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ABSTRACT 

Approximation of scattered geometric data is often a task in many engineering problems. The Radial Basis Function 

(RBF) approximation is appropriate for large scattered (unordered) datasets in 𝑑-dimensional space. This method is 

useful for a higher dimension 𝑑 ≥ 2, because the other methods require a conversion of a scattered dataset to a semi-

regular mesh using some tessellation techniques, which is computationally expensive. The RBF approximation is non-

separable, as it is based on a distance of two points. It leads to a solution of overdetermined Linear System of Equations 

(LSE).  

In this paper a new RBF approximation method is derived and presented. The presented approach is applicable for 

𝑑-dimensional cases in general. 
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1. INTRODUCTION 

Radial Basis Functions (RBFs) are widely used across many fields solving technical and non-technical 

problems. The RBF method was originally introduced by [Hardy, R.L., 1971] and it is an effective tool for 

solving partial differential equations in engineering and sciences. Moreover, RBF applications can be found 

in neural networks, fuzzy systems, pattern recognition, data visualization, medical applications, surface 

reconstruction [Carr, J.C. et al, 2001], [Turk, G. and O’Brien, J.F., 2002], [Pan, R. and Skala, V., 2011a], 

[Pan, R. and Skala, V., 2011b], [Skala, V. et al, 2013], [Skala, V. et al, 2014], reconstruction of corrupted 

images [Uhlir, K. and Skala, V., 2005], [Zapletal, J. et al, 2009], etc. The RBF approximation technique is 

really meshless and is based on collocation in a set of scattered nodes. This method is independent with 

respect to the dimension of the space. The computational cost of RBF approximation increases nonlinearly 

with the number of points in the given dataset and linearly with the dimensionality of data. 

There are two main groups of basis functions: global RBFs (e.g. [Duchon, J., 1977], [Schagen, I.P, 1979]) 

and Compactly Supported RBFs (CS-RBFs) [Wendland, H., 2006]. Fitting scattered data with CS-RBFs 

leads to a simpler and faster computation, because the system of linear equations has a sparse matrix. 

However, approximation using CS-RBFs is sensitive to the density of approximated scattered data and to the 

choice of a “shape” parameter. Global RBFs lead to a linear system of equations with a dense matrix and 

their usage is based on sophisticated techniques such as the fast multipole method [Darve, E., 2000]. Global 

RBFs are useful in repairing incomplete datasets and they are significantly less sensitive to the density of 

approximated data. 



2. ORIGINAL APPROACH 

The original approach of RBF approximation with linear reproduction was introduced by [Fasshauer, G.E., 

2007] (Chapter 19.4). Let us briefly summarize the properties of this approach in this section.  

The goal of this approach is to approximate a given dataset of 𝑁 points by a function: 

 𝑓(𝒙) =∑𝑐𝑗  𝜙(‖𝒙 − 𝝃𝑗‖)

𝑀

𝑗=1

+ 𝑃1(𝒙), (1) 

where the approximating function 𝑓(𝒙) is represented as a sum of 𝑀 RBFs, each associated with a different 

reference point 𝝃𝑗, and weighted by an appropriate coefficient 𝑐𝑗, and 𝑃1(𝒙)  =  𝒂
𝑇 𝒙 +  𝑎0 is a linear 

polynomial. This linear polynomial should theoretically solve problems with stability and solvability. Now, it 

is necessary to determine the vector of weights 𝒄 = (𝑐1, … , 𝑐𝑀)
𝑇and coefficients of the linear polynomial. 

This is achieved by solving an overdetermined linear system of equations (LSE): 

 𝒉𝑖 = 𝑓(𝒙𝑖) =∑𝑐𝑗  𝜙(‖𝒙𝑖 − 𝝃𝑗‖)

𝑀

𝑗=1

+ 𝑃1(𝒙𝑖) = ∑𝑐𝑗  𝜙𝑖𝑗

𝑀

𝑗=1

+ 𝑃1(𝒙𝑖), 𝑖 = 1,… , 𝑁, (2) 

where 𝒙𝑖 is point from the given dataset and is associated with scalar value ℎ𝑖. Moreover, additional 

conditions are applied: 

 ∑𝑐𝑖 = 0

𝑀

𝑖=1

, ∑𝑐𝑖𝝃𝑖 = 𝟎

𝑀

𝑖=1

. (3) 

It can be seen that for 𝑑-dimensional space a linear system of (𝑁 + 𝑑 + 1) equations in (𝑀 + 𝑑 + 1) 
variables has to be solved, where 𝑁 is the number of points in the given dataset, 𝑀 is the number of reference 

points and 𝑑 is the dimensionality of the data. 

