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Abstract

Morphing or metamorphosis is a technique for shape transformation between
two objects. It smoothly transforms the shape of the source object to the shape
of the target object. Morphing is usually used as an animation technique, for
creation of some special effects, but it can be also used as a modeling tool,
where some existing shapes are combined in order to obtain new shapes. In
this technical report we will focus on morphing of objects given in boundary
representation, i.e. objects described by a set of vertices and faces. Three basic
steps of morphing boundary representation are investigated. The first step is an
establishing of correspondence of vertices, which involves computing a
parametrization of both input meshes. In the second step a supermesh is
constructed by a process called topological merging. It results in a mesh which
can be transformed to the shape of the source mesh as well as to the shape of
the target mesh. The third step deals with interpolation of corresponding
vertices, i.e. the morphing animation. It also involves interpolation of surface
attributes as normals, colors, textures, etc. Possible improvements, ideas and
suggestions for further research are also presented.
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1 Introduction

It is a common feature of many things that they change their shape. Stones change their shape
by erosion. Plants and animals are growing, getting strength and so changing the shape along
with the surface color, internal structure, etc. And it is a common trend, maybe since the times
when computers had been invented, that a certain group of people tries to simulate such
phenomena in the computer. One of possible outputs of the simulation is a computer
animation.

Computer animation is dynamically developing field of computer graphics. By means of
computer animation we can simulate such effects as moving objects, mutual interaction, a
change of shape, etc. Animation could be used in scientific visualization, education,
entertainment industry, etc. Especially large field, where the computer animation is used, is
the movie industry.

From one point of view, computer animation could be divided into two groups — rigid-body
motion of objects (i.e. a translation and a rotation) and soft-body motion (i.e. a deformation of
objects). In this technical report we will rather deal with the latter form of computer
animation, i.e. the soft-body motion. More specifically we will focus on the animation
technique for shape transformation, called morphing or metamorphosis. In general, this
technique is used for transformation between two shapes. So in the terms of the first
paragraph we can transform the shape of some animal’s cub to the shape of the grown animal,
simulating the process of growing in this way. The morphing technique is not only used in the
computer animation; it can be used for an object synthesis also, where we create new shapes
by combination of some existing shapes.

Morphing technique has been extensively studied in two dimensions for morphing of images
and it has been successfully used in the movie industry. In image morphing settings there is
usually a source image and a target image. The goal is to compute a smooth realistically
looking transformation of the source image to the target image. But the 2D image morphing
has some disadvantages. As the intermediate frame of the morphing transition is just a 2D
image, it is not possible to easily change the position and orientation of the camera during the
animation; it is not possible to compute exact lighting (specular reflections, shadows), etc.

In this technical report we will deal with morphing of 3D objects, namely meshes. The 3D
morphing technique does not suffer from disadvantages of 2D image morphing described
above, because in intermediate frames of the animation we have a 3D geometric
representation which can be observed from different points of view, a lighting condition may
vary during the animation, etc.

The goal of this technical report is to survey existing methods of 3D morphing, together with
comments how much is a given method appropriate for different cases. Our contribution is
also described, together with suggestions and ideas for the future work.
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1.1 Motivation

The 3D morphing technique is also partially covered in professional animation tools such as
3ds max' or Lightwave®. But it has quite a strong limitation; it is possible to morph only
models with the same number of vertices and the same topology. It is used mainly for facial
animation where we create particular face expressions by modification of position of a few
vertices. By modification of the position of vertices we do not change the topology but only
geometry. Particular face expressions are called morph targets. The morphing is then just a
simple interpolation between morph targets. The question, which is usually not solved in the
animation software, is how to morph objects with different number of vertices and different
topology. This question is also a motivation for the vivid research in this area as well as for
our research.

1.2 Organization of the text and basic notation

The text of this technical report is organized as follows. Section 2 gives a basic problem
overview and outlines various morphing approaches according to the input data
representation. Section 3 describes the correspondence problem as the first step of the
morphing computation. The idea of topology merging is described in Section 4. The
interpolation problem is discussed in Section 5 together with description of our contribution,
which deals with interpolation of surface attributes. Section 6 summarizes suggestions and
ideas for a future work along with some test results. In Appendix A some details about
spherical geometry are given. Appendix B contains some examples which were produced by
our software, the examples of animations can be also found on the accompanying CD as well
as on the Internet at http://herakles.zcu.cz/research/morph/tr02_2005_ex.html.

Throughout the text the ifalics will be used for introducing new terms, which will be further
explained. Text also contains a number of color figures, in the morphing context we will
usually depict two objects, so the figures related to the source object will be drawn in green
and the figures related to the target object will be drawn in red. In mathematical relations the
superscript will be used for referring which mesh (either the source mesh or the target mesh)
the given element (vertex, face, edge, etc.) belongs to, the subscript will be usually used for

denoting of index of the given element. For example, v, refers to the i-th vertex of the source
mesh, f ,.1 refers to the j-th face of the target mesh. If the superscript is not explicitly specified,

it usually refers to some general element, where it has no sense to distinguish between the
source and the target mesh.

! 3ds max currently in version 7 is a product of Discreet (www.discreet.com)
* Lightwave currently in version 8 is a product of NewTek (www.newtek.com)
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2 Morphing in general

In this section we will give a general overview of morphing. We will outline the influence of
the object representation on the morphing algorithms and we will describe basic steps for the
morphing of boundary representation, which is the main topic of this report.

2.1 Problem overview

The morphing task could be formalized as follows. Given two input models — the source
model and the farget model — the goal is to compute some transformation from the shape of
the source model to the shape of the target model. According to terminology introduced in
[Ken92] the term object refers to any 3D or 2D entity, the term model refers to some
geometrical representation of 2D or 3D objects and the term shape refers to the set of all
points which comprise the surface of the object. Note that different models may represent the
same shape. The transformation between two shapes is not unique. Theoretically there is a big
number of possible transformations, e.g., a degeneration of the source object into one single
point followed by evolution of the target object or disintegration of the source object to
individual faces and transformation of the individual faces into the shape of the target object.
The problem is that that kind of transformation is usually not very visually plausible and so
we are looking for some more attractive shape transformations. In [Gom99], there are given
some principles for good morphing, e.g., topology preservation, feature preservation, rigidity
preservation, smoothness, monotonicity, etc. Topology preservation means to preserve
topology of the source and the target object, e.g., no holes should suddenly appear during the
morphing transition when the source and the target objects are topologically equivalent.
Feature preservation refers to the preservation of important features, which are present in the
source as well as in the target object during the morphing transition, e.g., when morphing
between two animals, legs, heads, tails, etc. should remain aligned during the transition.
Rigidity preservation refers to the fact that sometimes a rigid transformation (rotation,
translation) is preferred to a soft-body transformation (scaling, shearing, etc.). Smoothness
means that the shape transformation should be smooth, avoiding discontinuities. Monotonicity
refers to monotone change of some parameters, e.g., angles should change monotonically
avoiding so a local self-intersection. It is important that these principles are strongly
application dependent, e.g., in special-effects industry sometimes artificial shape
transformation is more impressive that some physically correct transformation, which on the
other side would be required in some technical applications.

