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Rational Trigonometry: Quadrance and spread

A point A is an ordered pair [x , y ] of numbers. The quadrance
Q (A1,A2) between points A1 ≡ [x1, y1] and A2 ≡ [x2, y2] is the number

Q (A1,A2) ≡ (x2 − x1)2 + (y2 − y1)2 = d2 (A1,A2)
A line l is an ordered proportion 〈a : b : c〉, representing the equation
ax + by + c = 0. The spread s (l1, l2) between lines l1 ≡ 〈a1 : b1 : c1〉
and l2 ≡ 〈a2 : b2 : c2〉 is the number

s (l1, l2) ≡
(a1b2 − a2b1)2

(a21 + b
2
1) (a

2
2 + b

2
2)
= sin2 θ
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Angle versus spread

Geometric interpretation of spread:

s (l1, l2) ≡
Q (B,C )
Q (A,B)

=
Q
R
.
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Special values and a Spread Protractor

You may check that the spread corresponding to 30◦ or 150◦ or 210◦ or
330◦ is s = 1/4, the spread corresponding to 45◦ or 135◦ etc. is s = 1/2,
and the spread corresponding to 60◦ or 120◦ etc. is 3/4, while the spread
corresponding to 90◦ is 1.
The following spread protractor was created by M. Ossmann.

Figure: A spread protractor
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Five main laws of Rational Trigonometry

Pythagoras’theorem The lines A1A3 and A2A3 are perpendicular precisely
when

Q1 +Q2 = Q3.

Triple quad formula The three points A1,A2 and A3 are collinear precisely
when

(Q1 +Q2 +Q3)
2 = 2

(
Q21 +Q

2
2 +Q

2
3

)
.

Spread law For any triangle A1A2A3
s1
Q1

=
s2
Q2

=
s3
Q3
.

Cross law For any triangle A1A2A3

(Q1 +Q2 −Q3)2 = 4Q1Q2 (1− s3)

Triple spread formula For any triangle A1A2A3

(s1 + s2 + s3)
2 = 2

(
s21 + s

2
2 + s

2
3

)
+ 4s1s2s3.
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Proofs
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Heron’s formula

The area of the triangle A1A2A3 is one half of the area of the associated
parallelogram A1A2A3A4.
The latter area may be calculated by removing from the circumscribed
12× 8 rectangle four triangles, which can be combined to form two
rectangles, one 5× 3 and the other 7× 5. The area of A1A2A3 is thus 23.
Heron’s formula If s ≡ (d1 + d2 + d3) /2 is the semi-perimeter of a
triangle, then its area is

area =
√
s (s − d1) (s − d2) (s − d3).
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Heron’s formula calculation

In the previous example:

d1 =
√
34 d2 =

√
68 d3 =

√
74.

The semi-perimeter s, defined to be one half of the sum of the side
lengths, is then

s =

√
34+

√
68+

√
74

2
≈ 11. 339 744 206 6 . . . .

Using the usual Heron’s formula, a computation with the calculator shows
that

area =
√
s
(
s −
√
34
) (
s −
√
68
) (
s −
√
74
)
≈ 23.000 000.
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Archimedes theorem

Theorem (Archimedes)

The area of a triangle A1A2A3 with quadrances Q1,Q2 and Q3 is given by

16 area2 = (Q1 +Q2 +Q3)
2 − 2

(
Q21 +Q

2
2 +Q

2
3

)
.

In our example the triangle has quadrances 34, 68 and 74, each obtained
by Pythagoras’theorem. So Archimedes’theorem states that

16 area2 = (34+ 68+ 74)2 − 2
(
342 + 682 + 742

)
= 8464

and this gives an area of 23. In rational trigonometry, the quantity

A = (Q1 +Q2 +Q3)2 − 2
(
Q21 +Q

2
2 +Q

2
3

)
is the quadrea of the triangle, and turns out to be the single most
important number associated to a triangle.
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Extended spread law

The Cross law
(Q1 +Q2 −Q3)2 = 4Q1Q2 (1− s3)

may be rewritten as

A = (Q1 +Q2 +Q3)2 − 2
(
Q21 +Q

2
2 +Q

2
3

)
= 4Q1Q2s3

so we get an Extended Spread law:

s1
Q1

=
s2
Q2

=
s3
Q3

=
A

4Q1Q2Q3
.

