the
local  curvature.  Due  to  the  feature  extraction  the  reconstruction  of  sharp  edges  or  non-
orientable surfaces is proper.  

3.3. Kohonen feature map

This method [ABa93, ABa94] belongs to the warping surface reconstruction methods
and it uses the Kohonen neural network for a reconstruction. This kind of network is a single-
layered neural network with forward propagation and learning without a teacher. The output
value of the neuron is defined as a distance between input and weight vectors. Other areas of
use are in data recognition, clustering or semantic map creation.

In a surface reconstruction approach this neural network is mapped to the input point
cloud, one neuron belongs to one point. Because the Kohonen network is two-dimensional, it
can be used only for a 2.5D surface reconstruction. Each neuron ui has the weight vector wi.
These vectors are filled in the beginning by random normalized numbers (so the length of the
vector is one). During the process of neuron training (the process of surface reconstruction)
are the neurons inputs fed by input data which change the weight vectors (and the position in
the space). The input vector i is put to the neuron j, so the output oj is the dot product of the
neuron weight vector wi and the input vector i.

The neuron which generates the highest response (the highest output value oj) is called
the center of excitation area and the weights of this neuron and its neighbors are actualized
by:

The value  εj  is computed by a multiplication of the constant  η which describes the
weight of learning and hj which describes the influence of current neuron to the neighboring
neurons (the neurons far away have to be affected by this neuron less than by closer neurons): 
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Fig. 3.5: From the top left - the euclidean minimum spanning tree of the input set, the surface description graph
and the reconstruction after 100, 250, 450 and all triangles extraction (courtesy of Mencl at al). 
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 After the computation the vectors have to be normalized again. The problem with the
algorithm appears when the neurons do not  respond to the input point  cloud. Then some
neurons are far away from the center of excitation area and are affected only by the nearest
neighbors which is not very sufficient to place the neurons to the real surface position.

Due to this problem, Baader and Hirzinger have developed the reverse training method.
In the classic method the corresponding neuron is created and actualized for each input point
while the reverse method works in a different way. For each neuron the input with the highest
influence is found and this input is utilized for the neuron actualization. In the implementation
of the algorithm the combination of both training methods is used. Fig. 3.6 shows the schema
of the reconstruction.

3.4. Bittar's reconstruction using medial axis

This approach [EBi95] combines the medial axis with the implicit surface. It consists of
two main phases. The first phase computes the medial axis of the input point cloud. This is
done by the space partitioning into a regular grid. The size of voxels impacts the resolution of
the reconstructed surface,  the smaller  the voxels are,  the finer is  the reconstruction. Each
voxel is labeled as outside if it does not contain any point or as border if a point is present.
Then we propagate the information about the outside voxels from one edge of the bounding
box to the neighbors, without passing through the voxels labeled as border. The voxels which
are not affected by this process are inside the object.

The distance map computation and medial axis extraction is then applied to the grid.
The distance map is computed using Chamfer distance for faster computation (the distance in
a grid, “the minimum number o voxels we have to pass walking from one into another”)
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Fig. 3.6: The schema of the reconstruction by the Kohonen neural network.
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instead of Euclidean. The value (weight) of the distance function is zero in the border voxels
and it is propagated to the direction of inside voxels. The weight of each voxel is updated in
the propagation cycle using two filters, the voxels with the  highest weight belong to the
medial axis.

The surface of some object is calculated using the distribution of the sphere centers on
the medial axis. The radius of the sphere is equal to the distance assigned to its center on the
medial axis. The field function is defined for each sphere. This function allows to compute the
scalar field for every point in the space. The function value for the whole sphere set is defined
as  the  sum of  all  function  values  of  each sphere.  The implicit  surface  is  defined as  the
isosurface of the field function, so the isosurface consists of all points which have the constant
value  of  the  field  function.  The  process  of  computation  is  time  consuming  so  a  special
strategy for the computation of points lying in proper positions is used.

The shape of the reconstructed surface depends strongly on the field function type. Fig.
3.7 shows the difference between two types of the function, the sharp function prevents the
details to be smoothed while the soft function smooths the details. The function may influence
continuity of the reconstructed surface, too.

The grid generation is a crucial phase of the reconstruction success. When the resolution
is small then the details will be smoothed. When the resolution is higher then the details are
more preserved, but when the resolution is too high, the algorithm disconnects the surface to
more components because the resolution is higher than the point sampling resolution (Fig.
3.8).
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a)         b) c)

Fig. 3.8: Three resolution  sizes of the voxel grid and their influence on the reconstruction, a) the resolution is
too low and details are lost, b) the resolution is properly set and the reconstruction is correct, c) the resolution
is too high, the surface can split up (courtesy of Bittar).

a)          b)

Fig.  3.7: Two kinds of field. functions, a) soft function smoothing details, b) sharp function preserving details
(courtesy of Bittar).
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3.5. Eddelsbrunner's and Mücke's α - shapes

This algorithm [HEd92, HEd94, EPM93] uses the Delaunay tetrahedronization as  the
first  step  of  the  algorithm and  it  chooses  the  surface  triangles  as  a  subset  of  Delaunay
triangles. Conceptually, α-shapes are the generalization of a convex hull of the input point set,
the parameter α  means the radius of some sphere called α −ball. Let P be a finite set of points
in  E3 and  α ∈ <0, ∞) be  a  real  number.  The  α-shape  of  P is  a  polytope that  is  neither
necessarily convex nor necessarily connected. The α-shape is  identical to the convex hull for
α = ∞ and when the α  value decreases, the α-shape shrinks by gradually developing cavities.
These  cavities  may join  to  form tunnels  and  holes  may appear.  A  part  of  the  polytope
disappears when α becomes small enough so the sphere with this radius can occupy the space
without enclosing any other point. When α  value is equal to zero then α-shape is identical
to P.

An  α-ball  b is  empty if  b  ∩ P =  ∅.  The  α-hull,  denoted as  Hα,  is  defined as the
complement of the unions of all empty balls. It holds that  Hα  1 ⊆ Hα  2 if  α 1  ≤ α 2, sample
members of α-hull for α = ∞ is the convex hull and the set P for sufficiently small α. Another
interesting concept defined by α-balls is called α-diagram, denoted as Uα.  The α-diagram is
the union of all  α-balls whose centers are points of the set  P. It is known in chemistry and
biology as a space filling diagram and it is not restricted only to the equally large balls (this
restriction is removed using weighted α-shapes and α-diagrams). The point x belongs to Uα  if
the α-ball bx centered at x is not empty. The following relationship between Hα  and Uα  holds:

• x ∈ Uα ⇔ bx ∩ Hα ≠ ∅
• x ∈ Hα ⇔ bx ⊆ Uα 

Consider the boundary of  Uα.  It consist  of spherical  caps,  circular arcs and vertices
which are called corners. These are the 2-, 1- and 0-faces of Uα. The caps, arcs and vertices
are in close correspondence with the vertices, edges and triangles in α-shape.

We can imagine the work of the algorithm simply. Imagine that the space is filled with
some foam and points are sampled from some object inside the foam. The tetrahedronization
creates the Delaunay k-simplices (k ∈<0, 3>) of the points. We take now a sphere with the
radius  α and we place it everywhere outside the convex hull. Then we erase all simplices
whose radius is greater than the radius of the α-ball. The result is then called the α-shape and
it consists of the set of  tetrahedra, triangles, edges and points. When the parameter  α is  ∞,
then the  α-shape is equal to the Delaunay tetrahedronization, similarly, when the parameter α
is zero, then the result is equal to the input point set P.

In the last step the triangles that belong to the resulting surface are extracted out of the
α–shape based on the following heuristic: A triangle belongs to the surface if at least one of
the two α–spheres that interpolate the triangle’s vertices is empty of other points (E2 example
is in Fig. 3.9).
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The algorithm has elegant theoretical formulation, but the problem is with finding the α
value  which  have  to  be  set  experimentally.  Point  clouds  with  varying points  density are
problematic  for  a  reconstruction  with  this  algorithm too,  this  trouble  can be  avoid  using
weighted α–shapes. An example of the reconstruction is in Fig. 3.10.

3.6. Attali's normalized mesh

Attali introduced the concept of normalized mesh in [DAt98]. The normalized mesh is a
subgraph  of  the  Delaunay  tetrahedronization  and  it  consists  of  the  edges,  triangles  and
tetrahedra whose dual Voronoi edges intersect the surface. Normalized meshes are attractive
for a surface reconstruction because they provide a piecewise linear interpolant of the surface
that converges to the surface when the sampling density tends to zero. When the sampling
path ε is 1/n (where n is some real number), S is the surface and Sn the normalized interpolant
of S, then it holds that the limit of Sn with n going to infinity is the original surface S.

In order to simplify the search of the normalized mesh, the r-regularity property is used.
Denote B0 the unit ball, then a shape X is called r-regular if it is morphologically open and
closed with respect to disc of a radius r > 0:

X = (X Ө rB0) ⊕ rB0 = (X ⊕ rB0) Ө rB0, where 

• the operator ⊕ means the dilatation,

• the operator Ө means the erosion,

• the expression (X Ө rB0) ⊕ rB0 is the operation of opening,

• the expression (X ⊕ rB0) Ө rB0 is the operation of closing.

The concept of r-regular shapes was first introduced in a mathematical morphology, but
it has many nice geometric properties, too:
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        a)           b)  c)    d)

Fig. 3.9: The steps of the algorithm, a) the input points set, b) its triangulation, c) the triangles deleted using the

α-sphere (shown above) and d) the extracted triangles.

Fig.  3.10:  The output of the algorithm using different  α-spheres.  The sphere is printed right  in the figure
(courtesy of Eddelsbrunner and Mücke) . 
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• The boundary of a  r-regular shape has at each point a tangent and a radius of curvature
greater or equal to r.

• The boundary of an  r-regular shape divides any ball with a radius  2r and center on the
boundary into exactly two connected components.  If  ε < 2r,  then the normalized mesh
retains all the topological properties of the surface.

• In R2 space any circle passing through three distinct boundary points has radius greater than
r. This property is crucial to the algorithm.