The morphing technique is strongly dependent on the object representation, i.e. on the way we
describe our models. In our work we will consider the boundary representation in the form of
triangular meshes, i.e. the objects represented by the set of vertices, edges and faces. We
choose the boundary representation because it is quite easy to store, modify, render and it is
supported by hardware of graphics cards. We have also a lot of models available and, last but
not least, a lot of professional animation tools, such as 3ds max or Lightwave, use this
representation. On the other side, using triangular meshes, we have only a piecewise linear
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approximation of objects, which could sometimes cause problems during modification of the
model.

As stated before, various approaches to morphing usually differ in object representation. A
survey of various approaches to the morphing classified by object representation is given, e.g.,
in [Laz98]. In the following section we will briefly outline principles, advantages and
disadvantages of morphing in the main types of object representation.

2.2 Volume representation

By the term volume representation we understand here a description of objects by an entity
that can provide a value at each point in 3D space, e.g., evaluating of some analytically
expressed function or computing the value from a discreet samples stored in a 3D grid. The
simplest method is to linearly interpolate between the source and the target volume, which
corresponds to image cross-dissolving in 2D case. The term cross-dissolving refers here to
simple linear blending.

Hughes in [Hug92] suggest not to interpolate volumes directly, but in the frequency domain.
It is based on the observation that high-frequency components of the volumetric model
represent usually small details, while the low-frequency components represent a general shape
of the object. The interpolation of details seems unimportant compared to the interpolation of
the general shape. So Hughes suggests to gradually remove the high frequencies of the first
model, interpolate over to low frequencies of the second model, and then blend in the high
frequencies of the second model. The order in which the frequencies are added and removed
is given by a schedule. The schedule is a function that describes how much of the information
at a given frequency should remain from the model at time 7. The morphing among two
volumetric models given by functions g(x, y, z) and A(x, y, z) can be then described as:

KO =F ' (S,(t, fo. £, FOF () +S,(t, f o, [ fOF (), (1)

where K(r) is intermediate volume at time ¢, F is the fast Fourier transform, S, is a schedule
function, i.e. it describes how much information at frequency (f., f;, fz) should remain from the
first model at time ¢ and analogically S, describes how much information should remain from
the second model. The schedule S, is usually set to Sx(2, fx. fy. f)=1-S1(t, fr. /3 [2)-

Another approach of Lerios et al. [Ler95] generalizes the idea of Feature-Based image
metamorphosis [Bei92] in 3D. It works with volumetric models represented by a regular
structured voxel grid. The morphing process is decomposed into two parts — warping and
blending. In the first part, a user specifies corresponding features, i.e. features which remain
aligned during the morphing transition. Corresponding features can be specified by pairs of
feature elements (points, lines, rectangles and boxes3), which delineate features. During the
morphing process the corresponding feature elements are interpolated from the source to the
target orientation. The source and the target volume are warped towards the interpolated
feature element. The result is that corresponding features are moved, turned and stretched to
mach the position, orientation and size. In the second step, warped volumes are blended. The
simplest form of blending is linear cross-dissolving. But the simple cross-dissolving causes
errors when rendering an intermediate volume by the classical ray-casting method. This is

? Original 2D approach [Bei92] uses only pairs of corresponding lines.
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because of the exponential dependence of the color of a ray cast through the volume on the
opacities of the voxels it encounters. In particular, the intermediate volume abruptly snaps
into the source and target volume. So Lerios et al. suggest empirically established non-linear
cross-dissolving.

The common problem of morphing a volume representation is the data representation itself. It
is quite memory consuming. Geometric models are usually voxelized, which brings problems
with resolution, aliasing, etc. For rendering of volumetric models, some sort of direct volume
rendering (DVR) or an isosurface extraction method have to be used. And last but not the
least the volume representaion is not very common in professional animation tools, as they
prefer to work with parametrical or polygonal objects. The advantage of volume approaches is
that they quite easily overcome topological restrictions, e.g., a sphere and a torus can be easily
morphed by the cross-dissolving, which is not so easy in the boundary representation based
approaches.

2.3 Space-time morphing

Space-time morphing is usually connected with an implicit representation of objects, i.e.
objects represented by function fix;, xz, ..., x,)=0. The basic idea is that the space in which
the input objects (e.g., a 2D space for polygons or a 3D space for meshes) are defined is
extended with one more dimension. The added dimension can be considered a time, thus the
new space is called space-time. For example a 2D point (x, y) is expressed in space-time as a
triple (x, y, ). The basic idea is to interpolate n-dimensional input objects by an (n+1)-
dimensional smooth surface. An example of a surface interpolating the source and target
object is in the Fig. 1a). In this case, the source object is an x-shaped planar polygon and the
target object is o-shaped planar polygon. The input objects are 2D polygons, thus the space-
time is a 3D space. The individual cross-sections of the interpolating 3D surface define an
intermediate polygon, more specifically, the cross-section at the time =0 is the source
polygon and the cross-section at the time ¢=f,,, is the target polygon. The advantage of this
idea is that it is extendible to 3D, with that difference that the interpolation runs in 4D, the
cross-sections of the interpolated surface are intermediate 3D meshes.

Various approaches to the space-time morphing usually differ in the interpolation method.
The approach of [Tur99] uses radial basis functions (RBF) in order to compute an implicit
function which interpolates the input polygons. The vertices of the input polygons are so-
called boundary constraints, i.e. the points in which the implicit function takes on the value of
zero. Paired with the boundary constraints are normal constraints. The normal constraints are
points in which the implicit function takes on the value of one and they are located towards
the interior of the polygon. Both the boundary constraints and the normal constraints are
passed along to the apparatus of RBF as scattered points. RBF interpolation provides a
smooth surface which interpolates the source and the target polygon. By slicing the resulting
surface by a plane r=const. an intermediate polygon is obtained. In 3D space the interpolation
operates on 4D (x, y, z, t) points and intermediate 3D meshes are obtained by slicing 4D
implicit function. The advantage of this method is that is solves topology changes “for free”
(note that in the Fig. 1a) the o-shape has one hole and the x-shape has no hole, so a change of
topology is involved).

Page 8



Morphing of Meshes

t=-10
a) b)

Fig. 1: a) An interpolation between the o-shape and x-shape by the approach [Tur99]. b) Space-time
blending by Pasko et. al [Pas04], the source polygons are two circles and the target polygon is a cross (top
left), bounded space-time blending between two half-cylinders bounded by the intersection of half-spaces
t>-10 and #<10 (two views — top right, bottom).