So to calculate spreads, find the quadrea A first, then

s1 =
A

4Q2Q3
etc.
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Example problem

Problem

The triangle A1A2A3 has side lengths |A1A2| = 5, |A2A3| = 4 and
|A3A1| = 6. The point B is on the line A1A3 with the angle between A1A2
and A2B equal to 45◦. What is the length d ≡ |A2B |?
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Classical solution

42 = 52 + 62 − 2× 5× 6× cos α

α = arccos
3
4
≈ 41. 4096◦.

β ≈ 180◦ − 45◦ − 41. 4096◦ ≈ 93. 5904◦.
sin α

d
=
sin β

5

d ≈ 5 sin 41. 4096◦

sin 93. 5904◦
≈ 3. 313 691 689 613.
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Rational solution

Cross law in A1A2A3 :

(25+ 36− 16)2 = 4× 25× 36× (1− s) so that s = 7/16.

Triple spread formula in A1A2B :(
7
16
+
1
2
+ r
)2
= 2

(
49
256

+
1
4
+ r2

)
+ 4× 7

16
× 1
2
× r .

This simplifies to

r2 − r + 1
256

= 0.
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So
r =

1
2
± 3
16

√
7.

For each of these values of r , use the Spread law in A1A2B

r
25
=
s
Q

and solve for Q, giving values

Q1 = 1400− 525
√
7 or Q2 = 1400+ 525

√
7.

To convert these answers back into distances, take square roots

d1 =
√
Q1 ≈ 3. 3137 . . . or d2 =

√
Q2 ≈ 264.056 . . . .
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For more references on Rational Trigonometry:

Book: Divine Proportions: Rational Trigonometry to Universal Geometry
(2005) Wild Egg Books

YouTube: user: njwildberger, Playlist: WildTrig (also of interest,
Playlists: MathFoundations, WildLinAlg, MathHistory, AlgTop,
UnivHypGeom)

Papers: Various papers on the ArXiV by N J Wildberger.
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Vector Trigonometry and Rotor coordinates

v = (x , y) = (7, 4) [Cartesian]

v = (r , θ) =
(√

65, 0.519 146 114 246 523...
)

[Polar]

v = |r , h〉 =
∣∣∣√65, √65−74

〉
[Rotor] !!
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Overview

A) What are rotor coordinates?

B) Vector trigonometry

Classical trig→ Vector trig→ Rational trig

C) Geometric application to quadrilaterals

D) Kinematic application to Kepler-Newton orbits
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A) What are rotor coordinates?
Rational parametrization of the unit circle

C (h) ≡ 1− h2
1+ h2

and S (h) ≡ 2h
1+ h2

.

Definition
h is the half-turn of the unit vector e (h).



The rational circular functions

T (h) ≡ S (h) /C (h) ≡
(

2h
1+ h2

)
/
(
1− h2
1+ h2

)
=

2h
1− h2 .

Lemma

C (h)2 + S (h)2 = 1

C (−h) = C (h) S (−h) = −S (h) and T (−h) = −T (h) .



Derivatives of the rational circular functions

C (h) ≡ 1− h2
1+ h2

and S (h) ≡ 2h
1+ h2

.

Also define:

M (h) ≡ 2
1+ h2

= 1+ C (h) =
S (h)
h

Lemma
dC
dh
(h) = −S (h) M (h) and

dS
dh
(h) = C (h) M (h)

Lemma
Both C (h) and S (h) satisfy

1
M (h)

d
dh

(
1

M (h)
df
dh

)
+ f = 0.
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Rotor coordinates of a vector

the length r = r (v) ≡ |v| ≡
√
x2 + y2

the half-turn h = h (v) = h (v/ |v|)

Definition
The numbers r and h are rotor coordinates for v. We write v = | r , h〉.