The addressed problem is now to determine which faces of the Delaunay triangulation
belongs to the normalized mesh. In R2,  Delaunay disks tend to be the maximal disks of the
object and they become tangent to the boundary. Let the set of selected Delaunay triangles
denote as Sδ, if ε < r sin (π /8), then the set of edges Sπ/2 is the normalized mesh of S. Let X be
a r-regular shape of δX with a sampling path ε. For each edge pq of the Delaunay triangulation
we have:

• If pq belongs to the normalized mesh and ε < π /2, then δ(pq) < π /2.
• If pq does not belong to the normalized mesh and ε < r sin (π /8), then δ(pq) > π /2.

Let B (x1, r1) and B (x2, r2) be two Delaunay discs intersecting in a point p and q, m the
middle point of the edge pq, then δ  = π – ∠(x1pm) -∠(mpx2), see Fig. 3.11:

It is not necessary to know the parameters r and ε  to compute the normalized mesh. The
sampling path does not need to be close to zero to find the correct result, it is enough that the
sampling path  ε and the constant  r  characterizing the shape have approximately the same
order (Fig. 3.12 shows an example of a curve reconstruction).
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Fig. 3.11: The computation of the angle δ (courtesy of Attali).

Fig.  3.12: Construction of the normalized mesh from the Voronoi diagram of the input points (courtesy of
Attali).

p

q

x
1

x
2

r
1 r

2

m



surface reconstruction from scattered point data

Unless  it  holds  for  R2 case  that  normalized  mesh  is  a  correct  reconstruction,  direct
extension to R3  is not possible, because some Delaunay spheres intersect the surface without
being tangential to the surface. There are two heuristics criteria used for this case. The former
is the triangulation of the appeared holes using only the triangles obtained from the Delaunay
tetrahedronization. 

The latter criterion is based on a volume approach. In the initialization phase it merges
all Delaunay tetrahedra and the complement of the convex hull. All Delaunay triangles are put
to the list and sorted according to the triangle diameter. While the list is not empty: if the the
triangle having the greatest diameter separates two different objects O1 and O2, these objects
are merged providing that :

• No triangle from Sπ/2 disappears.

• The merge does not isolate sample points inside O1 and O2.

The surface is then the boundary of the computed sets (Fig. 3.13).
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Fig. 3.13: An example of a surface reconstruction by a normalized mesh. Due to the problems presented in the
previous  text  some holes  appear  in  the  reconstructed  surface,  the  amount  of  holes  depends  on  the  points
distribution (courtesy of Attali).
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4. CRUST algorithm 

We have chosen the CRUST algorithm to solve the surface reconstruction problem. The
method is  not  built  on heuristic  and the success  of the reconstruction is  guaranteed by a
theoretical background. It is a relatively new algorithm and its principle is relatively simple
for understanding. It belongs to the group of methods built on spatial subdivision, which is
done using Delaunay tetrahedronization. The use of the DT was the second reason why to use
this algorithm because in our group we have a fast and efficiency code for the DT computing
developed  by  Ivana  Kolingerová.  The  surface  forms  a  subgraph  of  the  Delaunay
tetrahedronization and information from the dual Voronoi diagram is used for the selection of
surface triangles. 

The E2 version of the algorithm was first introduced in [NAm98a] and it is derived from
the Attali's normalized mesh algorithm. The name “crust” means the set of edges selected
from  the  triangulation  forming  the  curve  interpolating  the  points  set.  The  E3 version
[MAm98b] is built on the same principle and is just the extension to E3. The disadvantage of
this algorithm is its double use of the DT, where the second pass uses about three times more
points than the initial size of the input set. It limits the speed of the reconstruction and mainly
the maximum size of the input point set. This limitation was overcome by the onepass version
in [NAm00] which is able to select the surface triangles from the first DT.

The CRUST uses the sampling criterion built on local feature size. That is the reason
why the algorithm has problem with sharp edges, outliers and boundaries, but also the reason,
why it  has  no  problem with  the  reconstruction  of  the  object  with  big  sampling  density
changes.

The basic concept of the algorithm is simple. The first step is the computation of the
Delaunay triangulation (or tetrahedronization in E3). By the dualization the Voronoi diagram
of the point set is obtained. The information from the Voronoi diagram is used for the surface
triangles selection from Delaunay  triangulation. This set we call a primary surface and it has
not to be a manifold, so an extraction manifold step is necessary.

4.1. the poles

The  algorithm  introduces  the  concept  of  poles  (Fig.  4.1).  They are  formed  by the
vertices of the Voronoi diagram (at least three points have equidistant distance here). The
positive pole p+ is the farthest Voronoi vertex (VV) of the Voronoi cell of some point p, the
negative pole p- is the farthest VV on the "other side", so the dot product of the vectors (p-, p)
and (p+, p) is negative.

For a successfully sampled surface it holds that all Voronoi cells are thin and long, so
the poles lay on or near the medial axis and vectors to the poles approximate the normal
vectors. The algorithm versions differ especially in the meaning what poles are. The twopass
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algorithm takes the poles as an approximation of the medial axis while the onepass version
takes the vectors from the point to the poles as an approximation of the normal vectors.

4.2. E2 twopass version

Fig. 4.2 presents an example of the  E2 CRUST algorithm.  Fig. 4.2a) shows the input
point cloud sampled from some curve together with the Delaunay triangulation. Let us denote
the set of Voronoi vertices as V (centers of circumcircles of the Delaunay triangles, see Fig.
4.2b). We can take VD as an approximation of the medial axis of the curve so VV lie on or
near the medial axis. The VV of the input points approximates the medial axis. 

The next step is the union of the input points P and the set of Voronoi vertices V, so that
U = P ∪ V. When we compute now the second DT (U), we get a triangulation (see Fig. 4.2c),
where each triangle contains points from the set  V and  P. Just those edges, whose vertices
belong to the input points set P, form the reconstructed curve (highlighted edges in Fig. 4.2c).

The approximation of the medial axis formed by the Voronoi vertices included to the
second DT separates the curve edges from other edges. We obtain a curve approximation of P.
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Fig. 4.1: The point p, the Voronoi cell and vertices around it. The vertex p+ is the positive pole, because it is the
farthest vertex from the point p, the vertex p- is the negative pole, it is the farthest vertex on the “other side”.

p+

p-

p

   a)              b)        c)

Fig.  4.2:  An  example  of  the  twopass  curve  reconstruction,  a)  the  input  point  cloud  with  the  Delaunay
triangulation, b) the Voronoi diagram. When we unify the sets P and V (Voronoi vertices) and triangulate, we
get the triangulation c) where curve edges (highlighted) are separates from other edges.
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The set of these edges (“crust”) is a subset of both DT. This step is called Voronoi filtering
and for sufficiently dense sampling it works perfectly. In Fig. 4.2c) down (where the arrow
directs) three points form the triangles. It is a problem because the crust is not a curve and
some edges need to be deleted. That is the reason why the manifold extraction step in E3 has
to be performed.

4.3. E3 twopass version

We can simply extend the E2 algorithm to the E3 version. The problem is that the set of
Voronoi vertices is huge and the tetrahedronization of the P and V union is almost impossible
due to the big amount of data. The second problem is that not all  VV lie near or on medial
axis, on the other hand we can still found many points for which this condition holds (see Fig.
4.3).

When we look at the following figure (Fig. 4.4), we can see two parts of surface (S1 and
S2). The black point p represents the point for which the Voronoi cell is drawn, the other black
dots are other points sampled from the surface. It is shown that not all of Voronoi vertices
(dots painted different) lie on the medial axis.

The cell is almost orthogonal to the surface and thin. The normal vector of the surface in
the point p can be estimated using the positive pole p+. The observation that many Voronoi
vertices lie on the medial axis leads to the following twopass algorithm improvement. We
compute the union of the input points, positive and negative poles U = P ∪ V+ ∪ V- (instead
of all VV), where V+ and V- are the sets of positive and negatives poles respectively, and then
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Fig. 4.3: The reconstructed object and its poles (positive and negative poles) in black. Many of them lie on or
near the medial axis but some of them are far away. The small figure right up is the original surface.
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we compute the second Delaunay tetrahedronization. Only those triangles, whose vertices are
from the input point set P, belong to the surface triangles, to the set of crust.

This improvement makes possible to use the twopass algorithm in E3 (due to amount of
VV), we need approximately (points lying on the convex hull have only one pole) three times
more points for the second tetrahedronization than for the first tetrahedronization. The binding
with the theory is provided by the following theorem [NAm98b]:

Let us denote P a sample of the smooth surface S, where ε < 0.06. Then the crust
consists of the triangle set which forms the mesh topologically equivalent to S.

Every point from crust lies within the distance 5ε  *d(p) of some point p on S,
where d(p) is the distance from p to the medial axis.

The author tried to used a little different approach for the reconstruction. Instead of
using the negative poles, the second farthest Voronoi vertices are used and better results were
obtained for some data. But it is not theoretically correct so the result of the Amenta's testing
was that better results can be only a luck. During the testing of the algorithm we also tried this
approach.  Our  impression  was  the  same as  Amenta's,  the  reconstruction was  correct  and
sometimes better for some data but other data were reconstructed incorrectly. The main reason
of the incorrect reconstruction was that more triangles were marked as surface and the step of
the manifold extraction failed due to big amount of overlapped triangles.

4.4. E3 onepass version

Even  if  we  limit  the  use  of  Voronoi  vertices  only  to  poles,  the  second  Delaunay
tetrahedronization consumes  much time.  It  is  proved that  the  surface  is  contained  in  the
Delaunay tetrahedronization as a subgraph, so there has to be some way how to obtain the
reconstruction without the second DT. When we look closer to the shape of the Voronoi cell,
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we can see something similar for all cells. For a sufficiently sampled smooth surface the cells
have to be long, thin and orthogonal  to the original  surface so this  assumption allows to
approximate the normal vectors using the positive poles. A typical example is in  Fig. 4.5a)
where  the  Voronoi  cell  of  some  point  in  the  reconstructed  surface  is  shown.  Fig.  4.5b)
presents an example of a Voronoi cell in the place where two surfaces are close together. The
cell in this place is not so much long and thin but due to the algorithm robustness the obtained
reconstruction is correct. Amenta introduced the algorithm which is based on this observation
in [NAm99]. She defined for the surface triangles following three conditions. Let T be a set of
surface triangles, then:

• the set T consist of triangles from Delaunay tetrahedronization whose dual Voronoi edges
intersect the surface S,

• each  triangle  in  T  is  small,  it  means,  that  the  radius  of  triangle  circumcircle is  much
smaller then the distance of triangle vertices to the medial axis,

• each triangle is  flat,  so the normal vector of the triangle makes a small  angle with the
normal vectors in the triangle vertices estimated using poles.