Another approach by Pasko et. al [PasO4] operates on FRep, which is a generalization of
implicit surfaces and CSG modeling4. Pasko et al. [Pas04] converts n-dimensional objects into
half-cylinders in (n+1)-dimensional space-time. The half-cylinder is a cylinder bounded by a
plane from one side. The idea is similar to [Tur99]. The input objects are placed along the
time axis and an interpolation is applied. In this case, the interpolation method is a space-time
bounded blending. The bounded blending blends two objects, more, the blend is bounded by
an additional bounding solid. It is depicted in the Fig. 1b). The source polygons are two
circles and the target polygon is a cross. Space-time blend of two half-cylinders is bounded by
the intersection of two half-spaces >-10 and <10 (Fig. 1b) bottom). The advantage of this
method is that it is able to morph between different topologies (e.g., to morph from two
circles to one cross in the Fig. 1b) and it can also handle objects which do not reside the same
place in the space.

24 Morphing polygons

We will also shortly describe the area of polygon morphing (i.e. the morphing of 2D vector
representation) because it is quite closely related to our topic, just one dimension less. The
morphing of polygons is usually divided into two parts — finding of correspondence and
finding of trajectories for corresponding elements. Correspondence problem usually involves
establishing correspondence between vertices of both polygons. Note that the source and the
target polygon may not have the same number of vertices, so some new vertices have to be
added.

The first problem is addressed in [Sed93a]. Sedeberg et al. incorporate a physical model. The
polygon edges are modeled as wires with some material properties (modulus of elasticity,
stretching stiffness constant). A shape transformation involves then some stretching and
bending work. The goal is to establish such a correspondence, so that the work needed to

* CSG - Constructive Solid Geometry.
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transform the source shape to the target shape is minimized. Sedeberg et al. also investigated
cases which cause displeasing results during the shape interpolation. It is a self-intersection,
i.e. the case when a part of the morphing polygon passes through another part of itself, and a
non-monotonic angle change, e.g., angle first increases, reaches its extreme and again
decreases. These cases are penalized in the physical model. It is important to mention that
self-intersection penalization avoids only local self-intersections and does not guarantee a
global self-intersection-free transformation. A problem is also cause by the linear vertex
interpolation, in particular when morphing between highly dissimilar shapes.

In [Sed93b] the intrinsic parameters (e.g. edge lengths or internal angles) are interpolated,
rather than vertex positions directly. The polygons are converted to the so-called edge-angle
representation [Gom97]. In the edge-angle representation a polygon is described by one fixed
vertex, one edge incident to the fixed vertex, the length of each edge and the internal angle of
each vertex. The advantage of this representation is that except for the fixed vertex and edge it
is invariant to rigid transformation’. The absolute vertex coordinates are extracted from
interpolated intrinsic parameters. This interpolation scheme avoids edge collapsing and non-
monotonic angle changes. This technique was used for generating in-betweens for the
animation based on keyframes. The concept of interpolation of intrinsic parameters was also
further used for morphing of planar triangulations in [SurO1, Sur04].

Another interesting approach to 2D morphing was introduced in [Sha95]. It first decomposes
the source and the target polygon into star-shaped polygons. A star-shaped polygon is a
polygon, where at least one interior vertex exists (so-called star-point), from which all other
polygon vertices are visible. The term visibility means here, that the line segment connecting
two vertices lies completely inside the polygon. Then the skeletons of the decompositions are
constructed. The skeleton is a planar graph which joins star-points of neighboring star-shaped
polygons, i.e. it is a dual graph to the star-shaped decomposition. Important is that skeletons
of the source and the target polygon have to be isomorphic, which requires an isomorphic
star-shaped decomposition. Then, the interior and the boundary of the polygon can be
expressed relatively to the skeleton. The basic idea of morphing is that the intermediate
shapes are reconstructed according to the interpolated skeletons. The difference between this
approach and previous approaches [Sed93a, Sed93b] is that this approach takes into
consideration also the interior of the polygon and not only the boundary.

Let us shortly mention how the concept of 2D polygon morphing can be used in 3D. A 3D
model can be sliced to a set of planar contours and then morphed between corresponding
contours. The intermediate object is then reconstructed from the interpolated contours. This
approach was introduced, e.g., in [Kor97]. The problem of this method is the slicing itself,
because a slice may in general contain multiple contours, so it brings a question how to morph
between slices containing a different number of contours.

2.5 Morphing of meshes

In the following section we will shortly outline the basic steps in morphing of meshes which
will be further described in detail in separate chapters.

> A rigid transformation is an affine transformation which preserves relative edge lengths and angles, i.e. rotation
and translation.
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2.5.1 Basic steps

Going back to the problem overview outlined before, we will first define the term model in
the context of boundary representation. Objects in the boundary representation are described
by vertices and faces, so the model M is a pair (V, F), where V is the set of vertices, each
vertex v; is described by its coordinates in R’. The set F is the set of faces, where each face f;
is described by a triple (j, k, [), where j, k, [ are indices of vertices which form the face f;. In
further text we will denote the model described by the pair (V, F) as a mesh.

In the classical setting of mesh morphing we have two input meshes. The source mesh
M° = (V°, F°) and the target mesh M'= (V', F"). Note that unlike the approach in tools such as
3ds max and Lightwave, the source and the target mesh can have a different number of
vertices and a different fopology. The term topology refers here to the connectivity graph of
vertices®. As the source and the target mesh may have a different number of vertices, the first
step is establishing of correspondence. The most convenient element for establishing
correspondence is a vertex — so we establish the correspondence of vertices of the source and
the target mesh. Due to different number of vertices of the source and the target mesh, we
cannot link to one vertex of the source mesh exactly one corresponding vertex of the target
mesh. Instead, we assign to one vertex from the source mesh generally some place on the
surface of the target mesh (i.e. not necessarily a vertex). This situation is illustrated in the
Fig. 2. The green arrows represent the relation of correspondence between a few vertices of
the source mesh and places on the surfaces of the target mesh. Note that in this way we
established a correspondence only for the vertices of the source mesh, so the same process
have to be repeated for the vertices of the target mesh, with that difference that we look for an
appropriate place on the surface of the source mesh’.

Fig. 2: The correspondence of the vertices of the source mesh with the places of the surface of the target
mesh (green arrows) and the correspondence of the vertex of the target mesh with the places on the
surface of the source mesh (red arrow).

In this step it is also possible to include some user interaction, usually in the form that user
specifies some corresponding features of both input objects, which should remain aligned
during the shape transformation. A typical example is morphing between two animals, where
we usually want the common features (i.e. legs, head, tail, etc.) to remain aligned throughout

® The term topology could appear also in another meaning (i.e. when talking about the homeomorphism of
objects), the reader will be warned of the change of the meaning.

" In the case that the topology of the source and the target mesh were the same, we would have the
correspondence relation (vertex, vertex) and we would not need to establish the correspondence in reverse
direction.
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the transition. A detail description of establishing correspondence and aligning of
corresponding features is given in Section 3.

