
n1

1

Using Vision for Animating Virtual Humans

Ioannis Kakadiaris

Visual Computing Lab
Department of Computer Science

University of Houston

2

Visual Computing

l The field of Visual Computing is concerned 
with the analysis, numerical manipulation, 
querying, display, storage, and transmission 
of data.
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Application Domains

l Human Motion Analysis

l Biomedical Data Analysis

l Seismic Data Analysis
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Overview

üMotivation
l Theoretical Framework

– Distributed Approximating Functionals
– Physics-Based Modeling

l Human Motion Analysis
l Biomedical Data Analysis
l Conclusion
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Physics-Based Models: Computer Vision

l Objective
– Represent nonrigid shapes
– Reconstruct nonrigid shapes from noisy 

data
– Estimate the motion of nonrigid objects

l Solution
– Use the principles of physics to 

approximate the shape of objects and 
their behavior
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Physics-Based Models: Computer Graphics

l Objective
– Model nonrigid objects and their interaction 

with the physical world
– Realistically simulate and animate the motion of 

articulated objects with deformable parts

l Previous Attempts
– Geometric modeling techniques have had limited 

success

l Solution
– A mathematical representation of an object (or 

its behavior) which incorporates physical 
characteristics such as forces, torques and 
energies into the model allowing numerical 
simulation of its behavior.



n2

7

Geometry of Rigid/Deformable Models
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Geometry: Global Deformations

l Geometric primitive: 

l Parameterized deformations:

l Global deformation parameter vector

( ),...a,a; 21ue

T e;b1 ,b2, ...( )

s = T e u;a1, a2,...( );b1 ,b2,...( )
q s = a1, a2,...,b1,b2 ,...( )T
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Geometry: Global Deformations (cont.)

l Example: Superquadric
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Geometry: Global Deformations (cont.)

l Example: Superquadric with deformation
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Geometry: Local Deformations

l Finite elements
– Local deformation: d
– Linear combination of nodal displacements:

S: Matrix of local finite element shape functions
Implementation: Linear triangular elements

d = Sq d
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Kinematics

l Generalized coordinate vector

translation rotation global-def local-def

l Velocity of points on the model

l Jacobian L maps from q-space to 3-space

( )TTTTT
dsc qqqqq ,,, θ=

LqqRSRJBIx == ][
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Dynamics

l Lagrange equations of motion
qfKqq =+&

qfqq =+ &&&

qq gfKqqDqM +=++ &&&

D =αM +βK

Vision-Shape:

Vision-Motion:

Graphics:

M: block symmetric mass matrix
D: Raleigh damping matrix,
K: stiffness matrix
fq(u,t): generalized external forces
gq(u,t): generalized inertial forces
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Dynamics: Generalized Forces

l Generalized external forces

( )TTTTTT
dsqcq f,f,f,ffLf ==

translation-f     rotation-f          global-f         local-f
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Dynamics: Generalized Forces (cont.)

l Generalized inertial forces

∫−= duqLLµg T
q &&

pR2Rp)( &&& ×+××= ωωωqL

where
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Numerical Simulation of Motion Equations

l Second order system

l Numerically integrate through time

cgqq ffgKqqDqM ++=++ &&&
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Overview

ü Motivation
ü Theoretical Framework
l Human Motion Analysis

– Inferring Structure in 2D
– Human Body Model Acquisition
– Human Body Tracking
– Estimating Anthropometry and Pose from a 

Single Camera
l Biomedical Data Analysis
l Conclusion
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Motion-Based Part Segmentation

l Given an image sequence of a multi-part 
object whose parts move relative to one 
another …

Recover a structured description 
in terms of moving parts, without
a priori knowledge of the object
or the object domain.

Accurately estimate the parts’ 
shape and motion parameters. terms
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Part Segmentation Algorithm (PSA)
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Motion-Based Part Segmentation

Advantages
l Integrates the processes of part segmentation 

and fitting

l Allows reliable shape description of the parts

l Estimates the location of the joints between the 
parts (if any)

l Detects multiple joints

l Does not require an a priori  model of the multi -
part object or of the shape of the parts

21

Contribution

l New framework for the two-dimensional 
part segmentation shape and motion 
estimation of multi -part objects.
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Overview

ü Motivation
ü Theoretical Framework
l Human Motion Analysis

– Inferring Structure in 2D
– Human Body Model Acquisition
– Human Body Tracking
– Estimating Anthropometry and Pose from a 

Single Camera
l Biomedical Data Analysis
l Conclusion

23

Human Model Acquisition

Given image sequences (from multiple 
views) of a moving human …

Automatically segment the apparent
contour and estimate the 2D shape
of the subject’s body parts (without
a prior model for the human body or
for the shape of the parts).