Under the assumption that the surface S is smooth and sampling sufficiently dense, the
first condition assures that T is a piecewise linear manifold homeomorphic to P. The second
and  third  conditions  say  that  any  piecewise  linear  manifold  M extracted  from  T which
contains all the points from the input set and for which every adjacent pair of triangles meets
at an obtuse angle must be homeomorphic to S. 

After  the  tetrahedronization  we  can  compute  the  triangle  set  T as  follows  (see  an
example in Fig. 4.6). We have the set of Delaunay tetrahedra. For each point  p in the point
cloud  P we  can  simply  find  all  incident  tetrahedra  and  compute  the  centers  of  its
circumscribed spheres.  These  centers  form the  dual  Voronoi  vertices  of  the  Voronoi  cell
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          a)  b)

Fig. 4.5: Examples of the Voronoi cells, a) the Voronoi cell of some point in a flat part of some surface (the gray
line presents the normal vector estimated using the positive pole), b) the Voronoi cell of some point in the place
where two surfaces are close (the normal vector is not visible, it directs down to the sharp edge of the Voronoi
cell). 
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around the point p. We mark the farthest VV as the positive pole p+ and calculate the normal
vector estimation n of the surface at the point p as the vector from the point p to the pole p+
(n = p+ - p). 

For each tetrahedron t1 we compute the center w1 of the circumscribed sphere. Than we
take all tetrahedron  faces (triangles)  f one after another and compute the center  w2 of the
circumscribed tetrahedron sphere of the opposite tetrahedron (with the shared face  f). The
edge e from the center w1 to the center w2 is the dual Voronoi edge to the triangle f.

Whether the triangle f  belongs to the set of surface triangles T depends on this criterion
(Fig. 4.7): for the triangles on the surface, this edge has to pass through the surface S. Let us
denote the angles α = ∠(w1p, n) and β = ∠(w2p, n). When the interval <α,  β> intersects the
interval <π/2 − θ, π/2 + θ> and this condition holds for each vertex p of the triangle f, then the
triangle is on the surface and so in the set  T. The parameter  θ is the input parameter of the
method. When we set the parameter  θ to zero then the edge has really to pass through the
surface.  But due to noise and other sampling mistakes we cannot be so accurate and the
parameter  θ is  set  to  22.5  degrees.  The  theory  says  that  this  value  is  the  best  for  the
reconstruction.

page 29



surface reconstruction from scattered point data

When we get using the above described calculation the set T of the primary surface, we
use the set  T as an input  of the manifold  extraction step.  This  step is  necessary because
although many triangles from T lie on the surface, they can overlap or create other unwanted
configurations. This step is described in its own chapter (chapter 7).
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a) b)

Fig. 4.7: a) The triangle (shaded) and three Voronoi cells incidenting with each triangle vertex. The edge e is
the dual representation of the triangle in Voronoi diagram. The arrows represent the surface normal vectors in
the triangle vertices estimated using poles. One Voronoi cell of the triangle vertex p is highlighted, its Voronoi

vertices are v1-v8..The figure b) shows this cell with the computation of the angles α and β. If the interval <α ,
β> intersects the interval <π/2 − θ, π/2 + θ> and it holds for other two Voronoi cells too, than the dual triangle
to the edge e lies on the surface.
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5. COCONE algorithm

This  algorithm is  very similar  to  the  CRUST algorithm,  the  author  Tamal  K.  Dey
developed it with the help of Nina Amenta and their theoretical background is almost the
same [NAm00]. The algorithm has three stages. The first step is called “candidate triangle
extraction step” and using cocones the set of all  candidate triangles is extracted from the
Delaunay tetrahedronization.

Cocone Cp is a complement of a double cone (Fig. 5.1) clipped with the Voronoi cell
centered at  p with an opening angle  π/2 -  θ around the axis aligned with the normal vector
estimated using the positive pole (θ is almost equal to π/8, the symbol < means the angle):

Each cocone Cp has a set of its neighbors Np:

After the tetrahedronization we take all triangles one after another and test whether the
dual Voronoi edge  e of the triangle intersects three cocones  Cp, where  Cp  are the triangle
vertices. If it holds for all three triangle vertices, the triangle is put to the set of candidate
triangles.
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The candidate set of triangles are already close to a manifold for a sufficiently densely
sampled surface but they do not form it. The second step, called “pruning”, walks outside or
inside the triangle mesh. It deletes triangles incident to sharp edges (an edge e is called sharp
if there are two consecutive triangles incident to e such that the angle between them is more
than 3π/2) in a cascaded manner. In next improvements of the algorithm, where the boundary
or undersampling is detected, we have to be careful in this algorithm step and remove only the
triangles whose vertices are in smooth areas (marked by a special flag). The extraction is done
in the third step called “walk”.

The description presented above is very close to the CRUST algorithm. What makes the
COCONE different are later improvements. The author developed extensions which are able
to  detect  boundaries,  undersampling  and  oversampling  and  the  most  important  extension
which can reconstruct surfaces from large datasets.

5.1. boundaries, undersampling and oversampling

Undersampling happens when the surface has some features such as high curvatures and
sampling is not dense enough to capture them. It cannot be avoided when the surface is not
smooth,  then  the  infinite  dense  sampling  is  necessary  for  sharp  edges  or  corners.  The
boundary can be understood as a special case of undersampling, the scanning process was
stopped in these places. Due to this we cannot exactly decide if some detected part of surface
is undersampled and the hole should be retriangulated or if it is a boundary. The counterpart
of  undersampling  is  oversampling,  which  causes  difficulties,  too,  particularly  in  the
postprocessing steps. A surface is sometimes sampled with unnecessarily high density and the
surface reconstructed from this sampled points contains large number of triangles in flat parts.

The presented surface properties can be detected by the different shape of the Voronoi
cell.  It holds for sufficiently sampled surface, that the cells are thin and long so when there
some undersampled or oversampled region is presented, the shapes has to be different.  Fig.
5.2 shows an example of the Voronoi diagrams in E2, different shapes of Voronoi cells in the
undersampled and oversampled regions are perceptible. The cells in undersampled regions are
fat or very thin in oversampled regions in comparison to other Voronoi cells.
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Fig. 5.2: An example of the Voronoi cells in E2. The points at the bottom are sampled relatively uniformly, the
points above are on same places undersampled and oversampled, the shapes of their Voronoi cells differ from
other cells.
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If we denote dp (for each p ∈ P) as the maximum distance of any point from p that has p
as its nearest neighbor on  S, than the point  p lies in the oversampled region if  dp is small
compared to the local feature size  LFS(p).  On the other hand, if this distance is too large
compared to  LFS(p) than the point  p lies in the undersampled region. However, we cannot
perform this comparison exactly due to the unknown surface S. 

But we can use the approximation of dp and LFS(p), if we denote dp as the distance from
the point p to the farthest point in Cp and LFS(p) as the distance to the negative pole. In order
to define the shape of the Voronoi cell, we define the height and radius of the Voronoi cell.
The height is defined as the distance to the negative pole (thus LFS (p), the positive pole is
used for the approximation of the normal vector):

 h p=∣p -­ p∣

The radius is then defined as the distance dp:

The assessment that some point lies in the flat part of a region, depends on two heuristic
parameters ρ and α. If these two conditions hold:
• ratio condition: rp/hp  ≤ ρ
• normal condition: ∀q, p ∈ Νq: ∠(Vp, Vq) ≤ α
than the sample point p is called flat. The ratio condition captures that Vp is long and thin. But
this simple condition is not enough to differentiate the interior samples from boundary ones
since some Vp on the boundary can also be long and thin, so the normal condition has to be
used, too. The parameters used to distinguish whether the point is flat are set to ρ = 1.3ε and
α = 0.14 radians for an ε-sampled surface. An interior sample p is deep if it does not have any
boundary sample as its cocone neighbor. The point p is boundary, if it is not flat.

The oversampling detection is little more complicated. It depends on the ratio condition
presented above. As much points as possible should be interior, so the ratio condition of these
points has not to exceed the value  ρ. When we delete some point in the Voronoi diagram,
which is interior, and the ratio of the updated Voronoi cell of the deleted point neighbors is
still less than ρ, we deleted a point in the oversampled part of the surface. This step assumes
to have the availability to delete points from the finished Delaunay tetrahedronization.

5.2. large data

The main difficulty of the COCONE and CRUST algorithms is that their use is limited
to small or medium datasets due to the used algorithm of Delaunay tetrahedronization. E.g.,
our implementation of  DT is able to process about 250K points on a system with 1GB of
memory. Therefore the author of the COCONE algorithm developed an other improvement of
the basic COCONE algorithm called SuperCOCONE [TKD01b] which is able to reconstruct
large datasets using octree space subdivision and applying COCONE to each leaf.
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First the root box is computed containing all sample points and in each subdivision step
the box is split into eight subboxes. The end of subdivision depends on some parameter  δ,
which means the number of points in each box. If the number exceed this value in some box,
than  it  must  be  splitted.  Fig.  5.3 presents  an  example  of  octree   subdivision  of  one
reconstructed dataset.

We can proceed with the Voronoi diagram of all sample points in all leafs in octree but
the  problem  appears  on  the  side  faces  of  the  leaf  box.  Even  the  surface  is  closed,  the
subsurface in this leaf have incorrect  boundary on the leaf sides and the reconstruction is
incorrect.

We can avoid this by taken all octree neighbors of this leaf B, but the size of the points
set will be than large and only around one ninth of the computed DT is used for the local leaf
reconstruction. Better way is to take a fraction from the adjacent boxes B'. Each adjacent box
B' is subdivided up to a level l to produce boxes of size 1/2l of the original size. Let X denote
the set of all such boxes bordering B that are produced as a result of this subdivision, denote
the extended box Eb as B ∪ X. We take all sample points Pb = P ∩ Eb. The experiments shows
that l in the range 3 – 4 produces a good result.