Once we have established a correspondence, we are still not able to complete morphing by
interpolation of corresponding elements, because the correspondence relation is a relation
between the vertex of one mesh and the place on the surface of the other mesh. Therefore, the
source and the target mesh have to be refined in order to have a vertex-vertex correspondence,
1.e. on the positions of corresponding places new vertices have to be inserted. So the second
step of the morphing task is a construction of a new representation, which is based on
merging of the topologies of the source and the target mesh. This process is also denoted as
the topological merging. The new representation is again a mesh, which we will call a
supermesh in the further text, because it shares a topology of the source and the target mesh.
Supermesh has one nice property® — it can be transformed to the shape of the source mesh as
well as to the shape of the target mesh’. This situation is shown in the Fig. 3, there are the
same objects as on Fig. 2 and the blue dotted lines represent how the topology of the source,
and the target mesh respectively, has to be refined in order to be able to transform the source
mesh to the shape of the target mesh and vice-versa. A detail description of the supermesh
construction is given in Section 4.

Fig. 3: Refining the topology (blue dotted lines) of the source mesh, and the target mesh respectively, in
order to obtain the supermesh, which can be transformed to the shape of the source mesh as well as to the
shape of the target mesh.

Having the supermesh, the last already advised step is to find trajectories for supermesh
vertices. Note that we know the extreme positions of vertices, i.e. for the time =0 we
determine the vertices positions with respect to the source mesh and for time =1 we
determine the vertices positions with respect to the target mesh. In this step it is also suitable
to interpolate the surface attributes, e.g., normals, textures, colors, etc. A detailed description
of this step is given in Section 5.

Let us summarize the described steps:

1. Establishing of a correspondence of vertices, i.e., establishing of the relation
Co, (), p"), where v} is the vertex of the source mesh and p' is corresponding

place on the surface of the target model; and analogically the relation C, ,, (v} ,p°) for

¥ This property follows from the fact that the supermesh shares topology of both the source and the target mesh.

° Note, altought the supermesh has the different topology (i.e. different model) than the source and the target
mesh; it can be transformed to the shape of the source mesh as well as to the shape of the target mesh, as the
shape is just a set of points comprising the surface of the object.
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the vertices of the target mesh. The correspondence should be then optionally adjusted
by user.
2. Construction of the supermesh, which represents both the source and the target mesh.
3. Interpolation of the corresponding vertices along with surface attributes.

In the following sections we will describe the introduced steps in more detail.
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3 Correspondence

In this chapter we will deal with establishing of the correspondence. We will summarize a
current state of the art in this area. We will not describe approaches paper by paper as they
were published in journals and conferences. Instead of this, we would like to identify common
steps, describe them from a wider point of view and then introduce a concrete realization of
particular steps. This section will be more varied as the establishing correspondence step is
the step in which various morphing approaches differ.

The establishing of correspondence along with the vertex paths plays a key role in the quality
(or plausibility) of the resulting animation. For a demonstration, see Fig. 4, where the top row
sequence is an example badly established correspondence and the bottom row sequence is a
result of better established correspondence.

UYL
T I'I*1&,

Fig. 4: An example of the influence of the correspondence on the resulting animation. The top row shows
an animation with a badly established correspondence, the bottom row shows an animation with better
established correspondence. Note how parts of the target mesh (marked by ellipsis) grow out of the cube.

So now is the question how to establish a correspondence. For this purpose we compute a
parametrization of the source and the target mesh and the correspondence is established in the
parameter domain. The parameter domain is a parameter space to which is the object mapped
by the parametrization. So the parametrization is in our context a bijective mapping of the
faces of the mesh to the parameter domain. The bijection is required because each face of the
mesh has to have its unambiguous image in the parameter domain. In other words, the faces in
the parameter domain must not overlap. Bijectivity yields also the existence of inverse
mapping'’. Due to introducing the parametrization, we have to distinguish two spaces — the
object space, i.e. the space in which the mesh is defined'!, and the parameter space, i.e. the
space to which the mesh is mapped by the parametrization. We will not introduce a special

' Inverse mapping (i.e. from parametrical domain to the object) is used in particular in the area of remeshing —
see 4.3.

11 I .
In our case it is the Euclidean space.
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notation for vertices in the parameter space and for vertices in the object space, because the
whole finding correspondence process and the topological merging process run in the
parameter space. The transition from the parameter space to the object space is described in
Section 4.2.2 and the reader will be warned.

For morphing purposes the following parameter domains are used:

e A unit sphere, for the case that the mesh is fopologically equivalent to the sphere'?, i.e.
it is a closed unbounded mesh. The parametrization is then a mapping of the mesh to
the surface of the unit sphere'.

e A unit disc, for the case that the mesh is topologically equivalent to the disc, i.e. it is a
mesh with a single closed polygonal boundary. The parametrization is then mapping
of the mesh to the unit disc.

This is definitely not a complete list of possible parameter domains. For example, for objects
with one hole a torus as a parameter domain has to be used. In this technical report we will
limit our consideration on topological spheres, i.e. on closed unbounded meshes, which
satisfy Euler’s formula:

V-E+F=2, 2)
where V is the number of vertices, E is the number of edges and F is the number of faces.

Such objects are also called genus-O objects (as they have no “passages through”). An
example of the mesh and its parametrization is in the Fig. 5.

Fig. 5: An example of the mesh (left) and its parametrization. The middle figure is the same
parametrization as on the right but with faces filled according to the color of the mesh).

The validity of the parametrization, i.e. whether no faces overlap in the parameter domain, for
the case that the parameter domain is the unit sphere, can be checked by evaluating:

sgn((vy Xv,).v,), 3)

"2 In simple terms, topological equivalence of two objects means that one can be deformed to the other by
twisting and stretching (not tearing). Objects topologically equivalent to the sphere are also called topological
spheres.

" Note that straight edges of the mesh became parts of great arcs on the surface of the sphere and so the faces of
the mesh formed by edges became spherical triangles on the surface of the sphere.
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where sgn is the signum function, vy, vi, v, are positions of the vertices of a triangle in the
parameter domain. Formula (3) is evaluated for each face. The parametrization is valid iff all
the faces are oriented in the same waym, i.e., the signum of the result of the formula (3) is the
same for each triangle.

From Steinitz’s theorem follows [She04] that a graph may be embedded on the sphere if it is
planar and 3-connected. Thus, according to [She04] a closed genus-0 triangulation can always
be mapped to the sphere. Now suppose for a while that we have already “somehow”
computed the parametrizations of the source and the target mesh (let us denote them the
source parametrization and the target parametrization) and we want finally compute the
correspondence. This is done by overlaying of the parametrizations of the source and the
target mesh and checking for each vertex of the source parametrization in which face of the
target parametrization it lies, and vice versa. The overlaying is described in the following
section.

Important is that the both parameter domain of the source and the target mesh has to be of the
same type, e.g., a unit sphere, because it would be impossible to overlay, e.g., a unit sphere
and a torus (i.e. the topological domain for the objects with one hole). This implies that we are
able to morph only objects which are topologically equivalent. The morphing of objects
which are not topologically equivalent (i.e. with different genus) is usually solved by
decompositionls.