Automatically acquire a three-
dimensional model of the subject’s
body parts.
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Experimental Setup

l Sagittal Plane  Coronal Plane  Transverse plane
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Human Body Model Acquisition

Protocol of movements: MovA
1. Head Motion 

2. Left upper body extremities motions
3. Right upper body extremities motions
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Human Body Model Acquisition

Protocol of movements: MovA (cont.)
4. Left lower body extremities motions
5. Right lower body extremities motions
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Results

l Human head and left arm
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Results - Human leg
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Results

l 3D models for the arm and the leg
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Validation and Performance Analysis

l 3D Shape Estimation of a subject’s body parts
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Validation and Performance Analysis

3D Shape Estimation of a subject’s body parts

mm 1.170 :    dev std
mm 1.459 :        mean
mm 3.736 :error max
mm 0.001 :  error min
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Overview

4 Motivation
4 Theoretical Framework
l Human Motion Analysis

– Inferring Structure in 2D
– Human Body Model Acquisition
– Human Body Tracking
– Estimating Anthropometry and Pose from a 

Single Camera
l Biomedical Data Analysis
l Conclusion
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Human Motion Capture

Given image sequences of a moving human…
Estimate over time the 3D position and   
orientation of a subject’s body parts.
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Challenges

l Humans perform complex 3D non-rigid 
motions

l Body parts may not be visible from certain 
viewpoints
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3D Model-based tracking

Input
– Image sequences of the moving human 

from three views, and 
– The 3D models of the subject’s body 

parts (as obtained with our method)

Output
– The 3D position and orientation over 

time of each of the subject’s body parts
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Human Motion Capture

Advantages of our approach
– Obviates the need for markers or 

special equipment

– Model obtained from observations

– Mitigates difficulties arising due to 
occlusion among body parts

– Selects a subset of the cameras in an 
active and time varying fashion
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Model-Based Tracking: Steps

Steps
– Predict
– Select
– Match
– Update
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Model-Based Tracking: Select

Observability Index
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Model-Based Tracking: Select

Predicted occluding contour

),
11 iiii P,P,carea(c

++∑=Observability Index (I)
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Model-Based Tracking: Select

l Observability Index
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Model-Based Tracking: Update

Lagrange equations of motion

where

q(t) : the generalized coordinate vector

fq(t) : generalized external forces

qfqq =+
•••
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Model-Based Tracking: Predict

Extended Kalman Filter
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z(t): vector of observations

h(t): nonlinear function which relates the input data to 
the model’s state

w(t): modeling error
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Human Body Model Acquisition

Frame Camera1 Camera2 Camera3

001

035
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Human Motion Capture
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Validation and Performance Analysis

3D Model-Based Tracking
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Validation and Performance Analysis

3D Model-Based Tracking

0.54    1.67                          RMS
1.03           1 .72              Dev. Std
3.67          4.31                   Mean
5.80    9.47                 Error Max
1.01          0.38            Error Min

(height) Z   Plane  XY         (mm) Error
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Video Presentation
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Tracking Using Monocular Images

l There are several applications for which 
the video recordings from only one view are 
available
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Motivation

l Performance measurement for human 
factors engineering
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Motivation (Cont.)

l Posture and gait analysis for training 
athletes and physically challenged 
individuals

http://www.motionanalysis.com
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Motivation (Cont.)

l Human body, hands and face animation

http://ligwww.epfl.ch/
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Motivation (Cont.)

l Automatic annotation of human activities in 
video databases
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Problem Statement

Given a set of points in an image that correspond 
to the projection of landmark points of a human 
subject …

estimate both the anthropometric  
measurements (up to a scale) of the subject 
and his/her pose that best match the 
observed image

Image

3D Human Model

( up to scale)
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Our Approach

Novelty
üUsing anthropometric statistics to constrain 

the estimation process

Advantages
ü Estimation of both anthropometry and pose 

simultaneously
üAble to estimate anthropometry and pose from 

a single image
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Overview

Novelty: Using anthropometric statistics to 
constrain the estimation process

Output Step 1
§ Initial Anthropometric 

Estimates
§ Initial Pose Estimates
§ Iterative Minimization 

over lengths and angles

Selection of 
projected 
landmarks 
on the image

Human 
model

Step2 Steps 3, 4 ...
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Human Body Model

