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Abstract. Approximation methods are widely used in many fields and many 

techniques have been published already. This comparative study presents a 

comparison of LOWESS (Locally weighted scatterplot smoothing) and RBF 

(Radial Basis Functions) approximation methods on noisy data as they use 

different approaches. The RBF approach is generally convenient for high 

dimensional scattered data sets. The LOWESS method needs finding a subset of 

nearest points if data are scattered. The experiments proved that LOWESS 

approximation gives slightly better results than RBF in the case of lower 

dimension, while in the higher dimensional case with scattered data the RBF 

method has lower computational complexity. 

Keywords: Radial Basis Functions, LOWESS, Approximation 

Notation used 

𝐷: dimension 

𝐾: 𝑘-nearest points 

𝑀: number of radial basis functions for approximation 

𝑁: number of all input points 

𝑅: number of points at which the approximation is calculated 

𝜉: point where to calculate the approximation 

𝑑: degree of polynomial 

𝑟: 𝑟 = 𝑑 + 2 

𝑞: 𝑞 = 𝑑 + 1 

1 Introduction 

 Interpolation and approximation techniques are often used in data processing. 

Approximation methods of values 𝒚𝑖 in the given {〈𝒙𝑖 , 𝒚𝑖〉}1
𝑁 data set lead to a smooth 

function which minimizes the difference between given data and the determined 

function [13]. It can be used for visualization of noisy data [1, 2], visualization of the 

basic shape of measured/calculated data [9], for prediction, and other purposes. Many 

methods have been described together with their properties. This paper describes 

LOWESS (Locally weighted scatterplot smoothing) and RBF (Radial basis functions) 

methods and their experimental comparison.  



2 LOWESS 

 The locally weighted scatterplot smoothing method (LOWESS) [3] is often used, 

especially in statistical applications. The value of an approximated function at a point 

𝑥0 is calculated from the formula of a curve which minimizes a sum 𝑆 in the 𝑘-nearest 

neighborhood (KNN) points of the given point 𝜉. 

 𝑆 = ∑𝜔𝑖 ∙ (𝑦𝑖 − 𝑃(𝑑)(𝑥𝑖))
2

𝐾

𝑖=1

, (1) 

where 𝑃(𝑑)(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2+. . . +𝑎𝑑𝑥𝑑 is a 𝑑 degree of a polynomial function 

with unknown coefficients 𝒂 = [𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑑]𝑇 . We can rewrite the sum 𝑆  in a 

matrix form as: 

 𝑆 = (𝒃 − 𝑨𝒂)𝑇 ∙ 𝑾 ∙ (𝒃 − 𝑨𝒂), (2) 

where 𝒃 = [𝑦1, 𝑦2, … , 𝑦𝐾]𝑇 is a vector of function values, matrix 𝑨 is equal to:  

 𝑨 =

[
 
 
 
1 𝑥1

1 𝑥2
⋯

𝑥1
𝑑

𝑥2
𝑑

⋮ ⋱ ⋮
1 𝑥𝐾 ⋯ 𝑥𝐾

𝑑]
 
 
 

 (3) 

and matrix 𝑾 is a diagonal matrix: 

𝑾 = [

𝜔(‖𝑥1 − 𝜉‖)   0

 𝜔(‖𝑥2 − 𝜉‖)   
  ⋱  
0   𝜔(‖𝑥𝐾 − 𝜉‖)

] = [

𝜔1   0
 𝜔2   
  ⋱  
0   𝜔𝐾

] , (4) 

where 𝜔(𝑟) are weighting functions, which have to satisfy the following conditions 

defined as: 

∀𝑎, 𝑏 ∈ [0; 1], 𝑎 < 𝑏 ∶ 𝜔(𝑎) ≥ 𝜔(𝑏)  ∧  𝜔(0) = 1 ∧ ∀𝑐 ≥ 1: 𝜔(𝑐) = 0. (5) 

One such example of a weighting function 𝜔 can be the tricube function: 

 𝜔(𝑟 = ‖𝑥𝑖 − 𝜉‖) = 𝜔𝑖 = {
(1 − 𝑟3)3  𝑟 ∈ 〈0; 1〉

0  𝑟 > 1
. (6) 

Equation (2) can be modified as: 