For 𝑑 = 2, vectors 𝒙𝑖, 𝝃𝑗 and 𝒂 are given as 𝒙𝑖 = (𝑥𝑖 , 𝑦𝑖)
𝑇, 𝝃𝑗 = (𝜉𝑗 , 𝜂𝑗)

𝑇
 and 𝒂 = (𝑎𝑥 , 𝑎𝑦)

𝑇
. Thus, for 

𝐸2 and the given dataset we can write this LSE in the following matrix form: 

 (
𝑨 𝑷
𝚵 𝟎

)(

𝒄
𝒂
𝑎0
) = (

𝒉

𝟎
) (4) 

This system is overdetermined (𝑀 ≪ 𝑁) and can be solved by the least squares method as: 

 (𝑨
𝑇𝑨 + 𝚵𝑇𝚵 𝑨𝑇𝑷
𝑷𝑇𝑨 𝑷𝑇𝑷

)(

𝒄
𝒂
𝑎0
) = (

𝑨𝑇𝒉

𝑷𝑇𝒉
) (5) 

where 

𝑨𝑇𝑨 + 𝚵𝑇𝚵 = (

∑ 𝜙
𝑖1
𝜙
𝑖1
+ 𝜉

1
2 + 𝜂

1
2 + 1𝑁

𝑖=1 ⋯ ∑ 𝜙
𝑖1
𝜙
𝑖𝑀

𝑁
𝑖=1 + 𝜉

1
𝜉
𝑀
+ 𝜂

1
𝜂
𝑀
+ 1

⋮ ⋱ ⋮
∑ 𝜙

𝑖𝑀
𝜙
𝑖1

𝑁
𝑖=1 + 𝜉

𝑀
𝜉
1
+ 𝜂

𝑀
𝜂
1
+ 1 ⋯ ∑ 𝜙

𝑖𝑀
𝜙
𝑖𝑀
+ 𝜉

𝑀
2 + 𝜂

𝑀
2 + 1𝑁

𝑖=1

),  

𝑷𝑇𝑨 = (𝑨𝑇𝑷)𝑇 = (

∑ 𝑥𝑖𝜙𝑖1
𝑁
𝑖=1 ⋯ ∑ 𝑥𝑖𝜙𝑖𝑀

𝑁
𝑖=1

∑ 𝑦
𝑖
𝜙
𝑖1

𝑁
𝑖=1 ⋯ ∑ 𝑦

𝑖
𝜙
𝑖𝑀

𝑁
𝑖=1

∑ 𝜙
𝑖1

𝑁
𝑖=1 ⋯ ∑ 𝜙

𝑖𝑀
𝑁
𝑖=1

),  𝑷𝑇𝑷 =  (

∑ 𝑥𝑖
2𝑁

𝑖=1 ∑ 𝑥𝑖𝑦𝑖
𝑁
𝑖=1 ∑ 𝑥𝑖

𝑁
𝑖=1

∑ 𝑦
𝑖
𝑥𝑖

𝑁
𝑖=1 ∑ 𝑦

𝑖
2𝑁

𝑖=1 ∑ 𝑦
𝑖

𝑁
𝑖=1

∑ 𝑥𝑖
𝑁
𝑖=1 ∑ 𝑦

𝑖
𝑁
𝑖=1 ∑ 1𝑁

𝑖=1

),  

𝑨𝑇𝒉 = (∑ 𝜙
𝑖1

𝑁
𝑖=1 ℎ𝑖 ⋯ ∑ 𝜙

𝑖𝑀
𝑁
𝑖=1 ℎ𝑖)

𝑇
,  𝑷𝑇𝒉 = (∑ 𝑥𝑖ℎ𝑖

𝑁
𝑖=1 ∑ 𝑦

𝑖
ℎ𝑖

𝑁
𝑖=1 ∑ ℎ𝑖

𝑁
𝑖=1 )

𝑇
.  

It should be noted that additional conditions (3) introduce inconsistency to the least squares method. 

Specifically, the inconsistency is caused by adding the term 𝚵𝑇𝚵 to 𝑨𝑇𝑨. Therefore, the described RBF 

approximation with linear reproduction is inconveniently formulated, as it mixes variables which have a 

different physical meaning. Thus, another approach is proposed in the following section. 