3.1 Overlaying of the parametrizations

By overlaying we mean here putting both parametrizations each over other (Fig. 6a)). Each
vertex of the source parametrization then must lie inside some face or on the edge of the face

of the target parametrization. So the corresponding place for the vertex v, of the source mesh
is given by the relative position of the vertex v, with respect to the face f 11 of the target
parametrization in which the vertex v lies. Analogically, the corresponding place for the
vertex v, of the target mesh is given by the relative position of the vertex v, with respect to
the face f" of the source parametrization. So the goal is to establish mapping
Qv = f i, which maps vertices of the source mesh to the faces of the target mesh, and

the mapping Q, , :v, — f,", which maps vertices of the target mesh to the faces of the

source mesh. This situation is depicted on Fig. 6b).

' Of course, it is assumed that the original input mesh has consistent orientation, i.e. clockwise or counter-
clockwise.
' See Section 3.3.2.
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Fig. 6: a) An overlying of the source parametrization (top) and the target parametrization (bottom). b) A
detail of the overlaying (the figure is simplified because the triangles are drawn as planar and not as
spherical). The red triangulation is the parametrization of the source mesh and the green triangulation is
the parametrization of the target mesh.

The establishing of mappings Q, ., and €, ,, is a point location problem, i.e. a location of

the vertices of the source mesh in the target parametrization and vice versa. A brute force
algorithm would be to test each vertex of one mesh against each face of the other mesh. This
leads to O(N.M) algorithm, where N is the number of vertices and M is the number of faces. It
is not a very convenient algorithm for complex meshes, instead of this we use a more efficient
algorithm based on walking. This algorithm will be described in Section 4.2.1, because
mapping of the vertices to the faces can be established together with the intersection
computation.

Note that we are working in the parametrization, i.e. with the spherical triangulation, so it is
necessary to modify standard point location test for the spherical case. The basic point-in-
triangle test for the spherical case is described in Appendix A. For expressing the relative
position of the vertex with respect to the face we use barycentric coordinates, also described
in Appendix A.

3.2 Methods for parametrization

In this section we will deal with concrete methods for computing parametrization as a tool for
establishing of correspondence. Parametrization is a huge area of computer graphics and a lot
of researches deals with it. We will focus on methods which are related to morphing. In
particular we will describe the methods for parametrizing topological discs and topological
spheres. It is necessary to remind that the quality of the parametrization is a crucial aspect of
the correspondence and it is then reflected in the quality or plausibility of the resulting
animation (recall, e.g., Fig. 4). We classify the parametrization methods into two groups: local
methods and global methods. The local methods usually take vertex by vertex and compute its
parametrization. From local methods we will describe a relaxation (3.2.1) and a decimation-
based method (3.2.2). The global methods usually express requirements on parametrization as
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a system of equations, which is solved in order to obtain a valid parametrization. From global
methods we will describe a harmonic mapping (3.2.3) and robust spherical parametrization
(3.2.4).

The parametrization is not useful only for the mesh morphing, but also in the area of texture
mapping (i.e., assigning to each 3D vertex a 2D texture coordinate from the parameter space),
remeshing, aproximation of meshes by spline surfaces, etc.

3.2.1 Relaxation

First we will introduce a method for parametrization of convex meshes, as it serves as a basis
for the relaxation method. This method of parametrization was also used in the fundamental
morphing paper [Ken92]. The parametrization of the convex meshes is very simple — we can
choose any interior point of the mesh and project from this interior point all the vertices of the
mesh to the surface of the unit sphere. We translate the mesh, so that the chosen interior point
coincides with the origin, and then we normalize the position vector of each mesh vertex'®. By
normalization we push the vertex to the surface of the unit sphere. Thus, convex meshes can
be parametrized by a simple spherical projection from some interior point.

In this way we can also compute the parametrizations of the so-called star-shaped objects. A
star-shaped object is such an object, where we can find at least one interior point from which
all the vertices of the mesh are visible. By term visible we understand here that the line
segment connecting the interior point and the vertex of the mesh is completely inside the
mesh. This interior point lies in the kernel of the star-shaped mesh, which is intersection of all
halfspaces bounded by planes of the faces of the mesh. The parametrization is obtained by a
projection of the star-shaped mesh through the interior point, which lies in the kernel.

The importance of the proper interior point is demonstrated in the Fig. 7, for simplicity in 2D.
Imagine a counter-example, i.e. the where we have chosen an incorrect interior point for the
projection. Then, two edges (denoted as p(e;) and p(e)) in the Fig. 7) overlap in the parameter
domain (which is a unit circle in 2D), violating so the bijection of the mapping. Note that in
3D this is an overlapping of faces in the parameter domain (called foldovers).

Fig. 7: An example of an inappropriate choice of the central point. It causes that edges e; and ¢; overlap in
the parameter domain, then the parametrization is not a bijective mapping.

1o Position vector (sometimes denoted as radius vector) is defined by a vertex and an origin of a coordinate
system.
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The idea of relaxation was introduced in [Ale99a]. Relaxation starts with the spherical
projection. Of course, as we are working with general genus-0 meshes (neither necessarily
convex nor star-shaped), there will be foldovers in the parameter domain. The goal of the
relaxation procedure is to remove these foldovers. It is an iterative procedure, it moves in each
step the vertex to the center of its neighbors:

r+ 1 r
Vl- ! = W ZNVJ B (4)
i| JEN;

L

r+l1
i

where v/ is the position of the vertex v; in the (r+1)-th iteration, N; is the set of adjacent

vertices to the vertex v; and the notation Il.Il stands for the normalization of the vector. The
whole Eq. (4) is normalized in order to push the vertex to the surface of the unit sphere. This
simple relation tends to converge a to global minimum, i.e. all vertices in the same place. In
[Ale99a] it is suggested to fix some vertices. The fixed vertices are called anchors. The
anchors avoid collapsing of the parametrization to one single point. But the anchors
themselves bring problems, because as they are fixed, they cannot be moved to the center of
their neighbors and so they may cause foldovers. This problem is solved by changing of the
anchors after some number of iterations.

In [Ale00Oa] this scheme was improved and simplified. Instead of using the anchors (i.e. the
fixed vertices), the main relation for the relaxation was extended with the use of weights,
which penalize long edges and so prevent the vertices from collapsing. Eq. (4) was extended
as follows:

v = +—Z(v{ —vh). , (5)

C
|Ni JEN;

ro__r
V; Vj

where ‘vi’ -V ‘ is the weight, ¢ is the constant used to control the overall move length and ILII

stands for the normalization. With c=1, the relaxation runs robustly, but not very efficiently.
Therefore, in [Ale00Oa] it is suggested to set the constant ¢ to the inverse of the longest edge
incident to the relaxed vertex.