 
𝑆 = 𝒃𝑇𝑾𝒃 − 𝒃𝑇𝑾𝑨𝒂 − (𝑨𝒂)𝑇𝑾𝒃 + (𝑨𝒂)𝑇𝑾𝑨𝒂 

= 𝒃𝑇𝑾𝒃 − 𝒃𝑇𝑾𝑨𝒂 − 𝒂𝑇𝑨𝑇𝑾𝒃 + 𝒂𝑇𝑨𝑇𝑾𝑨𝒂. 
(7) 

The sum 𝑆 is minimal if the partial derivative of 𝑆 with respect to 𝒂 is equal to zero: 

 
𝜕𝑆

𝜕𝒂
= −(𝒃𝑇𝑾𝑨)𝑇 − 𝑨𝑇𝑾𝒃 + 2𝑨𝑇𝑾𝑨𝒂 = 𝟎 (8) 

as 𝑾 = 𝑾𝑇 and therefore: 



 
𝑨𝑇𝑾𝑨𝒂 = 𝑨𝑇𝑾𝒃 

𝒂 = (𝑨𝑇𝑾𝑨)−1𝑨𝑇𝑾𝒃. 
(9) 

 The numerical stability of calculations is influenced by the position of the interval 

of the 𝑘-nearest neighborhood points of the point 𝜉. The LOWESS approximation is 

“locally” based, as only 𝑘-nearest points are used and thus 𝑟 is actually computed as 

𝑟 = ‖𝑥𝑖 − 𝜉‖ . To solve problems with the numerical stability of calculations and 

independence of absolute position, we have to use relative position of all the 𝑘-nearest 

neighborhood points of the point 𝜉 such that the matrix 𝑨 from (3) is defined as: 

 𝑨 =

[
 
 
 
1 (𝑥1 − 𝜉)

1 (𝑥2 − 𝜉)
⋯

(𝑥1 − 𝜉)𝑑

(𝑥2 − 𝜉)𝑑

       ⋮ ⋱ ⋮
1 (𝑥𝐾 − 𝜉) ⋯ (𝑥𝐾 − 𝜉)𝑑]

 
 
 
 (10) 

2.1 LOWESS with linear regression 

 Linear regression, i.e. choosing 𝑑 = 1, appears to strike a good balance between 

computational simplicity and the flexibility needed to reproduce patterns in the data. In 

such a case, we can rewrite (9) as: 

 𝒂 =

[
 
 
 
 
 

∑𝜔𝑖

𝐾

𝑖=1

∑𝜔𝑖𝑥𝑖

𝐾

𝑖=1

∑𝜔𝑖𝑥𝑖

𝐾

𝑖=1

∑𝜔𝑖𝑥𝑖
2

𝐾

𝑖=1 ]
 
 
 
 
 
−1

∙

[
 
 
 
 
 

∑𝜔𝑖𝑦𝑖

𝐾

𝑖=1

∑𝜔𝑖𝑥𝑖𝑦𝑖

𝐾

𝑖=1 ]
 
 
 
 
 

 (11) 

and after some adjustments we can get a final formula for unknown coefficients 𝒂: 

[
𝑎0

𝑎1
] =

1

(∑ 𝜔𝑖
𝐾
𝑖=1 ) ∙ (∑ 𝜔𝑖𝑥𝑖

2𝐾
𝑖=1 ) − (∑ 𝜔𝑖𝑥𝑖

𝐾
𝑖=1 )2

∙

[
 
 
 
 
 
(∑𝜔𝑖𝑦𝑖

𝐾

𝑖=1

)(∑𝜔𝑖𝑥𝑖
2

𝐾

𝑖=1

) − (∑𝜔𝑖𝑥𝑖

𝐾

𝑖=1

)(∑𝜔𝑖𝑥𝑖𝑦𝑖

𝐾

𝑖=1

)

−(∑𝜔𝑖𝑦𝑖

𝐾

𝑖=1

)(∑𝜔𝑖

𝐾

𝑖=1

𝑥𝑖) + (∑𝜔𝑖

𝐾

𝑖=1

)(∑𝜔𝑖𝑥𝑖𝑦𝑖

𝐾

𝑖=1

)
]
 
 
 
 
 

 

(12) 

2.2 LOWESS with constant regression 

 Constant regression, i.e. choosing 𝑑 = 0, is the most computationally simple, but 

from a practical point of view, an assumption of local linearity seems to serve far better 

than an assumption of local constancy because the tendency is to plot variables that are 

related to one another. Thus, the linear LOWESS regression produces better results than 



the constant LOWESS regression, which is very simple. In this case, we can rewrite it 

from (9) as: 

 𝑎0 =
∑ 𝜔𝑖𝑦𝑖

𝐾
𝑖=1

∑ 𝜔𝑖
𝐾
𝑖=1

 . (13) 

 Comparing formulas from (13) and (12), it can be seen that LOWESS with constant 

regression is computationally much easier than LOWESS with linear regression. 