ID  Joint  From  To  DOF PR
at  atlanto occipital  NK  HD  Tz*Rz*Ry*Rx 3
sp  solar plexus  UT  NK  Tz*Ry*Rz*x 2
la  left ankle   LLL  LF  Tx*Rz*Rx*Ry 4
lc  left clavicle  UT  LC  Tz*Rx*Ry 3
le  left elbow  LUA LLA  Tz*Ry 5
lh  left hip   LT  LUL  Tz*Rz*Rx*Ry 2
lk  left knee   LUL  LLL  Tz*R-y 3
ls  left shoulder  LC  LUA  Tz*Rz*Rx*Ry 4
lw  left wrist   LLA  LHD  Tz*Ry*Rx*Rz 6
ra  right ankle   RLL  RF  Tx*R-z*R-x*Ry 4
rc  right clavicle  UT  RC  Tz*R-x*Ry 3
re  right elbow  RUA  RLA  Tz*Ry 5
rh  right hip   LT  RUL  Tz*R-z*R-x*Ry 2
rk  right knee   RUL  RLL  Tz*R-y 3
rs  right shoulder  RC  RUA  Tz*R-z*R-x*Ry 4
rw  right wrist RLA  RHD Tz*Ry*R-x*R-z 6
wt  waist    LT  UT  Tz*Ry*Rz*Rx 1

l22 segments, 17 joints and 64 DoF
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Family of Human Body Models

l 2187 human body models based on 
anthropometric statistics

l The cadre family is a representation of the 
population distribution which spans the space 
to capture a significant amount of the variance
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Step 1: Selection of projected landmarks

Through a simple interface, the user:
§ Selects the projection of visible 

landmarks of the subject's body
§Marks  
§segments whose orientation is 
almost parallel to the image plane
§pairs of segments that have similar 
orientation
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Output

l Image coordinates of the selected 
projected landmarks

l a set of ratios (of projected lengths) using 
the segments selected by the user
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where                  are the ratios of the 
segments  of  each cadre family member
that correspond to the segments selected

Input: a set of ratios using the segments        
selected by the user

Output: the initial human model      from our 
cadre family of 2187 human models.  

Step 2: Initial Anthropometric Estimates
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Steps 3 and 4:
Estimates for pose and anthropometry

Goal
ü Minimize the discrepancy between the 

synthesized appearance of the Stick 
Model (for that pose) and the image 
data of the subject in  the given image

( )
KjUxL

xf

jjj

j

,...,1,

min

=≤≤

where      can be an angle or a length or a ratio, and 
and      are its lower and upper values.

jx
jL jU

62

The Objective Function

l The sum of squared distances between the 
Stick model’s site and the closest point from 
the line formed by the camera’s center of 
projection and its corresponding landmark

Camera’s center
of projection

3D Model
Image
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Minimization process

To guide the minimization process to a solution for 
a pose that is anthropometrically plausible, we 
apply:

ü a geometric method for the initial pose estimation

ü a hierarchical solver

ü various constraints
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Initial Pose Estimates
We use a geometric method for providing 
two initial guesses for the pose of some 
segments as follows:

Solutions
( ) ( )[ ] 222

1 iii l+−−−⋅+−⋅= joojdojdλ

ii l=−+ jdo λ

Camera’s center 
of projection

ido λ+

j

il

( ) ( )[ ] 222
1 iii l+−−−⋅−−⋅= joojdojdλ
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Hierarchical Solver

We assign a priority to each joint and site, 
and we schedule the optimization process

Virtual human modelInput data Steps 3, 4 
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Constraints

Three classes of constraints are applied:

l Constraints derived from the joint limit 
information associated with the range 
of motion of each joint,

l Constraints that enforce the symmetry 
between the left and right sides of the 
subject, and 

l Constraints that enforce proportions.
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LC
UT+LT

LLA
LUA

LHP
LUA

LF
LUL

LF
LUL

Actual 0.6553 0.9829 0.5700 0.6397 0.6341

Estimated 0.6517 0.9781 0.5713 0.6377 0.6329
PE % 0.5494 0.4810 0.2281 0.3090 0.1876

Results

Accuracy

Synthetic Experiment 
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LC
UT+LT

LLA
LUA

LHP
LUA

LF
LUL

LF
LUL

Actual 0.6279 0.8625 0.6949 0.5517 0.4778

Estimated 0.6266 0.8516 0.6925 0.5468 0.4767
PE % 0.1958 1.2638 0.3180 0.8957 0.2302

Results

Subject: Vannesa

Accuracy
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Results

l Field work
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Results

l Golfer
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Golf
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Results

l Tennis Player
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Tennis
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Results

l Cyclist
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VERI

Research Thrusts
l Intelligent Systems
l Computational Biomedicine
l Biomedical Robotic Systems
l Geophysical Data Analysis and Visualization

Analysis,Modeling, Simulation, Visualization
Multimodal Human Computer Interaction
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Conclusions

l “We live in interesting times”
l Abundance of sensors
l Large volumes of information rich data
l New efficient and robust methods for 

analyzing, querying, visualizing and storing 
data
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