As well as in the previous approach the resulting vertex position has to be normalized in order
to lie on the surface of the unit sphere. The progress of the relaxation is shown in the Fig. 8.

| 0 iterations 10 iterations 100 iterations 1000 iterations 10000  iterations

Fig. 8: The relaxation process of the horse mesh. The red faces are badly oriented faces, i.e. foldovers
(taken from [Ale00a]).
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The problem of this method is given by its local nature, it is not guarantied that it finds a valid
parametrization. If the iterative procedure does not converge, it is necessary to set up new
initial condition, i.e. the initial spherical projection.

3.2.2 Parametrization based on decimation

Basic idea of this method was introduced in [Sha98] and further extended in [Pra03, Bir04,
Hor99]. The idea is that the mesh is decimated (e.g., by edge collapses) until tetrahedron
remains. The tetrahedron is mapped to the unit sphere17 and then the edges are inserted in the
reverse order than they have been removed and new vertices are carefully mapped to the
sphere in order to maintain validity of the parametrization.

The original approach [Sha98] introduces a so-called “polyhedron realization algorithm”. This
algorithm first simplifies the mesh by removing low-degree vertices until a tetrahedron
remains. By removing a vertex a hole appears, which has to be retriangulated, reducing so the
number of faces. By removing a vertex of degree three, a triangle remains. By removing a
vertex of degree four, one diagonal has to be added in order to triangulate the resulting hole.
By removing a vertex of degree five, two diagonals have to be added. According to [Sha98] a
planar triangular graph must contain at least one vertex of degree smaller than six, thus no
other vertex removal possibilities need to be discussed. In the second stage, removed vertices
are re-attached in the reverse order maintaining the convexity, i.e. each time the vertex is
inserted, its position is optimized so that its local neighborhood is convex. The basic idea of
the optimization is as follows. Over the region where a new vertex will be re-attached a ray is
constructed. The ray is given by the center of mass of the region and by the average normal of
faces adjacent to the region. The ray then intersects planes supported by faces adjacent to the
modified region. The intersection closest to the center of mass of the modified region gives a
position of the re-attached vertex. The advantage of this approach is that it is able to realize
general genus-0 mesh. Shapiro et al. use realized polyhedra further for morphing, i.e. the
source and the target polyhedra are merged, in order to obtain a common connectivity graphlg.
It is from our point of view not very suitable to merge polyhedra, although convex, because
the merging process is much simpler, when the meshes are mapped to a common parameter
domain, i.e. when they are mapped to the same isosurface (the surface of the unit sphere). On
the other side, a convex polyhedron can be mapped to the unit sphere easily.

The approach [Bir04] works similarly. Instead of removing vertices, it removes edges (i.e.
edge-collapse). Edges are removed according to their lengths (shorter edges first), until a
tetrahedron remains. Again, the order in which the edges were removed is recorded and in the
re-attachment phase the edges inserted back. By inserting a new edge, a new vertex appears.
Position of the new vertex is optimized, so that the resulting parametrization is barycentric.
Barycentric parametrization for topological discs was described e.g. in [Flo97] and the basic
idea is that each vertex in the parameter space is a convex combination of its equally weighted
neighbors, i.e.:

1
pizwzpj’ (6)

JEN;

"7 Note that it is simple, because the tetrahedron is a convex polyhedron. Strictly speaking it would be possible to
stop the decimation process when some simple polyhedron remains, which we would be able to map to the unit
sphere in some easy way.

"® It is a concept of topological merging which is described in detail in Section 4.2.
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where N; is a set of vertices adjacent to the vertex p;, the weight in this case is the inverse of
degree of the vertex p;. In other words, barycentric parametrization maps each vertex to the
center of its neighbors'®. Having barycentric parametrization, [Bir04] further optimizes the
position of vertices in the parameter space in order to obtain a shape preserving
parametrization. Shape preserving parametrization was introduced in [Flo05] and it extends
the equation (6) with the use of unequal weights. Weights are computed with respect to the
geometric properties of the mesh, i.e. it takes into consideration edge lengths and angles. The
shape preserving parametrization reflects geometric properties of the parametrizated mesh.
The overall scheme of this approach is depicted in the Fig. 9.

Fig. 9: Parametrization based on decimation. a) Decimation until a tetrahedron remains. b)
Parametrization of the tetrahedron and reattaching of the removed vertices, in this way generating
barycentric parametrization ¢) An optimization of the barycentric parametrization to the shape-
preserving parametrization (taken from [Bir04]).

The approach [Pra03] differs from previous approaches mainly in the optimization step. When
re-attaching a new vertex, its position is optimized in order to minimize a stretch metric on its
adjacent faces. The stretch metric for genus-0 meshes was described in [Pra03] and it is a
measure of distortion introduced by parametrization. If we draw a unit circle on the triangle
from the parameter space, it will map to ellipse in the object space. The lengths of principal
axes Yy and I'of the ellipse are measures how much the distances in the parameter space get
stretched in the object space. This situation is depicted in the Fig. 10.

parameter space object space

Fig. 10: The stretch metric. A unit circle drawn on the triangle from the parameter space gets stretched to
the ellipse in the object space.

' Note that also Alexa [Ale00a] approaches the barycentric parametrization.
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3.2.3 Harmonic mapping

Previously described methods worked more or less locally. In relaxation (3.2.1), vertex by
vertex is taken and its position is optimized, in decimation-based methods (3.2.2), vertices or
edges are collapsed until a tetrahedron remains and then in the reverse order the edges are
inserted back. Unlike previous methods, the global methods express requirements on
parametrization as a system of equations, which is solved in order to obtain a valid
parametrization.

Harmonic mapping h: M — H was first used for morphing in [Kan97]. It was originally
devised for parametrizing topological discs (i.e. objects topologically equivalent to the unit
disc). Let us denote a boundary vertex; a vertex which lies on the boundary of the mesh, the
non-boundary vertices will be denoted interior vertices. In this approach the boundary
vertices are proportionally”’ mapped to the unit disc and the remaining (interior) vertices are
mapped into the interior of the unit disc in order to minimize the total energy Ej4y,, Which is:

2

’ (7

1
Eharm (vi) = 5 Z kiqj‘vi N vj

JEN;

where N; is the set of the vertices adjacent to the vertex v;, k;jis an analogy of the spring
constant for edge connecting the vertices v; and v; and it is computed as:

2
i.j

2

2 2 2 2
_ li,kl +lj,k1 +1 li,k2 +lj,k2 +li,j

; ®)

ij =
‘Avivjvkl‘ ‘Avivjvkz‘

where lf ; 1s the squared length of the edge connecting the vertices v; and v;, vii and vy, are the

vertices of an adjacent face to the edge vyv;,

Avivjvkl‘ and ‘Avivjvkz‘ are the areas of the

triangles formed by vertices v;vjvk and vivjvi. By composing equation (7) for every vertex we
obtain a nonhomogeneous”' linear sparse system. By solving the linear system we obtain a
valid parametrization which minimizes a metric dispersion. Metric dispersion is a measure of
the extent to which a map stretches regions of small diameter in the parametrical domain
[Eck95]. An example of a parametrization by the harmonic mapping is in the Fig. 11. In the
Fig. 11 the relatively dense regions of the polygon correspond to the ears and the nose of the
cat. It can be seen that the aspect ratios of triangles tend to be preserved.