3 Radial Basis Functions 

 Radial basis functions (RBF) [4, 11, 12] is based on distances, generally in 

𝐷-dimensional space. The value of an approximated function at a point 𝒙 is calculated 

from the formula: 

 𝑓(𝑥) = ∑𝜆𝑖𝛷(‖𝑥 − 𝜉𝑖‖) + 𝑃𝑑(𝑥)

𝑀

𝑖=1

 , (14) 

where 𝑃(𝑑)(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2+. . . +𝑎𝑑𝑥𝑑 is a 𝑑 degree polynomial function with 

unknown coefficients 𝒂 = [𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑑]𝑇 , 𝑀  is the number of radial basis 

functions, and 𝝀 = [𝜆1, … , 𝜆𝑀] are weights of radial basis functions 𝛷(‖𝑥 − 𝜉𝑖‖). The 

function 𝛷 is a real-valued function whose value depends only on the distance from 

some other point 𝜉𝑖, called a center, so that: 

 𝛷𝑖(𝑥) = 𝛷(‖𝑥 − 𝜉𝑖‖) . (15) 

 As the values 𝑓(𝑥𝑖) at a point 𝑥𝑖 are known, equation (14) represents a system of 

linear equations that has to be solved in order to determine coefficients 𝝀 and 𝒂, i.e. 

 𝑓(𝑥𝑗) = ∑ 𝜆𝑖𝛷(‖𝑥𝑗 − 𝜉𝑖‖) + 𝑃𝑑(𝑥𝑗)

𝑀

𝑖=1

 for ∀𝑗 ∈ {1, … , N} . (16) 

Using matrix notation we can rewrite (16) as: 

[
𝛷(‖𝑥1 − 𝜉1‖) ⋯ 𝛷(‖𝑥1 − 𝜉𝑀‖) 1 𝑥1 ⋯ 𝑥1

𝑑

⋮    ⋮ ⋮ ⋮    ⋮
𝛷(‖𝑥𝑁 − 𝜉1‖) ⋯ 𝛷(‖𝑥𝑁 − 𝜉𝑀‖) 1 𝑥𝑁 ⋯ 𝑥𝑁

𝑑
] ∙

[
 
 
 
 
 
𝜆1

⋮
𝜆𝑀

𝑎0

⋮
𝑎𝑑 ]

 
 
 
 
 

= [
𝑓(𝑥1)

⋮
𝑓(𝑥𝑁)

] . (17) 

 We can create a “simple” RBF formula, see (18), using (17) with only one radial 

basis function, i.e. 𝑀 = 1 . This formula can be used in the same manner as the 

LOWESS method for calculating approximated value at the point 𝜉, using only the 

𝑘-nearest neighborhood points of the point 𝜉, which is the center of radial basis function 

𝜙(‖𝑥 − 𝜉‖), too.  



 [
𝛷(‖𝑥1 − 𝜉‖) 1 𝑥1 ⋯ 𝑥1

𝑑

⋮ ⋮ ⋮    ⋮
𝛷(‖𝑥𝐾 − 𝜉‖) 1 𝑥𝐾 ⋯ 𝑥𝐾

𝑑
] ∙ [

𝜆1

𝑎0

⋮
𝑎𝑑

] = [
𝑓(𝑥1)

⋮
𝑓(𝑥𝐾)

] →  𝑨 ⋅ 𝝀 = 𝒇 . (18) 

The coefficients 𝜼 = [𝜆1, 𝒂
𝑇]𝑇 in overdetermined system of linear equations (18) are 

computed by the least squares error method: 

 𝜼 = (𝑨𝑇𝑨)−1 ⋅ (𝑨𝑇𝒇) . (19) 

 As the numerical stability of calculations is influenced by the position of the interval 

of the 𝑘-nearest neighborhood points of the point 𝜉  and the RBF approximation is 

“locally” based, only 𝑘-nearest points are used. To solve problems with the numerical 

stability of calculations, we have to move all the 𝑘-nearest neighborhood points of the 

point 𝜉 such that the matrix 𝑨 from (18) is defined as:  