After applying the COCONE to each extended leaf we get the set of candidate triangles
and the manifold can be extracted as in the COCONE algorithm. 
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Fig.  5.3: An octree subdivision of some object. Each cell contains approximately the same number of points
(courtesy of Dey).
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6. CRUST and COCONE problems

Both algorithms are based on the same principles and theories, so they have almost the
same success of the reconstruction. The reconstruction of many datasets were done and the
tests  confirm  the  theoretical  conclusions  that  the  algorithms  work  well  for  sufficiently
sampled data of the closed smooth objects without the requirement to be uniformly sampled.
This  chapter  is  more  practical  than  the  previous  ones  and  it  presents  the  results  and
conclusions of our experiments.

The  first  problem occurs  in  the  first  step  of  the  algorithm,  the  computation  of  the
Delaunay tetrahedronization. The code we had  is robust and fast but, unfortunately, it uses
standard FPU arithmetic and is numerical unstable. This property  is fatal, when the surface
has smooth or flat parts, very flat tetrahedra appear and the computation of circumscribed
spheres used for Voronoi vertices position calculations produces bad results. This leaded to a
little surprising observation, the uniformly sampled data of smooth objects were sometimes
worse reconstructed than the nonuniformly sampled datasets with noise, because the noise
made the tetrahedra not so thin so the computation was more numerically stable.  Fig. 6.1
presents two examples of the same point cloud reconstructions, the cactus at  Fig. 6.1a) was
reconstructed using the DT with the normal FPU arithmetic, second cactus at Fig. 6.1b) was
reconstructed  using  the  DT with  numerically  stable  geometric  predicates  [JRS96].  The
difference is clear, the first figure contains a lot of bad triangles marked as the surface due to
bad  positions of Voronoi vertices.
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          a)     b)

Fig. 6.1: a) An example of the reconstruction without using the numerically stable Delaunay tetrahedronization,
b) the reconstruction with numerically stable Delaunay tetrahedronization.
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Above  described  problem  is  the  implementation  detail,  although  important.  The
reconstruction problems arise due to sampling properties, whether the surface is undersampled
or oversampled, whether it contains boundaries or is closed, whether it is sampled uniformly
or not or only in some directions. The surface properties are important, too, the sharp edges
makes  problems  in  many  algorithms.  Other  question  is  the  noise,  the  data  with  three
dimensional noise (influencing the point in all spatial directions) are a problem.

Described sampling criteria or surface features influence one another, we cannot simply
say that some place of the object is undersampled or if it is just the local boundary. When we
stay  in  the  oversampled  region,  from  this  point  of  view  other  regions  seem  to  be
undersampled.  If  the  data  are  nonuniformly sampled,  than  it  looks  like  undersampled  or
oversampled. 

Generally, the CRUST and COCONE algorithms works perfectly for uniformly sampled
closed smooth objects. The Voronoi cells of such a point cloud fulfill the criteria given by the
theory and the  set  of  primary surface  triangles  is  close  to  the  manifold  (only with  some
overlapped triangles of very flat tetrahedra). Fig. 6.2 shows the reconstructed object with the
detail of the triangle mesh after reconstruction. Fig. 6.2c) is the ε-sampling of the surface, the
more gray the surface is, the higher is the ε-sampling (in all figures), thus the ratio between
the nearest neighbor and the distance to the medial axis is higher, but it does not exceed the
value of 0.4 (theoretical guaranties still hold).

Very problematic  datasets  are  the  ones,  which  are  sampled  in  one  direction  more
accurately than in the other, see an example in  Fig. 6.3. It is a part of uniformly sampled
object (cylinder), which is in Fig. 6.3a) sampled more precisely in one direction than in others.
The reconstruction fails, because the plane formed only by the points in the direction of plane
zy has higher  probability to be a part  of  the surface than the original  surface.  Fig.  6.3b)
presents the same object but sampled in both directions uniformly. We lost some details but
the reconstruction is correct. 
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a) b)    c)

Fig. 6.2: a) An example of uniformly scanned object, b) the detail of the reconstructed surface with a triangle

mesh, c) the ε-sampling of the surface.
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Fig. 6.4a) shows real object, which is sampled more precisely in one direction in the part
of neck and tail. The distribution of the point of this problematic parts is visible in Fig. 6.4b)
and Fig. 6.4 d). The reconstruction fails in these parts because the Voronoi cells here have bad
direction even though the shapes are thin and long (Fig. 6.4c). The estimated normal vectors
direct parallel with the surface.  Fig. 6.4e) shows that this distribution of points cannot be
detected using the ε-sampling because the shapes of the cells are good, only their directions
are bad.

When the data are nonuniformly sampled, or uniformly but with some 2D noise, than
the reconstruction success depends on the local points configuration, some reconstructions
work perfectly and other not. Although the algorithms are not very sensitive to the changes in
sampling density, the Voronoi cells can have bad shapes, the normal vector estimation is not
very good on same places and holes or bad triangle configurations appear. An example of a
nonuniformly sampled object is in Fig. 6.5a), Fig. 6.5b) shows the detail to the reconstruction.
In  Fig. 6.5c) the overlapped triangles arise from the local undersampling equally as in  Fig.
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     a)    b)

Fig.  6.3: a) An example of the object sampled in one direction more precisely than in others, b) uniformly
sampled object (in both directions almost the same resolution).

z

x

y

Fig.  6.4: a) An example of the uniformly scanned object, which is scanned in some regions more precisely in
one direction, b) the distribution of points in the neck part, c) the Voronoi cell of some point in the neck part
(the estimated normal is not orthogonal to the surface), d) the tail part of the object with the triangle mesh, e)

the ε-sampling.

a) b) c)

d) e)
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6.5d) in the region of the ears. Fig. 6.5e) is the ε-sampling, the dark gray parts are the parts
with bad ε-sampling and in these parts the reconstruction is not guaranteed.

The algorithms completely fail on the data which contain 3D noise. An example of this
data is presented in Fig. 6.6a,b). It is a sampled terrain with a lot of noise, the reconstruction
failed and the triangle mesh (Fig. 6.6d) is nearly unusable. In Fig. 6.6b), the reason is shown,
the Voronoi cell shapes of many points doe not fulfill the algorithms requirements. Fig. 6.6e)
shows the ε-sampling, well reconstructed parts of the surface have ε bellow 0.4 (bright parts
in Fig. 6.6e).
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Fig. 6.5: a) An example of a nonuniformly scanned object, b) a detail of the reconstructed triangle mesh, c) the
detail of the place with bad triangle configuration, d) the region with a sharp edge and with holes due to a local

undersampling (cat's ears), e) the ε-sampling, red regions have worse ε-sampling.

a) b) c)

d) e)

Fig. 6.6: a) An example of the surface with noise, b) another view of the surface, c) the Voronoi cells of some

points in the surface, d) the detail of the reconstructed triangle mesh,e) the ε-sampling of the surface.

a) b) c)

d) e)
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The described problems depend on the surface sampling and whether there were some
errors  in  the  scanning  process.  The  surface  can  have  also  some  features  such  as  edges,
boundaries  or  outliers.  As  mentioned  above,  the  boundary  is  detected  as  the  local
undersampling and in the reconstructed surface some triangles arise with incorrect positions
due to it. 

Outliers  are  defined  as  the  point  or  a  group  of  points  lying  far  away  from  the
reconstructed object. They can occur due to noise in the scanning process or they can be a part
of some small  object  which could not  be correctly sampled.  When the group is  big then
mostly no problems arise and such small objects are reconstructed as other objects. In the
other case some unwanted triangles are connecting the outliers with the other points making
the reconstruction  more difficult. 

Edges  are  problematic,  too,  the  ε-sampling  criterion  in  these  places  does  not  work
because  the  medial  axis  touches  the  surface  here.  It  depends  again  on  the  local  point
configuration if we get a correct reconstruction. Fig. 6.7 shows an example of the edge in the
surface. The reconstruction is mostly correct even though some triangles are missing and the
shape of the edge is not kept. Fig. 6.7a) is the detail of the edge while Fig. 6.7b) presents the
larger neighborhood of the edge with the Voronoi cells. It is noticeable that the Voronoi cells
of the points near the edge (four cells at the bottom of the figure) have good shapes. But some
of the cells of the points on the edge (the one at the top part of the figure) are very “fat” and
the estimated normal is incorrect.

Above presented problems show the necessity of the algorithm improvements. Although
it is very difficult to implement the algorithm which is able to handle all kind of data we have
tried some improvement. They will be discussed in the next chapter.
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          a) b)

Fig. 6.7: The reconstruction of a sharp edge, a) a detail, b) the Voronoi cells near the sharp edge have required
properties but the cells at the points on the edge have bad shape (not thin in one direction).
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7. implementation and improvements

The  implementation  of  the  CRUST  algorithm  was  done  in  the  programming  tool
Borland Delphi in Object Pascal under the operating system Windows XP. The tests of the
object reconstruction ran on the CPU AMD XP+ 1500 with 1GB of memory. We aim in this
thesis  only  to  the  implementation  of  the  onepass  algorithm  due  to  the  amount  of  data
limitation in the twopass algorithm although many presented improvements (mainly the steps
of  manifold  extraction  and  the  triangle  mesh  improvements)  can be  used in  the  twopass
version too. The result of our twopass algorithm implementation can be found in [MVa02].
The work of the onepass algorithm can be divided into the following stages:

The stages printed in dark gray are main steps of the algorithm, the light gray stages are other
improvements developed during the work on the algorithm. All steps will be described in the
following paragraphs.  The work on the algorithm is intensive,  we can say that  in current
implementation only the idea of the poles computation and surface triangles marking is used
from the original algorithm.

7.1. points loading

As mentioned in the first chapter, only E3 positions of the vertices scanned from some
object without any additional information are the input to the algorithm, so the structure of the
input file can be very simple. We use a plain ASCII file, the first line of the file has to be the
number of input points. This disposal helps in the phase of testing, e.g., when we want to
reconstruct large data, we can sort the points according to some coordinate and reconstruct
only the part of the surface.
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Next lines of the file contain three numbers in floating point format separated by spaces
or tabs. The end of the line can contain commas and the beginning the char “p”, we have
found the files with this format on internet. Lines with other format are jumped over. An
example of this file can be seen in Fig. 7.1.