3. PROPOSED APPROACH 

Let us consider that we have an unordered dataset {𝒙𝑖}1
𝑁 in 𝐸2. However, note that this approach is generally 

applicable for 𝑑-dimensional space. Further, each point 𝒙𝑖 from the dataset is associated with vector 𝒉𝑖 ∈  𝐸
𝑝 

of given values, where 𝑝 is the dimension of the vector, or a scalar value ℎ𝑖 ∈  𝐸
1. For an explanation of the 

RBF approximation, let us consider the case in which each point 𝒙𝑖 is associated with a scalar value ℎ𝑖, e.g. a 

2 ½𝐷 surface. Let us introduce a set of new reference points {𝝃𝑗  }1
𝑀

, see Figure 1.  

 
Figure 1: RBF approximation and reduction of points. 

It should be noted that these reference points may not necessarily be in a uniform grid. It is appropriate 

that their placements reflect the given surface behavior (e.g. the terrain profile, etc.) as well as possible. The 

number of added reference points 𝝃𝑗 is 𝑀, where 𝑀 ≪  𝑁. The RBF approximation is based on computing 

the distance of the given point 𝒙𝑖 of the given dataset and the reference point 𝝃𝑗 of the new reference points. 

The approximated value can be expressed as: 

 𝑓(𝒙) =∑𝑐𝑗  𝜙(‖𝒙 − 𝝃𝑗‖)

𝑀

𝑗=1

   +  𝑃1(𝒙), (6) 

where the approximating function 𝑓(𝒙) is represented as a sum of 𝑀 RBFs, each associated with a different 

reference point 𝝃𝑗, and weighted by an appropriate coefficient 𝑐𝑗, and 𝑃1(𝒙)  =  𝒂
𝑇 𝒙 +  𝑎0 is a linear 

polynomial. This linear polynomial should theoretically solve problems with stability and solvability. 

It can be seen that for 𝐸2 and the given dataset we get the following overdetermined LSE: 

 𝑨𝒄 + 𝑷𝒌 =  𝒉, (7) 

where 𝐴𝑖𝑗  = 𝜙(‖𝒙𝑖 − 𝝃𝑗‖) is the entry of the matrix in the 𝑖-th row and 𝑗-th column, 𝒄 = (𝑐1, … , 𝑐𝑀)
𝑇 is the 

vector of weights, 𝑷𝑖  =  (𝒙𝑖
𝑇 , 1) is the vector, 𝒌 =  (𝒂𝑇 , 𝑎0)

𝑇 is the vector of coefficients for the linear 

polynomial and 𝒉 = (ℎ1, … , ℎ𝑁)
𝑇  is the vector of values in the given points. 

The error is then defined as: 

 𝑅 = ‖𝑨𝒄 + 𝑷𝒌 −  𝒉‖, (8) 

then 

 𝑅2 = (𝑨𝒄 + 𝑷𝒌 −  𝒉)𝑇(𝑨𝒄 + 𝑷𝒌 −  𝒉). (9) 

Our goal is to minimize the square of error, i.e. to find the minimum of 𝑅2 (9). This minimum is obtained by 

differentiating equation (9) with respect to 𝒄 and 𝒌 and finding the zeros of those derivatives. This leads to 

equations: 

 

𝜕𝑅2

𝜕𝒄
 = 2(𝑨𝑇𝑨𝒄 + 𝑨𝑇𝑷𝒌 − 𝑨𝑇𝒉) = 𝟎, 

𝜕𝑅2

𝜕𝒌
 = 2(𝑷𝑇𝑨𝒄 + 𝑷𝑇𝑷𝒌 − 𝑷𝑇𝒉) = 𝟎, 

(10) 

which leads to a system of linear equations: 

 (𝑨
𝑇𝑨 𝑨𝑇𝑷
𝑷𝑇𝑨 𝑷𝑇𝑷

)(
𝒄

𝒌
) = (

𝑨𝑇𝒉

𝑷𝑇𝒉
) , (11) 

Given points x

New reference points  



i.e. 