 𝑨 = [
𝛷(‖𝑥1 − 𝜉‖) 1 (𝑥1 − 𝜉) ⋯ (𝑥1 − 𝜉)𝑑

⋮ ⋮ ⋮    ⋮
𝛷(‖𝑥𝐾 − 𝜉‖) 1 (𝑥𝐾 − 𝜉) ⋯ (𝑥𝐾 − 𝜉)𝑑

] (20) 

and 𝑓(𝑥) is defined as: 

 𝑓(𝑥) = 𝜆1𝛷(‖𝑥 − 𝜉‖) + 𝑃𝑑(𝑥 − 𝜉) . (21) 

 For locally-based approximation, any compactly supported radial basis function 

(CSRBF) [8, 12] can be used. CSRBF is a function defined on 𝑟 ∈ 〈0; 1〉, is equal to 0 

for all 𝑟 > 1, and has to satisfy the conditions in (5). In the tests presented here, the 

𝛷(𝑟) function was selected as: 

 𝛷(𝑟) = {
(1 − 𝑟3)3  𝑟 ∈ 〈0; 1〉

0  𝑟 > 1
 , (22) 

which is exactly the same function as weighting function (6) for LOWESS 

approximation. 

3.1 Simplified RBF with a constant polynomial 

Choosing 𝑑 = 0, we will get a polynomial of zero degree which is only a constant, i.e.; 

𝑃𝑑 = 𝑎0. 

 [
𝛷(‖𝑥1 − 𝜉‖) 1

⋮ ⋮
𝛷(‖𝑥𝐾 − 𝜉‖) 1

] ⋅ [
𝜆1

𝑎0
] = [

𝑓(𝑥1)
⋮

𝑓(𝑥𝐾)
] → 𝑨 ⋅ 𝜼 = 𝒇 . (23) 

It leads to overdetermined system of linear equations. Using the method of least 

squares, we can calculate 𝜼: 

 𝜼 = (𝑨𝑇𝑨)−1 ⋅ (𝑨𝑇𝒇) , (24) 

where 𝜼 = [𝜆1, 𝑎0]
𝑇.  



[
𝜆1

𝑎0
] =

[
 
 
 
 
 
∑(𝛷(‖𝑥𝑖 − 𝜉‖))

2
𝐾

𝑖=1

∑𝛷(‖𝑥𝑖 − 𝜉‖)

𝐾

𝑖=1

∑𝛷(‖𝑥𝑖 − 𝜉‖)

𝐾

𝑖=1

∑1

𝐾

𝑖=1 ]
 
 
 
 
 
−1

⋅

[
 
 
 
 
 
∑𝛷(‖𝑥𝑖 − 𝜉‖) ⋅ 𝑓(𝑥𝑖)

𝐾

𝑖=1

∑ 𝑓(𝑥𝑖)

𝐾

𝑖=1 ]
 
 
 
 
 

 , (25) 

where ∑ 1𝐾
𝑖=1 = 𝐾 and after adjustments: 

[
𝜆1

𝑎0
] =

1

(∑ (𝛷(‖𝑥𝑖 − 𝜉‖))
2𝐾

𝑖=1 ) ⋅ 𝐾 − (∑ 𝛷(‖𝑥𝑖 − 𝜉‖)𝐾
𝑖=1 )2

 

⋅

[
 
 
 
 
 

𝐾 −∑ 𝛷(‖𝑥𝑖 − 𝜉‖)

𝐾

𝑖=1

−∑ 𝛷(‖𝑥𝑖 − 𝜉‖)

𝐾

𝑖=1

∑(𝛷(‖𝑥𝑖 − 𝜉‖))
2

𝐾

𝑖=1 ]
 
 
 
 
 

⋅

[
 
 
 
 
 
∑ 𝛷(‖𝑥𝑖 − 𝜉‖) ⋅ 𝑓(𝑥𝑖)

𝐾

𝑖=1

∑𝑓(𝑥𝑖)

𝐾

𝑖=1 ]
 
 
 
 
 

 . 