The Half-turn formula

Theorem (Half-turn formula)

If v ≡ (x , y) has length r ≡
√
x2 + y2 and y 6= 0, then

h (v) =
r − x
y

.

Proof.
Use

C (h) =
x
r
=
1− h2
1+ h2

and S (h) =
y
r
=

2h
1+ h2

to get
r − x
y

=
1+ h2

2h
− 1− h

2

2h
= h.



The Platonic directions

Some directions are far too
familiar!

Example

30◦ ≈ 2−
√
3 45◦ ≈

√
2− 1 60◦ ≈ 1/

√
3 90◦ ≈ 1

120◦ ≈
√
3 135◦ ≈

√
2+ 1 150◦ ≈ 2+

√
3 180◦ ≈ ∞

Example

72◦ ≈
√
5− 2

√
5 144◦ ≈

√
5+ 2

√
5



Other examples of half-turns

Here are some less familiar directions!

Example

If v ≡ (3, 4) then r = 5 and h = (5− 3) /4 = 1/2.

Example

If v ≡ (1, 2) then r =
√
5 and

h =

√
5− 1
2

≈ 0.61803

Example

If v ≡ (−1, 3) then r =
√
10 and

h =

√
10+ 1
3

≈ 1.38743.
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Theorem (Half-turn transformations)
Suppose that the vector v has half-turn h. Then the reflection of v in the
x-axis has half-turn −h, the reflection of v in the y-axis has half turn 1/h,
the vector −v has half-turn −1/h, while the reflection of v in the line
y = x and the rotation of v by a one-quarter of the full circle in the
positive direction have respective half-turns

1− h
1+ h

and
1+ h
1− h .
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Rotations and the circle sum
Rotations can be described happily without angles:

σh ≡
(
C (h) S (h)
−S (h) C (h)

)
and σ∞ ≡

(
−1 0
0 −1

)
Theorem (Circle sum)
For any half-turns h1 and h2,

σh1σh2 = σh

where

h =
h1 + h2
1− h1h2

≡ h1 ⊕ h2.

This defines the circle sum h1 ⊕ h2 of half-turns. Associativity reduces to
the algebraic identity

(h1 ⊕ h2)⊕ h3 = h1 ⊕ (h2 ⊕ h3) =
h1 + h2 + h3 − h1h2h3
1− (h1h2 + h2h3 + h1h3)

.



Turn functions

h⊕ h =
2h

1− h2 ≡ U2 (h)

h⊕ h⊕ h =
3h− h3
1− 3h2 ≡ U3 (h)

h⊕ h⊕ h⊕ h =
4h− 4h3

1− 6h2 + h4 ≡ U4 (h)



Addition formulas
The functions C , S and T have addition formulas like cos θ, sin θ and
tan θ :

Theorem ( C , S and T addition formulas)

C (h1 ⊕ h2) = C (h1)C (h2)− S (h1) S (h2)
S (h1 ⊕ h2) = C (h1) S (h2) + C (h2) S (h1)

T (h1 ⊕ h2) =
T (h1) + T (h2)
1− T (h1)T (h2)

= T (h1)⊕ T (h2)

Proof.
These reduce to rational function identities: e.g.

2
(
h1+h2
1−h1h2

)
1−

(
h1+h2
1−h1h2

)2 =
(
2h1
1−h21

)
+
(
2h2
1−h́22

)
1−

(
2h1
1−h21

) (
2h2
1−h́22

) .



B) Vector trigonometry
Relative half-turns

The (relative) half-turn between vectors v1 = | r1, h1〉 and
v2 = | r2, h2〉 is:

h = h (v1, v2) ≡
h2 − h1
1+ h1h2

= h2 ⊕ (−h1) .

It follows that
h1 ⊕ h = h2.