7.2. Delaunay tetrahedronization

For the tetrahedronization the code implemented by the supervisor of this thesis is used.
The code is fast and robust (it uses the numerically stable geometric predicates library), it uses
the method of incremental insertion for the creation of the tetrahedronization. The first phase
of the algorithm is adding of four new points which form the initial tetrahedron containing all
input points. One point after another is inserted to the tetrahedronization and the tetrahedron
in  which  the  point  is  contained  is  located.  This  tetrahedron  is  divided  into  four  new
tetrahedron (if the point lies inside the divided tetrahedron) and the Delaunay conditions are
locally checked. If they are not satisfied then the local tetrahedra configuration is changed by
faces  swaps.  The  algorithm  continues  recursively  until  all  points  are  included  to  the
tetrahedronization, the last step is then the deletion of the initial tetrahedron, its four points
and tetrahedra incident to them.

The problematic part of the algorithm is the tetrahedron location, to which the inserted
point belongs. If it is implemented by brutal force, all created tetrahedra has to be processed
and the one correct found. The algorithm complexity is  O (N2) and it is unusable for larger
data sets. Our implementation uses the directed acyclic graph (DAG) for point location which
speeds  the  location,  the  algorithm  complexity  decreases  to  O (N  log  N)  ÷ O (N)  in  the
expected case. Unfortunately, the use of the DAG consumes more memory and the algorithm
is able to process only medium size sets,  around 230K points on 1GB of memory.  More
details about the stability were mentioned in chapter 6. The details about out implementation
can be found in [IKo02, JKo03].

7.3. poles computation

After  the  Delaunay tetrahedronization  computing  we  can  obtain  by dualization  the
Voronoi diagram. For each point  p we take all the tetrahedra which are incident with this
point  p and  compute  the  centers  of  their  circumscribed  spheres.  These  centers  form the
Voronoi vertices of the Voronoi diagram and they are used directly for the poles computation. 

The vertex with the maximum distance is marked as the positive pole p+ of the cell and
the vector from the positive pole to the point p is the estimated normal vector n of the surface
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Fig. 7.1: An example of the input file.

11444
p 0 3.78683 0
d 0.159566 0.159566 0.159566
p 0.051427 3.75726 0
d 0.162481 0.162481 0.162481
p 0.099351 3.72645 0
d 0.165852 0.165852 0.165852
p 0.144067 3.69456 0
.....



surface reconstruction from scattered point data

in this point.  The negative pole is the Voronoi vertex with the maximum distance on the
opposite side of the plane formed by the point p and the normal vector n. The schema of the
poles computations is in Fig. 7.2.

7.4. average normals

During the algorithm testing, we made a following observation. For sufficiently dense
sampling the Voronoi cell is thin and long, the pole is nearly orthogonal to the surface. But in
the cases,  when the surface is not well  sampled or has boundaries,  the error between the
estimated normal  vector  (vector  to  the  positive  pole from the sample  point)  and the real
surface normal can be big. It is because the Voronoi cell is not thin in these places.

So a simple improvement was made. Instead of computing only the farthest vertex (the
positive pole p+) and taking it as a normal vector, we take this vector as the normal vector of
a temporary plane and we sum the vectors from the point p to each Voronoi vertex which lies
in the same halfspace as  p+  (see  Fig. 7.3 for details). We do not normalize the summed
vectors  because this  would make the sum weighted.  If we normalized vectors,  then each
vector would have the same weight in the resulted sum. But the vectors from the point to the
poles which are far away (far from the surface) have better direction than near poles, so we
have to give them bigger weight (and the weight of the vector is its length).
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for each point p

T = ∅ 
for each tetrahedron t incident with the point p

T = T ∪ t
end for

max = 0

for all t ∈ T 
c = center of the circumscribed sphere of t

if max < c - p
p+ = p

max = c - p
n = c - p

end if
end for

max = 0

for all t ∈ T 
c = center of circumscribed sphere of t

if ((c – p) n < 0) AND (max < c - p)
p- = p

max = c - p
end if

end for

end for

Fig. 7.2: The schema of the poles computation.



surface reconstruction from scattered point data

Our  implementation  shows  that  average  pole  technique  brings  better  results  than
working only with positive poles especially in the cases presented before.  In  Fig.  7.4 the
examples are shown,  Fig. 7.4a) and Fig. 7.4b) show a part of the reconstructed surface with
the Voronoi cell and computed average normal. The direction of the average normal is more
precise than the normal vector from point  p+ to  p.  Fig. 7.4c) is a part of a  reconstructed
surface with the original normal vectors computation while Fig. 7.4d) presents the same part
reconstructed using average normals where no holes appear. 

7.5. primary surface extraction

After the poles and normals computation (no matter how the normals were estimated-
using  poles  or  average  normals),  we  can  extract  from  the  set  of  triangles  contained  in
tetrahedronization the surface triangles using the test described in 4.4. The triangle (if it is not
on the convex hull) is shared by two tetrahedra so we have to be careful and not to test the
triangle twice. So all tetrahedra have a flag indicating whether it was processed or not.

We take one tetrahedron after  another  and for  all  four  faces,  triangles,  we compare
whether the opposite tetrahedron sharing the same face was processed. If it was, than we can
continue with the other face otherwise the surface test for this face is computed. After the
computation we set the tetrahedron flag as processed.

The surface test for a triangle  f is computed as follows: because we know which two
tetrahedra share the triangle, we can easily compute the dual Voronoi edge e of this triangle. It
is the edge between the centers of the tetrahedra's circumscribed spheres (recall  Fig. 4.6).
Then for each triangle vertex p (an input sample point) the angles α, β between two vertices
w1, w2 of the edge w and the normal n are computed. If the angle interval <α , β> intersects the
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plane = plane equation (estimated normal n, point p)
average = (0, 0, 0)

for each Voronoi vertex v of a Voronoi cell of a point p

if v = the same half plane as p+
average = average + (v - p)

end for

Fig. 7.3: The schema of the average normals computation.

   a)       b)          c)           d)

Fig. 7.4: a), b) Two examples of Voronoi cells with original estimated normal vectors (black lines) and average
normal vectors (gray line), c) a part of a surface reconstructed using original normal estimation with holes in
the surface, d) the same part of a surface reconstructed using average poles, the holes disappear.
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interval <π/2 − θ, π/2 + θ> (θ is the input parameter)and this condition holds for each vertex p
of the triangle f, then the triangle is on the surface (see Fig. 7.5 for details).

In the case that the triangle  f is on the convex hull, no second tetrahedron shares this
triangle and we have only one vertex w1 of the dual edge e (the Voronoi cell is not closed and
the edge e goes from the point w1 to infinity) The surface test can be simplified and we mark
the triangle as a surface triangle if the angle between the vector from w1 to p and the normal np

at each point p of the triangle is less than  π/2 + θ.

7.6. manifold extraction

The triangles, which pass the conditions of Voronoi filtering (the conditions described
in paragraph 7.6), are marked as a surface but they do not form the manifold yet. There can be
more than two triangles incident on some edges or some triangles may miss on the places of
local discontinuity. For example, very flat tetrahedra in a smooth part of the surface (Fig.
7.6a) or  tetrahedra on the surface edge (Fig.  7.6b)  may have all  faces marked as surface
triangles. The number of overlapped triangles differs from model to model and depends on the

page 44

for each tetrahedron t
for each triangle f of a tetrahedron t

top = tetrahedron neighboring to t over f
if (top <> NULL AND top.flag = TRUE)

continue
end if

correct = 0

w1 = center of circumscribed sphere of t

if top <> NULL

 w2 = the center of the circumscribed sphere of top

end if

for each vertex p of triangle f

α = ∠(w1 - p, n)

if top <> NULLβ = ∠(w2 - p, n)

if (α, β) intersects (π/2 - θ,π/2 + θ)
correct++

end if

else if α < π/2 + θ 
correct++

end if
end if

end for

if correct = 3 
mark f as a surface triangle

end if 

end for

t.flag = TRUE 
end for

Fig. 7.5: The schema of the primary surface triangles computation.
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surface smoothness. For a smooth surface it is in tens percent and when the surface is rough,
the rate decreases. 

That is why the surface extraction step must be followed by a manifold extraction step.
The input to the manifold extraction step is just the set of triangles. Manifold extraction step
is  independent  of  the  reconstruction  method,  therefore  it  could  be  combined  with  other
algorithms than CRUST. We have developed our own algorithm. The reason was that the
manifold extraction methods were explained very briefly in the papers, however, this step is
important. Our approach uses breadth-first search for appending triangles on free edges and it
has has a linear time complexity. It was presented in [MVa03].

The preprocessing step of the extraction is creation of two structures which help in the
phase of triangle neighbors  searching. The first structure is the list of all triangles incident to
each point, see an example in Fig. 7.7. The algorithmic complexity of the structure creation is
O(T), where T is a number of all triangles in the primary surface.

The second structure is created using the previously described structure and is called
multiple neighbors list.  As the name prompts,  it  is a list  of triangles, where each triangle
contains pointers to the incident triangles at each edge. As the primary surface extraction does
not ensure that the marked triangles form a manifold, then on one triangle edge more triangles
than two can incident, see example in Fig. 7.8. These two structures are used for fast triangle
location.

page 45

Fig. 7.7: An example of the data structure where each point pi contains a list of its incident triangles Ti.
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The direct structure creation has algorithmic complexity O(T2),  where T is the number
of triangles, because for each triangle we have to look for its neighbors in the whole mesh.
But we can use the previously presented structure and look just for those triangles that are
incident with the triangle vertices. Then the algorithmic complexity decreases to linear O(cN),
where N is number of input points and c is constant, which depends on the mesh complexity.
For uniformly sampled data the number of incident triangles for every point is from four to
eight and for nonuniform data this number is not too big, either.