(26) 

The value 𝑓(𝝃) is calculated as: 

 𝑓(𝜉) = 𝜆1𝛷(‖𝜉 − 𝜉‖) + 𝑎1 = 𝜆1𝛷(0) + 𝑎0 . (27) 

3.2 Simplified RBF without a polynomial  

In the case of using simplified RBF without polynomial 𝑃𝑑 , we get the following 

equation: 

 [
𝛷(‖𝑥1 − 𝜉‖)

⋮
𝛷(‖𝑥𝐾 − 𝜉‖)

] ⋅ [𝜆1] = [
𝑓(𝑥1)

⋮
𝑓(𝑥𝐾)

] → 𝑨 ⋅ 𝜆1 = 𝒇 , (28) 

where 𝑨  and 𝒇  are column vectors. Using the method of least squares, we can 

calculate 𝜆1: 

 𝜆1 =
𝑨𝑇 ⋅ 𝒇

𝑨𝑇𝑨
 . (29) 

Equation (29) can be rewritten as: 

 𝜆1 =
∑ 𝛷(‖𝑥𝑖 − 𝜉‖)𝐾

𝑖=1 ⋅ 𝑓(𝑥𝑖)

∑ (𝛷(‖𝑥𝑖 − 𝜉‖))
2𝐾

𝑖=1

 . (30) 

The value 𝑓(𝜉) is calculated as: 

 𝑓(𝜉) = 𝜆1𝛷(‖𝜉 − 𝜉‖) = 𝜆1𝛷(0) . (31) 



4 Comparison of Time Complexity  

 In the following, a comparison of LOWESS and RBF will be made. The main 

criteria for comparison are: 

 The computational complexity, which is critical if many points have to be 

approximated. 

 The quality of the final approximation (see section 5). 

4.1 LOWESS 

 The size of matrix 𝑨 is 𝑘 × 𝑞, where the number of used nearest points is 𝑘 and 𝑞 

is equal to the degree of the polynomial plus 1. The size of diagonal matrix 𝑾 is 𝑘 × 𝑘, 

the size of vector 𝒃 is 𝑘 × 1 and the size of vector x is 𝑘 × 1. The time complexity of 

LOWESS using equation (9) can be calculated in the following way: 

 

𝑨𝑇𝑾𝑨 → 𝑂(𝑞2𝑘 + 𝑞𝑘)

(𝑨𝑇𝑾𝑨)−1 → 𝑂(𝑞2𝑘 + 𝑞𝑘 + 𝑞3)

𝑨𝑇𝑾𝒃 → 𝑂(2𝑞𝑘)

(𝑨𝑇𝑾𝑨)−1𝑨𝑇𝑾𝒃 → 𝑂(𝑘(𝑞2 + 3𝑞) + 𝑞3 + 𝑞2)

 (32) 

As the size 𝑘  of matrix 𝑨  is much larger than the size 𝑞  of matrix 𝑨 , the time 

complexity from (32) will become: 

 
𝑂(3𝑞𝑘) 𝑓𝑜𝑟 𝑞 = {1,2}

𝑂(𝑞2𝑘) 𝑓𝑜𝑟 𝑞 ≥ 3
 (33) 

The time complexity of LOWESS when calculating the approximation value in 𝑅 

points will become: 

 
𝑂(𝑁 log𝑁 + 𝑅 ∙ 3𝑞𝑘) 𝑓𝑜𝑟 𝑞 = {1,2}

𝑂(𝑁 log𝑁 + 𝑅 ∙ 𝑞2𝑘) 𝑓𝑜𝑟 𝑞 ≥ 3
 (34) 

where 𝑁 is the number of input points and 𝑂(𝑁 log𝑁) is the time complexity of the 

sorting algorithm for 1&½ dimensional data. In the case of higher dimensions 𝐷&½, 

i.e. 𝐷 > 1 , the total time complexity of selecting 𝑘 -nearest points from 𝑁  points 

increases (see section 7 for more details). 

4.2 Simplified RBF 

 The size of matrix 𝑨 is 𝑘 × 𝑟, where the number of used nearest points is 𝑘 and 𝑟 is 

equal to the degree of the polynomial plus 2. The size of vector 𝒇 is 𝑘 × 1 and the size 

of vector 𝜼 = [𝝀𝑇 , 𝒂𝑇]𝑇 is 𝑘 × 1. The time complexity of RBF using equation (24) can 

be calculated in the following way: 



 

𝑨𝑇𝑨 → 𝑂(𝑟2𝑘)

(𝑨𝑻𝑨)−1 → 𝑂(𝑟2𝑘 + 𝑟3)

𝑨𝑇𝒇 → 𝑂(𝑟𝑘)

(𝑨𝑇𝑨)−1(𝑨𝑇𝒇) → 𝑂(𝑘(𝑟2 + 𝑟) + 𝑟3 + 𝑟2)

 (35) 

As the size 𝑘  of matrix 𝑨  is much larger than the size 𝑟  of matrix 𝑨 , the time 

complexity from (35) will become: 

 𝑂(𝑟2𝑘) (36) 

The time complexity of simplified RBF when calculating the approximation value in 𝑅 

points can be estimated: 

 𝑂(𝑁 log𝑁 + 𝑅 ∙ 𝑟2𝑘) (37) 

where 𝑁 is the number of input points and 𝑂(𝑁 log𝑁) is the time complexity of the 

sorting algorithm for 1&½ dimensional data. 