As stated before, this approach was originally devised for parametrizing topological discs, as
the topological discs have a natural polygonal boundary, which is fixed on the circumference
of the unit disc. [Kan97] adopted this method also for topological spheres, with that
modification that the user has to manually specify the boundary loop which splits a closed
object into two topological discs, then two parametrizations of respective parts are computed.
Manual specification of the boundary loop (i.e. the cut) significantly influences the resulting
correspondence; moreover, the specification of the boundary loop is quite far from an
intuitive user control.

2 Proportionally means that the distances between the consecutive vertices on the circumference of the unit disc
are proportional to the angles formed by vertices p;, o and p;, where p; and p; are two consecutive boundary
vertices and the vertex o is the origin of the unit disc.

2 Note that the right side of the system is formed by the boundary vertices which are fixed on the circumference
of the unit disc.
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Fig. 11: An example of parametrization by the harmonic map (taken from [Eck95]).

3.24 Robust spherical parametrization [She04]

This approach is based on the paper [She04]. In this approach it is operated rather on triangle
angles than on the position of triangle vertices. Several conditions* for angles are formulated
in order to have a valid spherical parametrization. Conditions come, e.g., from the spherical
sine and cosine rule, from the fact that the sum of all spherical angles around any vertex in a
spherical triangulation sums 27, etc. Conditions are necessary and sufficient to guarantee a
valid spherical parametrization. Clearly there is a lot of valid spherical parametrizations
fulfilling these conditions, so it is possible to add some additional constraints. Considering the
parametrization as a mapping from the object space to the parameter space, following
mapping can be distinguished — conformal (preserves angles), equiareal (preserves areas) and
isometric (preserves lengths). So, if we want the parametrization to be conformal, we add an
additional constraint in which we specify the so called target values of angles. The target
value is a desired value which we want to achieve in the parameter space. For a conformal
parametrization we set target values of angles equal to angles in the object space. Of course,
not all angles will reach its target value in the parameter space, because parametrization
always introduces some distortion. So we have a constrained minimization problem, where
we minimize the difference between the actual values and the target values under already
mentioned conditions. When we want to achieve an area preserving mapping, target values for
areas are set equal to the areas of triangles in the object space. Isometric parametrization is
possible only for developable surfaces (e.g., planes, cylindrical and conical surfaces)™.

The result of the minimization problem is the determination of spherical angles, so it is
necessary to reconstruct the vertex positions out of the angles by a recursive traversal of the
triangulation. We start from an arbitrary triangle, fix one vertex and then according to the
spherical sine and cosine rule determine the remaining triangle vertices, and then we
determine the vertex positions for the neighboring triangles of the first chosen triangles, etc.

In the Fig. 12 there are examples of parametrizations of a cylindrical mesh (Fig. 12a) using a
variety of target values for spherical angles and areas. Fig. 12b) shows a result of Alexa’s
method [Ale99a], which in fact aims for equal angles in the parametrization. Fig. 12c¢) is the
result of Sheffer et al. [She04] which also aims for equal angles by according specification of
the target values of angles. The result is quite similar to Fig. 12b). Fig. 12d) aims for the equal

2 The conditions are formulated in the form of equalities and inequalities.
It is clear that the isometric mapping implies preserving of angles and areas.
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areas. Fig. 12e) aims for conformal mapping (note that the marked triangle stays right-angled)
and Fig. 12f) aims for equiareal mapping, i.e. the target values for areas are set to match the
areas of the input mesh.

d) e) f)

Fig. 12: A spherical parametrization of a cylinder mesh. a) An input mesh. b) Parametrization by Alexa
[Ale99a]. ¢) Parametrization aiming for equal angles. d) Parametrization aiming for equals areas. e)
Parametrization aiming for conformal mapping, i.e. it tries to preserve original angles. f) Parametrization
aiming for equiareal mapping, i.e. it tries to preserve original areas. The black triangles correspond in
each of the mesh (taken from [She(04]).

3.25 Parametrization: a summary

As stated before, the parametrization always includes some sort of distortion, which then
influences also the correspondence. Let us remind that the correspondence is established by
overlaying the source parametrization and the target parametrization. So the distorted
parametrization results in some sort of distorted correspondence. An example of the result of
the distorted parametrization is in the Fig. 4 (top), the result of the parametrization which
reflects™ the shape of the mesh is in the Fig. 4 (bottom).

Alexa in [AleOla] investigated methods for parametrization related to morphing. The
resulting parametrizations are depicted in the Fig. 13. The Fig. 13b) shows the barycetric
mapping. This mapping does not reflect the geometric properties of the mesh. Also the
relaxation, i.e. the local iterative approach proposed in [Ale00Oa], tends to the barycentric
mapping. The Fig. 13c) shows a shape preserving mapping [FloO5]. The Fig. 13d) shows a
discretized harmonic mapping which was described in the section 3.2.3. In the Fig. 13e) is an

* This parametrization was prepared manually by adjusting of the distorted parametrization used for the
morphing sequence shown in the Fig. 4 (top).
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example of area preserving mapping computed by a recursive approach proposed in [Gre99].
It is visible that the general structure of the parametrizations is in cases b), ¢) and d) almost
the same, as well as the resulting correspondence. The common problem of methods b), ¢)
and d) is an area compression (also visible in the Fig. 11), i.e. the inner triangles have much
less area than the outer triangles. This is not the problem of the area preserving
parametrization (case e)) but it can be seen that the area preserving mapping leads to a
distorted parametrization.
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Fig. 13: A part of the mesh (ears of the bunny) parametrized on the unit disc by various parametrization
methods. a) A parametrized region. b) The barycentric parametrization. ¢) The shape preserving

mapping. d) The discretized harmonic mapping. e) Area preserving mapping (images taken from
[AleO1a]).

We introduced a few out of a large number of parametrization methods, which are in our
opinion related to the morphing. The local approaches such as relaxation and decimation
based parametrization are usually easier to implement than the global methods, because we
just apply some local rules. The global approach turns to the solution of some system of
equations, which is usually more difficult to implement, but it offers to include some
additional constraints, e.g., equal angles, preservation of areas, etc.

3.3 Aligning of corresponding features

An important step in establishing of the correspondence is incorporating of some additional
user-supplied information®. This step is usually included for aligning of some corresponding
features, because only the user knows the semantics of the transition. The user intervention
usually appears in the following forms:

e establishing a few vertex-vertex correspondences, which are then exploited as much as
possible (i.e. for remaining vertices),

e decomposition of the source and the target mesh into components and then
establishing the correspondence of individual components.