The relative half-turn is an oriented quantity, h (v2, v1) = −h (v1, v2) .

Example

If v1 ≡ (3, 2) and v2 = (1, 5) then

h (v1, v2) = h2 ⊕ (−h1) =

(√
26−1
5

)
−
(√

13−3
2

)
1+

(√
26−1
5

) (√
13−3
2

) = √2− 1 ≈ 45◦.



Invariance under rotation

The relative half-turn is invariant under rotations:

Theorem (Half-turn invariance)
For vectors v1 and v2 and any half turn h

h (v1, v2) = h (v1σh, v2σh) .
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Relative half-turn formula

Theorem (Relative half-turn formula)

If v1 ≡ (x1, y1) and v2 ≡ (x2, y2) with r1 ≡ r (v1) and r2 ≡ r (v2), then

h = h (v1, v2) =
y1 (r2 − x2)− y2 (r1 − x1)
y1y2 + (r1 − x1) (r2 − x2)

.

Example

If v1 ≡ (3, 2) and v2 = (1, 5) then

h (v1, v2) =
2
(√

26− 1
)
− 5

(√
13− 3

)
2× 5+

(√
13− 3

) (√
26− 1

) = √2− 1 ≈ 45◦.



Cross law

Theorem (Cross law-rotor form)

r23 = r
2
1 + r

2
2 − 2r1r2C (h3) .

Corollary

h23 =
r23 − (r1 − r2)

2

(r1 + r2)
2 − r23

=
(r1 − r2 − r3) (r2 − r1 − r3)
(r1 + r2 + r3) (r1 + r2 − r3)

.



Triangle half-turn formula

Theorem (Spread law-rotor form)

S (h1)
r1

=
S (h2)
r2

=
S (h3)
r3

.

Theorem (Triangle half-turn formula)

h1h2 + h1h3 + h2h3 = 1.

This replaces θ1 + θ2 + θ3 = 3.1415926535897 932384626 434...



Three concurrent vectors

Theorem (Triple half-turn formula)

If h12 ≡ h (v1, v2) , h23 ≡ h (v2, v3) and h13 ≡ h (v1, v3), then

h12 + h23 + h31 = h12h23h31.

Proof.

h2 − h1
1+ h1h2

+
h3 − h2
1+ h2h3

+
h1 − h3
1+ h3h1

=

(
h2 − h1
1+ h1h2

)(
h3 − h2
1+ h2h3

)(
h1 − h3
1+ h3h1

)
.



C) Geometric application to quadrilaterals
Quadrilateral half-turn formula

h1 =
5
11

√
5− 2

11

h2 =
5
17

√
13− 6

17

h3 =
1
9

√
130+

7
9

h4 =
1
7

√
50− 1

7

Theorem (Quadrilateral half-turn formula)

If h1 ≡ h
(−−→
A1A2,

−−→
A1A4

)
, h2 ≡ h

(−−→
A2A3,

−−→
A2A1

)
, h3 ≡ h

(−−→
A3A4,

−−→
A3A2

)
and h4 ≡ h

(−−→
A4A1,

−−→
A4A3

)
, then

h1 + h2 + h3 + h4 = h1h2h3 + h1h2h4 + h1h3h4 + h2h3h4.



Quadruple half-turn formula

Theorem (Quadruple half-turn formula)

If h12 ≡ h (v1, v2), h23 ≡ h (v2, v3), h34 ≡ h (v3, v4) and h41 ≡ h (v4, v1),
then

h12 + h23 + h34 + h41 = h12h23h34 + h12h23h41 + h12h31h41 + h23h34h41.



Triple quad formula

Quadrance: Q ([x1, y1] , [x2, y2]) ≡ (x2 − x1)2 + (y2 − y1)2

Theorem (Triple quad formula)

If Q1 ≡ Q (A2,A3), Q2 ≡ Q (A1,A3) and Q3 ≡ Q (A1,A2), then

(Q1 +Q2 +Q3)
2 = 2

(
Q21 +Q

2
2 +Q

2
3

)
precisely when A1,A2 and A3 are collinear.