5 Comparison of Measured Errors  

 For a demonstration of LOWESS and RBF approximation properties, the standard 

testing function, which is considered by Hickernell and Hon [5], has been selected:  

 τ(𝑥) = 𝑒
[−15((𝑥−

1
2
)
2
)]

+
1

2
𝑒

[−20((𝑥−
1
2
)
2
)]

−
3

4
𝑒

[−8((𝑥+
1
2
)
2
)]

 (38) 

This function was sampled at 〈−1,1〉 . We added random noise with uniform 

distribution from interval 〈−0.1, 0.1〉  and used it as input for both methods. The 

following graphs present the behavior of the LOWESS and RBF approximations.  

 

Graph 1: Comparison of LOWESS with Simplified RBF. 100 nearest samples out of 2000 total 

were used as values for approximation; sampled interval: 〈−1,1〉. 
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Function values are on the vertical axis; values on the horizontal axis are sample 

indices. Since the function is sampled at 〈−1,1〉 and the number of samples is 2000, 

the sampling rate is 1000 samples per 1 unit. 

 

Graph 2: Comparison of LOWESS with Simplified RBF. 200 nearest samples out of 2000 total 

were used as values for approximation; sampled interval: 〈−1,1〉. 

 

Graph 3: Comparison of LOWESS with Simplified RBF. 500 nearest samples out of 2000 total 

were used as values for approximation; sampled interval: 〈−1,1〉. 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

Noisy data

Original data

Lowess (polynomial regression)

Simplified RBF (with constant polynomial)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

Noisy data

Original data

Lowess (polynomial regression)

Simplified RBF (with constant polynomial)

800 850 900 950 1000
-0.15

-0.1

-0.05

0

0.05

0.1

800 850 900 950 1000
-0.2

-0.1

0

0.1

0.2

Samples 

Samples 

V
al

u
e 

V
al

u
e 



 

Graph 4: Comparison of LOWESS with Simplified RBF. 1000 nearest samples out of 2000 total 

were used as values for approximation; sampled interval: 〈−1,1〉. 

 The error of approximation can be measured in different ways. The first one is to 

measure the change of the first derivative, which is the curvature of the resulting curve. 

If the first derivative changes too much, then the curve is jagged; on the contrary, if the 

first derivative does not change too much, then the curve is smooth. The absolute error 

can be calculated using the formula:  

 𝐸𝑐 = ∑‖𝑓′′(𝑥𝑖)‖

𝑁

𝑖=1

 , (39) 

where 𝑓′′(𝑥𝑖) is calculated using the formula: 

 𝑓′′(𝑥𝑖) =
𝑓(𝑥𝑖+1 − 2𝑥𝑖 + 𝑥𝑖−1)

(𝑥𝑖+1 − 𝑥𝑖)(𝑥𝑖 − 𝑥𝑖−1)
 , (40) 

 Let 𝒑 = [𝑥, 𝑓(𝑥)]  be the approximated point in current space ( 2𝐷  for 1&½ 

dimensions) and 𝛋 = [𝑥, τ(𝑥)] be a point of the sampled function (38), which is a set 

Κ = {𝛋1, … , 𝛋N} = {[𝑥1, τ(𝑥1)], … , [𝑥𝑁 , τ(𝑥𝑁)]} , then the distance error from the 

original curve without noise can be calculated as: 

𝐸𝑑 = ∑‖𝒑𝑖 − 𝝃𝑗‖,

𝑁

𝑖=1

where ‖𝒑𝑖 − 𝛋𝑗‖ is minimal ∀𝑗 ∈ {1, … , N} for given 𝑖 . (41) 

Let us note that the distance is not measured vertically to the curve but “orthogonally” 

to the curve. Using formulas (39) and (41), we can show the following table of 

calculated errors. 
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Tab. 1: Measured errors for graphs Graph 1 - Graph 4 (for 𝑁 = 2000). 