We can start now with the extraction. First we have to find starting triangles which will
form root of the searching tree. We will find them using “umbrellas”. We say that the point p
has an “umbrella” if there exists a set of triangles incident to point which form a topological
disc and no edge of the neighboring triangles is sharp. Other definition is that these triangles
do not  overlap when we project  them to the plane defined by the point  and normal  (the
estimated average normal). When we find the starting triangles around some point (Fig. 7.9),
we add these triangles to the list which represents the first level of tree. Other levels of the
extraction tree are created from previous ones by appending triangles on the non-processed
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Fig. 7.8: An example of the structure which contains for each triangle the list of all possible triangle neighbors
on its edges.
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Fig. 7.9: The starting triangle configuration of the manifold is created by triangles T1, T2, T3, T4 . They form the
first level of the extraction tree. Next level of the tree is formed by triangles T5, T6, T7 and T8.
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edges.  Fig.  7.10 show an example of the tree created from the triangles in  Fig.  7.9.  The
triangles T1 - T4 were used for the root of the tree and the triangles T5 - T8 were extracted in the
second level of the tree. From this level other triangles are extracted and the first level is not
farther needed, so we need for the tree to store only two levels of the tree, the current level
and the newly created level. It is marked in Fig. 7.10 by the rectangle around the two bottom
levels.

When we create a next level of the tree, it is necessary to choose one triangle of the set
of  triangles on a currently non-processed edge.  Fig.  7.11 shows the situation when some
triangles (in dark gray) have been extracted and we have to extract at one edge of the triangle
T1 other triangle where the surface (manifold) continues. Three triangles  T2,  T3 and  T4 exist
there (are marked as belonging to the surface) and we have to choose which of them is the
correct one. For the recognition the direction of the triangle normal is important. The direction
is inherited from the previously extracted triangle, the direction of the starting triangles in the
tree root is estimated using the normal vector of the point around the starting triangles lie.

There are three strategies how to choose the correct triangle:

•  the smallest triangle angle,

•  the first tetrahedron found ,

•  the shortest edge length.

The first  two tests  are described in [TKD01d].  We assume that  the triangle  T1 is  already
accepted to the manifold and is correct. First we have to orientate the triangles T2, T3, T4, see
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Fig. 7.11: The dark gray triangles are already extracted, the light gray triangles T2, T3, T4 incident on one edge
to the triangle T1 and one of them has to be chosen.
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Fig. 7.11. As we need to accept on the edge v1v2
 
the triangle nearest to the correct surface, we

have to take the one whose angle with the correct triangle T1 on the edge v1v2 is the smallest.
That is the method of the smallest triangle angle.

This  method  is  numerically  unstable  on  flat  surfaces,  because  the  angles  between
triangles are very small.  But we can use the tetrahedra that are incident with the edge v1v2
(Fig. 7.12). Because we know tetrahedron neighbors, we can walk through these neighbors on
the edge v1v2

 
. We start with the tetrahedron whose one face is the triangle T1 and which lies in

the direction of the triangle T1 normal. Then we walk through the neighbors and we choose
the first marked triangle we find. 

For our approach we use the third method. This method assumes that the triangle must
be small to create a correct surface, so we take the one, which has the smallest edge length
(the minimum of length of the  T2,  T3 and  T4 triangle edges). The biggest advantage of this
method is that it is very simple for computation. Although it is a heuristic, we did not find any
problem with it.

We continue recursively in adding new triangles to the edges of triangles in the current
level tree, we form the next level tree and recursively continue. All points which were used in
extracted  triangles  are  marked with  a  flag.  When  we are  not  able  to  continue  extraction
because all extracted triangles are connected together or there is no triangle left, we have to
look at the points and if the flag of all points is set, the extraction finishes. In other case there
are more unconnected  parts of surface (or more objects) and we continue from the beginning
with the unprocessed points. The schema of the manifold extraction can be found in Fig. 7.13.
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The  advantage  of  this  manifold  extraction  method  is  that  it  has  not  big  memory
requirements and is  very fast,  however,  we cannot compare with the time of the original
algorithm due to different platforms. The example of extraction is in Fig. 7.14.
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for all points p
set p.flag to FALSE

end for

for all points p
if p has umbrella and p.flag = FALSE

tree.current = umbrella triangles around p

tree.next = NULL

while tree.current <> NULL
for all triangles t ∈ tree.current

for all unprocessed edges e ∈ t
tnew = get correct triangle at e

if tmax <> NULL
tree.next = tree.next ∪ tmax

for all points s ∈ tmax 
s.flag = TRUE

end for
end if

end for
end for

tree.current = tree.next

tree.next = ∅
end while

end if
end for

Fig. 7.13: The schema of the primary surface triangles computation.

Fig. 7.14: An example of the manifold extraction. Different colors present different levels of the tree.
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7.7. prefiltering

During testing the manifold extraction, we have detected some problems, which may
occur. We already mentioned that the CRUST algorithm has very good results for smooth
surfaces.  However,  even with datasets  of  smooth  objects,  sometimes  small  triangle  holes
appear  in  the  reconstructed  surface.  It  is  not  a  problem  to  find  and  fill  them  in  the
postprocessing step, but the question is why they appear. Each tetrahedron has four faces-
triangles. The CRUST marks them whether they belong to the set of the primary surface T.
We have found that the triangle holes appear in the smooth places where very flat tetrahedra
lie whose three faces are marked as surface triangles. See Fig. 7.15a) for an example: the dark
gray triangles are already extracted and we are looking for triangle neighbor on the bold edge
of the triangle T1. The light gray triangles are marked triangles from one tetrahedron (there are
three overlapping triangles), two of them are incident with the bold edge of triangle T1 and we
have to choose only one of them. When we select the bad triangle then in the next step of
extraction the triangle hole occurs (Fig. 7.15b). Fig. 7.15c) shows a correct configuration.

In order to avoid such situations it is necessary before the manifold extraction step to
detect the tetrahedra, which have three marked faces, and remove one overlapped face. So we
take  one  tetrahedron  after  another  and  mark  surface  triangles  (faces)  using  the  CRUST
algorithm. If there are three marked faces on one tetrahedron, we preserve only those two
faces whose normals make the smallest angle (the tetrahedron is flat, so the triangles on the
other edges make  together sharp angle), the third face is deleted. We have to be careful with
the  orientation  of  the  triangle  normals,  they have  to  be  oriented  in  the  direction  of  the
tetrahedron center of gravity (see an example in Fig. 7.16). The best configuration is in Fig.
7.16d), the angle between triangle normals incident to the edge is the smallest (the dot product
of the normals is close to one, in Fig. 7.16b) and Fig. 7.16c) is close to minus one).
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   a)        b)  c)

Fig. 7.15: Two configurations in the manifold extraction of the tetrahedron with three marked surface triangles,
a)  the  initial  status,  on  one  edge  of  the  triangle  T1 there  are  two  connected  triangles  belonging  to  one
tetrahedron, b) the wrong choice, c) the correct choice.
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Fig. 7.16: a) The tetrahedron with three marked faces T2, T3 and T4 and three possibilities b), c) and d) which
two triangles to choose. Arrows correspond to the triangle normals. 
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This approach converts tetrahedra with three marked triangles to tetrahedra with two
marked triangles. We can use it to filter tetrahedra with four marked triangles, too. Besides
removal of problematic places, the prefiltering approach reduces the number of triangles in
the  primary  surface.  After  converting  all  tetrahedra  with  four  and  three  good  faces  to
tetrahedra with two good faces, the set of primary surface triangles is ready for extraction.

When  the  reconstruction  without  the  prefiltering  improvement  ran,  several  triangle
holes appeared. The number of triangle holes was not too high but when looking closer to the
reconstructed object, it can disturb the visual perception and the reconstructed object does not
form a manifold. We have tried also the Dey's COCONE algorithm and the triangle holes
appeared there, too (Fig. 7.17a). After applying the prefiletring (Fig. 7.17b) and Fig. 7.17c),
the situation changed and our algorithm was able to reconstruct the surface with much less
triangles holes. Sometime a triangle hole still appears but the cause is different, the missing
triangles were not chosen to be surface.

The next consequence of this prefiltering improvement was a reduction of the amount of
triangles in the primary surface. Nine datasets were tested (see Tab. 7.1, the row “points” is
the number of points in the tested dataset) and the number of redundant triangles measured,
which  it  is  necessary to  remove  from the  triangulation.  The  row "without"  presents  the
number of redundant triangles marked as surface triangles without the prefiltering applied.
The number of redundant marked surface triangles computed with the help of the prefiltering
is in the row "prefilter". The last row presents the rate in percents of the number of marked
triangles before applying prefiltering and the number of triangles after prefiltering. It can be
seen that 38-99 percent of the redundant triangles are removed by prefiltering. 

bone bunny x2y2 engine hypsheet knot mann nascar teeth

points 68537 35947 5000 22888 6752 10000 12772 20621 29166

without 8106 11937 358 9835 1451 2017 926 992 4642

prefilter 111 71 122 33 898 70 54 297 145

% rem 98 99 65 99 38 96 94 70 96

Tab.  7.1:  The datasets  used for testing of  prefiltering,  the number of points  in  each dataset is  in  row
“points”, number of triangles marked as surface without prefiltering (row "without"), number of triangles
with prefiltering (row "prefilter") and the percent rate of the removed triangles using the prefiltering in the
row ("rem").
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a)   b)     c)

Fig. 7.17: a) The detail to the surface reconstructed by Dey's COCONE, black are highlighted triangle holes in
the surface, b) shows the reconstruction by our algorithm without the help of prefiltering  (missing triangles are
black) and  c) with the help of prefiltering.



surface reconstruction from scattered point data

7.8. postfiltering

When we have the data, which are not uniformly sampled, with some noise or some
features missing due to undersampling, the manifold extraction may fail because the CRUST
selects bad surface triangles and unwanted triangle configurations occur. Fig. 7.18 shows an
example. This detail is taken from a dataset which is not uniformly sampled and contains
some noise. The highlighted part presents the erroneous place after the manifold extraction,
missing and overlapping triangles.

Missing and overlapping triangles appear there due to bad normal vectors arisen from
the  incorrect  shape  of  Voronoi  cells.  We  have  analyzed  triangle  fans  around  the  points
obtained after the reconstruction. These configurations may be detected using an undirected
graph. The nodes of the graph correspond to the fan triangles. A graph edge e  exists in the
graph if the nodes of the edge e correspond to neighboring triangles (see Fig. 7.19). 

There exist two acceptable configurations of the triangle fan. Fig. 7.20a) presents a full
fan around a point. It can be detected as the graph cycle which contains all nodes. Fig. 7.20b)
is  just  one  single  triangle,  which  can  appear,  e.g.,  on  the  corners  of  the  surface  with  a
boundary. Detection of these configurations is simple.