Quadrea: A
(
A1A2A3

)
≡ (Q1 +Q2 +Q3)2 − 2

(
Q21 +Q

2
2 +Q

2
3

)



Tartaglia’s four-point relation

The Triple quad formula may be rewritten as∣∣∣∣ 2Q1 Q1 +Q2 −Q3
Q1 +Q2 −Q3 2Q2

∣∣∣∣ = 0.

Theorem (Tartaglia’s four-point relation)∣∣∣∣∣∣
2P1 P1 + P2 −Q3 P1 + P3 −Q2

P1 + P2 −Q3 2P2 P2 + P3 −Q1
P1 + P3 −Q2 P2 + P3 −Q1 2P3

∣∣∣∣∣∣ = 0.



D) Kinematic application to Newton-Kepler orbits
Kinematics in rotor coordinates

e1 = (C (h) , S (h))

e2 = (−S (h) ,C (h))
de1
dt

= M (h) ḣ e2

de2
dt

= −M (h) ḣ e1

Theorem
If the position of P is p = r e1 then

v =
dp
dt
= ṙ e1 + rM (h) ḣ e2

and

a =
dv
dt
=
(
r̈ − rM2 (h) ḣ2

)
e1 +

1
r
d
dt

(
r2M (h) ḣ

)
e2.



Central force

Theorem (Conservation of angular momentum)

If F = m a is central, i.e F (p) ≡ −F (r (p)) is in the direction of e1, then

r2M (h) ḣ = c .

Also
−F (r) = m

(
r̈ − rM2 (h) ḣ2

)
.

We wish to find r = r (h). Set w = w (h) ≡ 1/r . Then

ṙ = − ẇ
w2

= − 1
w2
dw
dh
ḣ = − c

M (h)
dw
dh

r̈ =
cḣ

M2 (h)
dM
dh
dw
dh
− c
M (h)

ḣ
d2w
dh2

= −cḣ d
dh

(
1

M (h)
dw
dh

)
.
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The differential equation
So

−F (1/w)
m

= − c
2w2

M (h)
d
dh

(
1

M (h)
dw
dh

)
− 1
w
M2 (h)

(
cw2

M (h)

)2
.

Theorem
For a central force field F (r) and w ≡ 1/r ,

1
M (h)

d
dh

(
1

M (h)
dw
dh

)
+ w =

F (1/w)
c2mw2

.

Corollary
For an inverse-square central force, there is k > 0 with

1
M (h)

d
dh

(
1

M (h)
dw
dh

)
+ w = k.

Homogeneous case: w (h) = C (h), S (h), Particular solution: w = k.



Kepler-Newton orbits

Theorem
For an inverse-square central force field, the rotor coordinates r and h of
the motion satisfy

1
r
= aC (h) + bS (h) + k

where a and b are constants that depend on initial conditions.

Use C (h) = x/r and S (h) = y/r to get

1− ax − by
r

= k

so that
(1− ax − by)2 = k2

(
x2 + y2

)
.

This is a conic with focus [0, 0], directrix ax + by = 1 and eccentricity e
where e2 =

(
a2 + b2

)
/k2.

e2 > 1 ⇐⇒ hyperbola, e2 = 1⇐⇒ parabola, e2 < 1 ⇐⇒ ellipse.



The parabolic case

Choose a = k = 1 and b = 0:

(1− x)2 = x2 + y2

or
y2 = 1− 2x .

Conservation of angular momentum gives:

dh
dt
=
1
r
= M (h) =

2
1+ h2

.

An easy integration:∫
1+ h2 dh = h+

h3

3
=
∫
2 dt = 2t

Also we may derive:

x =
1− h2
2

= 1− r and y = h.



Circle of velocities

The motion relates naturally to the geometry of the parabola. In particular
the circle of velocities is as shown.



Paper: Rotor Coordinates and Vector Trigonometry (N J Wildberger)
THANK YOU!
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