 𝐸𝑐 𝐸𝑑 

𝑘-nearest 

samples 
LOWESS 

Simplified 

RBF 
LOWESS 

Simplified 

RBF 

100 0.0721 1.4585 7.2997 12.5647 

200 0.0212 0.7689 10.5378 14.7898 

500 0.0132 0.3103 15.6759 40.5985 

1 000 0.0091 0.1618 45.0717 70.8979 

 Some comparison results can be seen using (Tab. 1). The LOWESS approximation 

is always smoother (according to measured error 𝐸𝑐) and closer to the original data 

without noise (according to measured error 𝐸𝑑 ) when using the same 𝑘 -nearest 

samples. 

6 Global RBF Approximation 

 Global RBF approximation can be calculated using (14). In this case, the whole data 

set has to be processed at once. Compared to the simplified version of RBF 

approximation, we only get one 𝝀 vector for all input samples and thus we solve a linear 

system only once. Moreover, we do not need to sort the input points in any way, unlike 

LOWESS and simplified RBF approximations, which were presented in previous 

sections. The global RBF approximation is calculated using the following formula 

(from (17)): 

 𝑨𝝀 = 𝒇 → 𝝀 = (𝑨𝑇𝑨)−1 ⋅ (𝑨𝑇𝒇) (42) 

where the size of matrix 𝑨 is 𝑁 × (𝑀 + 𝑑 + 1), 𝑁 is the number of input points, 𝑀 is 

the number of radial basis functions, 𝑑 is the degree of the polynomial, the size of 

vector 𝒇 is 𝑁 × 1, the size of vector 𝝀 = [𝜆1, … , 𝜆𝑀, 𝑎0, … , 𝑎𝑑]𝑇  is (𝑀 + 𝑑 + 1) × 1. 

We can express the time complexity of the global RBF approximation calculation (42) 

as: 

 

𝑨𝑇𝑨 → 𝑂((𝑀 + 𝑑 + 1)2𝑁)

(𝑨𝑇𝑨)−1 → 𝑂((𝑀 + 𝑑 + 1)2𝑁 + (𝑀 + 𝑑 + 1)3)

𝑨𝑇𝒇 → 𝑂((𝑀 + 𝑑 + 1)𝑁)

(𝑨𝑇𝑨)−1 ⋅ (𝑨𝑇𝒇) → 𝑂 (
𝑁((𝑀 + 𝑑 + 1)2 + (𝑀 + 𝑑 + 1)) +

     +(𝑀 + 𝑑 + 1)3  + (𝑀 + 𝑑 + 1)2
)

 (43) 

and after leaving only the most complex part, the time complexity is: 

 𝑂(𝑀2𝑁) (44) 

 We sampled function (38), added random noise with uniform distribution from 

interval 〈−0.1, 0.1〉, and used that data as input for both methods mentioned in previous 

sections (LOWESS and simplified RBF) and for global RBF approximation as well. 

The following graph presents the behavior of the LOWESS, simplified RBF and global 

RBF approximations. Function values are on the vertical axis, values on the horizontal 



axis are sample indices. Since the function is sampled at 〈−1,1〉 and the number of 

samples is 2000, the sampling rate is 1000 samples per 1 unit. 

 

Graph 5: Comparison of LOWESS and Simplified RBF with global RBF.  

100 nearest samples out of 2000 total were used as values for local approximation, which gives 

20 pivots (lambdas) for global RBF; sampled interval: 〈−1,1〉. 

 The following table presents calculated errors using formulas (39) and (41) (for 

Graph 5) for all approximation methods described in this paper. 

Tab. 2: Measured errors for Graph 5. 

𝐸𝑐 𝐸𝑑 

LOWESS 
Simplified 

RBF 

Global 

RBF 
LOWESS 

Simplified 

RBF 

Global 

RBF 

0.0718 1.5266 0.0168 10.6785 16.0734 6.0123 

 It can be seen, that global RBF approximation is closer to the original data and 

smoother than simple RBF or even LOWESS approximation. For the situation in Graph 

5 and Tab. 2, the time complexity of global RBF is exactly the same as the time 

complexity of both other methods when calculating the approximation at all input 

points.  

7 Approximation in Higher Dimensions 

 Let as assume that a scattered data approximation [6, 7] in 2&½  or 3&½ 

dimensions, i.e. 𝐷&½ dimensions have to be made. In the following, we describe the 

expansion of LOWESS and RBF approximation algorithms into higher dimensions. 