 𝑩𝝀 = 𝒇. (12) 

 

The matrix 𝑩 is a (𝑀 + 3) × (𝑀 + 3) symmetric positively semidefinite matrix. Equation (11) can be 

expressed in the form: 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
∑𝜙𝑖1𝜙𝑖1

𝑁

𝑖=1

⋯ ∑𝜙𝑖1𝜙𝑖𝑀

𝑁

𝑖=1

∑𝜙𝑖1𝑥𝑖

𝑁

𝑖=1

∑𝜙𝑖1𝑦𝑖

𝑁

𝑖=1

∑𝜙𝑖1

𝑁

𝑖=1

      ⋮ ⋱       ⋮       ⋮       ⋮       ⋮

∑𝜙𝑖𝑀𝜙𝑖1

𝑁

𝑖=1

⋯ ∑𝜙𝑖𝑀𝜙𝑖𝑀

𝑁

𝑖=1

∑𝜙𝑖𝑀𝑥𝑖

𝑁

𝑖=1

∑𝜙𝑖𝑀𝑦𝑖

𝑁

𝑖=1

∑𝜙𝑖𝑀

𝑁

𝑖=1

∑𝑥𝑖𝜙𝑖1

𝑁

𝑖=1

⋯ ∑𝑥𝑖𝜙𝑖𝑀

𝑁

𝑖=1

∑𝑥𝑖
2

𝑁

𝑖=1

∑𝑥𝑖𝑦𝑖

𝑁

𝑖=1

∑𝑥𝑖

𝑁

𝑖=1

∑𝑦𝑖𝜙𝑖1

𝑁

𝑖=1

⋯ ∑𝑦𝑖𝜙𝑖𝑀

𝑁

𝑖=1

∑𝑦𝑖𝑥𝑖

𝑁

𝑖=1

∑𝑦𝑖
2

𝑁

𝑖=1

∑𝑦𝑖

𝑁

𝑖=1

∑𝜙𝑖1

𝑁

𝑖=1

⋯ ∑𝜙𝑖𝑀

𝑁

𝑖=1

∑𝑥𝑖

𝑁

𝑖=1

∑𝑦𝑖

𝑁

𝑖=1

∑1

𝑁

𝑖=1 )

 
 
 
 
 
 
 
 
 
 
 
 
 

(

  
 

𝑐1
⋮
𝑐𝑀
𝑎𝑥
𝑎𝑦
𝑎0)

  
 
=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
∑𝜙𝑖1

𝑁

𝑖=1

ℎ𝑖

⋮

∑𝜙𝑖𝑀

𝑁

𝑖=1

ℎ𝑖

∑𝑥𝑖

𝑁

𝑖=1

ℎ𝑖

∑𝑦𝑖

𝑁

𝑖=1

ℎ𝑖

∑ℎ𝑖

𝑁

𝑖=1 )

 
 
 
 
 
 
 
 
 
 
 
 
 

. (13) 

where 𝜙𝑖𝑗 = 𝜙(‖𝒙𝑖 − 𝝃𝑗‖), point 𝒙𝑖 = (𝑥𝑖 , 𝑦𝑖)
𝑇 and vector 𝒂 = (𝑎𝑥 , 𝑎𝑦)

𝑇
. It can be seen that this approach 

eliminates the inconsistency introduced in Section 2. 

4. EXPERIMENTAL RESULTS 

Both presented approaches of the RBF approximation have been compared for a dataset with a Halton 

distribution of points [Fasshauer, G.E., 2007] (Appendix A.1). Moreover, each point from this dataset is 

associated with a function value at this point. For this purpose, different functions have been used for 

experiments. Results for two such functions are presented here. The first is a 2𝐷 sinc function, see Figure 2 

(left), and the second is Franke’s function, see Figure 2 (right). 

 

  
Figure 2: 2𝐷 sinc function defined as sinc (

𝜋𝑥

1000
) sinc (

𝜋𝑦

500
), whose domain is restricted to [0,1000] × [0,500] (left) 

and Franke’s function (right). 

In addition, three different global radial basis functions with shape parameter 𝛼, see Table 1, have been 

used for testing. Also different sets of reference points have been used for experiments. 



Table 1. Used global RBFs. 

RBF 𝜙(𝒓) 

Gauss function  𝑒−(𝛼𝑟)
2
 

Inverse Quadric (IQ) 
1

1 + (𝛼𝑟)2
 

Thin-Plate Spline (TPS) (𝛼𝑟)2log(𝛼𝑟) 

These sets of reference points have different types of distributions. The presented types of distribution are 

the Halton distribution [Fasshauer, G.E., 2007] (Appendix A.1), see Figure 3 (left), an epsilon distribution, 

which is based on a random drift of points on a regular grid, see Figure 3 (right), and points on a regular grid. 