The former form is much simpler, but do not offer as many possibilities as the latter form. It is
based on warping of both the source and the target parametrization, in order to lie the
corresponding vertices on the same place in the parameter domain (i.e. on the surface of the
sphere). It is described in the following Section 3.3.1. The latter form requires a compatible
decomposition and it is described in the Section 3.3.2. In the Fig. 14 is example of the
morphing with (top sequence) and without (bottom sequence) feature alignment. The
alignment of the legs and the heads leads clearly to a more plausible shape transformation.

> Note that till now the process was fully automatic.
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Fig. 14: Morph between the models of a young pig and a grown-up pig. The top sequence shows a
morphing transition without aligning of the corresponding features. The bottom row sequence is a
transition with legs and heads aligned (taken from [Ale99a]).

3.3.1 Parametrization warping

When establishing several vertex-vertex correspondences (pairs of feature vertices), we state
that we want the given vertex to grow out of its corresponding counterpart. For this it is
necessary to force both vertices to lie on the same place in the parameter domain. In a general
case they lie at distinct places so it is required to move them, but the vertices cannot be moved
arbitrarily, because the parametrization must remain valid (i.e. no foldovers must appear). The
source and the target parametrization have to be carefully warped in such a way that the move
of the vertices does not produce foldovers.

In [Ale99a] the following scheme for aligning of the corresponding features is suggested:

1. A rotation of one of the unit spheres (i.e. the parameter domain) so that the sum of
squared distances is minimized.

2. A warping of both parametrizations to force the corresponding vertices to the same
place in the parameter domain.

The warping algorithm is based on local improvements rules. The pairs of corresponding
vertices (v, ,v;) vertices positions are optimized in order to achieve the global goal, i.e.:

v =v; ©)

where the vertex v is the vertex of the source mesh, the vertex v} is the corresponding
counterpart in the target mesh and together form a pair of corresponding vertices. In other
words, by the Eq. (9) we say that we want the vertices v{ and vj. to be on the same place in
the parametrical domain. Thus, the vertex v} has to be warped towards the vertexv; . The

warping function which moves the vertex at the position v (together with its neighborhood) to
the position w is:

x—ﬂ<d

3 Hx+c(d—|x—v|)(w—v)” , 1
f(x)—{ x_v|2d,er : (10)

X )
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where (w-v) is the direction of the move, d is the radius of influence, i.e. the size of an area on
the surface of the sphere which is influenced by moving of a particular vertex. The term

(d —|x—v|) is a linear falloff function which controls the amount of the move of the vertex x

depending on the distance between the vertex x and v. The warping function (10) is applied on
all the vertices of the target parametrization; when the vertex x is out of the area of influence

(i.e. |x—v| > d ), the vertex position remains unchanged. It means that not only the vertex v is

moved towards its destination position w but also a neighborhood (specified by d) of the
vertex v is moved. Note that this warping function does not avoid foldovers, so after an
application of the warping function, the parametrization has to be checked and when
foldovers occur, the constant ¢ is decreased”®. After warping, the new position of the vertex
has to be normalized (the Il.Il notation), to push the vertex back to the surface of the sphere.
The warping process is repeated for each pair of feature vertices.

This local approach is quite easy to implement but has also disadvantages, which are given by
its local nature. By optimizing both parametrizations for one pair of feature vertices, we could
damage the already established mapping. This problem becomes more evident when feature
vertices of one mesh are mutually close.

3.3.2 Decomposition

Looking back to the warping of parametrization, we should consider it as some sort of
postprocessing of the parametrization, i.e. given some initial parametrization (e.g.
barycentric), deform it in order to fulfill some goal (e.g. Eq. (9)). The decomposition approach
is in this meaning some sort of preprocessing, i.e. first decompose the mesh into individual
components and then compute parametrization per individual component. An advantage of
this approach is that by decomposition and establishing the correspondence between the
components we naturally guarantee that the corresponding components remain aligned.

The methods based on decomposition work as follows. The source and the target mesh are
decomposed into components and for each component of the source mesh a corresponding
component in the target mesh is established. This yields that the decomposition has to be
compatible, i.e. the source and the target mesh have to be decomposed to the same number of
components and the components must have the same adjacency in both meshes. The
decomposition process should be manual (e.g. [Kan00, Zoc99, Gre99]) or semi-automatic.
Semi-automatic decomposition methods are based on finding a common coarse domain,
which is obtained by mesh decimation. Individual faces of the coarse domain are handled as
separate components.

In the Fig. 15 is an example of the decomposition based approach. In fact, it is a hybrid of
both parametrization warping and decomposition approaches. A coarse correspondence is
established by decomposition and in each component individual vertices can be aligned by a
parametrization warping process. Coloring of input meshes corresponds to decomposition.
Note that the decomposition is compatible and in this case it is a result of a manual
interaction. Blue marked vertices are vertices which are further aligned in the context of one
particular component using a parametrization warping process. As can be seen on Fig. 15¢)
and d) parameter domain is a unit discs (as the mesh is decomposed into individual patches)
and a cylindrical surface (which is a natural parameter domain for cylinder-like surfaces).

%% In [Ale99] the initial value of the constant ¢ is ¢=0.5.
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Parameter domains are colored with respect to coloring of components of input meshes. Fig.
15e) shows overlaid parametrizations and on Fig. 15¢) are intermediate meshes which are
constructed by a process described in Section 4.2.

Fig. 15: Different stages of the decomposition based morphing approach. a) and b) are the source and the
target mesh, coloring corresponds to the decomposition, ¢) and d) are parametrizations of individual
components. €) Shows overalying and merging of corresponding components. f) Intermediate morph
models (taken from [Zoc99]).

Zhao et. al [Zhao03] further extend the decomposition idea by incorporating a null-component
concept. Null-component is a component which has no corresponding counterpart in the other
mesh, so it will disappear (or grow) during the morphing sequence.

Next we will mention the approach by Gregory et al. [Gre99], which is an example of an
extreme user interaction. The user has to specify a pair of feature vertices on each of the input
mesh. Then the shortest paths along edges between the pair of features vertices are computed.
Shortest paths of the source and the target mesh define corresponding chains. The problem is
that the user has to a specify sufficient number of chains, so that it covers the whole mesh. It
means that each feature vertex has to be adjacent to at least two chains and each chain must
have a connected patch on each side. Moreover the structure of chains has to be isomorphic
on both input meshes. Then the mesh is automatically decomposed to patches according to the
specified chains and individual corresponding patches are morphed separately. A lot of user
interaction is rewarded with very good results as depicted on Fig. 16. The author fairly admits
that the time needed to manually construct the decomposition from Fig. 16 was approximately
6 hours. On the other side the input meshes were quite complex — 5660 triangles (human) and
17528 triangles (triceratops), and there was 86 patches needed.
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Fig. 16: Decomposition approach Gregory et al. [Gre99]. The lines on the left show the isomorphic
decomposition of the input meshes (image taken from [Gre99]).

3.4 Correspondence: a summary

Let us summarize the establishing of the correspondence. The correspondence is the crucial
step in the morphing process. The correspondence is established by mapping both the source
and the target mesh to a common parameter domain. Both parametrizations are then ove