 In higher than 1&½ dimensions, we have to deal with the fact that there is no 

ordering defined in general. Thus, we cannot sort all input points at once in the 

beginning and then choose 𝑘 -nearest points with 𝑂(1)  time complexity. The time 
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complexity of selecting 𝑘-nearest points from 𝑁 points is 𝑂(𝑁 log𝑁), and thus the 

time complexity of LOWESS or Simple RBF approximation can be estimated as: 

 𝑂 (𝑅 ∙ (𝑁 log𝑁 + {
𝑂𝐿𝑂𝑊𝐸𝑆𝑆

or
𝑂𝑅𝐵𝐹

} )) , (45) 

where 𝑂𝐿𝑂𝑊𝐸𝑆𝑆  is the same time complexity as the time complexity of LOWESS 

approximation in 1&½ dimensions and 𝑂𝑅𝐵𝐹  is the same time complexity as the time 

complexity of Simple RBF approximation in 1&½ dimensions. 

7.1 LOWESS 

 In the case of 𝐷&½ dimensional approximation, we have to change the notation in 

(1) as 𝒙 is a 𝐷-dimensional position vector: 

 𝑆 = ∑𝜔𝑖 ∙ (ℎ𝑖 − 𝑃(𝐷)(𝒙𝒊))
2

𝑁

𝑖=1

, (46) 

where ℎ = 𝑃(𝐷)(𝒙)  is a 𝐷  dimensional hypersurface function with unknown 

coefficients 𝒂 = [𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘]
𝑇. For 𝐷 = 2, we can write 𝑃(𝐷)(𝒙), for example, 

like: 

 𝑃(2)(𝒙) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥
2 + 𝑎4𝑦

2 + 𝑎5𝑥𝑦 , (47) 

where 𝒙 = [𝑥, 𝑦]𝑇. The matrix 𝑨 is then equal to:  

 𝑨 =

[
 
 
 
1 𝑥1 𝑦1 𝑥1

2 𝑦1
2 𝑥1𝑦1

1 𝑥2 𝑦2 𝑥2
2 𝑦2

2 𝑥2𝑦2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑁 𝑦𝑁 𝑥𝑁

2 𝑦𝑁
2 𝑥𝑁𝑦𝑁]

 
 
 
 (48) 

We can omit some coefficients 𝑎𝑖 and corresponding columns in matrix 𝑨, where 𝑖 ∈
{0, 1, … , 5}. All other computations remain the same.  

 The computation complexity will increase as the size of matrix 𝑨  increases. 

However, if we use a constant hypersurface function with only one coefficient 𝑎0, then 

the time complexity does not change with different dimensions 𝐷. 

7.2 Simplified RBF 

 The RBF approximation is formally independent from the dimension 𝐷. Therefore, 

all the computations remain the same as described above. The computation complexity 

increases slightly as the complexity of polynomial/hypersurface 𝑃(𝐷)(𝒙)  increases. 

However, if we use a constant hypersurface function with only one coefficient 𝑎0, then 

the time complexity will not change with different dimensions 𝐷 . The polynomial 

𝑃(𝐷)(𝒙)  is actually a data approximation using a basic function and ∑ 𝜆𝑖𝛷𝑖(𝑟)
𝑀
𝑖=1  

controls the perturbation from 𝑃(𝐷)(𝒙). 



8 Conclusion 

 We have introduced the LOWESS method of approximation and modified RBF 

approximation, which is comparable with LOWESS. Both methods use the same 

number of nearest samples for approximation and the time complexity of both these 

methods is the same. We calculated the distance of approximated noisy data to the 

original data. In all cases, for the same number of nearest samples for approximation, 

LOWESS gives better results. Another comparison of both methods is calculation of 

the smoothness. The LOWESS approximation gives us smoother results than the 

Simple RBF approximation. However, both these methods use a different approach for 

approximation than global RBF approximation; we compared them with global RBF 

approximation as well. Using global RBF approximation we can achieve better results 

(closer distance to original data and smoother approximation) when having the same 

time complexity of calculation. Moreover, we get one simple continuous formula and 

not only function values at discrete points. On the other hand, both methods can be used 

in higher dimensions, but the time complexity will increase for both of them compared 

to the situation in 1&½ dimensions. Due to this fact, in higher dimensions, global RBF 

approximation has lower time complexity than either LOWESS or Simple RBF 

approximation due to necessity of finding 𝑘-nearest neighbor points. Therefore, the 

global RBF approximation is recommendable for approximation of scattered data in 

higher dimensions, i.e. 2&½ dimensions and higher. 

 All methods for approximation compared in this paper were implemented and tested 

in MATLAB. 
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