  
Figure 3: Halton points in 𝐸2 (left) and epsilon points in 𝐸2 (right). Number of points is 103 in both cases. 

4.1 Examples of RBF Approximation Results 

An example of RBF approximation of 1089 Halton data points sampled from a 2𝐷 sinc function, for a Halton 

set of reference points which consists of 81 points, using both approaches is shown in Figure 4. The graphs 

are false-colored according to the magnitude of the error. 

Original approach of RBF approximation Proposed approach of RBF approximation 

  
Figure 4: Approximation of 1089 data points sampled from a 2𝐷 sinc function, i.e. sinc (

𝜋𝑥

1000
) sinc (

𝜋𝑦

500
), where 

 (𝑥, 𝑦) ∈  [0,1000] × [0,500], with 81 Halton-spaced Gaussian functions with 𝛼 = 0.001,false-colored by magnitude of 

error. 



A further example of RBF approximation of 4225 Halton data points sampled from a Franke’s function 

and for a set of reference points which consists of 289 points on a regular grid, using both approaches is 

shown in Figure 5. The graphs are again false-colored by magnitude of error. 

Original approach of RBF approximation Proposed approach of RBF approximation 

  
Figure 5: Approximation of 4225 data points sampled from a Franke’s function with 289 regularly spaced IQ with 

𝛼 =  0.005, false-colored by magnitude of error. 

It can be seen that the original RBF approximation with a linear reproduction returns a worse result in 

terms of the error in comparison with the proposed RBF approximation with a linear reproduction. Moreover, 

we can see from Figure 4 and Figure 5 that for the presented cases the maximum magnitude of error for 

the original approach is approximately two times greater than the maximum magnitude of error for 

the proposed approach. 

There remains the question of how the RBF approximation depends on the shape parameter 𝛼 selection. 

Many papers have been published about choosing optimal shape parameter 𝛼, e.g. [Franke, R., 1982], [Rippa, 

S., 1999], [Fasshauer, G.E. and Zhang, J.G., 2007], [Scheuerer, M., 2011]. In the following section, a 

comparison depending on the choice of shape parameter 𝛼 is performed. 

4.2 Comparison of Methods 

In this section, the original approach and the proposed approach, which were presented in Section 2 and 

Section 3, are compared. Figure 6 presents the ratio of mean error of the original RBF approximation with the 

linear reproduction to the mean error of the proposed RBF approximation with the linear reproduction, i.e.: 

 𝑟𝑎𝑡𝑖𝑜 =
𝑚𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑚𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑
, (14) 

for a dataset which consists of 1089 Halton points in the range [0,1000] × [0,500], sampled from a 2𝐷 sinc 

function. The set of reference points contains 81 points with different behavior of the distribution, and for 

different global RBFs. Graphs in Figure 6 represent the experimentally obtained ratio according to the shape 

parameter 𝛼 of the used RBFs. 



  

 
Figure 6: The ratio of mean error of the original approach to the mean error of the proposed approach of RBF 

approximation of 1089 data points sampled from a 2𝐷 sinc function with 81 reference points for different RBFs and 

different shape parameters. The used sets of reference points are: Halton points (top left), Epsilon points (top right) and 

points on a regular grid (bottom). 

We can see that for the TPS, the mean errors of the proposed approach are significantly smaller than those 

of the original approach (ratio is greater than one). Furthermore, this ratio is not significantly different for the 

different shape parameters 𝛼. For the Gaussian function and epsilon reference points, the proposed RBF 

approximation gives better results than the original approach in terms of the mean error. In the remaining 

cases, with five exceptions, the proposed approach is also better. 

The experiments prove that the proposed approach to RBF approximation is correct and gives better and 

more stable results than the original approach [Fasshauer, G.E., 2007]. 

5. CONCLUSION 

This paper presents a new formulation for RBF approximation with a linear reproduction. The proposed 

approach eliminates inconsistency, which occurs in the original RBF approximation with a linear 
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reproduction. This inconsistency is caused by adding additional conditions to the polynomial part. The 

experiments made prove that the proposed approach gives significantly better results than the original method 

in terms of accuracy. The presented approach is easily extendable for general polynomial reproduction and 

for higher dimensionality. 

In future work, application of the proposed approach is to be performed on large real datasets and the 

performance can be further measured. 
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