Other configurations are incorrect and some triangles have to be deleted. When we are
able to  find one cycle in  a graph,  we can delete all  triangles whose graph nodes are not
included in  the  cycle.  The most  common configuration is  shown in  Fig.  7.21a),  one full
triangle fan with one separated triangle. The  Fig. 7.21b) is some hypothetic situation with
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Fig. 7.18: A part of the reconstructed surface  with an error after manifold extraction.

Fig. 7.19: An example of the fan configuration and a graph corresponding to the fan.
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more than one cycle but we did not find any occurrence and it looks practically impossible to
extract this configuration.

The configurations presented in  Fig. 7.22 are more problematic. When there are only
subfans (we denote the fan as subfan if it does not form a cycle), the finding of the good fan
configuration is not so simple and it will be explained in the following text. Here we cannot
avoid the  use of  the  normal  vectors  (we are testing these configurations  in  the  projected
plane),  and it  can bring problems.  The normal  vectors  have good estimation  only on the
smooth parts of the surface, but the places, where these problematic configurations of the fans
appear, are on the places where the sampling is not correct.

All the triangles around the fan are projected to the plane given by the point (center of
the fan) and its normal vector (although the normal direction probably is not correct). The
detection is  simpler  for  the configuration in  Fig.  7.22a)  and  Fig.  7.22b) than  Fig.  7.22c)
because  the  triangles  create  only  one  subfan.  When  the  sum  of  angles  of  the  projected
triangles (angle between two edges incident with the point) has less than 2π (Fig. 7.22a), the
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      a)           b) 

Fig. 7.20: a) Full fan and one graph cycle corresponding to the fan, b) one triangle with its graph.
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Fig. 7.21: a) One full fan with another separated triangle, b) more full fans.
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Fig.  7.22: Some fan configuration formed only by subfans, a) one subfan without overlapping triangles in a
projection, b) one subfan with overlapping triangles in a projection, c) more subfans.
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configuration is accepted and no changes in the triangle mesh is done. When it is more (Fig.
7.22b), we delete triangles from one end of the subfan until the angle is less than 2π. We have
implemented now only the removing from one end but better is to remove these triangles in
more sophisticated way.  Fig. 7.22c) represents the worst case, a set of more subfans. This
configuration occurs fortunately very rarely and we remove all triangles except the subfan
with the largest sum of angles.

In  Fig. 7.18 three examples of bad triangle fan configuration were shown. Following
Fig.  7.23 shows the reconstruction of the same parts  of the surface with the postfiltering
applied. The overlapping “flying” triangles disappear and the remaining triangle holes are
filled with the triangles. Current implementation of manifold extraction is prepared for the
probable next step of the extraction-the holes filling, but is limited now to fill only the triangle
holes. 

The  problem with  overlapping  triangles  appear  in  the  COCONE algorithm too,  we
found some bad fan configurations on the reconstructed surface (Fig. 7.24). In this case it was
not possible to reproduce  Fig. 7.24 for comparing with our algorithm because although the
algorithms are similar, the code is not the same and the reconstructed meshes differ a little for
the same models.

page 54

Fig. 7.23: The same parts of the surface as in Fig. 7.18 after applying prefiltering. The black triangles present
the triangle holes formed after postfiltering which were filled with triangles.

Fig. 7.24: The overlapping triangles in the surface reconstructed using COCONE algorithm.
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7.9. boundary filtering

When the surface contains a boundary, the CRUST has problems with its recognition
and it marks the boundary triangles as surface triangles. This is a problem of all algorithms,
there is no chance to find if some place presents a boundary or just a local undersampling and
we are left to heuristics. Dey presented a heuristic algorithm, which was mentioned in chapter
6, for a recognition if a point lies on a boundary or not.

We present  now other heuristic approach based on the observation of  the  boundary
triangles, see Fig. 7.25. There are two examples of a surface, where boundary triangles appear
incorrectly. Fig. 7.25a) presents the case when the boundary triangles are perpendicular to the
surface triangles while Fig. 7.25b) show the case where boundary triangles are parallel to the
surface triangles. When we look closer at the figures, the length of the edges of boundary
triangles differ from the length of surface triangle edges. To avoid the situation when the
surface  is  not  uniformly sampled  and  the  length  of  edges  incident  to  a  point  differ,  we
developed an adaptive criterion based on the edge length and the angle between point and
incident triangle normals.

The boundary test is computed as follows. For each point  p  the set  E  of all incident
edges is created. One edge e is chosen as referential. All triangles whose both edges incident
to the point p are longer than the length of the referential edge multiplied by some variable m
are filtered out. This variable depends on the angle of the triangle and point normals. The
multiplicator m is computed :

The constant  cbe is  the maximal  allowed length of the triangle edge when the angle
between the normal of the triangle nt and the normal at the point np is 90° (then the dot product
of these normals is zero). When we compute m on a flat smooth part of the surface, the dot
product will be one and the multiplicator m is the sum of cbe and cse. These constants were set
experimentally and almost for any data sufficient results were achieved for cbe equal to 2.0 and
cse equal  to  5.0  (e.g.,  on the boundary where boundary triangles  are perpendicular  to  the
surface triangle, m is 2.0 and when the boundary triangles are parallel, m is 7.0). 
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        a)                  b)

Fig. 7.25: Two examples of badly triangulated boundary, a) the boundary triangles perpendicular to the surface
triangles, b) the boundary triangles parallel to the surface triangles.

m=cbecse∣n p⋅nt∣
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The most important question is how long should be the referential edge. First we have
tried to take the median of the edges lengths as the referential edge, but it did not give good
results  because at  one boundary point  there can be more boundary triangles  than surface
triangles (see Fig. 7.26a) and the boundary triangles were not filtered. Then we have tried to
take the smallest edge in the set  E (Fig. 7.26b). But some datasets have due to errors in the
scanning process some points very close together, so more triangles were filtered than we
wanted. Now the referential edge e is taken as the third smallest edge. It is a heuristic criterion
and it is built on the observation that even when there are some points mutually very close, the
third shortest edge represents the length of some "normal" triangle. The schematic description
of the algorithm is shown in Fig. 7.27.

In  Fig.  7.25 the reconstruction of some surface with a boundary was shown. After
applying the boundary filtering, better reconstruction was obtained, see Fig. 7.28. Both cases,
when the boundary triangles are perpendicular and parallel with the surface, were correctly
reconstructed. 
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   a)        b)

Fig. 7.26: a) The referential edge is taken as the median of all edge lengths (the white edge), b) the referential
edge is the shortest edge.

Cbe = 2.0
cse = 5.0

for each point p
np = estimated point p normal 

E = all edges incident with p
e = choose one referential edge from E

le = e
for each triangle t incident with the point p

nt = triangle t normal
v1 = the first vertex of t different from p
v2 = the second vertex of t different from p

m = cbe + cse np · nt
if (mv1 – p > le) AND (mv2 – p > le)

delete t
end if

end for
end for

Fig. 7.27: The schema of the boundary filtering .
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For  comparison  we  tried  to  reconstruct  the  same  objects  by  COCONE.  The
reconstruction worked well for the objects in Fig. 7.28b) and the reconstructed models were
almost  the  same.  The  reconstruction  of  the  object  as  in  Fig.  7.28a)  fails  and  many bad
boundary triangles appear there.  Fig. 7.29 shows the whole reconstruction of the object from
Fig. 7.28a).  Fig. 7.29a) is the reconstruction using COCONE. It is visible that the boundary
detection failed. The output of the CRUST followed by our manifold extraction is in  Fig.
7.29b), several incorrect boundary triangles occur there mainly in the windows and the wheel
parts of the coachwork of the car.  When we apply the boundary filtering, the situation is
better, see Fig. 7.29c). The highlighted parts around the car trace the boundary contour.

The bottleneck of the heuristic algorithms is always the choice of parameters settings.
Because we use here the adaptive setting depending on the local configuration, the choice of
parameters described above is useful almost for all data we have. For uniform datasets we also
tried successfully to set the constants to cbe = 2.0 and cse = 1.0 but at this moment, we are not
able to detect data uniformity automatically.

The car model is uniformly sampled, other test data, nonuniformly sampled, can be seen
in Fig. 7.30, Fig. 7.31 and Fig. 7.32. The hypersheet model was a little problematic for both
programs  (Fig.  7.31).  The  data  are  not  uniformly sampled,  sometimes  several  points  are
mutually very close and some surface triangles were missing. The boundary triangles were
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            a)     b)

Fig.  7.28:a) An example of the boundary filtering when the boundary triangles are parallel with the surface
triangles, b)  when the boundary triangles are perpendicular to the surface triangles.

   a)  b)    c)

Fig. 7.29: a) The model reconstructed by the COCONE , detected boundaries are the highlighted parts, b) the
same model reconstructed using CRUST without any boundary improvement, c) after applying the boundary
filter, highlighted parts are traced boundary edges.
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successfully removed except one. COCONE has a problem with the knot dataset too, some
surface triangles were marked as boundary and holes appear. The other data were successfully
reconstructed by both programs.
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a) b)

Fig.  7.30: a) The function x2y2 reconstructed using COCONE, the surface is incorrectly connected with the
boundary triangles, b) the reconstruction by out approach.

           a) b)

Fig.  7.31: a) The hypersheet model reconstructed by COCONE, the boundary is correctly detected but some
incorrect triangles appear, b) our reconstruction, almost all boundary triangles were removed but some of
surface triangles, too.

a) b)

Fig.  7.32:  a)  The  club  dataset  reconstructed  by  COCONE,  the  reconstruction  is  correct  and  boundaries
triangles were removed, b) the reconstruction by our approach, boundary triangles successfully removed, too.
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8. future work

As we have tested in several reconstruction tests, the CRUST algorithm works well for
almost all data which pass the sampling criterion built on LFS. The only problem is with the
data which are sampled more precisely in one direction because the sampling criterion does
not  count  with  this  kind  of  data  (recall  Fig.  6.4).   and  the  surface  is  not  reconstructed
correctly. This case was not mentioned in the Dey's or Amenta's articles.

When some regions of the data do not fulfill this criterion then there is no guaranty that
they will be reconstructed correctly and the success depends on the local point configuration.
Local configuration of points is critical, many ideas, which seem working fantasticly , were
tested to improve the quality of algorithm but due the locality they failed. We have presented
in this report some methods which really improve the quality of the reconstructed surface –
the triangle mesh and there is still a lot of work on. 

8.1. holes filling

First the holes filling has to be implemented. After the manifold extraction (and other
manifold improvements such as boundary filtering or postfiltering) we have a set of triangles
which satisfy the basic mesh condition – the number of triangles connected to one edge is less
or equal to 2. When the edge is associated only with one triangle, it is a boundary edge and by
recursive walking on neighboring edges with this property we can simply identify the hole.
The  care  has  to  be  taken  on  the  points  (edge  vertices)  where  there  are  more  than  two
associated hole edges (Fig. 8.1). In this case we still do not know what to do, because we want
to have simple hole shape without duplicity points (one point on the hole is shared by more
than two edges).
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Fig. 8.1: A  part of a reconstructed surface with detected highlighted holes.
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For  the  hole  filling  we  can  use  some  existing  algorithm  for  triangulation,  the
cooperation  coming  into  the  consideration  is,  e.g.,  with  Alexander  Jeměljanov,  whose
algorithm for holes filling is very robust [AJe03]. The other possibility is to develop some
new (which uses existing data structures) because the robustness is not the crucial this time
because the holes are small. The first idea was to develop a recursive hole triangulation, where
two incident hole edges e1, e2 with the smallest angle will be connected by an edge (with the
third edge e12). Then  these two edges will be replaced by the edge e12, the number of hole
edges decreases by one and we can recursively continue. Because we do not know if the hole
is a boundary or just an undersampled place, some heuristic has to be used for recognition
whether to retriangulate or not.

8.2. normal vectors comparison

Interesting idea is comparison of the normal vectors estimation. The normal estimation
belongs to the critical  part  of many surface reconstruction algorithm so some comparison
could be helpful. For a such comparison we should take data which have correctly computed
normal  vectors,  maybe  the  method  of  implicit  surface  triangulation,  which  has  been
developing by our colleagues [MCe04], can give some data with analytical computed normal.
We would like to compare the analytic normal  vectors with the Hoppe's  approach (recall
section 3.1), CRUST approach and our average normal method. 

8.3. points smoothing

Some  real  data  we  have  are  far  away from  the  requirements  of  all  reconstruction
algorithms. The example of this data is in Fig. 8.2. It is a front part of some building whose
photo pictures were taken and by photogrametric method the E3 data were acquired. 
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Fig. 8.2: The reconstruction of the front part of the real building, right are two details of the surface (data from
TU Graz, Austria).



surface reconstruction from scattered point data

The result of reconstruction is awful, due to many reasons. The point cloud is very noisy
(as seen in details in  Fig. 8.2), many regions, which were not visible from the camera, are
undersampled and many outliers are present. Unfortunately, it is not  possible to use some
mesh smoothing for the final triangle mesh, because it is too much erroneous. But it seems
that is  is  able to use some points smoothing before the reconstruction steps for the noise
reduction. 

Now  the  smoothing  is  very  rough  and  it  is  necessary  to  make  a  lot  of  tests  and
developments to improve it. The first results are shown in  Fig. 8.3. The algorithm at present
is very simple. The regular voxel grid is created for fast neighbor searching and for each point
its several neighbors are used for a calculation of its average  position (in Fig. 8.3 were used
20 neighbors for bunny smoothing).  But the first tests of a noisy data smoothing tell that the
smoothing depends on the surface position,  the points has to be moved in the process of
smoothing more to the presumptive direction of the surface than to others. Here we come back
to the question of normal estimation, the estimated normals (by poles) are very bad in noisy
places, maybe some other normal estimation technique will produce better directions.

8.4. points decimation

The  algorithms  based  on  the  global  Delaunay  tetrahedronization  have  a  big
disadvantage:  they  are  not  able  to  handle  large  number  of  points.  Dey  presented  his
SuperCOCONE algorithm (chapter 6) which divides the space to octree, reconstructs the lists
of the tree and adds the obtained meshes together. 

Our Delaunay implementation tetrahedronizes about 250K points on a system with 1GB
memory, but some of our data are larger. So we have tried an idea: if there exists two points
p1  and p2 which are the nearest neighbors each other, we will compute their average position
pavg and we replace the points p1, p2 with the new point pavg. This approach we can use till we
get the acquired number of points in the points set. Our observation shows that the geometry
of  the  surface  is  not  too  much  destroyed  after  this  approach.  Of  course,  in  the  future
decimation it is necessary to develop some criteria such as, that the decimated edges length
cannot  exceed  some  value  or  that  the  edges  lying  on  the  surface  corners  has  not  to  be
decimated.
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Fig. 8.3: The reconstructed Stanford bunny without and with the points smoothing (20 neighbors).
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In  Fig.  8.4 this  recursive  algorithm is  tested  on the  dataset,  which is  nonuniformly
sampled. The original dataset (in Fig. 8.4a) containing 10000 points was decimated to 5000
points (Fig. 8.4b), 2500 points (Fig. 8.4c), 1250 points (Fig. 8.4d), 600 points (Fig. 8.4e) and
300 points (Fig. 8.4f). It is shown that the curvature and the geometry of the object is not too
much destroyed after the decimation, of course, when the decimation is too large than small
features are missing.

This  decimation approach was also tested on big datasets  that  we were not  able  to
reconstruct due to memory limitation. In Fig. 8.5 the results are presented, the datasets have
from  400K  points  to  900K  approximately.  Results  were  surprising,  all  the  data  were
decimated to 200k points and the reconstruction was almost perfect with the exception of
some missing triangles due to the same problems as in small models.  The features of the
objects were also reconstructed correctly, even in small details we were not able to detect any
differences between the models. For the future work it is necessary to do some measurement
of  the  resulting  mesh  for  this  kind  of  decimation,  because,  e.g.,  many decimation  mesh
algorithms shrink the object and this problem  may occur here, too.
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Fig. 8.4: The test of the points decimation before the reconstruction, a) the reconstruction of the original point
cloud with 10000 points, b) 5000 points, c) 2500 points, d) 1250 points, e) 600 points, f) 300 points.

a) b) c)

d) e) f)
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8.5. parallel or distributed computation and large data

The next work on the algorithm assumes the connection with a work of our colleague
Josef Kohout who is developing an efficient algorithm for parallelization and distribution of
Delaunay tetrahedronization. This approach can of course speed the work of the algorithm but
the main aim is to give us the possibility to process large data without any data decimation.
We do not know yet how to connect these two works together, because the distributed  E3

Delaunay computation is still in the phase of development. 

8.6. other improvements

We  are  also  thinking  about  other  improvements  to  improve  the  quality  of  the
reconstruction process. The main difficulty is that the CRUST algorithm locally depends on
the points configuration, small perturbations in data can drastically change the result, so the
development  of  some  improvement  is  not  to  easy,  when  it  looks  that  something  should
fantastically improve some algorithm steps, than almost always some case is found where it
does not work.  

We have some ideas how to use the mathematical morphology, see  Fig. 8.6. There is
some  part  of  the  surface  and  its  voxelization.  The  voxelization  computation  and  points
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Fig. 8.5: The tests of the points decimation for large data, datasets were decimated to 200k points, a) the “hip”
dataset with 530K points, b) the “dragon” dataset with 437K points, c) the “blade” dataset with 882K points, d)
the detail of the “happy budha” dataset with 543K points.

a) b)

c) d)
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assignment to each voxel is very fast and it can tell where the surface approximately lies. In
the case of a hole, undersampling or when the voxels are too small and there appear holes
between the voxels, we can try to use morphology operators such as dilatation or erosion.

Good idea seems to be also the tetrahedronization updating. When there is a hole in the
surface we can try to add new points to the tetrahedronization in the plane of the expected
surface with respect to the  LFS, ore when there are too much points, we can try to remove
some points from the tetrahedronization, similar approach uses Dey (section 6).
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Fig. 8.6: A part of the surface and the voxelization.
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9. conclusions and acknowledgments

In this work the state of the art in the problem of surface reconstruction was presented,
aimed  mainly  at  the  description  of  two  algorithms,  CRUST  and  COCONE,  and  some
improvements were shown. In the last chapter some ideas to future work were described. 

The author of this thesis wants to thank to the supervisor doc. dr. ing. Ivana Kolingerová
for big support and patience, also to the head of the graphics group prof. ing. Václav Skala,
CSc. for providing good conditions under which the work has been possible. This work was
supported by the Ministry of Education of Czech Republic, project MSM 235200005, by the
project AKTION 36p9 and by the project FRVŠ 1349/2004. 
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Abstract
The  surface  reconstruction  is  a  common  problem  in  a  modern  computer
graphics,  there  are  many applications  which  need  to  work  with  a  piecewise
linear approximation of the existing real 3D objects. One of the methods for
acquiring these models is the digitization of the real 3D object using many types
of  devices  followed  by  the  point  cloud  reconstruction.  We  use  for  the
reconstruction the CRUST algorithm which works on the principle of selecting
surface triangles from Delaunay tetrahedronization using the information from
dual Voronoi diagram.

This algorithm has nice properties but as other reconstruction algorithm, it is
not  working  properly  for  each  kind  of  data.  Our  goal  is  to  develop  some
improvements of this algorithm or a new algorithm which will be able to handle
many kinds of data and properly reconstruct the surface.

The presented report contains the state of the art in the given computer graphics
area,  it  aims  to  the  description  of  two  important  algorithms  CRUST  and
COCONE and it  shows the common problems with the problematic datasets,
published improvements and presumptive future work.

This work  was supported by 
• the Ministry of Education of the Czech Republic – project MSM 235200005
• the project FRVŠ G1/1349 2004
• the project AKTION 36p9

Copies of this report are available on
http://www.kiv.zcu.cz/publications
http://herakles.zcu.cz/publications.php
of by surface mail on request sent to the following address:

University of West Bohemia
Department of Computer Science and Engineering
Univerzitní 8
306 14 Pilsen
Czech Republic

copyright © 2004 University of West Bohemia, Czech Republic



surface reconstruction from scattered point data

page 72


